51
|
Béland M, Roucou X. Taking advantage of physiological proteolytic processing of the prion protein for a therapeutic perspective in prion and Alzheimer diseases. Prion 2015; 8:106-10. [PMID: 24335160 DOI: 10.4161/pri.27438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Prion and Alzheimer diseases are fatal neurodegenerative diseases caused by misfolding and aggregation of the cellular prion protein (PrP(C)) and the β-amyloid peptide, respectively. Soluble oligomeric species rather than large aggregates are now believed to be neurotoxic. PrP(C) undergoes three proteolytic cleavages as part of its natural life cycle, α-cleavage, β-cleavage, and ectodomain shedding. Recent evidences demonstrate that the resulting secreted PrP(C) molecules might represent natural inhibitors against soluble toxic species. In this mini-review, we summarize recent observations suggesting the potential benefit of using PrP(C)-derived molecules as therapeutic agents in prion and Alzheimer diseases.
Collapse
|
52
|
Di Natale G, Turi I, Pappalardo G, Sóvágó I, Rizzarelli E. Cross-Talk Between the Octarepeat Domain and the Fifth Binding Site of Prion Protein Driven by the Interaction of Copper(II) with the N-terminus. Chemistry 2015; 21:4071-84. [DOI: 10.1002/chem.201405502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Indexed: 12/21/2022]
|
53
|
Suzuki KG. New Insights into the Organization of Plasma Membrane and Its Role in Signal Transduction. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:67-96. [DOI: 10.1016/bs.ircmb.2015.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
54
|
Roucou X. Regulation of PrP(C) signaling and processing by dimerization. Front Cell Dev Biol 2014; 2:57. [PMID: 25364762 PMCID: PMC4207009 DOI: 10.3389/fcell.2014.00057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/19/2014] [Indexed: 12/15/2022] Open
Abstract
The cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI)-anchored protein present at the cell surface. PrPC N-terminal moiety is intrinsically disordered and is able to interact with a variety of ligands. Physiological ligands have neurotrophic activity, whilst others, including protein toxic oligomers, have neurotoxic functions. These two opposite activities involve different interacting partners and result from different PrPC-activated signaling pathways. Remarkably, PrPC may be inactivated either by physiological endoproteolysis and release of the N-terminal domain, or by ectodomain shedding. Ligand-induced PrPC dimerization or enforced dimerization of PrPC indicate that PrPC dimerization represents an important molecular switch for both intracellular signaling and inactivation by the release of PrPC N-terminal domain or shedding. In this review, we summarize evidence that cell surface receptor activity of PrPC is finely regulated by dimerization.
Collapse
Affiliation(s)
- Xavier Roucou
- Department of Biochemistry, Faculty of Medicine, Université de Sherbrooke Sherbrooke, QC, Canada
| |
Collapse
|
55
|
Tavares E, Macedo JA, Paulo PM, Tavares C, Lopes C, Melo EP. Live-cell FRET imaging reveals clustering of the prion protein at the cell surface induced by infectious prions. Biochim Biophys Acta Mol Basis Dis 2014; 1842:981-91. [DOI: 10.1016/j.bbadis.2014.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/14/2014] [Accepted: 02/04/2014] [Indexed: 01/16/2023]
|
56
|
Hirsch TZ, Hernandez-Rapp J, Martin-Lannerée S, Launay JM, Mouillet-Richard S. PrP(C) signalling in neurons: from basics to clinical challenges. Biochimie 2014; 104:2-11. [PMID: 24952348 DOI: 10.1016/j.biochi.2014.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/10/2014] [Indexed: 01/05/2023]
Abstract
The cellular prion protein PrP(C) was identified over twenty-five years ago as the normal counterpart of the scrapie prion protein PrP(Sc), itself the main if not the sole component of the infectious agent at the root of Transmissible Spongiform Encephalopathies (TSEs). PrP(C) is a ubiquitous cell surface protein, abundantly expressed in neurons, which constitute the targets of PrP(Sc)-mediated toxicity. Converging evidence have highlighted that neuronal, GPI-anchored PrP(C) is absolutely required for prion-induced neuropathogenesis, which warrants investigating into the normal function exerted by PrP(C) in a neuronal context. It is now well-established that PrP(C) can serve as a cell signalling molecule, able to mobilize transduction cascades in response to interactions with partners. This function endows PrP(C) with the capacity to participate in multiple neuronal processes, ranging from survival to synaptic plasticity. A diverse array of data have allowed to shed light on how this function is corrupted by PrP(Sc). Recently, amyloid Aβ oligomers, whose accumulation is associated with Alzheimer's disease (AD), were shown to similarly instigate toxic events by deviating PrP(C)-mediated signalling. Here, we provide an overview of the various signal transduction cascades ascribed to PrP(C) in neurons, summarize how their subversion by PrP(Sc) or Aβ oligomers contributes to TSE or AD neuropathogenesis and discuss the ensuing clinical implications.
Collapse
Affiliation(s)
- Théo Z Hirsch
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France
| | - Julia Hernandez-Rapp
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France; Université Paris Sud 11, ED419 Biosigne, 91400 Orsay, France
| | - Séverine Martin-Lannerée
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France
| | - Jean-Marie Launay
- AP-HP Service de Biochimie, Fondation FondaMental, INSERM U942 Hôpital Lariboisière, 75010 Paris, France; Pharma Research Department, F. Hoffmann-La-Roche Ltd., CH-4070 Basel, Switzerland
| | - Sophie Mouillet-Richard
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France.
| |
Collapse
|
57
|
Hernandez-Rapp J, Martin-Lannerée S, Hirsch TZ, Pradines E, Alleaume-Butaux A, Schneider B, Baudry A, Launay JM, Mouillet-Richard S. A PrP(C)-caveolin-Lyn complex negatively controls neuronal GSK3β and serotonin 1B receptor. Sci Rep 2014; 4:4881. [PMID: 24810941 PMCID: PMC4013941 DOI: 10.1038/srep04881] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/08/2014] [Indexed: 12/25/2022] Open
Abstract
The cellular prion protein, PrPC, is a glycosylphosphatidylinositol-anchored protein, abundant in lipid rafts and highly expressed in the brain. While PrPC is much studied for its involvement under its abnormal PrPSc isoform in Transmissible Spongiform Encephalopathies, its physiological role remains unclear. Here, we report that GSK3β, a multifunctional kinase whose inhibition is neuroprotective, is a downstream target of PrPC signalling in serotonergic neuronal cells. We show that the PrPC-dependent inactivation of GSK3β is relayed by a caveolin-Lyn platform located on neuronal cell bodies. Furthermore, the coupling of PrPC to GSK3β potentiates serotonergic signalling by altering the distribution and activity of the serotonin 1B receptor (5-HT1BR), a receptor that limits neurotransmitter release. In vivo, our data reveal an increased GSK3β kinase activity in PrP-deficient mouse brain, as well as sustained 5-HT1BR activity, whose inhibition promotes an anxiogenic behavioural response. Collectively, our data unveil a new facet of PrPC signalling that strengthens neurotransmission.
Collapse
Affiliation(s)
- Julia Hernandez-Rapp
- 1] INSERM UMR-S1124, 75006 Paris France [2] Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris France [3] Université Paris Sud 11, ED419 Biosigne, 91400 Orsay, France [4]
| | - Séverine Martin-Lannerée
- 1] INSERM UMR-S1124, 75006 Paris France [2] Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris France [3]
| | - Théo Z Hirsch
- 1] INSERM UMR-S1124, 75006 Paris France [2] Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris France [3]
| | - Elodie Pradines
- 1] INSERM UMR-S1124, 75006 Paris France [2] Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris France
| | - Aurélie Alleaume-Butaux
- 1] INSERM UMR-S1124, 75006 Paris France [2] Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris France
| | - Benoît Schneider
- 1] INSERM UMR-S1124, 75006 Paris France [2] Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris France
| | - Anne Baudry
- 1] INSERM UMR-S1124, 75006 Paris France [2] Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris France
| | - Jean-Marie Launay
- 1] AP-HP Service de Biochimie, Fondation FondaMental, INSERM U942 Hôpital Lariboisière, 75010 Paris, France [2] Pharma Research Department, F. Hoffmann-La-Roche Ltd., CH-4070 Basel, Switzerland
| | - Sophie Mouillet-Richard
- 1] INSERM UMR-S1124, 75006 Paris France [2] Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris France
| |
Collapse
|
58
|
Wang S, Zhao H, Zhang Y. Advances in research on Shadoo, shadow of prion protein. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0129-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
59
|
Peggion C, Sorgato MC, Bertoli A. Prions and prion-like pathogens in neurodegenerative disorders. Pathogens 2014; 3:149-63. [PMID: 25437612 PMCID: PMC4235734 DOI: 10.3390/pathogens3010149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 01/24/2014] [Accepted: 02/01/2014] [Indexed: 12/24/2022] Open
Abstract
Prions are unique elements in biology, being able to transmit biological information from one organism to another in the absence of nucleic acids. They have been identified as self-replicating proteinaceous agents responsible for the onset of rare and fatal neurodegenerative disorders—known as transmissible spongiform encephalopathies, or prion diseases—which affect humans and other animal species. More recently, it has been proposed that other proteins associated with common neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease, can self-replicate like prions, thus sustaining the spread of neurotoxic entities throughout the nervous system. Here, we review findings that have contributed to expand the prion concept, and discuss if the involved toxic species can be considered bona fide prions, including the capacity to infect other organisms, or whether these pathogenic aggregates share with prions only the capability to self-replicate.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, Padova 35131, Italy.
| | - Maria Catia Sorgato
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, Padova 35131, Italy.
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, Padova 35131, Italy.
| |
Collapse
|
60
|
Relaño-Ginès A, Gabelle A, Hamela C, Belondrade M, Casanova D, Mourton-Gilles C, Lehmann S, Crozet C. Prion replication occurs in endogenous adult neural stem cells and alters their neuronal fate: involvement of endogenous neural stem cells in prion diseases. PLoS Pathog 2013; 9:e1003485. [PMID: 23935493 PMCID: PMC3731238 DOI: 10.1371/journal.ppat.1003485] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/24/2013] [Indexed: 11/18/2022] Open
Abstract
Prion diseases are irreversible progressive neurodegenerative diseases, leading to severe incapacity and death. They are characterized in the brain by prion amyloid deposits, vacuolisation, astrocytosis, neuronal degeneration, and by cognitive, behavioural and physical impairments. There is no treatment for these disorders and stem cell therapy therefore represents an interesting new approach. Gains could not only result from the cell transplantation, but also from the stimulation of endogenous neural stem cells (NSC) or by the combination of both approaches. However, the development of such strategies requires a detailed knowledge of the pathology, particularly concerning the status of the adult neurogenesis and endogenous NSC during the development of the disease. During the past decade, several studies have consistently shown that NSC reside in the adult mammalian central nervous system (CNS) and that adult neurogenesis occurs throughout the adulthood in the subventricular zone of the lateral ventricle or the Dentate Gyrus of the hippocampus. Adult NSC are believed to constitute a reservoir for neuronal replacement during normal cell turnover or after brain injury. However, the activation of this system does not fully compensate the neuronal loss that occurs during neurodegenerative diseases and could even contribute to the disease progression. We investigated here the status of these cells during the development of prion disorders. We were able to show that NSC accumulate and replicate prions. Importantly, this resulted in the alteration of their neuronal fate which then represents a new pathologic event that might underlie the rapid progression of the disease.
Collapse
Affiliation(s)
| | - Audrey Gabelle
- Institut de Génétique Humaine, CNRS-UPR 1142, Montpellier, France
- Institut de Recherche en Biothérapie (IRB), Physiopathologie, Diagnostic et Thérapie Cellulaire des Affections Neurodégénératives - INSERM-UM1 U1040, CHU de Montpellier, Université Montpellier 1, Montpellier, France
| | - Claire Hamela
- Institut de Génétique Humaine, CNRS-UPR 1142, Montpellier, France
| | | | | | | | - Sylvain Lehmann
- Institut de Génétique Humaine, CNRS-UPR 1142, Montpellier, France
- Institut de Recherche en Biothérapie (IRB), Physiopathologie, Diagnostic et Thérapie Cellulaire des Affections Neurodégénératives - INSERM-UM1 U1040, CHU de Montpellier, Université Montpellier 1, Montpellier, France
- * E-mail: (SL); (CC)
| | - Carole Crozet
- Institut de Génétique Humaine, CNRS-UPR 1142, Montpellier, France
- Institut de Recherche en Biothérapie (IRB), Physiopathologie, Diagnostic et Thérapie Cellulaire des Affections Neurodégénératives - INSERM-UM1 U1040, CHU de Montpellier, Université Montpellier 1, Montpellier, France
- * E-mail: (SL); (CC)
| |
Collapse
|
61
|
Hu PP, Huang CZ. Prion protein: structural features and related toxicity. Acta Biochim Biophys Sin (Shanghai) 2013; 45:435-41. [PMID: 23615535 DOI: 10.1093/abbs/gmt035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transmissible spongiform encephalopathies, or prion diseases, is a group of infectious neurodegenerative disorders. The conformational conversion from cellular form (PrP(C)) to disease-causing isoform (PrP(Sc)) is considered to be the most important and remarkable event in these diseases, while accumulation of PrP(Sc) is thought to be the main reason for cell death, inflammation and spongiform degeneration observed in infected individuals. Although these rare but unique neurodegenerative disorders have attracted much attention, there are still many questions that remain to be answered. Knowledge of the scrapie agent structures and the toxic species may have significance for understanding the causes of the diseases, and could be helpful for rational design of novel therapeutic and diagnostic methods. In this review, we summarized the available experimental evidence concerning the relationship among the structural features, aggregation status of misfolded PrP and related neurotoxicity in the course of prion diseases development. In particular, most data supports the idea that the smaller oligomeric PrP(Sc) aggregates, rather than the mature amyloid fibers, exhibit the highest toxicity to the host.
Collapse
Affiliation(s)
- Ping Ping Hu
- Ministry of Education Key Laboratory on Luminescence and Real-Time Analysis, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | | |
Collapse
|
62
|
Kretzschmar H, Tatzelt J. Prion disease: a tale of folds and strains. Brain Pathol 2013; 23:321-32. [PMID: 23587138 PMCID: PMC8029118 DOI: 10.1111/bpa.12045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/04/2013] [Indexed: 12/31/2022] Open
Abstract
Research on prions, the infectious agents of devastating neurological diseases in humans and animals, has been in the forefront of developing the concept of protein aggregation diseases. Prion diseases are distinguished from other neurodegenerative diseases by three peculiarities. First, prion diseases, in addition to being sporadic or genetic like all other neurodegenerative diseases, are infectious diseases. Animal models were developed early on (a long time before the advent of transgenic technology), and this has made possible the discovery of the prion protein as the infectious agent. Second, human prion diseases have true equivalents in animals, such as scrapie, which has been the subject of experimental research for many years. Variant Creutzfeldt-Jakob disease (vCJD) is a zoonosis caused by bovine spongiform encephalopathy (BSE) prions. Third, they show a wide variety of phenotypes in humans and animals, much wider than the variants of any other sporadic or genetic neurodegenerative disease. It has now become firmly established that particular PrP(Sc) isoforms are closely related to specific human prion strains. The variety of human prion diseases, still an enigma in its own right, is a focus of this article. Recently, a series of experiments has shown that the concept of aberrant protein folding and templating, first developed for prions, may apply to a variety of neurodegenerative diseases. In the wake of these discoveries, the term prion has come to be used for Aβ, α-synuclein, tau and possibly others. The self-propagation of alternative conformations seems to be the common denominator of these "prions," which in future, in order to avoid confusion, may have to be specified either as "neurodegenerative prions" or "infectious prions."
Collapse
Affiliation(s)
| | - Jörg Tatzelt
- NeurobiochemistryAdolf‐Butenandt‐InstituteLudwig‐Maximilians‐University MunichMunichGermany
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| |
Collapse
|
63
|
Altmeppen HC, Prox J, Puig B, Dohler F, Falker C, Krasemann S, Glatzel M. Roles of endoproteolytic α-cleavage and shedding of the prion protein in neurodegeneration. FEBS J 2013; 280:4338-47. [DOI: 10.1111/febs.12196] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/25/2013] [Accepted: 02/14/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Hermann C. Altmeppen
- Institute of Neuropathology; University Medical Center HH-Eppendorf; Hamburg Germany
| | - Johannes Prox
- Institute of Biochemistry; Christian Albrechts University; Kiel Germany
| | - Berta Puig
- Institute of Neuropathology; University Medical Center HH-Eppendorf; Hamburg Germany
| | - Frank Dohler
- Institute of Neuropathology; University Medical Center HH-Eppendorf; Hamburg Germany
| | - Clemens Falker
- Institute of Neuropathology; University Medical Center HH-Eppendorf; Hamburg Germany
| | - Susanne Krasemann
- Institute of Neuropathology; University Medical Center HH-Eppendorf; Hamburg Germany
| | - Markus Glatzel
- Institute of Neuropathology; University Medical Center HH-Eppendorf; Hamburg Germany
| |
Collapse
|
64
|
Béland M, Roucou X. Homodimerization as a molecular switch between low and high efficiency PrP C cell surface delivery and neuroprotective activity. Prion 2013; 7:170-4. [PMID: 23357826 DOI: 10.4161/pri.23583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PrP (C) is associated with a variety of functions, and its ability to interact with a multitude of partners, including itself, may largely explain PrP multifunctionality and the lack of consensus on the genuine physiological function of the protein in vivo. In contrast, there is a consensus in the literature that alterations in PrP (C) trafficking and intracellular retention result in neuronal degeneration. In addition, a proteolytic modification in the late secretory pathway termed the α-cleavage induces the secretion of PrPN1, a PrP (C) -derived metabolite with fascinating neuroprotective activity against toxic oligomeric Aβ molecules implicated in Alzheimer disease. Thus, studies focusing on understanding the regulation of PrP (C) trafficking to the cell surface and the modulation of α-cleavage are essential. The objective of this commentary is to highlight recent evidences that PrP (C) homodimerization stimulates trafficking of the protein to the cell surface and results in high levels of PrPN1 secretion. We also discuss a hypothetical model for these results and comment on future challenges and opportunities.
Collapse
Affiliation(s)
- Maxime Béland
- Department of Biochemistry, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC Canada
| | | |
Collapse
|
65
|
Tóth E, Kulcsár PI, Fodor E, Ayaydin F, Kalmár L, Borsy AÉ, László L, Welker E. The highly conserved, N-terminal (RXXX)8 motif of mouse Shadoo mediates nuclear accumulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1199-211. [PMID: 23360978 DOI: 10.1016/j.bbamcr.2013.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/29/2012] [Accepted: 01/15/2013] [Indexed: 01/09/2023]
Abstract
The prion protein (PrP)-known for its central role in transmissible spongiform encephalopathies-has been reported to possess two nuclear localization signals and localize in the nuclei of certain cells in various forms. Although these data are superficially contradictory, it is apparent that nuclear forms of the prion protein can be found in cells in either the healthy or the diseased state. Here we report that Shadoo (Sho)-a member of the prion protein superfamily-is also found in the nucleus of several neural and non-neural cell lines as visualized by using an YFP-Sho construct. This nuclear localization is mediated by the (25-61) fragment of mouse Sho encompassing an (RXXX)8 motif. Bioinformatic analysis shows that the (RXXX)n motif (n=7-8) is a highly conserved and characteristic part of mammalian Shadoo proteins. Experiments to assess if Sho enters the nucleus by facilitated transport gave no decisive results: the inhibition of active processes that require energy in the cell, abolishes nuclear but not nucleolar accumulation. However, the (RXXX)8 motif is not able to mediate the nuclear transport of large fusion constructs exceeding the size limit of the nuclear pore for passive entry. Tracing the journey of various forms of Sho from translation to the nucleus and discerning the potential nuclear function of PrP and Sho requires further studies.
Collapse
Affiliation(s)
- E Tóth
- Institute of Biochemistry, Hungarian Academy of Sciences, Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Pradines E, Hernandez-Rapp J, Villa-Diaz A, Dakowski C, Ardila-Osorio H, Haik S, Schneider B, Launay JM, Kellermann O, Torres JM, Mouillet-Richard S. Pathogenic prions deviate PrP(C) signaling in neuronal cells and impair A-beta clearance. Cell Death Dis 2013; 4:e456. [PMID: 23303130 PMCID: PMC3563983 DOI: 10.1038/cddis.2012.195] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The subversion of the normal function exerted by the cellular prion protein (PrPC) in neurons by pathogenic prions is assumed to have a central role in the pathogenesis of transmissible spongiform encephalopathies. Using two murine models of prion infection, the 1C11 neuronal cell line and neurospheres, we document that prion infection is associated with the constitutive activation of signaling targets normally coupled with PrPC, including the Fyn kinase, the mitogen-associated protein kinases ERK1/2 and the CREB transcription factor. PrPC-dependent signaling overactivation in infected cells is associated with the recruitment of p38 and JNK stress-associated kinases. Downstream from CREB, prion-infected cells exhibit reduced activity of the matrix metalloprotease (MMP)-9. As MMP-9 catalyzes the degradation of the amyloid A-beta peptide, the decrease in MMP-9 activity in prion-infected cells causes a significant impairment of the clearance of A-beta, leading to its accumulation. By exploiting two 1C11-infected clones accumulating high or moderate levels of prions, we show that the prion-induced changes are correlated with the level of infectivity. Of note, a dose-dependent increase in A-beta levels was also found in the cerebrospinal fluid of mice inoculated with these infected clones. By demonstrating that pathogenic prions trigger increases in A-beta levels through the deviation of PrPC signaling, our data argue that A-beta may exacerbate prion-induced toxicity.
Collapse
Affiliation(s)
- E Pradines
- Cellules Souches, Signalisation et Prions, INSERM UMR-S747, 75006, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Resenberger UK, Müller V, Munter LM, Baier M, Multhaup G, Wilson MR, Winklhofer KF, Tatzelt J. The heat shock response is modulated by and interferes with toxic effects of scrapie prion protein and amyloid β. J Biol Chem 2012; 287:43765-76. [PMID: 23115236 PMCID: PMC3527961 DOI: 10.1074/jbc.m112.389007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 10/27/2012] [Indexed: 12/19/2022] Open
Abstract
The heat shock response (HSR) is an evolutionarily conserved pathway designed to maintain proteostasis and to ameliorate toxic effects of aberrant protein folding. We have studied the modulation of the HSR by the scrapie prion protein (PrP(Sc)) and amyloid β peptide (Aβ) and investigated whether an activated HSR or the ectopic expression of individual chaperones can interfere with PrP(Sc)- or Aβ-induced toxicity. First, we observed different effects on the HSR under acute or chronic exposure of cells to PrP(Sc) or Aβ. In chronically exposed cells the threshold to mount a stress response was significantly increased, evidenced by a decreased expression of Hsp72 after stress, whereas an acute exposure lowered the threshold for stress-induced expression of Hsp72. Next, we employed models of PrP(Sc)- and Aβ-induced toxicity to demonstrate that the induction of the HSR ameliorates the toxic effects of both PrP(Sc) and Aβ. Similarly, the ectopic expression of cytosolic Hsp72 or the extracellular chaperone clusterin protected against PrP(Sc)- or Aβ-induced toxicity. However, toxic signaling induced by a pathogenic PrP mutant located at the plasma membrane was prevented by an activated HSR or Hsp72 but not by clusterin, indicating a distinct mode of action of this extracellular chaperone. Our study supports the notion that different pathological protein conformers mediate toxic effects via similar cellular pathways and emphasizes the possibility to exploit the heat shock response therapeutically.
Collapse
Affiliation(s)
- Ulrike K. Resenberger
- From the Neurobiochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, D-80336 Munich, Germany
| | - Veronika Müller
- From the Neurobiochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, D-80336 Munich, Germany
| | - Lisa M. Munter
- Institut für Chemie und Biochemie, Freie Universität, 14195 Berlin, Germany
- the Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3A0G4, Canada
| | | | - Gerd Multhaup
- Institut für Chemie und Biochemie, Freie Universität, 14195 Berlin, Germany
- the Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3A0G4, Canada
| | - Mark R. Wilson
- the School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia, and
| | - Konstanze F. Winklhofer
- From the Neurobiochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, D-80336 Munich, Germany
- the German Center for Neurodegenerative Diseases (DZNE), 80336 Munich, Germany
| | - Jörg Tatzelt
- From the Neurobiochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, D-80336 Munich, Germany
- the German Center for Neurodegenerative Diseases (DZNE), 80336 Munich, Germany
| |
Collapse
|
68
|
Kaiser DM, Acharya M, Leighton PLA, Wang H, Daude N, Wohlgemuth S, Shi B, Allison WT. Amyloid beta precursor protein and prion protein have a conserved interaction affecting cell adhesion and CNS development. PLoS One 2012; 7:e51305. [PMID: 23236467 PMCID: PMC3517466 DOI: 10.1371/journal.pone.0051305] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/31/2012] [Indexed: 01/12/2023] Open
Abstract
Genetic and biochemical mechanisms linking onset or progression of Alzheimer Disease and prion diseases have been lacking and/or controversial, and their etiologies are often considered independent. Here we document a novel, conserved and specific genetic interaction between the proteins that underlie these diseases, amyloid-β precursor protein and prion protein, APP and PRP, respectively. Knockdown of APP and/or PRNP homologs in the zebrafish (appa, appb, prp1, and prp2) produces a dose-dependent phenotype characterized by systemic morphological defects, reduced cell adhesion and CNS cell death. This genetic interaction is surprisingly exclusive in that prp1 genetically interacts with zebrafish appa, but not with appb, and the zebrafish paralog prp2 fails to interact with appa. Intriguingly, appa & appb are largely redundant in early zebrafish development yet their abilities to rescue CNS cell death are differentially contingent on prp1 abundance. Delivery of human APP or mouse Prnp mRNAs rescue the phenotypes observed in app-prp-depleted zebrafish, highlighting the conserved nature of this interaction. Immunoprecipitation revealed that human APP and PrP(C) proteins can have a physical interaction. Our study reports a unique in vivo interdependence between APP and PRP loss-of-function, detailing a biochemical interaction that considerably expands the hypothesized roles of PRP in Alzheimer Disease.
Collapse
Affiliation(s)
- Darcy M. Kaiser
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Moulinath Acharya
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Patricia L. A. Leighton
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hao Wang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Serene Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Beipei Shi
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - W. Ted Allison
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
69
|
PrP(C) homodimerization stimulates the production of PrPC cleaved fragments PrPN1 and PrPC1. J Neurosci 2012; 32:13255-63. [PMID: 22993441 DOI: 10.1523/jneurosci.2236-12.2012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An endoproteolytic cleavage termed α-cleavage between residues 111/112 is a characteristic feature of the cellular prion protein (PrP(C)). This cleavage generates a soluble N-terminal fragment (PrPN1) and a glycosylphosphatidylinositol-anchored C-terminal fragment (PrPC1). Independent studies demonstrate that modulating PrP(C) α-cleavage represents a potential therapeutic strategy in prion diseases. The regulation of PrP(C) α-cleavage is unclear. The only known domain that is essential for the α-cleavage to occur is a hydrophobic domain (HD). Importantly, the HD is also essential for the formation of PrP(C) homodimers. To explore the role of PrP(C) homodimerization on the α-cleavage, we used a well described inducible dimerization strategy whereby a chimeric PrP(C) composed of a modified FK506-binding protein (Fv) fused with PrP(C) and termed Fv-PrP is incubated in the presence of a dimerizer AP20187 ligand. We show that homodimerization leads to a considerable increase of PrP(C) α-cleavage in cultured cells and release of PrPN1 and PrPC1. Interestingly, enforced homodimerization increased PrP(C) levels at the plasma membrane, and preventing PrP(C) trafficking to the cell surface inhibited dimerization-induced α-cleavage. These observations were confirmed in primary hippocampal neurons from transgenic mice expressing Fv-PrP. The proteases responsible for the α-cleavage are still elusive, and in contrast to initial studies we confirm more recent investigations that neither ADAM10 nor ADAM17 are involved. Importantly, PrPN1 produced after PrP(C) homodimerization protects against toxic amyloid-β (Aβ) oligomers. Thus, our results show that PrP(C) homodimerization is an important regulator of PrP(C) α-cleavage and may represent a potential therapeutic avenue against Aβ toxicity in Alzheimer's disease.
Collapse
|
70
|
Thellung S, Gatta E, Pellistri F, Corsaro A, Villa V, Vassalli M, Robello M, Florio T. Excitotoxicity through NMDA receptors mediates cerebellar granule neuron apoptosis induced by prion protein 90-231 fragment. Neurotox Res 2012; 23:301-14. [PMID: 22855343 DOI: 10.1007/s12640-012-9340-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/13/2012] [Accepted: 07/18/2012] [Indexed: 10/28/2022]
Abstract
Prion diseases recognize, as a unique molecular trait, the misfolding of CNS-enriched prion protein (PrP(C)) into an aberrant isoform (PrP(Sc)). In this work, we characterize the in vitro toxicity of amino-terminally truncated recombinant PrP fragment (amino acids 90-231, PrP90-231), on rat cerebellar granule neurons (CGN), focusing on glutamatergic receptor activation and Ca(2+) homeostasis impairment. This recombinant fragment assumes a toxic conformation (PrP90-231(TOX)) after controlled thermal denaturation (1 h at 53 °C) acquiring structural characteristics identified in PrP(Sc) (enrichment in β-structures, increased hydrophobicity, partial resistance to proteinase K, and aggregation in amyloid fibrils). By annexin-V binding assay, and evaluation of the percentage of fragmented and condensed nuclei, we show that treatment with PrP90-231(TOX), used in pre-fibrillar aggregation state, induces CGN apoptosis. This effect was associated with a delayed, but sustained elevation of [Ca(2+)]i. Both CGN apoptosis and [Ca(2+)]i increase were not observed using PrP90-231 in PrP(C)-like conformation. PrP90-231(TOX) effects were significantly reduced in the presence of ionotropic glutamate receptor antagonists. In particular, CGN apoptosis and [Ca(2+)]i increase were largely reduced, although not fully abolished, by pre-treatment with the NMDA antagonists APV and memantine, while the AMPA antagonist CNQX produced a lower, although still significant, effect. In conclusion, we report that CGN apoptosis induced by PrP90-231(TOX) correlates with a sustained elevation of [Ca(2+)]i mediated by the activation of NMDA and AMPA receptors.
Collapse
Affiliation(s)
- Stefano Thellung
- Department of Internal Medicine, Section of Pharmacology and Centre of Excellence for Biomedical Research (CEBR) School of Medicine, University of Genova, Viale Benedetto XV, 2, 16132, Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Altmeppen HC, Puig B, Dohler F, Thurm DK, Falker C, Krasemann S, Glatzel M. Proteolytic processing of the prion protein in health and disease. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2012; 1:15-31. [PMID: 23383379 PMCID: PMC3560451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
A variety of physiological functions, not only restricted to the nervous system, are discussed for the cellular prion protein (PrP(C)). A prominent, non-physiological property of PrPC is the conversion into its pathogenic isoform (PrP(Sc)) during fatal, transmissible, and neurodegenerative prion diseases. The prion protein is subject to posttranslational proteolytic processing and these cleavage events have been shown i) to regulate its physiological functions, ii) to produce biologically active fragments, and iii) to potentially influence the course of prion disease. Here, we give an overview on the proteolytic processing under physiological and pathological conditions and critically review what is currently known about the three main cleavage events of the prion protein, namely α-cleavage, β-cleavage, and ectodomain shedding. The biological relevance of resulting fragments as well as controversies regarding candidate proteases, with special emphasis on members of the A-disintegrin-and-metalloproteinase (ADAM) family, will be discussed. In addition, we make suggestions aimed at facilitating clarity and progress in this important research field. The better understanding of this issue will not only answer basic questions in prion biology but will likely impact research on other neurodegenerative diseases as well.
Collapse
Affiliation(s)
- Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
72
|
Kumar S, Okello EJ, Harris JR. Experimental inhibition of fibrillogenesis and neurotoxicity by amyloid-beta (Aβ) and other disease-related peptides/proteins by plant extracts and herbal compounds. Subcell Biochem 2012; 65:295-326. [PMID: 23225009 DOI: 10.1007/978-94-007-5416-4_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Amyloid-β (Aβ) fibrillogenesis and associated cyto/neurotoxicity are major pathological events and hallmarks in diseases such as Alzheimer's disease (AD). The understanding of Aβ molecular pathogenesis is currently a pharmacological target for rational drug design and discovery based on reduction of Aβ generation, inhibition of Aβ fibrillogenesis and aggregation, enhancement of Aβ clearance and amelioration of associated cytotoxicity. Molecular mechanisms for other amyloidoses, such as transthyretin amyloidosis, AL-amyloidosis, as well as α-synuclein and prion protein are also pharmacological targets for current drug therapy, design and discovery. We report on natural herbal compounds and extracts that are capable binding to and inhibiting different targets associated with AD and other amyloid-associated diseases, providing a basis for future therapeutic strategies. Many herbal compounds, including curcumin, galantamine, quercetin and other polyphenols, are under active investigation and hold considerable potential for future prophylactic and therapeutic treatment against AD and other neurodegenerative diseases, as well as systemic amyloid diseases. A common emerging theme throughout many studies is the anti-oxidant and anti-inflammatory properties of the compounds or herbal extracts under investigation, within the context of the inhibition of cyto/neurotoxicity and anti-amyloid activity.
Collapse
Affiliation(s)
- Suresh Kumar
- University School of Biotechnology, GGS Indraprastha University, Sector 16C, 10075, Dwarka, Delhi, India,
| | | | | |
Collapse
|
73
|
Resenberger UK, Winklhofer KF, Tatzelt J. Cellular Prion Protein Mediates Toxic Signaling of Amyloid Beta. NEURODEGENER DIS 2012; 10:298-300. [DOI: 10.1159/000332596] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/25/2011] [Indexed: 11/19/2022] Open
|
74
|
Prion protein at the crossroads of physiology and disease. Trends Neurosci 2011; 35:92-103. [PMID: 22137337 DOI: 10.1016/j.tins.2011.10.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 10/20/2011] [Accepted: 10/20/2011] [Indexed: 11/23/2022]
Abstract
The presence of the cellular prion protein (PrP(C)) on the cell surface is critical for the neurotoxicity of prions. Although several biological activities have been attributed to PrP(C), a definitive demonstration of its physiological function remains elusive. In this review, we discuss some of the proposed functions of PrP(C), focusing on recently suggested roles in cell adhesion, regulation of ionic currents at the cell membrane and neuroprotection. We also discuss recent evidence supporting the idea that PrP(C) may function as a receptor for soluble oligomers of the amyloid β peptide and possibly other toxic protein aggregates. These data suggest surprising new connections between the physiological function of PrP(C) and its role in neurodegenerative diseases beyond those caused by prions.
Collapse
|
75
|
Turnbaugh JA, Westergard L, Unterberger U, Biasini E, Harris DA. The N-terminal, polybasic region is critical for prion protein neuroprotective activity. PLoS One 2011; 6:e25675. [PMID: 21980526 PMCID: PMC3183058 DOI: 10.1371/journal.pone.0025675] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/09/2011] [Indexed: 11/19/2022] Open
Abstract
Several lines of evidence suggest that the normal form of the prion protein, PrP(C), exerts a neuroprotective activity against cellular stress or toxicity. One of the clearest examples of such activity is the ability of wild-type PrP(C) to suppress the spontaneous neurodegenerative phenotype of transgenic mice expressing a deleted form of PrP (Δ32-134, called F35). To define domains of PrP involved in its neuroprotective activity, we have analyzed the ability of several deletion mutants of PrP (Δ23-31, Δ23-111, and Δ23-134) to rescue the phenotype of Tg(F35) mice. Surprisingly, all of these mutants displayed greatly diminished rescue activity, although Δ23-31 PrP partially suppressed neuronal loss when expressed at very high levels. Our results pinpoint the N-terminal, polybasic domain as a critical determinant of PrP(C) neuroprotective activity, and suggest that identification of molecules interacting with this region will provide important clues regarding the normal function of the protein. Small molecule ligands targeting this region may also represent useful therapeutic agents for treatment of prion diseases.
Collapse
Affiliation(s)
- Jessie A. Turnbaugh
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Cell Biology and Physiology Washington University School of Medicine St. Louis, St. Louis, Missouri, United States of America
| | - Laura Westergard
- Department of Cell Biology and Physiology Washington University School of Medicine St. Louis, St. Louis, Missouri, United States of America
| | - Ursula Unterberger
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Emiliano Biasini
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - David A. Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
76
|
Carulla P, Bribián A, Rangel A, Gavín R, Ferrer I, Caelles C, del Río JA, Llorens F. Neuroprotective role of PrPC against kainate-induced epileptic seizures and cell death depends on the modulation of JNK3 activation by GluR6/7-PSD-95 binding. Mol Biol Cell 2011; 22:3041-54. [PMID: 21757544 PMCID: PMC3164453 DOI: 10.1091/mbc.e11-04-0321] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/21/2011] [Accepted: 06/29/2011] [Indexed: 01/15/2023] Open
Abstract
Cellular prion protein (PrP(C)) is a glycosyl-phosphatidylinositol-anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrP(SC)) induces transmissible spongiform encephalopathies. In contrast, PrP(C) has a number of physiological functions in several neural processes. Several lines of evidence implicate PrP(C) in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrP(C) has been implicated in the inhibition of N-methyl-d-aspartic acid (NMDA)-mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnp(o/o)Jnk3(o/o) mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrP(C)-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrP(C) with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6-PSD-95 interaction after KA injections was favored by the absence of PrP(C). Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrP(C) against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.
Collapse
Affiliation(s)
- Patricia Carulla
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Center for Biomedical Research in Neurodegenerative Diseases, Barcelona, Spain
| | - Ana Bribián
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Center for Biomedical Research in Neurodegenerative Diseases, Barcelona, Spain
| | - Alejandra Rangel
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Center for Biomedical Research in Neurodegenerative Diseases, Barcelona, Spain
| | - Rosalina Gavín
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Center for Biomedical Research in Neurodegenerative Diseases, Barcelona, Spain
| | - Isidro Ferrer
- Center for Biomedical Research in Neurodegenerative Diseases, Barcelona, Spain
- Institute of Neuropathology, Bellvitge Biomedical Research Institute, University of Barcelona, Barcelona, Spain
| | - Carme Caelles
- Cellular Signalling, Institute for Research in Biomedicine, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - José Antonio del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Center for Biomedical Research in Neurodegenerative Diseases, Barcelona, Spain
| | - Franc Llorens
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Center for Biomedical Research in Neurodegenerative Diseases, Barcelona, Spain
| |
Collapse
|
77
|
Resenberger UK, Harmeier A, Woerner AC, Goodman JL, Müller V, Krishnan R, Vabulas RM, Kretzschmar HA, Lindquist S, Hartl FU, Multhaup G, Winklhofer KF, Tatzelt J. The cellular prion protein mediates neurotoxic signalling of β-sheet-rich conformers independent of prion replication. EMBO J 2011; 30:2057-70. [PMID: 21441896 DOI: 10.1038/emboj.2011.86] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 03/03/2011] [Indexed: 01/17/2023] Open
Abstract
Formation of aberrant protein conformers is a common pathological denominator of different neurodegenerative disorders, such as Alzheimer's disease or prion diseases. Moreover, increasing evidence indicates that soluble oligomers are associated with early pathological alterations and that oligomeric assemblies of different disease-associated proteins may share common structural features. Previous studies revealed that toxic effects of the scrapie prion protein (PrP(Sc)), a β-sheet-rich isoform of the cellular PrP (PrP(C)), are dependent on neuronal expression of PrP(C). In this study, we demonstrate that PrP(C) has a more general effect in mediating neurotoxic signalling by sensitizing cells to toxic effects of various β-sheet-rich (β) conformers of completely different origins, formed by (i) heterologous PrP, (ii) amyloid β-peptide, (iii) yeast prion proteins or (iv) designed β-peptides. Toxic signalling via PrP(C) requires the intrinsically disordered N-terminal domain (N-PrP) and the GPI anchor of PrP. We found that the N-terminal domain is important for mediating the interaction of PrP(C) with β-conformers. Interestingly, a secreted version of N-PrP associated with β-conformers and antagonized their toxic signalling via PrP(C). Moreover, PrP(C)-mediated toxic signalling could be blocked by an NMDA receptor antagonist or an oligomer-specific antibody. Our study indicates that PrP(C) can mediate toxic signalling of various β-sheet-rich conformers independent of infectious prion propagation, suggesting a pathophysiological role of the prion protein beyond of prion diseases.
Collapse
Affiliation(s)
- Ulrike K Resenberger
- Department of Metabolic Biochemistry, Neurobiochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Didonna A, Vaccari L, Bek A, Legname G. Infrared microspectroscopy: a multiple-screening platform for investigating single-cell biochemical perturbations upon prion infection. ACS Chem Neurosci 2011; 2:160-74. [PMID: 22778865 DOI: 10.1021/cn1000952] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/08/2010] [Indexed: 12/15/2022] Open
Abstract
Prion diseases are a group of fatal neurodegenerative disorders characterized by the accumulation of prions in the central nervous system. The pathogenic prion (PrP(Sc)) possesses the capability to convert the host-encoded cellular isoform of the prion protein, PrP(C), into nascent PrP(Sc). The present work aims at providing novel insight into cellular response upon prion infection evidenced by synchrotron radiation infrared microspectroscopy (SR-IRMS). This non-invasive, label-free analytical technique was employed to investigate the biochemical perturbations undergone by prion infected mouse hypothalamic GT1-1 cells at the cellular and subcellular level. A decrement in total cellular protein content upon prion infection was identified by infrared (IR) whole-cell spectra and validated by bicinchoninic acid assay and single-cell volume analysis by atomic force microscopy (AFM). Hierarchical cluster analysis (HCA) of IR data discriminated between infected and uninfected cells and allowed to deduce an increment of lysosomal bodies within the cytoplasm of infected GT1-1 cells, a hypothesis further confirmed by SR-IRMS at subcellular spatial resolution and fluorescent microscopy. The purpose of this work, therefore, consists of proposing IRMS as a powerful multiscreening platform, drawing on the synergy with conventional biological assays and microscopy techniques in order to increase the accuracy of investigations performed at the single-cell level.
Collapse
Affiliation(s)
- Alessandro Didonna
- Laboratory of Prion Biology, Neurobiology Sector, Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, I-34136 Trieste, Italy
| | - Lisa Vaccari
- ELETTRA Synchrotron Light Laboratory, S.S. 14 Km. 163.5, 34149 Basovizza, Trieste, Italy
| | - Alpan Bek
- CBM S.c.r.l., Consorzio per il Centro di Biomedicina Molecolare—Center for Molecular Biomedicine, Area Science Park—Basovizza SS 14, Km 163.5, I-34149 Trieste (TS), Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Neurobiology Sector, Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, I-34136 Trieste, Italy
- ELETTRA Synchrotron Light Laboratory, S.S. 14 Km. 163.5, 34149 Basovizza, Trieste, Italy
- CBM S.c.r.l., Consorzio per il Centro di Biomedicina Molecolare—Center for Molecular Biomedicine, Area Science Park—Basovizza SS 14, Km 163.5, I-34149 Trieste (TS), Italy
- Italian Institute of Technology, SISSA Unit, Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
79
|
Sakthivelu V, Seidel RP, Winklhofer KF, Tatzelt J. Conserved stress-protective activity between prion protein and Shadoo. J Biol Chem 2011; 286:8901-8. [PMID: 21257747 DOI: 10.1074/jbc.m110.185470] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Shadoo (Sho) is a neuronally expressed glycoprotein of unknown function. Although there is no overall sequence homology to the cellular prion protein (PrP(C)), both proteins contain a highly conserved internal hydrophobic domain (HD) and are tethered to the outer leaflet of the plasma membrane via a C-terminal glycosylphosphatidylinositol anchor. A previous study revealed that Sho can reduce toxicity of a PrP mutant devoid of the HD (PrPΔHD). We have now studied the stress-protective activity of Sho in detail and identified domains involved in this activity. Like PrP(C), Sho protects cells against physiological stressors such as the excitotoxin glutamate. Moreover, both PrP(C) and Sho required the N-terminal domain for this activity; the stress-protective capacity of PrPΔN as well as ShoΔN was significantly impaired. In both proteins, the HD promoted homodimer formation; however, deletion of the HD had different effects. Although ShoΔHD lost its stress-protective activity, PrPΔHD acquired a neurotoxic potential. Finally, we could show that the N-terminal domain of PrP(C) could be functionally replaced by that of Sho, suggesting a similar function of the N termini of Sho and PrP(C). Our study reveals a conserved physiological activity between PrP(C) and Sho to protect cells from stress-induced toxicity and suggests that Sho and PrP(C) might act on similar signaling pathways.
Collapse
Affiliation(s)
- Vignesh Sakthivelu
- Neurobiochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, D-80336 Munich, Germany
| | | | | | | |
Collapse
|
80
|
Abstract
Prion diseases in humans and animals are characterized by progressive neurodegeneration and the formation of infectious particles called prions. Both features are intimately linked to a conformational transition of the cellular prion protein (PrP(C)) into aberrantly folded conformers with neurotoxic and self-replicating activities. Interestingly, there is increasing evidence that the infectious and neurotoxic properties of PrP conformers are not necessarily coupled. Transgenic mouse models revealed that some PrP mutants interfere with neuronal function in the absence of infectious prions. Vice versa, propagation of prions can occur without causing neurotoxicity. Consequently, it appears plausible that two partially independent pathways exist, one pathway leading to the propagation of infectious prions and another one that mediates neurotoxic signaling. In this review we will summarize current knowledge of neurotoxic PrP conformers and discuss the role of PrP(C) as a mediator of both stress-protective and neurotoxic signaling cascades.
Collapse
|
81
|
Seidel R, Engelhard M. Chemical biology of prion protein: tools to bridge the in vitro/vivo interface. Top Curr Chem (Cham) 2011; 305:199-223. [PMID: 21769714 DOI: 10.1007/128_2011_201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Research on prion protein (PrP) and pathogenic prion has been very intensive because of its importance as model system for neurodegenerative diseases. One important aspect of this research has been the application of chemical biology tools. In this review we describe new developments like native chemical ligation (NCL) and expressed protein ligation (EPL) for the synthesis and semisynthesis of proteins in general and PrP in particular. These techniques allow the synthesis of designed tailor made analogs which can be used in conjunction with modern biophysical methods like fluorescence spectroscopy, solid state Nuclear Magnetic Resonance (ssNMR), and Electron Paramagnetic Resonance (EPR). Another aspect of prion research is concerned with the interaction of PrP with small organic molecules and metals. The results are critically reviewed and put into perspective of their implication for PrP function.
Collapse
Affiliation(s)
- Ralf Seidel
- Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | | |
Collapse
|
82
|
Christensen HM, Dikranian K, Li A, Baysac KC, Walls KC, Olney JW, Roth KA, Harris DA. A highly toxic cellular prion protein induces a novel, nonapoptotic form of neuronal death. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2695-706. [PMID: 20472884 DOI: 10.2353/ajpath.2010.091007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Several different deletions within the N-terminal tail of the prion protein (PrP) induce massive neuronal death when expressed in transgenic mice. This toxicity is dose-dependently suppressed by coexpression of full-length PrP, suggesting that it results from subversion of a normal physiological activity of cellular PrP. We performed a combined biochemical and morphological analysis of Tg(DeltaCR) mice, which express PrP carrying a 21-aa deletion (residues 105-125) within a highly conserved region of the protein. Death of cerebellar granule neurons in Tg(DeltaCR) mice is not accompanied by activation of either caspase-3 or caspase-8 or by increased levels of the autophagy marker, LC3-II. In electron micrographs, degenerating granule neurons displayed a unique morphology characterized by heterogeneous condensation of the nuclear matrix without formation of discrete chromatin masses typical of neuronal apoptosis. Our data demonstrate that perturbations in PrP functional activity induce a novel, nonapoptotic, nonautophagic form of neuronal death whose morphological features are reminiscent of those associated with excitotoxic stress.
Collapse
Affiliation(s)
- Heather M Christensen
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Daude N, Ng V, Watts JC, Genovesi S, Glaves JP, Wohlgemuth S, Schmitt-Ulms G, Young H, McLaurin J, Fraser PE, Westaway D. Wild-type Shadoo proteins convert to amyloid-like forms under native conditions. J Neurochem 2010; 113:92-104. [PMID: 20067571 DOI: 10.1111/j.1471-4159.2010.06575.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The cellular prion protein PrP(C) refolds into a beta-sheet enriched, infectivity-associated form called PrP(Sc). Shadoo (Sho) is a newly discovered glycoprotein that is also expressed in the adult brain. Wild type (wt) mouse Sho consists of an arginine-rich region, a hydrophobic central domain of five tandem A/LAAG amino acid repeats R1-R5 with similarity to the hydrophobic domain of PrP(C), and a C-terminal domain with one N-linked carbohydrate. As some alanine-rich proteins and PrP with a shortened C-terminal domain form amyloid we investigated conformational properties of wt Sho and polymorphic variants with insertion/deletions centered on R3. Recombinant mouse and sheep Sho converted to an amyloid-like form without recourse to chemical denaturation or acidification. For wt proteins this transition was marked by increased thioflavin T binding, Congo red staining, presence of fibrillar structures by electron microscopy, formation of sodium dodecyl sulfate-resistant complexes and the generation of a C-terminal proteinase K resistant core of 5-8 kDa. Variant Sho proteins differing within the R1-R5 region exhibited most but not all of these properties. Our studies define a proteinase K -resistant signature fragment for the amyloid fold of Sho and raise the question of a physiological role for this form of the wt protein.
Collapse
Affiliation(s)
- Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Gunther EC, Strittmatter SM. Beta-amyloid oligomers and cellular prion protein in Alzheimer's disease. J Mol Med (Berl) 2009; 88:331-8. [PMID: 19960174 DOI: 10.1007/s00109-009-0568-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 12/21/2022]
Abstract
Prefibrillar oligomers of the beta-amyloid peptide (A beta) are recognized as potential mediators of Alzheimer's disease (AD) pathophysiology. Deficits in synaptic function, neurotoxicity, and the progression of AD have all been linked to the oligomeric A beta assemblies rather than to A beta monomers or to amyloid plaques. However, the molecular sites of A beta oligomer action have remained largely unknown. Recently, the cellular prion protein (PrP(C)) has been shown to act as a functional receptor for A beta oligomers in brain slices. Because PrP(C) serves as the substrate for Creutzfeldt-Jakob Disease (CJD), these data suggest mechanistic similarities between the two neurodegenerative diseases. Here, we review the importance of A beta oligomers in AD, commonalities between AD and CJD, and the newly emergent role of PrP(C) as a receptor for A beta oligomers.
Collapse
Affiliation(s)
- Erik C Gunther
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 295 Congress Ave., BCMM 436, New Haven, CT 06536-0812, USA
| | | |
Collapse
|
85
|
Massignan T, Stewart RS, Biasini E, Solomon IH, Bonetto V, Chiesa R, Harris DA. A novel, drug-based, cellular assay for the activity of neurotoxic mutants of the prion protein. J Biol Chem 2009; 285:7752-65. [PMID: 19940127 DOI: 10.1074/jbc.m109.064949] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In prion diseases, the infectious isoform of the prion protein (PrP(Sc)) may subvert a normal, physiological activity of the cellular isoform (PrP(C)). A deletion mutant of the prion protein (Delta105-125) that produces a neonatal lethal phenotype when expressed in transgenic mice provides a window into the normal function of PrP(C) and how it can be corrupted to produce neurotoxic effects. We report here the surprising and unexpected observation that cells expressing Delta105-125 PrP and related mutants are hypersensitive to the toxic effects of two classes of antibiotics (aminoglycosides and bleomycin analogues) that are commonly used for selection of stably transfected cell lines. This unusual phenomenon mimics several essential features of Delta105-125 PrP toxicity seen in transgenic mice, including rescue by co-expression of wild type PrP. Cells expressing Delta105-125 PrP are susceptible to drug toxicity within minutes, suggesting that the mutant protein enhances cellular accumulation of these cationic compounds. Our results establish a screenable cellular phenotype for the activity of neurotoxic forms of PrP, and they suggest possible mechanisms by which these molecules could produce their pathological effects in vivo.
Collapse
Affiliation(s)
- Tania Massignan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Solomon IH, Schepker JA, Harris DA. Prion neurotoxicity: insights from prion protein mutants. Curr Issues Mol Biol 2009; 12:51-61. [PMID: 19767650 PMCID: PMC4821541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
The chemical nature of prions and the mechanism by which they propagate are now reasonably well understood. In contrast, much less is known about the identity of the toxic prion protein (PrP) species that are responsible for neuronal death, and the cellular pathways that these forms activate. In addition, the normal, physiological function of cellular PrP (PrP(C)) has remained mysterious, hampering efforts to determine whether loss or alteration of this function contributes to the disease phenotype. Considerable evidence now suggests that aggregation, toxicity, and infectivity are distinct properties of PrP that do no necessarily coincide. In this review, we will discuss several mutant forms of PrP that produce spontaneous neurodegeneration in humans and/or transgenic mice without the formation of infectious PrP(Sc). These include an octapeptide insertional mutation, point mutations that favor synthesis of transmembrane forms of PrP, and deletions encompassing the central domain whose neurotoxicity is antagonized by the presence of wild-type PrP. By isolating the neurotoxic effects of PrP from the formation of infectious prions, these mutants have provided important insights into possible pathogenic mechanisms. These studies suggest that prion neurotoxicity may involve subversion of a cytoprotective activity of PrP(C) via altered signaling events at the plasma membrane.
Collapse
Affiliation(s)
- Isaac H Solomon
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
87
|
Treusch S, Cyr DM, Lindquist S. Amyloid deposits: protection against toxic protein species? Cell Cycle 2009; 8:1668-74. [PMID: 19411847 DOI: 10.4161/cc.8.11.8503] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neurodegenerative diseases ranging from Alzheimer disease and polyglutamine diseases to transmissible spongiform encephalopathies are associated with the aggregation and accumulation of misfolded proteins. In several cases the intracellular and extracellular protein deposits contain a fibrillar protein species called amyloid. However while amyloid deposits are hallmarks of numerous neurodegenerative diseases, their actual role in disease progression remains unclear. Especially perplexing is the often poor correlation between these deposits and other markers of neurodegeneration. As a result the question remains whether amyloid deposits are the disease-causing species, the consequence of cellular disease pathology or even the result of a protective cellular response to misfolded protein species. Here we highlight studies that suggest that accumulation and sequestration of misfolded protein in amyloid inclusion bodies and plaques can serve a protective function. Furthermore, we discuss how exceeding the cellular capacity for protective deposition of misfolded proteins may contribute to the formation of toxic protein species.
Collapse
Affiliation(s)
- Sebastian Treusch
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
88
|
New insights into cellular prion protein (PrPc) functions: the "ying and yang" of a relevant protein. ACTA ACUST UNITED AC 2009; 61:170-84. [PMID: 19523487 DOI: 10.1016/j.brainresrev.2009.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 05/26/2009] [Accepted: 06/03/2009] [Indexed: 12/19/2022]
Abstract
The conversion of cellular prion protein (PrP(c)), a GPI-anchored protein, into a protease-K-resistant and infective form (generally termed PrP(sc)) is mainly responsible for Transmissible Spongiform Encephalopathies (TSEs), characterized by neuronal degeneration and progressive loss of basic brain functions. Although PrP(c) is expressed by a wide range of tissues throughout the body, the complete repertoire of its functions has not been fully determined. Recent studies have confirmed its participation in basic physiological processes such as cell proliferation and the regulation of cellular homeostasis. Other studies indicate that PrP(c) interacts with several molecules to activate signaling cascades with a high number of cellular effects. To determine PrP(c) functions, transgenic mouse models have been generated in the last decade. In particular, mice lacking specific domains of the PrP(c) protein have revealed the contribution of these domains to neurodegenerative processes. A dual role of PrP(c) has been shown, since most authors report protective roles for this protein while others describe pro-apoptotic functions. In this review, we summarize new findings on PrP(c) functions, especially those related to neural degeneration and cell signaling.
Collapse
|
89
|
Haigh CL, Drew SC, Boland MP, Masters CL, Barnham KJ, Lawson VA, Collins SJ. Dominant roles of the polybasic proline motif and copper in the PrP23-89-mediated stress protection response. J Cell Sci 2009; 122:1518-28. [PMID: 19383722 DOI: 10.1242/jcs.043604] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Beta-cleavage of the neurodegenerative disease-associated prion protein (PrP) protects cells from death induced by oxidative insults. The beta-cleavage event produces two fragments, designated N2 and C2. We investigated the role of the N2 fragment (residues 23-89) in cellular stress response, determining mechanisms involved and regions important for this reaction. The N2 fragment differentially modulated the reactive oxygen species (ROS) response induced by serum deprivation, with amelioration when copper bound. Amino acid residues 23-50 alone mediated a ROS reduction response. PrP23-50 ROS reduction was not due to copper binding or direct antioxidant activity, but was instead mediated through proteoglycan binding partners localised in or interacting with cholesterol-rich membrane domains. Furthermore, mutational analyses of both PrP23-50 and N2 showed that their protective capacity requires the sterically constraining double proline motif within the N-terminal polybasic region. Our findings show that N2 is a biologically active fragment that is able to modulate stress-induced intracellular ROS through interaction of its structurally defined N-terminal polybasic region with cell-surface proteoglycans.
Collapse
Affiliation(s)
- Cathryn L Haigh
- Department of Pathology, The University of Melbourne, 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
90
|
Kovacs GG, Budka H. Molecular pathology of human prion diseases. Int J Mol Sci 2009; 10:976-99. [PMID: 19399233 PMCID: PMC2672014 DOI: 10.3390/ijms10030976] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 02/27/2009] [Accepted: 03/04/2009] [Indexed: 12/18/2022] Open
Abstract
Prion diseases are fatal neurodegenerative conditions in humans and animals. In this review, we summarize the molecular background of phenotypic variability, relation of prion protein (PrP) to other proteins associated with neurodegenerative diseases, and pathogenesis of neuronal vulnerability. PrP exists in different forms that may be present in both diseased and non-diseased brain, however, abundant disease-associated PrP together with tissue pathology characterizes prion diseases and associates with transmissibility. Prion diseases have different etiological background with distinct pathogenesis and phenotype. Mutations of the prion protein gene are associated with genetic forms. The codon 129 polymorphism in combination with the Western blot pattern of PrP after proteinase K digestion serves as a basis for molecular subtyping of sporadic Creutzfeldt-Jakob disease. Tissue damage may result from several parallel, interacting or subsequent pathways that involve cellular systems associated with synapses, protein processing, oxidative stress, autophagy, and apoptosis.
Collapse
Affiliation(s)
| | - Herbert Budka
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +43-1-40400-5500; Fax: +43-1-40400-5511
| |
Collapse
|
91
|
Rambold AS, Miesbauer M, Olschewski D, Seidel R, Riemer C, Smale L, Brumm L, Levy M, Gazit E, Oesterhelt D, Baier M, Becker CFW, Engelhard M, Winklhofer KF, Tatzelt J. Green tea extracts interfere with the stress-protective activity of PrP and the formation of PrP. J Neurochem 2008; 107:218-29. [PMID: 18691383 DOI: 10.1111/j.1471-4159.2008.05611.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A hallmark in prion diseases is the conformational transition of the cellular prion protein (PrP(C)) into a pathogenic conformation, designated scrapie prion protein (PrP(Sc)), which is the essential constituent of infectious prions. Here, we show that epigallocatechin gallate (EGCG) and gallocatechin gallate, the main polyphenols in green tea, induce the transition of mature PrP(C) into a detergent-insoluble conformation distinct from PrP(Sc). The PrP conformer induced by EGCG was rapidly internalized from the plasma membrane and degraded in lysosomal compartments. Isothermal titration calorimetry studies revealed that EGCG directly interacts with PrP leading to the destabilizing of the native conformation and the formation of random coil structures. This activity was dependent on the gallate side chain and the three hydroxyl groups of the trihydroxyphenyl side chain. In scrapie-infected cells EGCG treatment was beneficial; formation of PrP(Sc) ceased. However, in uninfected cells EGCG interfered with the stress-protective activity of PrP(C). As a consequence, EGCG-treated cells showed enhanced vulnerability to stress conditions. Our study emphasizes the important role of PrP(C) to protect cells from stress and indicate efficient intracellular pathways to degrade non-native conformations of PrP(C).
Collapse
Affiliation(s)
- Angelika S Rambold
- Department of Biochemistry, Neurobiochemistry, Ludwig-Maximilians-Universität München, München, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
Prion protein (PrP)-like molecule, doppel (Dpl), is neurotoxic in mice, causing Purkinje cell degeneration. In contrast, PrP antagonizes Dpl in trans, rescuing mice from Purkinje cell death. We have previously shown that PrP with deletion of the N-terminal residues 23-88 failed to neutralize Dpl in mice, indicating that the N-terminal region, particularly that including residues 23-88, may have trans-protective activity against Dpl. Interestingly, PrP with deletion elongated to residues 121 or 134 in the N-terminal region was shown to be similarly neurotoxic to Dpl, indicating that the PrP C-terminal region may have toxicity which is normally prevented by the N-terminal domain in cis. We recently investigated further roles for the N-terminal region of PrP in antagonistic interactions with Dpl by producing three different types of transgenic mice. These mice expressed PrP with deletion of residues 25-50 or 51-90, or a fusion protein of the N-terminal region of PrP with Dpl. Here, we discuss a possible model for the antagonistic interaction between PrP and Dpl.
Collapse
Affiliation(s)
- Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan.
| |
Collapse
|
93
|
Abstract
The prion infection is a conversion of host encoded prion protein (PrP) from its cellular isoform PrP(C) into the pathological and infectious isoform PrP(Sc); the conversion process was investigated by in vitro studies using recombinant and cellular PrP and natural PrP(Sc). We present a brief summary of the results determined with our in vitro conversion system and the derived mechanistic models. We describe well characterized intermediates and precursor states during the conversion process, kinetic studies of spontaneous and seeded fibrillogenesis and the impact of the membrane environment.
Collapse
Affiliation(s)
- Eva Birkmann
- Institut für Physikalische Biologie, Heinrich-Heine-Universitaet Duesseldorf & Institut für Biophysik und Neurowissenschaften, Forschungszentrum Juelich, Duesseldorf, Germany
| | | |
Collapse
|