51
|
Ramesh P, Nagarajan V, Khanchandani V, Desai VK, Niranjan V. Proteomic variations of esophageal squamous cell carcinoma revealed by combining RNA-seq proteogenomics and G-PTM search strategy. Heliyon 2020; 6:e04813. [PMID: 32913912 PMCID: PMC7472856 DOI: 10.1016/j.heliyon.2020.e04813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/10/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer that arises from epithelial cells of the esophagus is called esophagus squamous cell carcinoma (ESCC) and is mostly observed in developing nations. Evaluation of cancer genomes and its regulation into proteins plays a predominant role in understanding the cancer progressions. Mass-spectrometry-based proteomics is a consequential tool to estimate proteomic variation and posttranslational modifications (PTMs) from standard protein databases. Post-translational modifications play a crucial role in protein folding and PTMs can be accounted for as a biological signal to interpret the structural changes and transition order of proteins. Functional validation of cancer-related mutations can explain the effects of mutations on genes and the identification of Oncogenes and tumor suppressor genes. Therefore, we present a study on protein variations to interpret the structural changes and transition order of proteins in ESCC carcinogenesis. METHODOLOGY We are using a bottom-up proteomics approach with Galaxy-P framework and RNA sequence data analysis to generate the sample-specific databases containing details of RNA splicing and variant peptides. Once the database generated with information on variable modification, only the curated PTMs at specific positions are considered to perform spectral matching. Proteogenomics mapping was performed to identify protein variations in ESCC. RESULTS RNA-sequence proteogenomics with G-PTM (Global Post-Translational Modification) searching strategy has revealed proteomic events including several peptides that contain single amino acid variations, novel splice junction peptides and posttranslationally modified peptides. Proteogenomic mapping exhibited the splice junction peptides mapped predominantly for Malic enzyme exon type (ME-3) and MCM7 protein-coding genes that promote cancer progression, found to be exhibited in ESCC samples. Approximately 25 ± types of PTM modifications were recorded, and Protein Phosphorylation was largely noted. CONCLUSION ESCC cancer prognosis at the molecular level enables a better understanding of cancer carcinogenesis and protein modifications can be used as potential biomarkers.
Collapse
Affiliation(s)
- Pooja Ramesh
- Department of Biotechnology, RV College of Engineering, Bangalore, Karnataka, India
| | | | - Vartika Khanchandani
- Department of Biotechnology, RV College of Engineering, Bangalore, Karnataka, India
| | - Vasanth Kumar Desai
- Department of Biotechnology, RV College of Engineering, Bangalore, Karnataka, India
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bangalore, Karnataka, India
| |
Collapse
|
52
|
Identification of Hub Genes as Biomarkers Correlated with the Proliferation and Prognosis in Lung Cancer: A Weighted Gene Co-Expression Network Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3416807. [PMID: 32596300 PMCID: PMC7305540 DOI: 10.1155/2020/3416807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is one of the most malignant tumors in the world. Early diagnosis and treatment of lung cancer are vitally important to reduce the mortality of lung cancer patients. In the present study, we attempt to identify the candidate biomarkers for lung cancer by weighted gene co-expression network analysis (WGCNA). Gene expression profile of GSE30219 was downloaded from the gene expression omnibus (GEO) database. The differentially expressed genes (DEGs) were analyzed by the limma package, and the co-expression modules of genes were built by WGCNA. UALCAN was used to analyze the relative expression of normal group and tumor subgroups based on tumor individual cancer stages. Survival analysis for the hub genes was performed by Kaplan–Meier plotter analysis with the TCGA database. A total of 2176 genes (745 upregulated and 1431 downregulated genes) were obtained from the GSE30219 database. Seven gene co-expression modules were conducted by WGCNA and the blue module might be inferred as the most crucial module in the pathogenesis of lung cancer. In the pathway enrichment analysis of KEGG, the candidate genes were enriched in the “DNA replication,” “Cell cycle,” and “P53 signaling pathway” pathways. Among these, the cell cycle pathway was the most significant pathway in the blue module with four hub genes CCNB1, CCNE2, MCM7, and PCNA which were selected in our study. Kaplan–Meier plotter analysis indicated that the high expressions of four hub genes were correlated with a worse overall survival (OS) and advanced tumors. qRT-PCR showed that mRNA expression levels of MCM7 (p = 0.038) and CCNE2 (0.003) were significantly higher in patients with the TNM stage. In summary, the high expression of the MCM7 and CCNE2 were significantly related with advanced tumors and worse OS in lung cancer. Thus, the MCM7 and CCNE2 genes can be good indicators for cellular proliferation and prognosis in lung cancer.
Collapse
|
53
|
Moon CI, Tompkins W, Wang Y, Godec A, Zhang X, Pipkorn P, Miller CA, Dehner C, Dahiya S, Hirbe AC. Unmasking Intra-tumoral Heterogeneity and Clonal Evolution in NF1-MPNST. Genes (Basel) 2020; 11:genes11050499. [PMID: 32369930 PMCID: PMC7291009 DOI: 10.3390/genes11050499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/19/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Sarcomas are highly aggressive cancers that have a high propensity for metastasis, fail to respond to conventional therapies, and carry a poor 5-year survival rate. This is particularly true for patients with neurofibromatosis type 1 (NF1), in which 8%–13% of affected individuals will develop a malignant peripheral nerve sheath tumor (MPNST). Despite continued research, no effective therapies have emerged from recent clinical trials based on preclinical work. One explanation for these failures could be the lack of attention to intra-tumoral heterogeneity. Prior studies have relied on a single sample from these tumors, which may not be representative of all subclones present within the tumor. In the current study, samples were taken from three distinct areas within a single tumor from a patient with an NF1-MPNST. Whole exome sequencing, RNA sequencing, and copy number analysis were performed on each sample. A blood sample was obtained as a germline DNA control. Distinct mutational signatures were identified in different areas of the tumor as well as significant differences in gene expression among the spatially distinct areas, leading to an understanding of the clonal evolution within this patient. These data suggest that multi-regional sampling may be important for driver gene identification and biomarker development in the future.
Collapse
Affiliation(s)
- Chang-In Moon
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.-I.M.); (Y.W.); (X.Z.)
| | - William Tompkins
- Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Yuxi Wang
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.-I.M.); (Y.W.); (X.Z.)
| | - Abigail Godec
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Xiaochun Zhang
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.-I.M.); (Y.W.); (X.Z.)
| | - Patrik Pipkorn
- Department of Otolaryngology, Division of Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Siteman Cancer Center, St. Louis, MO 63110, USA; (C.A.M.); (S.D.)
| | - Christopher A. Miller
- Siteman Cancer Center, St. Louis, MO 63110, USA; (C.A.M.); (S.D.)
- McDonnell Genome Institute, Division of Oncology—Stem Cell Biology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carina Dehner
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Sonika Dahiya
- Siteman Cancer Center, St. Louis, MO 63110, USA; (C.A.M.); (S.D.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Angela C. Hirbe
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.-I.M.); (Y.W.); (X.Z.)
- Siteman Cancer Center, St. Louis, MO 63110, USA; (C.A.M.); (S.D.)
- Correspondence: ; Tel.: +1-314-747-3096
| |
Collapse
|
54
|
Gao H, Zhang F, Liang S, Zhang Q, Lyu M, Qian L, Liu W, Ge W, Chen C, Yi X, Zhu J, Lu C, Sun P, Liu K, Zhu Y, Guo T. Accelerated Lysis and Proteolytic Digestion of Biopsy-Level Fresh-Frozen and FFPE Tissue Samples Using Pressure Cycling Technology. J Proteome Res 2020; 19:1982-1990. [PMID: 32182071 DOI: 10.1021/acs.jproteome.9b00790] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pressure cycling technology (PCT)-assisted tissue lysis and digestion have facilitated reproducible and high-throughput proteomic studies of both fresh-frozen (FF) and formalin-fixed paraffin-embedded (FFPE) tissue of biopsy scale for biomarker discovery. Here, we present an improved PCT method accelerating the conventional procedures by about two-fold without sacrificing peptide yield, digestion efficiency, peptide, and protein identification. The time required for processing 16 tissue samples from tissues to peptides is reduced from about 6 to about 3 h. We analyzed peptides prepared from FFPE hepatocellular carcinoma (HCC) tissue samples by the accelerated PCT method using multiple MS acquisition methods, including short-gradient SWATH-MS, PulseDIA-MS, and 10-plex TMT-based shotgun MS. The data showed that up to 8541 protein groups could be reliably quantified from the thus prepared peptide samples. We applied the accelerated sample preparation method to 25 pairs (tumorous and matched benign) of HCC samples followed by a single-shot, 15 min gradient SWATH-MS analysis. An average of 18 453 peptides from 2822 proteins were quantified in at least 20% samples in this cohort, while 1817 proteins were quantified in at least 50% samples. The data not only identified the previously known dysregulated proteins such as MCM7, MAPRE1, and SSRP1 but also discovered promising novel protein markers, including DRAP1 and PRMT5. In summary, we present an accelerated PCT protocol that effectively doubles the throughput of PCT-assisted sample preparation of biopsy-level FF and FFPE samples without compromising protein digestion efficiency, peptide yield, and protein identification.
Collapse
Affiliation(s)
- Huanhuan Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Fangfei Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Shuang Liang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Qiushi Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Mengge Lyu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Liujia Qian
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Wei Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 200335, Liaoning, China
| | - Weigang Ge
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | | | - Xiao Yi
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Jiang Zhu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Cong Lu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Ping Sun
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 200335, Liaoning, China
| | - Yi Zhu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Tiannan Guo
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
55
|
Ghosh A, Chatterjee K, Chowdhury AR, Barui A. Clinico-pathological significance of Drp1 dysregulation and its correlation to apoptosis in oral cancer patients. Mitochondrion 2020; 52:115-124. [PMID: 32169612 DOI: 10.1016/j.mito.2020.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/06/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Dysregulation in mitochondrial dynamics has been associated with several diseases including cancer. Present study assessed the alteration in mitochondrial fission protein (Drp1) in oral epithelial cells collected from clinically confirmed pre-cancer and cancer patients and further correlates it with the cellular apoptosis signaling. Results indicate the ROS accumulation in OSCC patients is accompanied by several changes including increase in mitochondrial mass, expression of mitochondrial fission protein (Drp1) and alteration in apoptotic signaling. The positive co-relation has been observed between the expressions of anti-apoptotic Bcl-2proteinswith mitochondrial fission protein Drp1. Higher mitochondrial fission in oral cancer cells was also correlated with the increased expression of cell cycle marker CyclinD1 indicating highly proliferative stage of oral cancer cells. The clinical correlation can be extended to develop biomarker for diagram and program in oral cancer management.
Collapse
Affiliation(s)
- Aritri Ghosh
- Centre for Healthcare Science and Technology, Indian Institute of Engineering, Science and Technology, P.O. Botanic Garden, Shibpur, Howrah 711103, WB, India
| | - Kabita Chatterjee
- Department of Oral and Maxillofacial Pathology, Buddha Institute of Dental Sciences, West of TV Tower, Gandhinagar, Kankarbagh, Patna 800020, Bihar, India
| | - Amit Roy Chowdhury
- Department of Aerospace and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Shibpur, Howrah 711103, WB, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering, Science and Technology, P.O. Botanic Garden, Shibpur, Howrah 711103, WB, India.
| |
Collapse
|
56
|
Yang Y, Ma S, Ye Z, Zhou X. MCM7 silencing promotes cutaneous melanoma cell autophagy and apoptosis by inactivating the AKT1/mTOR signaling pathway. J Cell Biochem 2020; 121:1283-1294. [PMID: 31535400 DOI: 10.1002/jcb.29361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/20/2019] [Indexed: 01/17/2023]
Abstract
Cutaneous melanoma (CM) has become a major public health concern. Studies illustrate that minichromosome maintenance protein 7 (MCM7) participate in various diseases including skin disease. Our study aimed to study the effects of MCM7 silencing on CM cell autophagy and apoptosis by modulating the AKT threonine kinase 1 (AKT1)/mechanistic target of rapamycin kinase (mTOR) signaling pathway. Initially, microarray analysis was used to screen the CM-related gene expression data as well as differentially expressed genes. Subsequently, MCM7 expression vector and lentivirus RNA used for MCM7 silencing (LV-shRNA-MCM7) were constructed, and these vectors, dimethyl sulfoxide (DMSO) and AKT activator SC79 were then introduced into CM cell line SK-MEL-2 to validate the role of MCM7 in cell autophagy, viability, apoptosis, cell cycle, migration, and invasion. To further investigate the regulatory mechanisms of MCM7 in CM progress, the expression of MCM7, AKT1, mTOR, cyclin D1, as well as autophagy and apoptosis relative factors, such as LC3B, SOD2, DJ-1, p62, Bcl-2, Bax, and caspase-3 in melanoma cells was determined. MCM7 might mediate the AKT1/mTOR signaling pathway to influence the progress of melanoma. MCM7 silencing contributed to the increased expression of Bax, capase-3, and autophagy-related genes (LC3B, SOD2, and DJ-1), but decreased the expression of Bcl-2, which suggested that MCM7 silencing promoted autophagy and cell apoptosis. At the same time, MCM7 silencing also attenuated cell viability, invasion, and migration, and reduced the cyclin D1 expression and protein levels of p-AKT1 and p-mTOR. Taken together, MCM7 silencing inhibited CM via inactivation of the AKT1/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yemei Yang
- Department of Dermatology and Venerology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Shengfang Ma
- Department of Dermatology, Baoshihua Hospital of Gansu Province, Lanzhou, China
| | - Zi Ye
- College of Information and Sciences, The Pennsylvania State University, Pennsylvania
| | - Xianyi Zhou
- Department of Dermatology and Venerology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
57
|
Jia M, Zheng D, Wang X, Zhang Y, Chen S, Cai X, Mo L, Hu Z, Li H, Zhou Z, Li J. Cancer Cell enters reversible quiescence through Intracellular Acidification to resist Paclitaxel Cytotoxicity. Int J Med Sci 2020; 17:1652-1664. [PMID: 32669967 PMCID: PMC7359388 DOI: 10.7150/ijms.46034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer cells can enter quiescent or dormant state to resist anticancer agents while maintaining the potential of reactivation. However, the molecular mechanism underlying quiescence entry and reactivation remains largely unknown. In this paper, cancer cells eventually entered a reversible quiescent state to resist long-term paclitaxel (PTX) stress. The quiescent cells were characterized with Na+/H+ exchanger 1 (NHE1) downregulation and showed acidic intracellular pH (pHi). Accordingly, decreasing pHi by NHE1 inhibitor could induce cell enter quiescence. Further, acidic pHi could activate the ubiquitin-proteasome system and inhibiting proteasome activity by MG132 prevented cells entering quiescence. In addition, we show that after partial release, the key G1-S transcription factor E2F1 protein level was not recovered, while MCM7 protein returned to normal level in the reactivated cells. More importantly, MCM7 knockdown inhibited G1/S genes transcription and inhibited the reactivated proliferation. Taken together, this study demonstrates a regulatory function of intracellular acidification and subsequent protein ubiquitination on quiescence entry, and reveals a supportive effect of MCM7 on the quiescence-reactivated proliferation.
Collapse
Affiliation(s)
- Min Jia
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Dianpeng Zheng
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiuyun Wang
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongjun Zhang
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Sansan Chen
- Department of Urology, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiangsheng Cai
- Clinical Laboratory, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Lijun Mo
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiming Hu
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongxin Zhou
- Department of Vascular Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinlong Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
58
|
Liu J, Li W, Zhang J, Ma Z, Wu X, Tang L. Identification of key genes and long non-coding RNA associated ceRNA networks in hepatocellular carcinoma. PeerJ 2019; 7:e8021. [PMID: 31695969 PMCID: PMC6827457 DOI: 10.7717/peerj.8021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Although multiple efforts have been made to understand the development of HCC, morbidity, and mortality rates remain high. In this study, we aimed to discover the mRNAs and long non-coding RNAs (lncRNAs) that contribute to the progression of HCC. We constructed a lncRNA-related competitive endogenous RNA (ceRNA) network to elucidate the molecular regulatory mechanism underlying HCC. METHODS A microarray dataset (GSE54238) containing information about both mRNAs and lncRNAs was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) and lncRNAs (DElncRNAs) in tumor tissues and non-cancerous tissues were identified using the limma package of the R software. The miRNAs that are targeted by DElncRNAs were predicted using miRcode, while the target mRNAs of miRNAs were retrieved from miRDB, miRTarBas, and TargetScan. Functional annotation and pathway enrichment of DEGs were performed using the EnrichNet website. We constructed a protein-protein interaction (PPI) network of DEGs using STRING, and identified the hub genes using Cytoscape. Survival analysis of the hub genes and DElncRNAs was performed using the gene expression profiling interactive analysis database. The expression of molecules with prognostic values was validated on the UALCAN database. The hepatic expression of hub genes was examined using the Human Protein Atlas. The hub genes and DElncRNAs with prognostic values as well as the predictive miRNAs were selected to construct the ceRNA networks. RESULTS We found that 10 hub genes (KPNA2, MCM7, CKS2, KIF23, HMGB2, ZWINT, E2F1, MCM4, H2AFX, and EZH2) and four lncRNAs (FAM182B, SNHG6, SNHG1, and SNHG3) with prognostic values were overexpressed in the hepatic tumor samples. We also constructed a network containing 10 lncRNA-miRNA-mRNA pathways, which might be responsible for regulating the biological mechanisms underlying HCC. CONCLUSION We found that the 10 significantly overexpressed hub genes and four lncRNAs were negatively correlated with the prognosis of HCC. Further, we suggest that lncRNA SNHG1 and the SNHG3-related ceRNAs can be potential research targets for exploring the molecular mechanisms of HCC.
Collapse
Affiliation(s)
- Jun Liu
- Department of Clinical Laboratory, Yue Bei People’s Hospital, Shaoguan, Guangdong, China
- Morning Star Academic Cooperation, Shanghai, China
| | - Wenli Li
- Reproductive Medicine Center, Yue Bei People’s Hospital, Shaoguan, Guangdong, China
| | - Jian Zhang
- Department of Clinical Laboratory, Yue Bei People’s Hospital, Shaoguan, Guangdong, China
| | - Zhanzhong Ma
- Department of Clinical Laboratory, Yue Bei People’s Hospital, Shaoguan, Guangdong, China
| | - Xiaoyan Wu
- Community Healthcare Center, Shanghai, Shanghai, China
| | - Lirui Tang
- Morning Star Academic Cooperation, Shanghai, China
- Shanghai JiaoTong University School of Medicine, Shanghai Ninth People’s Hospital, Shanghai, China
| |
Collapse
|
59
|
Kawaguchi T, Nakano D, Koga H, Torimura T. Effects of a DPP4 Inhibitor on Progression of NASH-related HCC and the p62/ Keap1/Nrf2-Pentose Phosphate Pathway in a Mouse Model. Liver Cancer 2019; 8:359-372. [PMID: 31768345 PMCID: PMC6873068 DOI: 10.1159/000491763] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 06/29/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND AIMS Diabetes mellitus is a risk factor for hepatocellular carcinoma (HCC) in patients with nonalcoholic steatohepatitis (NASH). Dipeptidyl peptidase-4 inhibitor (DPP4i), an antidiabetic agent, is reported to affect cell proliferation. We aimed to investigate the effects of DPP4i on the progression of NASH-related HCC and its metabolic pathway in a mouse model. METHODS A mouse model of NASH-related HCC was used in this study. Eight-week-old mice were administered either DPP4i (sitagliptin 30 mg/kg/day; DPP4i group; n = 8) or distilled water (control group; n = 8) for 10 weeks. Then, HCC progression was evaluated by computed tomography. Changes in metabolites of HCC tissue were analyzed by metabolomic analysis. The localization and expression of p62, Keap1, Nrf2, and MCM7 were evaluated by immunostaining and immunoblotting, respectively. RESULTS The number and volume of HCC were significantly lower in the DPP4i group than in the control group (1.8 ± 1.2 vs. 4.5 ± 1.7/liver, p < 0.01; 11.2 ± 20.8 vs. 37.5 ± 72.5 mm3/tumor, p < 0.05). Metabolome analysis revealed that DPP4i significantly increased 6-phosphogluconic acid and ribose 5-phosphate levels and decreased the AMP-to-adenine and GMP-to-guanine ratios (AMP-to-adenine ratio 0.7 ± 0.2 vs. 2.0 ± 1.2, p < 0.01; GMP-to-guanine ratio 0.6 ± 0.3 vs. 1.5 ± 0.7, p < 0.01). Immunostaining showed that p62 was localized in the cytoplasm of HCC in the DPP4i group, while p62 was localized in the nucleus of HCC in the control group. Keap1, Nrf2, and MCM7 expression decreased significantly in the DPP4i group compared to that in the control group. CONCLUSIONS We demonstrated that DDP4i prevented the progression of NASH-related HCC in a mouse model. Furthermore, metabolome analysis revealed that DDP4i downregulated the pentose phosphate pathway with suppression of the p62/Keap1/Nrf2 pathway. Thus, DDP4i may prevent tumor progression through inhibition of metabolic reprogramming in NASH-related HCC.
Collapse
Affiliation(s)
- Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan,*Takumi Kawaguchi, MD, PhD, Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011 (Japan), E-Mail
| | - Dan Nakano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan,Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan,Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| |
Collapse
|
60
|
Alshabi AM, Shaikh IA, Vastrad C. Exploring the Molecular Mechanism of the Drug-Treated Breast Cancer Based on Gene Expression Microarray. Biomolecules 2019; 9:biom9070282. [PMID: 31311202 PMCID: PMC6681318 DOI: 10.3390/biom9070282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/24/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
: Breast cancer (BRCA) remains the leading cause of cancer morbidity and mortality worldwide. In the present study, we identified novel biomarkers expressed during estradiol and tamoxifen treatment of BRCA. The microarray dataset of E-MTAB-4975 from Array Express database was downloaded, and the differential expressed genes (DEGs) between estradiol-treated BRCA sample and tamoxifen-treated BRCA sample were identified by limma package. The pathway and gene ontology (GO) enrichment analysis, construction of protein-protein interaction (PPI) network, module analysis, construction of target genes-miRNA interaction network and target genes-transcription factor (TF) interaction network were performed using bioinformatics tools. The expression, prognostic values, and mutation of hub genes were validated by SurvExpress database, cBioPortal, and human protein atlas (HPA) database. A total of 856 genes (421 up-regulated genes and 435 down-regulated genes) were identified in T47D (overexpressing Split Ends (SPEN) + estradiol) samples compared to T47D (overexpressing Split Ends (SPEN) + tamoxifen) samples. Pathway and GO enrichment analysis revealed that the DEGs were mainly enriched in response to lysine degradation II (pipecolate pathway), cholesterol biosynthesis pathway, cell cycle pathway, and response to cytokine pathway. DEGs (MCM2, TCF4, OLR1, HSPA5, MAP1LC3B, SQSTM1, NEU1, HIST1H1B, RAD51, RFC3, MCM10, ISG15, TNFRSF10B, GBP2, IGFBP5, SOD2, DHF and MT1H) , which were significantly up- and down-regulated in estradiol and tamoxifen-treated BRCA samples, were selected as hub genes according to the results of protein-protein interaction (PPI) network, module analysis, target genes-miRNA interaction network and target genes-TF interaction network analysis. The SurvExpress database, cBioPortal, and Human Protein Atlas (HPA) database further confirmed that patients with higher expression levels of these hub genes experienced a shorter overall survival. A comprehensive bioinformatics analysis was performed, and potential therapeutic applications of estradiol and tamoxifen were predicted in BRCA samples. The data may unravel the future molecular mechanisms of BRCA.
Collapse
Affiliation(s)
- Ali Mohamed Alshabi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, 66237, Saudi Arabia
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, 66237, Saudi Arabia
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, ChanabasavaNilaya, Bharthinagar, Dharwad 580001, Karnataka, India.
| |
Collapse
|
61
|
Zhang Y, Xu L, Wang P, Jian H, Shi X, Jia M, Mo L, Hu Z, Li H, Li J. Phenotypic transition of tumor cells between epithelial- and mesenchymal-like state during adaptation to acidosis. Cell Cycle 2019; 18:1938-1947. [PMID: 31234753 DOI: 10.1080/15384101.2019.1635868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acidic microenvironment is an important feature of solid tumors that contributes to malignant transformation. Low extracellular pH could promote epithelial-mesenchymal transition (EMT) thereby endowing tumor cells with higher invasive capability. However, the relation between EMT and tumor cell proliferation under long-term acidic condition is still not fully understood. Here, we show that tumor cells have undergone a phenotypic transition from EMT to mesenchymal-epithelial transition (MET) during adaptation to acidosis, and is closely related with cell proliferative state. Under early stage of acidic stress, tumor cells entered a non-cycling quiescent state with mesenchymal phenotype and expressed high level of stemness genes. Whereas, after long-term acid culture (2 months), acid-adapted cells resumed proliferating but lost mesenchymal phenotype. Further, our results show that the acid-adapted cells have distinct proliferative mechanism from non-acid cells, as the G1-S transcriptional factor E2F1 protein was not recovered in the adapted cells. Meanwhile, mini-chromosome maintenance 7 (MCM7) is shown to regulate the EMT to MET phenotypic transition, and is required for proliferation of the adapted cells under acidic condition. MCM7 Knockdown promoted mesenchymal phenotype and inhibited proliferation of the acid-adapted cells. While, MCM7 overexpression inhibited acid-induced EMT and supported tumor cell proliferation under acidic condition. Thus, our study provides evidence that tumor cells display phenotypic plasticity that allows them to survive acid stress.
Collapse
Affiliation(s)
- Yongjun Zhang
- a Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University , Guangzhou , Guangdong , China
| | - Lili Xu
- a Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University , Guangzhou , Guangdong , China
| | - Ping Wang
- a Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University , Guangzhou , Guangdong , China
| | - Huanzhang Jian
- a Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University , Guangzhou , Guangdong , China
| | - Xianghua Shi
- b Department of Urology, Nanfang Hospital, Southern Medical University , Guangzhou , Guangdong , China
| | - Min Jia
- a Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University , Guangzhou , Guangdong , China
| | - Lijun Mo
- a Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University , Guangzhou , Guangdong , China
| | - Zhiming Hu
- a Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University , Guangzhou , Guangdong , China
| | - Hongwei Li
- a Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University , Guangzhou , Guangdong , China
| | - Jinlong Li
- a Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University , Guangzhou , Guangdong , China
| |
Collapse
|
62
|
Yang Q, Xie B, Tang H, Meng W, Jia C, Zhang X, Zhang Y, Zhang J, Li H, Fu B. Minichromosome maintenance 3 promotes hepatocellular carcinoma radioresistance by activating the NF-κB pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:263. [PMID: 31208444 PMCID: PMC6580494 DOI: 10.1186/s13046-019-1241-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is the most common tumors in the worldwide, it develops resistance to radiotherapy during treatment, understanding the regulatory mechanisms of radioresistance generation is the urgent need for HCC therapy. Methods qRT-PCR, western blot and immunohistochemistry were used to examine MCM3 expression. MTT assay, colony formation assay, terminal deoxynucleotidyl transferase nick end labeling assay and In vivo xenograft assay were used to determine the effect of MCM3 on radioresistance. Gene set enrichment analysis, luciferase reporter assay, western blot and qRT-PCR were used to examine the effect of MCM3 on NF-κB pathway. Results We found DNA replication initiation protein Minichromosome Maintenance 3 (MCM3) was upregulated in HCC tissues and cells, patients with high MCM3 expression had poor outcome, it was an independent prognostic factor for HCC. Cells with high MCM3 expression or MCM3 overexpression increased the radioresistance determined by MTT assay, colony formation assay, TUNEL assay and orthotopic transplantation mouse model, while cells with low MCM3 expression or MCM3 knockdown reduced the radioresistance. Mechanism analysis showed MCM3 activated NF-κB pathway, characterized by increasing the nuclear translocation of p65, the expression of the downstream genes NF-κB pathway and the phosphorylation of IKK-β and IκBα. Inhibition of NF-κB in MCM3 overexpressing cells using small molecular inhibitor reduced the radioresistance, suggesting MCM3 increased radioresistance through activating NF-κB pathway. Moreover, we found MCM3 expression positively correlated with NF-κB pathway in clinic. Conclusions Our findings revealed that MCM3 promoted radioresistance through activating NF-κB pathway, strengthening the role of MCM subunits in the tumor progression and providing a new target for HCC therapy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1241-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qing Yang
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, 600# Tianhe Road, Guangzhou, 510630, China
| | - Binhui Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Hui Tang
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, 600# Tianhe Road, Guangzhou, 510630, China
| | - Wei Meng
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, 600# Tianhe Road, Guangzhou, 510630, China
| | - Changchang Jia
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaomei Zhang
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yi Zhang
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, 600# Tianhe Road, Guangzhou, 510630, China
| | - Jianwen Zhang
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, 600# Tianhe Road, Guangzhou, 510630, China.
| | - Heping Li
- Department of Medical Oncology of the Eastern Hospital, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan Er Road, Guangzhou, 510080, China.
| | - Binsheng Fu
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, 600# Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
63
|
Wang HY, Zhang B, Zhou JN, Wang DX, Xu YC, Zeng Q, Jia YL, Xi JF, Nan X, He LJ, Yue W, Pei XT. Arsenic trioxide inhibits liver cancer stem cells and metastasis by targeting SRF/MCM7 complex. Cell Death Dis 2019; 10:453. [PMID: 31186405 PMCID: PMC6560089 DOI: 10.1038/s41419-019-1676-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) has a high mortality rate due to the lack of effective treatments and drugs. Arsenic trioxide (ATO), which has been proved to successfully treat acute promyelocytic leukemia (APL), was recently reported to show therapeutic potential in solid tumors including HCC. However, its anticancer mechanisms in HCC still need further investigation. In this study, we demonstrated that ATO inhibits tumorigenesis and distant metastasis in mouse models, corresponding with a prolonged mice survival time. Also, ATO was found to significantly decrease the cancer stem cell (CSC)-associated traits. Minichromosome maintenance protein (MCM) 7 was further identified to be a potential target suppressed dramatically by ATO, of which protein expression is increased in patients and significantly correlated with tumor size, cellular differentiation, portal venous emboli, and poor patient survival. Moreover, MCM7 knockdown recapitulates the effects of ATO on CSCs and metastasis, while ectopic expression of MCM7 abolishes them. Mechanistically, our results suggested that ATO suppresses MCM7 transcription by targeting serum response factor (SRF)/MCM7 complex, which functions as an important transcriptional regulator modulating MCM7 expression. Taken together, our findings highlight the importance of ATO in the treatment of solid tumors. The identification of SRF/MCM7 complex as a target of ATO provides new insights into ATO’s mechanism, which may benefit the appropriate use of this agent in the treatment of HCC.
Collapse
Affiliation(s)
- Hai-Yang Wang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Biao Zhang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Jun-Nian Zhou
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China. .,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China. .,Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Dong-Xing Wang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Ying-Chen Xu
- Department of Hepatobiliary Surgery, Beijing Tongren Hospital, Beijing, 100730, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Ya-Li Jia
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China.,Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jia-Fei Xi
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Xue Nan
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Li-Juan He
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China. .,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China.
| | - Xue-Tao Pei
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China. .,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China.
| |
Collapse
|
64
|
Juengpanich S, Shi L, Iranmanesh Y, Chen J, Cheng Z, Khoo AKJ, Pan L, Wang Y, Cai X. The role of natural killer cells in hepatocellular carcinoma development and treatment: A narrative review. Transl Oncol 2019; 12:1092-1107. [PMID: 31176993 PMCID: PMC6558093 DOI: 10.1016/j.tranon.2019.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
A major obstacle for treatment of HCC is the inadequate efficacy and limitation of the available therapeutic options. Despite the recent advances in developing novel treatment options, HCC still remains one of the major causes of cancer morbidity and mortality around the world. Achieving effective treatment and eradication of HCC is a challenging task, however recent studies have shown that targeting Natural Killer cells, as major regulators of immune system, can help with the complete treatment of HCC, restoration of normal liver function and subsequently higher survival rate of HCC patients. Studies have shown that decrease in the frequency of NK cells, their dysfunction due to several factors such as dysregulation of receptors and their ligands, and imbalance of different types of inhibitory and stimulating microRNA expression is associated with higher rate of HCC progression and development, and poor survival outcome. Here in our review, we mainly focused on the importance of NK cells in HCC development and treatment.
Collapse
Affiliation(s)
- Sarun Juengpanich
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China; School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Liang Shi
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China.
| | | | - Jiang Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Zhenzhe Cheng
- School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Aaron Kah-Jin Khoo
- Faculty of Medicine, The University of Queensland, St Lucia, QLD, 4027, Australia.
| | - Long Pan
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China; School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Yifan Wang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China.
| |
Collapse
|
65
|
Xiang XH, Yang L, Zhang X, Ma XH, Miao RC, Gu JX, Fu YN, Yao Q, Zhang JY, Liu C, Lin T, Qu K. Seven-senescence-associated gene signature predicts overall survival for Asian patients with hepatocellular carcinoma. World J Gastroenterol 2019; 25:1715-1728. [PMID: 31011256 PMCID: PMC6465944 DOI: 10.3748/wjg.v25.i14.1715] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/06/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cellular senescence is a recognized barrier for progression of chronic liver diseases to hepatocellular carcinoma (HCC). The expression of a cluster of genes is altered in response to environmental factors during senescence. However, it is questionable whether these genes could serve as biomarkers for HCC patients.
AIM To develop a signature of senescence-associated genes (SAGs) that predicts patients’ overall survival (OS) to improve prognosis prediction of HCC.
METHODS SAGs were identified using two senescent cell models. Univariate COX regression analysis was performed to screen the candidate genes significantly associated with OS of HCC in a discovery cohort (GSE14520) for the least absolute shrinkage and selection operator modelling. Prognostic value of this seven-gene signature was evaluated using two independent cohorts retrieved from the GEO (GSE14520) and the Cancer Genome Atlas datasets, respectively. Time-dependent receiver operating characteristic (ROC) curve analysis was conducted to compare the predictive accuracy of the seven-SAG signature and serum α-fetoprotein (AFP).
RESULTS A total of 42 SAGs were screened and seven of them, including KIF18B, CEP55, CIT, MCM7, CDC45, EZH2, and MCM5, were used to construct a prognostic formula. All seven genes were significantly downregulated in senescent cells and upregulated in HCC tissues. Survival analysis indicated that our seven-SAG signature was strongly associated with OS, especially in Asian populations, both in discovery and validation cohorts. Moreover, time-dependent ROC curve analysis suggested the seven-gene signature had a better predictive accuracy than serum AFP in predicting HCC patients’ 1-, 3-, and 5-year OS.
CONCLUSION We developed a seven-SAG signature, which could predict OS of Asian HCC patients. This risk model provides new clinical evidence for the accurate diagnosis and targeted treatment of HCC.
Collapse
Affiliation(s)
- Xiao-Hong Xiang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Li Yang
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Taishan Medical College, Liaocheng 252000, Shandong Province, China
| | - Xing Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Xiao-Hua Ma
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Run-Chen Miao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Jing-Xian Gu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Yu-Nong Fu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Qing Yao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Jing-Yao Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Ting Lin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
66
|
Rossi F, Legnini I, Megiorni F, Colantoni A, Santini T, Morlando M, Di Timoteo G, Dattilo D, Dominici C, Bozzoni I. Circ-ZNF609 regulates G1-S progression in rhabdomyosarcoma. Oncogene 2019; 38:3843-3854. [PMID: 30670781 PMCID: PMC6544520 DOI: 10.1038/s41388-019-0699-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 01/16/2023]
Abstract
Circular RNAs (circRNAs) represent a class of covalently closed RNAs, derived from non-canonical splicing events, which are expressed in all eukaryotes and often conserved among different species. We previously showed that the circRNA originating from the ZNF609 locus (circ-ZNF609) acts as a crucial regulator of human primary myoblast growth: indeed, the downregulation of the circRNA, and not of its linear counterpart, strongly reduced the proliferation rate of in vitro cultured myoblasts. To deepen our knowledge about circ-ZNF609 role in cell cycle regulation, we studied its expression and function in rhabdomyosarcoma (RMS), a pediatric skeletal muscle malignancy. We found that circ-ZNF609 is upregulated in biopsies from the two major RMS subtypes, embryonal (ERMS) and alveolar (ARMS). Moreover, we discovered that in an ERMS-derived cell line circ-ZNF609 knock-down induced a specific block at the G1-S transition, a strong decrease of p-Akt protein level and an alteration of the pRb/Rb ratio. Regarding p-Akt, we were able to show that circ-ZNF609 acts by counteracting p-Akt proteasome-dependent degradation, thus working as a new regulator of cell proliferation-related pathways. As opposed to ERMS-derived cells, the circRNA depletion had no cell cycle effects in ARMS-derived cells. Since in these cells the p53 gene resulted downregulated, with a concomitant upregulation of its cell cycle-related target genes, we suggest that this could account for the lack of circ-ZNF609 effect in ARMS.
Collapse
Affiliation(s)
- Francesca Rossi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Ivano Legnini
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | | | - Alessio Colantoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Tiziana Santini
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Mariangela Morlando
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Gaia Di Timoteo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Dario Dattilo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Carlo Dominici
- Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy. .,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
67
|
Macchiaroli N, Cucher M, Kamenetzky L, Yones C, Bugnon L, Berriman M, Olson PD, Rosenzvit MC. Identification and expression profiling of microRNAs in Hymenolepis. Int J Parasitol 2019; 49:211-223. [PMID: 30677390 DOI: 10.1016/j.ijpara.2018.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 02/08/2023]
Abstract
Tapeworms (cestodes) of the genus Hymenolepis are the causative agents of hymenolepiasis, a neglected zoonotic disease. Hymenolepis nana is the most prevalent human tapeworm, especially affecting children. The genomes of Hymenolepis microstoma and H. nana have been recently sequenced and assembled. MicroRNAs (miRNAs), a class of small non-coding RNAs, are principle regulators of gene expression at the post-transcriptional level and are involved in many different biological processes. In previous work, we experimentally identified miRNA genes in the cestodes Echinococcus, Taenia and Mesocestoides. However, current knowledge about miRNAs in Hymenolepis is limited. In this work we described for the first known time the expression profile of the miRNA complement in H. microstoma, and discovered miRNAs in H. nana. We found a reduced complement of 37 evolutionarily conserved miRNAs, putatively reflecting their low morphological complexity and parasitic lifestyle. We found high expression of a few miRNAs in the larval stage of H. microstoma that are conserved in other cestodes, suggesting that these miRNAs may have important roles in development, survival and for host-parasite interplay. We performed a comparative analysis of the identified miRNAs across the Cestoda and showed that most of the miRNAs in Hymenolepis are located in intergenic regions, implying that they are independently transcribed. We found a Hymenolepis-specific cluster composed of three members of the mir-36 family. Also, we found that one of the neighboring genes of mir-10 was a Hox gene as in most bilaterial species. This study provides a valuable resource for further experimental research in cestode biology that might lead to improved detection and control of these neglected parasites. The comprehensive identification and expression analysis of Hymenolepis miRNAs can help to identify novel biomarkers for diagnosis and/or novel therapeutic targets for the control of hymenolepiasis.
Collapse
Affiliation(s)
- Natalia Macchiaroli
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Laura Kamenetzky
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Cristian Yones
- Research Institute for Signals, Systems and Computational Intelligence, (sinc(i)), FICH-UNL-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Santa Fe, Argentina
| | - Leandro Bugnon
- Research Institute for Signals, Systems and Computational Intelligence, (sinc(i)), FICH-UNL-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Santa Fe, Argentina
| | - Matt Berriman
- Parasite Genomics Group, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Peter D Olson
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Mara Cecilia Rosenzvit
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
68
|
Zhu Y, Zhu J, Lu C, Zhang Q, Xie W, Sun P, Dong X, Yue L, Sun Y, Yi X, Zhu T, Ruan G, Aebersold R, Huang S, Guo T. Identification of Protein Abundance Changes in Hepatocellular Carcinoma Tissues Using PCT-SWATH. Proteomics Clin Appl 2018; 13:e1700179. [PMID: 30365225 DOI: 10.1002/prca.201700179] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/16/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE To rapidly identify protein abundance changes in biopsy-level fresh-frozen hepatocellular carcinoma (HCC). EXPERIMENTAL DESIGN The pressure-cycling technology (PCT) is applied and sequential window acquisition of all theoretical mass spectra (SWATH-MS) workflow is optimized to analyze 38 biopsy-level tissue samples from 19 HCC patients. Each proteome is analyzed with 45 min LC gradient. MCM7 is validated using immunohistochemistry (IHC). RESULTS A total of 11 787 proteotypic peptides from 2579 SwissProt proteins are quantified with high confidence. The coefficient of variation (CV) of peptide yield using PCT is 32.9%, and the R2 of peptide quantification is 0.9729. Five hundred forty-one proteins showed significant abundance change between the tumor area and its adjacent benign area. From 24 upregulated pathways and 13 suppressed ones, enhanced biomolecule synthesis and suppressed small molecular metabolism in liver tumor tissues are observed. Protein changes based on α-fetoprotein expression and hepatitis B virus infection are further analyzed. The data altogether highlight 16 promising tumor marker candidates. The upregulation of minichromosome maintenance complex component 7 (MCM7) is further observed in multiple HCC tumor tissues by IHC. CONCLUSIONS AND CLINICAL RELEVANCE The practicality of rapid proteomic analysis of biopsy-level fresh-frozen HCC tissue samples with PCT-SWATH has been demonstrated and promising tumor marker candidates including MCM7 are identified.
Collapse
Affiliation(s)
- Yi Zhu
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P. R. China.,Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Jiang Zhu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Cong Lu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Qiushi Zhang
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P. R. China
| | - Wei Xie
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Ping Sun
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Xiaochuan Dong
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Liang Yue
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P. R. China
| | - Yaoting Sun
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P. R. China
| | - Xiao Yi
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P. R. China
| | - Tiansheng Zhu
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P. R. China
| | - Guan Ruan
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P. R. China
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland.,Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Shi'ang Huang
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Tiannan Guo
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P. R. China.,Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
69
|
Wen QL, Zhu SM, Jiang LH, Xiang FY, Yin WJ, Qian YY, Huang YQ, Yin KX, Zhu X, Ge MH. Expression and prognostic significance of MCM-3 and MCM-7 in salivary adenoid cystic carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5359-5369. [PMID: 31949617 PMCID: PMC6963010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/25/2018] [Indexed: 06/10/2023]
Abstract
This study sought to investigate minichromosome maintenance protein 3 (MCM3) and minichromosome maintenance protein 7 (MCM7) expression in salivary adenoid cystic carcinoma (SACC) samples, and to evaluate the relationship between clinicopathological characteristics and prognosis. The expressions of MCM3 and MCM7 were evaluated using immunohistochemistry of tissue sections from SACC patients, and statistical analyses were performed to evaluate the associations between MCM expression and clinicopathological variables and to analyze the disease-free survival (DFS) and prognostic factors. The positive expression rates of MCM3 and MCM7 in SACC were 98.8% and 96.6%, respectively. MCM3 expression correlated with T-stage and nerve invasion. MCM7 expression correlated with T-stage, adjacent tissue invasion, nerve invasion, and prognosis, and was negatively associated with DFS. However, there was no significant correlation between MCM3 expression and DFS. A kappa analysis demonstrated that MCM3 was closely associated with MCM7. MCM7 may be a favorable prognosis indicator in SACC.
Collapse
Affiliation(s)
- Qing-Liang Wen
- The First Affiliated Hospital of Wenzhou Medical UniversityOuhai District, Wenzhou, China
- Department of Thyroid and Breast Surgery, Zhejiang Provincial People’s HospitalGongshu District, Hangzhou, China
- Department of Head and Neck Surgery, Zhejiang Cancer HospitalGongshu District, Hangzhou, China
| | - Sen-Miao Zhu
- The Second Affiliated Hospital of Wenzhou Medical UniversityLucheng District, Wenzhou, China
| | - Lie-Hao Jiang
- Department of Thyroid and Breast Surgery, Zhejiang Provincial People’s HospitalGongshu District, Hangzhou, China
- Department of Head and Neck Surgery, Zhejiang Cancer HospitalGongshu District, Hangzhou, China
| | - Fang-Yue Xiang
- Stomatology College, Zhejiang Chinese Medical UniversityBinjiang District, Hangzhou, China
| | - Wen-Juan Yin
- Department of Pathology, Zhejiang Cancer HospitalGongshu District, Hangzhou, China
| | - Yang-Yang Qian
- The First Affiliated Hospital of Wenzhou Medical UniversityOuhai District, Wenzhou, China
- Department of Thyroid and Breast Surgery, Zhejiang Provincial People’s HospitalGongshu District, Hangzhou, China
- Department of Head and Neck Surgery, Zhejiang Cancer HospitalGongshu District, Hangzhou, China
| | - Yu-Qing Huang
- Department of Head and Neck Surgery, Zhejiang Cancer HospitalGongshu District, Hangzhou, China
- Second Clinical Medical College, Zhejiang Chinese Medical UniversityBinjiang District, Hangzhou, China
| | - Ke-Xin Yin
- Second Clinical Medical College, Zhejiang Chinese Medical UniversityBinjiang District, Hangzhou, China
| | - Xin Zhu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer HospitalGongshu District, Hangzhou, China
| | - Ming-Hua Ge
- The First Affiliated Hospital of Wenzhou Medical UniversityOuhai District, Wenzhou, China
- Department of Thyroid and Breast Surgery, Zhejiang Provincial People’s HospitalGongshu District, Hangzhou, China
- Department of Head and Neck Surgery, Zhejiang Cancer HospitalGongshu District, Hangzhou, China
| |
Collapse
|
70
|
Tenório JDR, da Silva LP, Xavier MGDA, Santana T, do Nascimento GJF, Sobral APV. Differential expression of cyclooxygenase-2 and cyclin D1 in salivary gland tumors. Eur Arch Otorhinolaryngol 2018; 275:2341-2347. [PMID: 30003391 DOI: 10.1007/s00405-018-5058-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Salivary gland tumors are complex and have a great histomorphological diversity; more than 30 histological subtypes are currently described and the study of proteins that help understand and differentiate these tumors is essential. We aimed to analyze the immunoexpression of cyclooxygenase-2 (COX-2) and cyclin D1 proteins in pleomorphic adenomas (PA), mucoepidermoid carcinomas (MEC) and adenoid cystic carcinomas (AdCC) of salivary glands. METHODS A total of 38 PA, 12 AdCC and 12 MEC underwent immunohistochemical study by the polymeric biotin-free technique. Immunopositive cells were analyzed semi-quantitatively. For statistical analysis, a significance level was set at p ≤ 0.05. RESULTS Overall, these tumors were more prevalent in women (n = 37). The mean age of these patients was 58-year-old and the parotid gland was the most affected anatomic site (n = 33). All cases of AdCC and MEC showed immunopositivity to cyclin D1; however, 39.5% of the PAs were negative (p < 0.001). Regarding COX-2 immunoexpression, we observed that all cases of CME were positive, whereas 60.5% of the PA and 75% of the CAC analyzed were completely negative (p = 0.042). CONCLUSIONS The overexpression of COX-2, observed only in MEC, emphasizes that salivary gland tumors have different profiles. Cyclin D1 is more immunoexpressed in malignant tumors. Together, these immunohistochemical findings may be useful in differentiating the studied tumors.
Collapse
Affiliation(s)
- Jefferson da Rocha Tenório
- Department of Oral Pathology and Special Care Patients, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227-Butantã, São Paulo, SP, Zip code: 05508-900, Brazil.
| | - Leorik Pereira da Silva
- Oral Pathology, Postgraduate Program in Oral Pathology, Federal University of Rio Grande do Norte-UFRN, Natal, Rio Grande Do Norte, Brazil
| | | | - Thalita Santana
- Department of Oral Pathology and Special Care Patients, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227-Butantã, São Paulo, SP, Zip code: 05508-900, Brazil
| | | | | |
Collapse
|
71
|
Lu J, Xu F, Zhang Y, Lu H, Zhang J. ClC-2 knockdown prevents cerebrovascular remodeling via inhibition of the Wnt/β-catenin signaling pathway. Cell Mol Biol Lett 2018; 23:29. [PMID: 29988306 PMCID: PMC6022329 DOI: 10.1186/s11658-018-0095-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/19/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Mishandling of intracellular chloride (Cl-) concentration ([Cl-]i) in cerebrovascular smooth muscle cells is implicated in several pathological processes, including hyperplasia and remodeling. We investigated the effects of ClC-2-mediated Cl- efflux on the proliferation of human brain vascular smooth muscle cells (HBVSMCs) induced by angiotensin II (AngII). METHODS Cell proliferation and motility were determined using the CCK-8, bromodeoxyuridine staining, wound healing and invasion assays. ClC-2, PCNA, Ki67, survivin and cyclin D1 expression, and β-catenin and GSK-3β phosphorylation were examined using western blotting. Histological analyses were performed using hematoxylin and eosin staining and α-SMA staining. RESULTS Our results showed that AngII-induced HBVSMC proliferation was accompanied by a decrease in [Cl-]i and an increase in ClC-2 expression. Inhibition of ClC-2 by siRNA prevented AngII from inducing the efflux of Cl-. AngII-induced HBVSMC proliferation, migration and invasion were significantly attenuated by ClC-2 downregulation. The inhibitory effects of ClC-2 knockout on HBVSMC proliferation and motility were associated with inactivation of the Wnt/β-catenin signaling pathway, as evidenced by inhibition of β-catenin phosphorylation and nuclear translocation, and decrease of GSK-3β phosphorylation and survivin and cyclin D1 expression. Recombinant Wnt3a treatment markedly reversed the effect of ClC-2 knockdown on HBVSMC viability. An in vivo study revealed that knockdown of ClC-2 with shRNA adenovirus ameliorated basilar artery remodeling by inhibiting Wnt/β-catenin signaling in AngII-treated mice. CONCLUSION This study demonstrates that blocking ClC-2-mediated Cl- efflux inhibits AngII-induced cerebrovascular smooth muscle cell proliferation and migration by inhibiting the Wnt/β-catenin pathway. Our data indicate that downregulation of ClC-2 may be a viable strategy in the prevention of hyperplasia and remodeling of cerebrovascular smooth muscle cells.
Collapse
Affiliation(s)
- Jingjing Lu
- Department of Neurology, Henan People’s Hospital, No. 7 Wai-5 Road, Zhengzhou, 450052 Henan Province China
| | - Feng Xu
- Department of Urology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yingna Zhang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hong Lu
- Department of Neurology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052 Henan Province China
| | - Jiewen Zhang
- Department of Neurology, Henan People’s Hospital, No. 7 Wai-5 Road, Zhengzhou, 450052 Henan Province China
| |
Collapse
|
72
|
Liao X, Liu X, Yang C, Wang X, Yu T, Han C, Huang K, Zhu G, Su H, Qin W, Huang R, Yu L, Deng J, Zeng X, Ye X, Peng T. Distinct Diagnostic and Prognostic Values of Minichromosome Maintenance Gene Expression in Patients with Hepatocellular Carcinoma. J Cancer 2018; 9:2357-2373. [PMID: 30026832 PMCID: PMC6036720 DOI: 10.7150/jca.25221] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/14/2018] [Indexed: 12/31/2022] Open
Abstract
Background: The aim of the present study was to identify diagnostic and prognostic values of minichromosome maintenance (MCM) gene expression in patients with hepatocellular carcinoma (HCC). Methods: The biological function of the MCM genes were investigated by bioinformatics analysis. The diagnostic and prognostic values of the MCM genes were investigated by using the data of HCC patients from the GSE14520 and The Cancer Genome Atlas (TCGA) databases. Results: Bioinformatics analysis of the MCM genes substantiated that MCM2-7 genes were significantly enriched in DNA replication and cell cycle, and co-expressed with each other. These genes also co-expressed in HCC tumor tissue in both the GSE14520 and TCGA cohort. We also observed that the expression of the MCM2-7 genes was increased in tumor tissue, and diagnostic receiver operating characteristic analysis of MCM2-7 indicated that these genes could serve as sensitive diagnostic markers in HCC. Survival analysis in the GSE14520 cohort suggested that expression of MCM2, MCM4, MCM5, and MCM6 were significantly associated with hepatitis B virus-related HCC overall survival (OS). However, none of the MCM genes were associated with recurrence-free survival in the GSE14520 cohort. The validation cohort of TCGA suggested that the expression of MCM2, MCM6, and MCM7 were significantly correlated with HCC OS. Conclusion: Our study indicated that MCM2-7 genes may be potential diagnostic biomarkers in patients with HCC. Among them, MCM2 and MCM6 may serve as potential prognostic biomarkers for HCC.
Collapse
Affiliation(s)
- Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong Province, People's Republic of China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Long Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Jianlong Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.,Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, 537000, Guangxi, China
| | - Xianmin Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| |
Collapse
|
73
|
Wang L, Kong W, Liu B, Zhang X. Proliferating cell nuclear antigen promotes cell proliferation and tumorigenesis by up-regulating STAT3 in non-small cell lung cancer. Biomed Pharmacother 2018; 104:595-602. [PMID: 29803172 DOI: 10.1016/j.biopha.2018.05.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 01/10/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) functions as a bridging molecule, which targets proteins that have distinct roles in cell growth. The expression of PCNA is dysregulated in some tumors and takes part in the progression of oncogenesis. However, the roles of PCNA in the progression of non-small cell lung cancer (NSCLC) remain unknown. The present study aimed to investigate the function of PCNA in the occurrence and development of NSCLC and its underlying molecular mechanisms. Western blotting, RT-PCR, and immunohistochemistry assays were used to detect the expression pattern of PCNA in NSCLC tissues and cells. A log rank test was performed to compare the overall survival (OS) of patients with high/low expression of PCNA. Besides, the relationship between PCNA and signal transducer and activator of transcription-3 (STAT3) proteins were evaluated. Then, MTT, flow cytometry, clonal formation, and in vivo xenograft assays were conducted to investigate the effects of PCNA/STAT3 on cell growth, clonal formation, apoptosis, and tumorigenesis. Results showed that PCNA expression was elevated in NSCLC tissues and cells and it could combine with STAT3 and increased its expression and phosphorylation. Moreover, the expression of PCNA showed a positive correlation with the TNM grade and occurrence rate of the lymphatic metastasis and poor prognosis of NSCLC patients. Overexpression of PCNA promoted cell proliferation, clonal formation, and tumorigenesis in lung cancer cells and inhibited cell apoptosis. In contrast, these effects were inhibited when knockdown of STAT3. In conclusion, this study demonstrates that PCNA functions as an oncogene in the progression of NSCLC through up-regulation of STAT3. These findings point to a potentially new therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Liuxin Wang
- Department of Respiration, Jining First People's Hospital, Jining, Shandong, China
| | - Weixiang Kong
- Department of Respiration, Jining First People's Hospital, Jining, Shandong, China
| | - Bing Liu
- Department of Respiration, Jining First People's Hospital, Jining, Shandong, China
| | - Xueqing Zhang
- Department of Respiration, Jining First People's Hospital, Jining, Shandong, China.
| |
Collapse
|
74
|
Yang J, Xie Q, Zhou H, Chang L, Wei W, Wang Y, Li H, Deng Z, Xiao Y, Wu J, Xu P, Hong X. Proteomic Analysis and NIR-II Imaging of MCM2 Protein in Hepatocellular Carcinoma. J Proteome Res 2018; 17:2428-2439. [DOI: 10.1021/acs.jproteome.8b00181] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jing Yang
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Qi Xie
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
- Center for Experimental Basic Medical Education, School of Basic Medical Sciences, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan 430071, China
| | - Hui Zhou
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Lei Chang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wei Wei
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yin Wang
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Hong Li
- Pathology Department, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Zixin Deng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Junzhu Wu
- Center for Experimental Basic Medical Education, School of Basic Medical Sciences, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan 430071, China
| | - Ping Xu
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
- Anhui Medical University, Hefei 230032, China
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Medical College, Tibet University, Lasa 850000, China
| |
Collapse
|
75
|
Gou K, Liu J, Feng X, Li H, Yuan Y, Xing C. Expression of Minichromosome Maintenance Proteins (MCM) and Cancer Prognosis: A meta-analysis. J Cancer 2018; 9:1518-1526. [PMID: 29721062 PMCID: PMC5929097 DOI: 10.7150/jca.22691] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/19/2018] [Indexed: 01/08/2023] Open
Abstract
Minichromosome maintenance proteins (MCM) played a critical role in replication and cell cycle progression. However, their prognostic roles in cancer remain controversial. Therefore, we performed a meta-analysis to investigate the prognostic value of MCMs in cancers. Totally 31 eligible articles with 7653 cancer patients were included in this meta-analysis. We evaluated the relationship between MCMs expression and overall survival (OS) in various cancer patients by using pooled hazard ratios (HRs) and risk ratios (RRs) with 95% confidence intervals (CIs). The meta-analysis showed that carriers with high expression of MCM5 and MCM7 were significantly associated with short OS for pooled HR (HR=1.04, 95% CI=1.01-1.08, P=0.020, HR=1.78, 95% CI=1.04-3.02, P=0.035, respectively). For pooled RR, individuals with increased MCM2 and MCM7 expression were significantly correlated with poor OS (RR=2.30, 95% CI=1.14-4.63, P=0.019; RR=3.52, 95% CI=2.01-6.18, P<0.001, respectively). The findings suggest that high expression of MCM2, MCM5 and MCM7 might serve as predictive biomarkers for poor prognosis in cancers.
Collapse
Affiliation(s)
- Kaihua Gou
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Jingwei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Xue Feng
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Hao Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Chengzhong Xing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| |
Collapse
|
76
|
Five Novel Oncogenic Signatures Could Be Utilized as AFP-Related Diagnostic Biomarkers for Hepatocellular Carcinoma Based on Next-Generation Sequencing. Dig Dis Sci 2018; 63:945-957. [PMID: 29442275 DOI: 10.1007/s10620-018-4961-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alpha-fetal protein (AFP) is an important conventional clinical diagnostic indicator of hepatocellular carcinoma (HCC). However, the utilization of AFP alone might yield deceptive results due to its limited sensitivity and accuracy. AIMS Our study was designed to investigate latent diagnostic biomarkers that could function as auxiliary clinical indicators of HCC and enhance the accuracy of joint diagnosis with AFP. METHODS We analyzed gene expression profiles and clinical data from HCC patients in The Cancer Genome Atlas database. Differentially expressed genes were identified, and a gene set enrichment analysis was conducted to uncover their biological functions and molecular processes. A weighted correlation network analysis and a protein-protein interaction analysis were performed to detect AFP-related biomarkers. The diagnostic performance of these biomarkers was verified using datasets from the GEO database. A diagnostic nomogram was established using the expression levels of potential biomarkers. Quantitative real-time PCR was performed using tissues from 16 HCC patients to validate the results. RESULTS Five AFP-related diagnostic biomarkers, CDT1, MCM7, NUDT1, CENPM, and HDAC11, were discovered. The diagnostic performance of these biomarkers and the nomogram were demonstrated to be excellent according to receiver operating characteristic curves. CDT1, MCM7, and NUDT1 were shown to be up-regulated in HCC tissues through quantitative real-time PCR. CONCLUSIONS We discovered five diagnostic biomarkers and established a nomogram as a complement to AFP in the diagnosis of HCC. Our results provide a more accurate diagnostic plan for HCC patients based on next-generation sequencing compared with AFP alone.
Collapse
|
77
|
Li P, Feng C, Chen H, Jiang Y, Cao F, Liu J, Liu P. Elevated CRB3 expression suppresses breast cancer stemness by inhibiting β-catenin signalling to restore tamoxifen sensitivity. J Cell Mol Med 2018; 22:3423-3433. [PMID: 29602199 PMCID: PMC6010813 DOI: 10.1111/jcmm.13619] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/24/2018] [Indexed: 12/21/2022] Open
Abstract
Tamoxifen is a first‐line drug for hormone therapy (HT) in oestrogen receptor‐positive breast cancer patients. However, 20% to 30% of those patients are resistant to tamoxifen treatment. Cancer stem cells (CSCs) have been implicated as one of the mechanisms responsible for tamoxifen resistance. Our previous study indicated that decreased expression of the CRB3 gene confers stem cell characteristics to breast cancer cells. In the current investigation, we found that most of the breast cancer patient tissues resistant to tamoxifen were negative for CRB3 protein and positive for β‐catenin protein, in contrast to their matched primary tumours by immunohistochemical analysis. Furthermore, expression of CRB3 mRNA and protein was low, while expression of β‐catenin mRNA and protein was high in tamoxifen resistance cells (LCC2 and T47D TamR) contrast to their corresponding cell lines MCF7 and T47D. Similarly, CRB3 overexpression markedly restored the tamoxifen sensitivity of TamR cells by the MTT viability assay. Finally, we found that CRB3 suppressed the stemness of TamR cells by inhibiting β‐catenin signalling, which may in turn lead to a decrease in the breast cancer cell population. Furthermore, these findings indicate that CRB3 is an important regulator for breast cancer stemness, which is associated with tamoxifen resistance.
Collapse
Affiliation(s)
- Pingping Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Feng
- Department of Oncology, Shaanxi Provincial Corps Hospital, Xi'an, China
| | - He Chen
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yina Jiang
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fang Cao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
78
|
Galatenko VV, Galatenko AV, Samatov TR, Turchinovich AA, Shkurnikov MY, Makarova JA, Tonevitsky AG. Comprehensive network of miRNA-induced intergenic interactions and a biological role of its core in cancer. Sci Rep 2018; 8:2418. [PMID: 29402894 PMCID: PMC5799291 DOI: 10.1038/s41598-018-20215-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are a family of short noncoding RNAs that posttranscriptionally regulate gene expression and play an important role in multiple cellular processes. A significant percentage of miRNAs are intragenic, which is often functionally related to their host genes playing either antagonistic or synergistic roles. In this study, we constructed and analyzed the entire network of intergenic interactions induced by intragenic miRNAs. We further focused on the core of this network, which was defined as a union of nontrivial strongly connected components, i.e., sets of nodes (genes) mutually connected via directed paths. Both the entire network and its core possessed statistically significant non-random properties. Specifically, genes forming the core had high expression levels and low expression variance. Furthermore, the network core did not split into separate components corresponding to individual signalling or metabolic pathways, but integrated genes involved in key cellular processes, including DNA replication, transcription, protein homeostasis and cell metabolism. We suggest that the network core, consisting of genes mutually regulated by their intragenic miRNAs, could coordinate adjacent pathways or homeostatic control circuits, serving as a horizontal inter-circuit link. Notably, expression patterns of these genes had an efficient prognostic potential for breast and colorectal cancer patients.
Collapse
Affiliation(s)
- Vladimir V Galatenko
- Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia. .,SRC Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia. .,Tauber Bioinformatics Research Center, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, 3498838, Haifa, Israel.
| | - Alexey V Galatenko
- Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia
| | - Timur R Samatov
- SRC Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia.,Evotec International GmbH, Marie-Curie Str. 7, 37079, Göttingen, Germany
| | | | - Maxim Yu Shkurnikov
- P. Hertsen Moscow Oncology Research Institute, National Center of Medical Radiological Research, Second Botkinsky lane 3, 125284, Moscow, Russia
| | - Julia A Makarova
- P. Hertsen Moscow Oncology Research Institute, National Center of Medical Radiological Research, Second Botkinsky lane 3, 125284, Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, 119991, Moscow, Russia
| | - Alexander G Tonevitsky
- SRC Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia. .,P. Hertsen Moscow Oncology Research Institute, National Center of Medical Radiological Research, Second Botkinsky lane 3, 125284, Moscow, Russia.
| |
Collapse
|
79
|
Liu M, Hu Q, Tu M, Wang X, Yang Z, Yang G, Luo R. MCM6 promotes metastasis of hepatocellular carcinoma via MEK/ERK pathway and serves as a novel serum biomarker for early recurrence. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:10. [PMID: 29357919 PMCID: PMC5778693 DOI: 10.1186/s13046-017-0669-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 12/25/2017] [Indexed: 12/18/2022]
Abstract
Background The high incidence of recurrence and metastasis of hepatocellular carcinoma (HCC) necessitate the discovery of new predictive biomarkers of invasion and prognosis. Minichromosome maintenance complex component 6 (MCM6), which has been reported to up-regulate in multiple malignancies, was considered to be a novel diagnoses biomarker in HCC. However, its functional contributions and prognostic value remain unclear. Methods The expression of MCM6 was analyzed in 70 HCC tissues and 5 HCC cell lines by immunohistochemistry and real-time RT-PCR. The roles of MCM6 in HCC cell proliferation, migration and invasion were explored by CCK8, Wound healing and Transwell assays, respectively. Western blotting and Immunofluorescence staining were conducted to detect the protein expressions of ERK signaling pathway and EMT-related markers. To verify the above findings in vivo, we established subcutaneous xenograft tumor and orthotopic xenograft tumor models in nude mice. Finally, Enzyme-linked immunosorbent assay was used to evaluate the serum MCM6 level. Results MCM6 was significantly up-regulated in HCC tissues. Increased MCM6 expression was associated with aggressive clinicopathological features and worse prognosis in HCC patients. These results were consistent with our analyses of The Cancer Genome Atlas database (TCGA). Furthermore, knockdown of MCM6 significantly decreased proliferative and migratory/invasive capability of HCC cells in vitro, as well as decreased tumor volume, weight and the number of pulmonary metastases in vivo. Mechanistic analyses indicated that MCM6 promoted EMT and activated MEK/ERK signaling. More importantly, serum MCM6 levels in HCC patients were significantly higher than those in cirrhosis and healthy controls (P < 0.0001), and allowed distinguishing early recurrence with high accuracy (AUC = 0.773). Conclusions Our findings indicate that MCM6 predicts poor prognosis and promotes metastasis in HCC. Postoperative serum MCM6 level could be valuable to detect preclinical early recurrence, indicative of a need for more careful surveillance and aggressive therapeutic intervention. Electronic supplementary material The online version of this article (10.1186/s13046-017-0669-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingyu Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China.,Cancer center, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Qiaoting Hu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China.,Cancer center, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Mengxian Tu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China.,Cancer center, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Xinyi Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Zike Yang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China.,Cancer center, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Guoxiong Yang
- Medical Imaging Center, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, 518100, China
| | - Rongcheng Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China. .,Cancer center, Southern Medical University, Guangzhou, Guangdong, 510315, China.
| |
Collapse
|
80
|
Inhibition of CIP2A attenuates tumor progression by inducing cell cycle arrest and promoting cellular senescence in hepatocellular carcinoma. Biochem Biophys Res Commun 2018; 495:1807-1814. [DOI: 10.1016/j.bbrc.2017.11.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/19/2017] [Indexed: 11/23/2022]
|
81
|
Wang H, Zhou C, Su B, Teng G, Zheng Y, Zhou X, Guo L, Xu F, Wang X. MCM7 expression is correlated with histological subtypes of lung adenocarcinoma and predictive of poor prognosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11747-11753. [PMID: 31966536 PMCID: PMC6966067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 06/10/2023]
Abstract
Emerging evidence has implicated that the abnormal expression of MCM3 and MCM7 contributes to tumor formation and progression. However, MCM3 and MCM7 protein expression in different subtypes of lung adenocarcinoma have not yet been reported. In the present study, we detected MCM7 and MCM3 protein level in five subtypes of lung adenocarcinoma by immunohistochemistry. The five subtypes can be divided into 3 grades-grade 1: lepidic adenocarcinoma, grade 2: acinar or papillary adenocarcinoma and grade 3: solid or micropapillary adenocarcinoma. The immunostaining showed that MCM7 level was lowest in the grade 1 subtype and highest in the grade 3 subtypes. The statistical analysis proved that MCM7 expression increased step wisely with the ascending of tumor grades. However, there is no significant relationship between MCM3 expression and tumor grades. In addition, we investigated the association of MCM7 and MCM3 expression with clinicopathological characteristics. The results showed that tumors with lymph node metastasis had higher MCM7 level than those without lymph node metastasis statistically (P<0.0001). MCM3 expression has no significant relationship with clinicopathological characteristics. In conclusion, our results suggested that MCM7 may be a useful biomarker for the pathological diagnosis of subtypes of lung adenocarcinoma and it also may be a potential prognostic marker for lung adenocarcinoma.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Pathology, The Second Hospital of Shandong UniversityJinan, Shandong, P.R. China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital of Shandong UniversityJinan, Shandong, P.R. China
| | - Baifang Su
- Zhangqiu Chinese Traditional Medicine Hospital of JinanZhangqiu, Shandong, P.R. China
| | - Guoxin Teng
- Department of Pathology, The Second Hospital of Shandong UniversityJinan, Shandong, P.R. China
| | - Yuping Zheng
- Department of Pathology, The Second Hospital of Shandong UniversityJinan, Shandong, P.R. China
| | - Xingchen Zhou
- Department of Pathology, The Second Hospital of Shandong UniversityJinan, Shandong, P.R. China
| | - Lin Guo
- Department of Pathology, The Second Hospital of Shandong UniversityJinan, Shandong, P.R. China
| | - Fenglei Xu
- Department of Otorhinolaryngology, The Second Hospital of Shandong UniversityJinan, Shandong, P.R. China
| | - Xiaoying Wang
- Department of Pathology, The Second Hospital of Shandong UniversityJinan, Shandong, P.R. China
| |
Collapse
|
82
|
Shan L, Li Y, Jiang H, Tao Y, Qian Z, Li L, Cai F, Ma L, Yu Y. Huaier Restrains Proliferative and Migratory Potential of Hepatocellular Carcinoma Cells Partially Through Decreased Yes-Associated Protein 1. J Cancer 2017; 8:4087-4097. [PMID: 29187885 PMCID: PMC5706012 DOI: 10.7150/jca.21018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022] Open
Abstract
In China, Trametes robiniophila Murr (Huaier), a traditional Chinese herbal medicine, has been widely used in adjuvant therapies of hepatocellular carcinoma (HCC). However, the molecular mechanisms have not been fully understood. The aims of this study are to investigate the functions and mechanisms of Huaier on inhibiting proliferation and migration of HCC cells. Firstly, cell counting kit-8 (CCK-8) and colony formation shown Huaier inhibited proliferation of HCC Bel-7404, Bel-7402 and SMMC-7721 cells in a dose-dependent manner, and this inhibition might be due to Huaier decreased the expressions of the proliferating cell nuclear antigen (PCNA), the nuclear proliferation related antigen (Ki-67) and CyclinD1 detected by western blotting analysis. Notably, we also found Huaier treatment did not cause any cytotoxicity to normal human hepatocyte L-02 cells. Next, we found Huaier dose-dependently decreased Bcl-2 expression and increased Bax expression in Bel-7404 cells. The activities of cleaved caspase substrates had also been enhanced after Huaier treatment, suggesting Huaier treatment could induce HCC cell apoptosis. Then, the inhibitory effects of Huaier on migration of Bel-7404, Bel-7402 and SMMC-7721 cells via inhibiting Epithelial mesenchymal transition (EMT) had also been proved. Moreover, we confirmed yes-associated protein 1 (YAP1) was up-regulated in HCC cells and tissues, and overexpression of YAP1 promoted HCC cell proliferation and migration. Then, western blot and immunefluorescence shown Huaier had the inhibitory effects on YAP1 in HCC cells. On the other hand, human liver cancer tissue microarray (TMA) shown YAP1 expression was closely to clinic. Our study also confirmed Huaier had the inhibitory effects on YAP1 in xenograft mice models, it could be because Huaier treatment translocated YAP1 from nucleus to cytoplasm, and further promoted phosphorylation of YAP1 to be degraded by ubiquitination. Hence, we conclude that Huaier may restrain the proliferation and migration of HCC cells via down-regulation of YAP1. In summary, our study reveals the potential mechanisms of Huaier on inhibiting proliferation and migration of HCC cells. Importantly, for the first time, we found that Huaier can inhibit YAP1 expression in this anti-tumor process. We believe this finding is beneficial for the clinical applications of Huaier and the targeted therapies for HCC.
Collapse
Affiliation(s)
- Liang Shan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Hongyuan Jiang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Yuquan Tao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Zijun Qian
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Lan Li
- Department of Clinical Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Feng Cai
- Department of Clinical Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Lifang Ma
- Department of Clinical Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Yongchun Yu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| |
Collapse
|
83
|
Wang X, Yang C, Liao X, Han C, Yu T, Huang K, Yu L, Qin W, Zhu G, Su H, Liu X, Ye X, Chen B, Peng M, Peng T. NLRC and NLRX gene family mRNA expression and prognostic value in hepatocellular carcinoma. Cancer Med 2017; 6:2660-2672. [PMID: 28960882 PMCID: PMC5673949 DOI: 10.1002/cam4.1202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 12/18/2022] Open
Abstract
Nucleotide‐binding oligomerization domain (NOD)‐like receptor (NLR)C and NLRX family proteins play a key role in the innate immune response. The relationship between these proteins and hepatocellular carcinoma (HCC) remains unclear. This study investigated the prognostic significance of NLRC and NLRX family protein levels in HCC patients. Data from 360 HCC patients in The Cancer Genome Atlas database and 231 patients in the Gene Expression Omnibus database were analyzed. Kaplan–Meier analysis and a Cox regression model were used to determine median survival time (MST) and overall and recurrence‐free survival by calculating the hazard ratio (HR) and 95% confidence interval (CI). High NOD2 and low NLRX1 expression in tumor tissue was associated with short MST (P = 0.012 and 0.014, respectively). A joint‐effects analysis of NOD2 and NLRX1 combined revealed that groups III and IV had reduced risk of death from HCC as compared to group I (adjusted P = 0.001, adjusted HR = 0.31, 95% CI = 0.16–0.61 and adjusted P = 0.043, adjusted HR = 0.63, 95%CI = 0.41–0.99, respectively). NOD2 and NLRX1 expression levels are potential prognostic markers in HCC following hepatectomy.
Collapse
Affiliation(s)
- Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Long Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Xiaoguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, 524001, China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Bin Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Minhao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| |
Collapse
|
84
|
Neves H, Kwok HF. In sickness and in health: The many roles of the minichromosome maintenance proteins. Biochim Biophys Acta Rev Cancer 2017; 1868:295-308. [DOI: 10.1016/j.bbcan.2017.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 01/09/2023]
|
85
|
de Conti A, Ortega JF, Tryndyak V, Dreval K, Moreno FS, Rusyn I, Beland FA, Pogribny IP. MicroRNA deregulation in nonalcoholic steatohepatitis-associated liver carcinogenesis. Oncotarget 2017; 8:88517-88528. [PMID: 29179453 PMCID: PMC5687623 DOI: 10.18632/oncotarget.19774] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fastest-rising cause of cancer-related death in the United States. Recent epidemiological studies have identified nonalcoholic steatohepatitis (NASH), a progressive form of nonalcoholic fatty liver disease (NAFLD), as a major risk factor for HCC. Elucidating the underlying mechanisms associated with the development of NASH-derived HCC is critical for identifying early biomarkers for the progression of the disease and for treatment and prevention. In the present study, using liver samples from C57BL/6J mice submitted to the Stelic Animal Model (STAM) of NASH-associated liver carcinogenesis, we investigated the role of microRNA (miRNA) alterations in the pathogenesis of NASH-derived HCC. We found substantial alterations in the expression of miRNAs, with the greatest number occurring in full-fledged HCC. Mechanistically, altered miRNA expression was associated with activation of major hepatocarcinogenesis-related pathways, including the TGF-β, Wnt/β-catenin, ERK1/2, mTOR, and EGF signaling. In addition, the over-expression of the miR-221-3p and miR-222-3p and oncogenic miR-106b∼25 cluster was accompanied by the reduced protein levels of their targets, including E2F transcription factor 1 (E2F1), phosphatase and tensin homolog (PTEN), and cyclin-dependent kinase inhibitor 1 (CDKN1A). Importantly, miR-93-5p, miR-221-3p, and miR-222-3p were also significantly over-expressed in human HCC. These findings suggest that aberrant expression of miRNAs may have mechanistic significance in NASH-associated liver carcinogenesis and may serve as an indicator for the development of NASH-derived HCC.
Collapse
Affiliation(s)
- Aline de Conti
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Juliana Festa Ortega
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA.,Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Kostiantyn Dreval
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Fernando Salvador Moreno
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
86
|
Breviscapine (BVP) inhibits prostate cancer progression through damaging DNA by minichromosome maintenance protein-7 (MCM-7) modulation. Biomed Pharmacother 2017. [PMID: 28628830 DOI: 10.1016/j.biopha.2017.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Naturally occurring compounds are reported as effective candidates for prevention and treatment of various cancers. Breviscapine (BVP) is a mixture of flavonoid glycosides, derived from the Chinese herbs. Previous researches have indicated that BVP has comprehensive pharmacological functions. However, little is known about whether BVP has preventive effects on human prostate cancer. Here, we attempted to explore if BVP inhibits human prostate cancer in vitro and in vivo in a comprehensive manner. We found that BVP triggered cytotoxicity in prostate cancer cell lines dose-dependently. BVP-induced DNA damage caused the cell cycle arrest and apoptosis and further induced cell death. High expression of MCM-7 was reduced in BVP-treated cancer cells and tumor tissues, and also the DNA damage response marker of γH2AX is down-regulated by BVP, associated with MCM-7 expression through regulating retinoblastoma protein (Rb) and checkpoint control proteins expression. Additionally, BVP induced apoptotic response in prostate cancer cells and tumors via activating Caspase-3 and PARP. In vivo studies indicated that BVP impeded tumor growth in xenograft animal models. In conclusion, our data indicates that breviscapine (BVP) can be further explored for its potential, which might be used in human prostate cancer therapeutics.
Collapse
|