51
|
Mitra S, Demeler B. Probing RNA-Protein Interactions and RNA Compaction by Sedimentation Velocity Analytical Ultracentrifugation. Methods Mol Biol 2020; 2113:281-317. [PMID: 32006321 PMCID: PMC10958623 DOI: 10.1007/978-1-0716-0278-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent advances in multi-wavelength analytical ultracentrifugation (MWL-AUC) combine the power of an exquisitely sensitive hydrodynamic-based separation technique with the added dimension of spectral separation. This added dimension has opened up new doors to much improved characterization of multiple, interacting species in solution. When applied to structural investigations of RNA, MWL-AUC can precisely report on the hydrodynamic radius and the overall shape of an RNA molecule by enabling precise measurements of its sedimentation and diffusion coefficients and identify the stoichiometry of interacting components based on spectral decomposition. Information provided in this chapter will allow an investigator to design experiments for probing ion and/or protein-induced global conformational changes of an RNA molecule and exploit spectral differences between proteins and RNA to characterize their interactions in a physiological solution environment.
Collapse
Affiliation(s)
- Somdeb Mitra
- Department of Chemistry, New York University, New York, NY, USA.
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
52
|
Carriere J, Rao Y, Liu Q, Lin X, Zhao J, Feng P. Post-translational Control of Innate Immune Signaling Pathways by Herpesviruses. Front Microbiol 2019; 10:2647. [PMID: 31798565 PMCID: PMC6868034 DOI: 10.3389/fmicb.2019.02647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
Herpesviruses constitute a large family of disease-causing DNA viruses. Each herpesvirus strain is capable of infecting particular organisms with a specific cell tropism. Upon infection, pattern recognition receptors (PRRs) recognize conserved viral features to trigger signaling cascades that culminate in the production of interferons and pro-inflammatory cytokines. To invoke a proper immune response while avoiding collateral tissue damage, signaling proteins involved in these cascades are tightly regulated by post-translational modifications (PTMs). Herpesviruses have developed strategies to subvert innate immune signaling pathways in order to ensure efficient viral replication and achieve persistent infection. The ability of these viruses to control the proteins involved in these signaling cascades post-translationally, either directly via virus-encoded enzymes or indirectly through the deregulation of cellular enzymes, has been widely reported. This ability provides herpesviruses with a powerful tool to shut off or restrict host antiviral and inflammatory responses. In this review, we highlight recent findings on the herpesvirus-mediated post-translational control along PRR-mediated signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Pinghui Feng
- Section of Infection and Immunity, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
53
|
Streicher F, Jouvenet N. Stimulation of Innate Immunity by Host and Viral RNAs. Trends Immunol 2019; 40:1134-1148. [PMID: 31735513 DOI: 10.1016/j.it.2019.10.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022]
Abstract
The interferon (IFN) response, a major vertebrate defense mechanism against viral infections, is initiated by RIG-I-like receptor (RLR)-mediated recognition of viral replicative intermediates in the cytosol. RLR purification methods coupled to RNA sequencing have recently led to the characterization of viral nucleic acid features recognized by RLRs in infected cells. This work revealed that some cellular RNAs can bind to RLRs and stimulate the IFN response. We provide an overview of self and non-self RNAs that activate innate immunity, and discuss the cellular dysregulation that allows recognition of cellular RNAs by RLRs, including RNA mislocalization and downregulation of RNA-shielding proteins. These discussions are relevant because manipulating RLR activation presents opportunities for treating viral infections and autoimmune disorders.
Collapse
Affiliation(s)
- Felix Streicher
- Unité de Génomique Virale et Vaccination, Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 3569, Paris, France; Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Nolwenn Jouvenet
- Unité de Génomique Virale et Vaccination, Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 3569, Paris, France.
| |
Collapse
|
54
|
Ranjbar S, Haridas V, Nambu A, Jasenosky LD, Sadhukhan S, Ebert TS, Hornung V, Cassell GH, Falvo JV, Goldfeld AE. Cytoplasmic RNA Sensor Pathways and Nitazoxanide Broadly Inhibit Intracellular Mycobacterium tuberculosis Growth. iScience 2019; 22:299-313. [PMID: 31805434 PMCID: PMC6909047 DOI: 10.1016/j.isci.2019.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/02/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
To establish stable infection, Mycobacterium tuberculosis (MTb) must overcome host innate immune mechanisms, including those that sense pathogen-derived nucleic acids. Here, we show that the host cytosolic RNA sensing molecules RIG-I-like receptor (RLR) signaling proteins RIG-I and MDA5, their common adaptor protein MAVS, and the RNA-dependent kinase PKR each independently inhibit MTb growth in human cells. Furthermore, we show that MTb broadly stimulates RIG-I, MDA5, MAVS, and PKR gene expression and their biological activities. We also show that the oral FDA-approved drug nitazoxanide (NTZ) significantly inhibits intracellular MTb growth and amplifies MTb-stimulated RNA sensor gene expression and activity. This study establishes prototypic cytoplasmic RNA sensors as innate restriction factors for MTb growth in human cells and it shows that targeting this pathway is a potential host-directed approach to treat tuberculosis disease. MTb infection induces RNA sensor (RIG-I, MDA5, PKR) mRNA levels and activities RIG-I, MDA5, MAVS, and PKR restrict intracellular MTb growth in human cells NTZ enhances MTb-driven RNA sensor mRNA levels and RLR activities NTZ and NTZ derivatives inhibit intracellular MTb growth in primary human cells
Collapse
Affiliation(s)
- Shahin Ranjbar
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Viraga Haridas
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Aya Nambu
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Luke D Jasenosky
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Supriya Sadhukhan
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas S Ebert
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gail H Cassell
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - James V Falvo
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Anne E Goldfeld
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
55
|
Li Y, Jin S, Zhao X, Luo H, Li R, Li D, Xiao T. Sequence and expression analysis of the cytoplasmic pattern recognition receptor melanoma differentiation-associated gene 5 from the barbel chub Squaliobarbus curriculus. FISH & SHELLFISH IMMUNOLOGY 2019; 94:485-496. [PMID: 31494278 DOI: 10.1016/j.fsi.2019.08.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
MDA5 is a cytoplasmic viral double-stranded RNA recognition receptor that plays a pivotal role in the aquatic animal innate immune system. To decipher the role of MDA5 of Squaliobarbus curriculus (ScMDA5) in the immune response, full-length cDNA of ScMDA5 was cloned using the RACE technology, mRNA and protein expression levels of ScMDA5 signalling pathway members in response to stimulation were detected and effects of overexpression of ScMDA5 on the immune response were investigated. ScMDA5 comprises 3597 bp and is composed of an open reading frame (2958 nucleotides long) that translates into a putative peptide of 985 amino acid residues. ScMDA5 possesses two N-terminal caspase-recruiting domains, DEAD-like helicases superfamily, helicase superfamily C-terminal and RIG-I_C-RD domains, and differences in these domains among species were mainly observed with respect to their length and location. ScMDA5 was closely clustered with those of Carassius auratus, Ctenopharyngodon idellus and Mylopharyngodon piceus. ScMDA5 transcripts were most abundant in the spleen and the lowest in the liver. Expression levels of ScMDA5 in healthy tissues were significantly correlated with those of ScIRF3, ScIRF7 and ScIFN. Besides, mRNA expression levels of ScIRF3 were significantly correlated with those of ScIRF7 (0.956, P < 0.01). Expression level changes, including downregulation, upregulation and initial upregulation followed by downregulation, were found in ScMDA5 signalling pathway molecules in tissues after grass carp reovirus infection. Protein levels of ScMDA5 were the highest in the liver and the lowest in the spleen in detected healthy tissues. Overexpression of ScMDA5 led to significantly enhanced CiIRF7 and CiMx transcription in grass carp ovary cells (P < 0.05). The results of this study helped to clarify the role of ScMDA5 in the immune reaction against grass carp reovirus and provided fundamental information for fish breeding to achieve strong resistance to infection.
Collapse
Affiliation(s)
- Yaoguo Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, 415000, China
| | - Shengzhen Jin
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Xin Zhao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Hong Luo
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Rui Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Dongfang Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, 415000, China.
| |
Collapse
|
56
|
Yong HY, Zheng J, Ho VCY, Nguyen MT, Fink K, Griffin PR, Luo D. Structure-guided design of immunomodulatory RNAs specifically targeting the cytoplasmic viral RNA sensor RIG-I. FEBS Lett 2019; 593:3003-3014. [PMID: 31369683 DOI: 10.1002/1873-3468.13564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 12/22/2022]
Abstract
The cytoplasmic immune sensor RIG-I detects viral RNA and initiates an antiviral immune response upon activation. It has become a potential target for vaccination and immunotherapies. To develop the smallest but potent immunomodulatory RNA (immRNAs) species, we performed structure-guided RNA design and used biochemical, structural, and cell-based methods to select and characterize the immRNAs. We demonstrated that inserting guanosine at position 9 to the 10mer RNA hairpin (3p10LG9) activates RIG-I more robustly than the parental RNA. 3p10LG9 interacts strongly with the RIG-I helicase-CTD RNA sensing module and disrupts the auto-inhibitory interaction between the HEL2i and CARDs domains. We further showed that 3p10LA9 has a stronger cellular activity than 3p10LG9. Collectively, purine insertion at position 9 of the immRNA species triggered more robust activation of RIG-1.
Collapse
Affiliation(s)
- Hui Yee Yong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, Singapore
| | - Jie Zheng
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Victor Chin Yong Ho
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore City, Singapore
| | - Mai Trinh Nguyen
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
| | - Katja Fink
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore City, Singapore
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
57
|
Brisse M, Ly H. Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Front Immunol 2019; 10:1586. [PMID: 31379819 PMCID: PMC6652118 DOI: 10.3389/fimmu.2019.01586] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
RIG-I (Retinoic acid-inducible gene I) and MDA5 (Melanoma Differentiation-Associated protein 5), collectively known as the RIG-I-like receptors (RLRs), are key protein sensors of the pathogen-associated molecular patterns (PAMPs) in the form of viral double-stranded RNA (dsRNA) motifs to induce expression of type 1 interferons (IFN1) (IFNα and IFNβ) and other pro-inflammatory cytokines during the early stage of viral infection. While RIG-I and MDA5 share many genetic, structural and functional similarities, there is increasing evidence that they can have significantly different strategies to recognize different pathogens, PAMPs, and in different host species. This review article discusses the similarities and differences between RIG-I and MDA5 from multiple perspectives, including their structures, evolution and functional relationships with other cellular proteins, their differential mechanisms of distinguishing between host and viral dsRNAs and interactions with host and viral protein factors, and their immunogenic signaling. A comprehensive comparative analysis can help inform future studies of RIG-I and MDA5 in order to fully understand their functions in order to optimize potential therapeutic approaches targeting them.
Collapse
Affiliation(s)
- Morgan Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Twin Cities, St. Paul, MN, United States
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States
| |
Collapse
|
58
|
Mechanisms of Non-segmented Negative Sense RNA Viral Antagonism of Host RIG-I-Like Receptors. J Mol Biol 2019; 431:4281-4289. [PMID: 31202887 DOI: 10.1016/j.jmb.2019.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 12/25/2022]
Abstract
The pattern recognition receptors RIG-I-like receptors (RLRs) are critical molecules for cytosolic viral recognition and for subsequent activation of type I interferon production. The interferon signaling pathway plays a key role in viral detection and generating antiviral responses. Among the many pathogens, the non-segmented negative sense RNA viruses target the RLR pathway using a variety of mechanisms. Here, I review the current state of knowledge on the molecular mechanisms that allow non-segmented negative sense RNA virus recognition and antagonism of RLRs.
Collapse
|
59
|
Olejnik J, Hume AJ, Leung DW, Amarasinghe GK, Basler CF, Mühlberger E. Filovirus Strategies to Escape Antiviral Responses. Curr Top Microbiol Immunol 2019; 411:293-322. [PMID: 28685291 PMCID: PMC5973841 DOI: 10.1007/82_2017_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This chapter describes the various strategies filoviruses use to escape host immune responses with a focus on innate immune and cell death pathways. Since filovirus replication can be efficiently blocked by interferon (IFN), filoviruses have evolved mechanisms to counteract both type I IFN induction and IFN response signaling pathways. Intriguingly, marburg- and ebolaviruses use different strategies to inhibit IFN signaling. This chapter also summarizes what is known about the role of IFN-stimulated genes (ISGs) in filovirus infection. These fall into three categories: those that restrict filovirus replication, those whose activation is inhibited by filoviruses, and those that have no measurable effect on viral replication. In addition to innate immunity, mammalian cells have evolved strategies to counter viral infections, including the induction of cell death and stress response pathways, and we summarize our current knowledge of how filoviruses interact with these pathways. Finally, this chapter delves into the interaction of EBOV with myeloid dendritic cells and macrophages and the associated inflammatory response, which differs dramatically between these cell types when they are infected with EBOV. In summary, we highlight the multifaceted nature of the host-viral interactions during filoviral infections.
Collapse
Affiliation(s)
- Judith Olejnik
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Adam J Hume
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Christopher F Basler
- Microbial Pathogenesis, Georgia State University, Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
60
|
Hwang MS, Boulanger J, Howe JD, Albecka A, Pasche M, Mureşan L, Modis Y. MAVS polymers smaller than 80 nm induce mitochondrial membrane remodeling and interferon signaling. FEBS J 2019; 286:1543-1560. [PMID: 30715798 PMCID: PMC6513760 DOI: 10.1111/febs.14772] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/29/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022]
Abstract
Double‐stranded RNA (dsRNA) is a potent proinflammatory signature of viral infection and is sensed primarily by RIG‐I‐like receptors (RLRs). Oligomerization of RLRs following binding to cytosolic dsRNA activates and nucleates self‐assembly of the mitochondrial antiviral‐signaling protein (MAVS). In the current signaling model, the caspase recruitment domains of MAVS form helical fibrils that self‐propagate like prions to promote signaling complex assembly. However, there is no conclusive evidence that MAVS forms fibrils in cells or with the transmembrane anchor present. We show here with super‐resolution light microscopy that MAVS activation by dsRNA induces mitochondrial membrane remodeling. Quantitative image analysis at imaging resolutions as high as 32 nm shows that in the cellular context, MAVS signaling complexes and the fibrils within them are smaller than 80 nm. The transmembrane domain of MAVS is required for its membrane remodeling, interferon signaling, and proapoptotic activities. We conclude that membrane tethering of MAVS restrains its polymerization and contributes to mitochondrial remodeling and apoptosis upon dsRNA sensing.
Collapse
Affiliation(s)
- Ming-Shih Hwang
- Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, UK
| | | | | | - Anna Albecka
- Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, UK
| | | | - Leila Mureşan
- Cambridge Advanced Imaging Centre, University of Cambridge, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Yorgo Modis
- Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, UK
| |
Collapse
|
61
|
Lin JP, Fan YK, Liu HM. The 14-3-3η chaperone protein promotes antiviral innate immunity via facilitating MDA5 oligomerization and intracellular redistribution. PLoS Pathog 2019; 15:e1007582. [PMID: 30742689 PMCID: PMC6386420 DOI: 10.1371/journal.ppat.1007582] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 02/22/2019] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Abstract
MDA5 belongs to the RIG-I-like receptor family and plays a non-redundant role in recognizing cytoplasmic viral RNA to induce the production of type I IFNs. Upon RNA ligand stimulation, we observed the redistribution of MDA5 from the cytosol to mitochondrial membrane fractions. However, the molecular mechanisms of MDA5 activation remain less understood. Here we show that 14-3-3η is an essential accessory protein for MDA5-dependent type I IFN induction. We found that several 14-3-3 isoforms may interact with MDA5 through the CARDs (N-MDA5), but 14-3-3η was the only isoform that could enhance MDA5-dependent IFNβ promoter activities in a dose-dependent manner. Knock-down of 14-3-3η in Huh7 cells impaired and delayed the kinetics of MDA5 oligomerization, which is a critical step for MDA5 activation. Consequently, the MDA5-dependent IFNβ promoter activities as well as IFNβ mRNA expression level were also decreased in the 14-3-3η knocked-down cells. We also demonstrated that 14-3-3η is essential in boosting the activation of MDA5-dependent antiviral innate immunity during viral infections. In conclusion, our results uncover a novel function of 14-3-3η to promote the MDA5-dependent IFNβ induction pathway by reducing the immunostimulatory potential of viral dsRNA within MDA5 activation signaling pathway. In this study, we utilized biochemistry and molecular biology approaches to defines the molecular mechanisms by which melanoma differentiation-associated protein 5 (MDA5), a cytoplasmic RNA helicase and pattern recognition receptor molecule, is regulated by 14-3-3η to govern its innate immune signaling activity. During viral infection RIG-I-like receptors (RLRs), including MDA5, play essential roles in initiating type I interferon signaling pathway and preventing virus infection or replication in host cells. Besides, the establishment of well functional adaptive immune response to viruses is depending on the timely activation of innate immune antiviral signaling pathway. Our results suggested that the activation of MDA5 is promoted by the chaperone protein 14-3-3η. The lack of 14-3-3η in host cells leads to the kinetically-delayed oligomerization of MDA5, which is a key steps of the activation of MDA5-mediated anti-viral signaling pathway. These findings reveal a novel component which participating in the control system of MDA5-dependent signaling pathway. Viral proteins which antagonize 14-3-3η to impair MDA5-dependent antiviral signaling may be suitable targets for antiviral therapy or be modified to generate potential vaccine strains.
Collapse
Affiliation(s)
- Jhih-Pu Lin
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Yu-Kuan Fan
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Helene Minyi Liu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City, Taiwan
- * E-mail:
| |
Collapse
|
62
|
Kasumba DM, Grandvaux N. Therapeutic Targeting of RIG-I and MDA5 Might Not Lead to the Same Rome. Trends Pharmacol Sci 2019; 40:116-127. [PMID: 30606502 PMCID: PMC7112877 DOI: 10.1016/j.tips.2018.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022]
Abstract
RIG-I and MDA5 receptors are key sensors of pathogen-associated molecular pattern (PAMP)-containing viral RNA and transduce downstream signals to activate an antiviral and immunomodulatory response. Fifteen years of research have put them at the center of an ongoing hunt for novel pharmacological pan-antivirals, vaccine adjuvants, and antitumor strategies. Current knowledge testifies to the redundant, but also distinct, functions mediated by RIG-I and MDA5, opening opportunities for the use of specific and potent nucleic acid agonists. We critically discuss the evidence and remaining knowledge gaps that have an impact on the choice and design of optimal RNA ligands to achieve an appropriate immunostimulatory response, with limited adverse effects, for prophylactic and therapeutic interventions against viruses and cancer in humans.
Collapse
Affiliation(s)
- Dacquin M. Kasumba
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Nathalie Grandvaux
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
63
|
Abstract
Detection of double-stranded RNAs (dsRNAs) is a central mechanism of innate immune defense in many organisms. We here discuss several families of dsRNA-binding proteins involved in mammalian antiviral innate immunity. These include RIG-I-like receptors, protein kinase R, oligoadenylate synthases, adenosine deaminases acting on RNA, RNA interference systems, and other proteins containing dsRNA-binding domains and helicase domains. Studies suggest that their functions are highly interdependent and that their interdependence could offer keys to understanding the complex regulatory mechanisms for cellular dsRNA homeostasis and antiviral immunity. This review aims to highlight their interconnectivity, as well as their commonalities and differences in their dsRNA recognition mechanisms.
Collapse
Affiliation(s)
- Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
64
|
Fan X, Jin T. Structures of RIG-I-Like Receptors and Insights into Viral RNA Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:157-188. [DOI: 10.1007/978-981-13-9367-9_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
65
|
Yu Q, Qu K, Modis Y. Cryo-EM Structures of MDA5-dsRNA Filaments at Different Stages of ATP Hydrolysis. Mol Cell 2018; 72:999-1012.e6. [PMID: 30449722 PMCID: PMC6310684 DOI: 10.1016/j.molcel.2018.10.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/09/2018] [Accepted: 10/09/2018] [Indexed: 12/24/2022]
Abstract
Double-stranded RNA (dsRNA) is a potent proinflammatory signature of viral infection. Long cytosolic dsRNA is recognized by MDA5. The cooperative assembly of MDA5 into helical filaments on dsRNA nucleates the assembly of a multiprotein type I interferon signaling platform. Here, we determined cryoelectron microscopy (cryo-EM) structures of MDA5-dsRNA filaments with different helical twists and bound nucleotide analogs at resolutions sufficient to build and refine atomic models. The structures identify the filament-forming interfaces, which encode the dsRNA binding cooperativity and length specificity of MDA5. The predominantly hydrophobic interface contacts confer flexibility, reflected in the variable helical twist within filaments. Mutation of filament-forming residues can result in loss or gain of signaling activity. Each MDA5 molecule spans 14 or 15 RNA base pairs, depending on the twist. Variations in twist also correlate with variations in the occupancy and type of nucleotide in the active site, providing insights on how ATP hydrolysis contributes to MDA5-dsRNA recognition. Cryo-EM structures of MDA5-dsRNA filaments determined for three catalytic states Filament forming interfaces are flexible and predominantly hydrophobic Mutation of filament-forming residues can cause loss or gain of IFN-β signaling ATPase cycle is coupled to changes in filament twist and size of the RNA footprint
Collapse
Affiliation(s)
- Qin Yu
- Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Kun Qu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Yorgo Modis
- Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
66
|
Medina GN, Segundo FDS, Stenfeldt C, Arzt J, de Los Santos T. The Different Tactics of Foot-and-Mouth Disease Virus to Evade Innate Immunity. Front Microbiol 2018; 9:2644. [PMID: 30483224 PMCID: PMC6241212 DOI: 10.3389/fmicb.2018.02644] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022] Open
Abstract
Like all pathogens, foot-and-mouth disease virus (FMDV) is recognized by the immune system inducing a heightened immune response mainly mediated by type I and type III IFNs. To overcome the strong antiviral response induced by these cytokines, FMDV has evolved many strategies exploiting each region of its small RNA genome. These include: (a) inhibition of IFN induction at the transcriptional and translational level, (b) inhibition of protein trafficking; (c) blockage of specific post-translational modifications in proteins that regulate innate immune signaling; (d) modulation of autophagy; (e) inhibition of stress granule formation; and (f) in vivo modulation of immune cell function. Here, we summarize and discuss FMDV virulence factors and the host immune footprint that characterize infection in cell culture and in the natural hosts.
Collapse
Affiliation(s)
- Gisselle N Medina
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States.,Codagenix Inc., Farmingdale, NY, United States
| | - Fayna Díaz-San Segundo
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States.,Animal and Plant Health Inspection Service, Plum Island Animal Disease Center, United States Department of Agriculture, Orient, NY, United States
| | - Carolina Stenfeldt
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Jonathan Arzt
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States
| | - Teresa de Los Santos
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States
| |
Collapse
|
67
|
Tatematsu M, Funami K, Seya T, Matsumoto M. Extracellular RNA Sensing by Pattern Recognition Receptors. J Innate Immun 2018; 10:398-406. [PMID: 30404092 PMCID: PMC6784046 DOI: 10.1159/000494034] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022] Open
Abstract
RNA works as a genome and messenger in RNA viruses, and it sends messages in most of the creatures of the Earth, including viruses, bacteria, fungi, plants, and animals. The human innate immune system has evolved to detect single- and double-stranded RNA molecules from microbes by pattern recognition receptors and induce defense reactions against infections such as the production of type I interferons and inflammatory cytokines. To avoid cytokine toxicity causing chronic inflammation or autoimmunity by sensing self-RNA, the activation of RNA sensors is strictly regulated. All of the Toll-like receptors that recognize RNA are localized to endosomes/lysosomes, which require internalization of RNA for sensing through an endocytic pathway. RIG-I-like receptors sense RNA in cytosol. These receptors are expressed in a cell type-specific fashion, enabling sensing of RNA for a wide range of microbial invasions. At the same time, both endosomal and cytoplasmic receptors have strategies to respond only to RNA of pathogenic microorganisms or dying cells. RNA are potential vaccine adjuvants for immune enhancement against cancer and provide a benefit for vaccinations. Understanding the detailed molecular mechanisms of the RNA-sensing system will help us to broaden the clinical utility of RNA adjuvants for patients with incurable diseases.
Collapse
Affiliation(s)
- Megumi Tatematsu
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Munich, Germany
| | - Kenji Funami
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tsukasa Seya
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Misako Matsumoto
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
68
|
Kumar S, Jain S. Immune signalling by supramolecular assemblies. Immunology 2018; 155:435-445. [PMID: 30144032 DOI: 10.1111/imm.12995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022] Open
Abstract
Formation of supramolecular assemblies appears to be a general mechanism in immune signalling pathways. These supramolecular assemblies appear to form through a nucleated polymerization mechanism. This review examines selected immune signalling pathways that involve supramolecular assemblies, describes the concepts of protein polymerization, and discusses how those concepts of protein polymerization implicate new elegant ways for signal amplification, setting threshold and noise reduction in these pathways.
Collapse
Affiliation(s)
- Santosh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Shweta Jain
- Department of Neurology and Graduate Programs in Neuroscience and Biomedical Sciences, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
69
|
Dias Junior AG, Sampaio NG, Rehwinkel J. A Balancing Act: MDA5 in Antiviral Immunity and Autoinflammation. Trends Microbiol 2018; 27:75-85. [PMID: 30201512 PMCID: PMC6319154 DOI: 10.1016/j.tim.2018.08.007] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/28/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
Induction of interferons during viral infection is mediated by cellular proteins that recognise viral nucleic acids. MDA5 is one such sensor of virus presence and is activated by RNA. MDA5 is required for immunity against several classes of viruses, including picornaviruses. Recent work showed that mutations in the IFIH1 gene, encoding MDA5, lead to interferon-driven autoinflammatory diseases. Together with observations made in cancer cells, this suggests that MDA5 detects cellular RNAs in addition to viral RNAs. It is therefore important to understand the properties of the RNAs which activate MDA5. New data indicate that RNA length and secondary structure are features sensed by MDA5. We review these developments and discuss how MDA5 strikes a balance between antiviral immunity and autoinflammation. MDA5 is a pattern-recognition receptor for RNA and induces a type I interferon response. MDA5 is activated in a variety of clinically relevant settings. This includes infection with ssRNA, dsRNA, and dsDNA viruses; several autoimmune and autoinflammatory diseases, such as type 1 diabetes and Aicardi–Goutières syndrome; and some forms of cancer treatment. Synthetic, viral, and cellular RNAs can all activate MDA5. The latter may include transcripts from endogenous retroelements such as Alu repeats. Length and secondary structure are important features that determine whether an RNA molecule is detected by MDA5. Indeed, long, base-paired RNA molecules potently activate MDA5 in the test tube.
Collapse
Affiliation(s)
- Antonio Gregorio Dias Junior
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK. https://twitter.com/GregorioDias1
| | - Natalia G Sampaio
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
70
|
Krestel H, Meier JC. RNA Editing and Retrotransposons in Neurology. Front Mol Neurosci 2018; 11:163. [PMID: 29875629 PMCID: PMC5974252 DOI: 10.3389/fnmol.2018.00163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 12/28/2022] Open
Abstract
Compared to sites in protein-coding sequences many more targets undergoing adenosine to inosine (A-to-I) RNA editing were discovered in non-coding regions of human cerebral transcripts, particularly in genetic transposable elements called retrotransposons. We review here the interaction mechanisms of RNA editing and retrotransposons and their impact on normal function and human neurological diseases. Exemplarily, A-to-I editing of retrotransposons embedded in protein-coding mRNAs can contribute to protein abundance and function via circular RNA formation, alternative splicing, and exonization or silencing of retrotransposons. Interactions leading to disease are not very well understood. We describe human diseases with involvement of the central nervous system including inborn errors of metabolism, neurodevelopmental disorders, neuroinflammatory and neurodegenerative and paroxysmal diseases, in which retrotransposons (Alu and/or L1 elements) appear to be causally involved in genetic rearrangements. Sole binding of single-stranded retrotransposon transcripts by RNA editing enzymes rather than enzymatic deamination may have a homeostatic effect on retrotransposon turnover. We also review evidence in support of the emerging pathophysiological function of A-to-I editing of retrotransposons in inflammation and its implication for different neurological diseases including amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's and Parkinson's disease, and epilepsy.
Collapse
Affiliation(s)
- Heinz Krestel
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland.,Department for BioMedical Research, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Jochen C Meier
- Division Cell Physiology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| |
Collapse
|
71
|
Role of Pattern Recognition Receptors in KSHV Infection. Cancers (Basel) 2018; 10:cancers10030085. [PMID: 29558453 PMCID: PMC5876660 DOI: 10.3390/cancers10030085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus or Human herpesvirus-8 (KSHV/HHV-8), an oncogenic human herpesvirus and the leading cause of cancer in HIV-infected individuals, is a major public health concern with recurring reports of epidemics on a global level. The early detection of KSHV virus and subsequent activation of the antiviral immune response by the host’s immune system are crucial to prevent KSHV infection. The host’s immune system is an evolutionary conserved system that provides the most important line of defense against invading microbial pathogens, including viruses. Viruses are initially detected by the cells of the host innate immune system, which evoke concerted antiviral responses via the secretion of interferons (IFNs) and inflammatory cytokines/chemokines for elimination of the invaders. Type I IFN and cytokine gene expression are regulated by multiple intracellular signaling pathways that are activated by germline-encoded host sensors, i.e., pattern recognition receptors (PRRs) that recognize a conserved set of ligands, known as ‘pathogen-associated molecular patterns (PAMPs)’. On the contrary, persistent and dysregulated signaling of PRRs promotes numerous tumor-causing inflammatory events in various human cancers. Being an integral component of the mammalian innate immune response and due to their constitutive activation in tumor cells, targeting PRRs appears to be an effective strategy for tumor prevention and/or treatment. Cellular PRRs are known to respond to KSHV infection, and KSHV has been shown to be armed with an array of strategies to selectively inhibit cellular PRR-based immune sensing to its benefit. In particular, KSHV has acquired specific immunomodulatory genes to effectively subvert PRR responses during the early stages of primary infection, lytic reactivation and latency, for a successful establishment of a life-long persistent infection. The current review aims to comprehensively summarize the latest advances in our knowledge of role of PRRs in KSHV infections.
Collapse
|
72
|
Raghuraman P, Sudandiradoss C. R516Q mutation in Melanoma differentiation-associated protein 5 (MDA5) and its pathogenic role towards rare Singleton-Merten syndrome; a signature associated molecular dynamics study. J Biomol Struct Dyn 2018; 37:750-765. [DOI: 10.1080/07391102.2018.1439770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- P. Raghuraman
- Department of Biotechnology, School of Bioscience and Technology, VIT University, Vellore 632014, India
| | - C. Sudandiradoss
- Department of Biotechnology, School of Bioscience and Technology, VIT University, Vellore 632014, India
| |
Collapse
|
73
|
Buers I, Rice GI, Crow YJ, Rutsch F. MDA5-Associated Neuroinflammation and the Singleton-Merten Syndrome: Two Faces of the Same Type I Interferonopathy Spectrum. J Interferon Cytokine Res 2018; 37:214-219. [PMID: 28475458 DOI: 10.1089/jir.2017.0004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In 1973, Singleton and Merten described a new syndrome in 2 female probands with aortic and cardiac valve calcifications, early loss of secondary dentition, and widened medullary cavities of the phalanges. In 1984, Aicardi and Goutières defined a phenotype resembling congenital viral infection with basal ganglia calcification and increased protein content in the cerebrospinal fluid. Between 2006 and 2012, mutations in 6 different genes were described to be associated with Aicardi-Goutières syndrome, specifically-TREX1, RNASEH2A, RNASEH2B, RNASEH2C, ADAR, and SAMHD1. More recently, mutations in IFIH1 were reported in a variety of neuroimmunological phenotypes, including Aicardi-Goutières syndrome, while a specific Arg822Gln mutation in IFIH1 was described in 3 discrete families with Singleton-Merten syndrome (SMS). IFIH1 encodes for melanoma differentiation-associated gene 5 (MDA5), and all mutations identified to date have been associated with an enhanced interferon response in affected individuals. In this study, we present a male child demonstrating recurrent febrile episodes, spasticity, and basal ganglia calcification suggestive of Aicardi-Goutières syndrome, who carries the same Arg822Gln mutation in IFIH1 previously associated with SMS. We conclude that both diseases are part of the interferonopathy grouping and that the Arg822Gln mutation in IFIH1 can cause a spectrum of disease, including neurological involvement.
Collapse
Affiliation(s)
- Insa Buers
- 1 Department of General Pediatrics, Muenster University Children's Hospital , Muenster, Germany
| | - Gillian I Rice
- 2 Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester , Manchester, United Kingdom
| | - Yanick J Crow
- 2 Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester , Manchester, United Kingdom .,3 Laboratory of Neurogenetics and Neuroinflammation , INSERM UMR 1163, Paris, France .,4 Paris Descartes-Sorbonne Paris Cité University , Institute Imagine, Paris, France
| | - Frank Rutsch
- 1 Department of General Pediatrics, Muenster University Children's Hospital , Muenster, Germany
| |
Collapse
|
74
|
Oberson A, Spagnuolo L, Puddinu V, Barchet W, Rittner K, Bourquin C. NAB2 is a novel immune stimulator of MDA-5 that promotes a strong type I interferon response. Oncotarget 2017; 9:5641-5651. [PMID: 29464024 PMCID: PMC5814164 DOI: 10.18632/oncotarget.23725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/13/2017] [Indexed: 11/25/2022] Open
Abstract
Novel adjuvants are needed to increase the efficacy of vaccine formulations and immune therapies for cancer and chronic infections. In particular, adjuvants that promote a strong type I IFN response are required, since this cytokine is crucial for the development of efficient anti-tumoral and anti-viral immunity. Nucleic acid band 2 (NAB2) is a double-stranded RNA molecule isolated from yeast and identified as an agonist of the pattern-recognition receptors TLR3 and MDA-5. We compared the ability of NAB2 to activate innate immunity with that of poly(I:C), a well-characterized TLR3 and MDA-5 agonist known for the induction of type I IFN. NAB2 promoted stronger IFN-α production and induced a higher activation state of both murine and human innate immune cells compared to poly(I:C). This correlated with a stronger activation of the signalling pathway downstream of MDA-5, and IFN-α induction was dependent on MDA-5. Upon injection, NAB2 induced higher levels of serum IFN-α in mice than poly(I:C). These results suggest that NAB2 has the potential to become an efficient adjuvant for the induction of type-I IFN responses in therapeutic immunization against cancer or infections.
Collapse
Affiliation(s)
- Anne Oberson
- Chair of Pharmacology, Department of Medicine, Faculty of Science, University of Fribourg, 1700 Fribourg, Switzerland
| | - Lorenzo Spagnuolo
- Chair of Pharmacology, Department of Medicine, Faculty of Science, University of Fribourg, 1700 Fribourg, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1211 Geneva, Switzerland.,Department of Anesthesiology, Pharmacology and Intensive Care, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Viola Puddinu
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1211 Geneva, Switzerland.,Department of Anesthesiology, Pharmacology and Intensive Care, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Winfried Barchet
- German Center for Infection Research, Cologne-Bonn, Germany.,Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Germany
| | - Karola Rittner
- Transgene S.A., Parc d'Innovation, CS80166, 67405 Illkirch-Graffenstaden Cedex, France
| | - Carole Bourquin
- Chair of Pharmacology, Department of Medicine, Faculty of Science, University of Fribourg, 1700 Fribourg, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1211 Geneva, Switzerland.,Department of Anesthesiology, Pharmacology and Intensive Care, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
75
|
Takashima K, Oshiumi H, Matsumoto M, Seya T. DNAJB1/HSP40 Suppresses Melanoma Differentiation-Associated Gene 5-Mitochondrial Antiviral Signaling Protein Function in Conjunction with HSP70. J Innate Immun 2017; 10:44-55. [PMID: 29069650 DOI: 10.1159/000480740] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Melanoma differentiation-associated gene 5 (MDA5) is a pattern recognition receptor that recognizes cytoplasmic viral double-stranded RNA (dsRNA) and initiates rapid innate antiviral responses. MDA5 forms a filament-like multimer along the dsRNA leading to oligomerization, which in turn activates the adaptor protein mitochondrial antiviral signaling protein (MAVS) to provide a signal platform for the induction of type I interferon (IFN) and proinflammatory cytokines. The conformational switch of MDA5 causes antiviral defense, but excessive activation of the MDA5-MAVS pathway may result in autoimmune diseases. The regulatory mechanisms of MDA5 activation remain largely unknown. By yeast 2-hybrid, we identified DNAJB1, a member of the HSP40 (heat shock protein 40) family, as an MDA5-binding protein. HSP40s usually cowork with HSP70s. We found that dsRNA stimulation with physiological conditions upregulated the expression levels of DNAJB1 and HSP70; then the proteins were coupled and translocated into the stress granules, where MDA5 encounters dsRNA. DNAJB1 disrupted MDA5 multimer formation, resulting in the suppression of type I IFN induction. The disruption of endogenous DNAJB1 increased MDA5- and MAVS-mediated IFN promoter activation and rendered cells virus resistant. HSP70 inhibitor also enhanced the IFN-inducing function of MDA5 and MAVS. These results suggest that the DNAJB1-HSP70 complex functions for the natural maintenance of RNA sensing by interacting with MDA5/MAVS.
Collapse
Affiliation(s)
- Ken Takashima
- Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
76
|
Molecular requirements for sensing of intracellular microbial nucleic acids by the innate immune system. Cytokine 2017; 98:4-14. [DOI: 10.1016/j.cyto.2016.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 12/24/2022]
|
77
|
Liu J, Li J, Xiao J, Chen H, Lu L, Wang X, Tian Y, Feng H. The antiviral signaling mediated by black carp MDA5 is positively regulated by LGP2. FISH & SHELLFISH IMMUNOLOGY 2017; 66:360-371. [PMID: 28526571 DOI: 10.1016/j.fsi.2017.05.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/08/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
Melanoma differentiation-associated gene 5 (MDA5) belongs to RIG-I like receptor (RLR) family, which detects cytosolic viral RNA component in immune response. In this study, MDA5 orthologue of black carp (Mylopharyngodon piceus) has been cloned and characterized. The full-length cDNA of black carp MDA5 (bcMDA5) comprises 3244 nucleotides and the predicted bcMDA5 protein contains 984 amino acids. The constitutive transcription of bcMDA5 was extremely low in all the tested tissues, which included gill, skin, muscle, intestine, kidney, spleen, liver and heart. However, bcMDA5 mRNA level was much enhanced in most selected tissues in response to GCRV or SVCV infection. bcMDA5 migrated around 120 KDa in immunoblot and was identified as a cytosolic protein by immunofluorescent staining in both EPC and HeLa cells. Expressing bcMDA5 in EPC cells resulted in the induction of promoter activity of zebrafish IFN3 or fathead minnow IFN. The EPC cells expressing bcMDA5 obtained improved antiviral ability against both SVCV and GCRV. When EPC cells were co-transfected with plasmids expressing bcMDA5 and bcLGP2, the induced IFN expression by bcMDA5 was obviously enhanced. EPC cells expressing both bcMDA5 and bcLGP2 owned much improved antiviral ability than those cells expressing only bcMDA5 or bcLGP2. In general, our data support the conclusion that bcMDA5 plays an important role in the antiviral innate immune response of black carp and bcLGP2 acts as a positive regulator in bcMDA5 mediated signaling.
Collapse
Affiliation(s)
- Ji Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China; College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China; College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China; College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hui Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China; College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Liang Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China; College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xu Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China; College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yu Tian
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China; The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China; College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
78
|
Rui Y, Su J, Wang H, Chang J, Wang S, Zheng W, Cai Y, Wei W, Gordy JT, Markham R, Kong W, Zhang W, Yu XF. Disruption of MDA5-Mediated Innate Immune Responses by the 3C Proteins of Coxsackievirus A16, Coxsackievirus A6, and Enterovirus D68. J Virol 2017; 91:e00546-17. [PMID: 28424289 PMCID: PMC5469270 DOI: 10.1128/jvi.00546-17] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/17/2017] [Indexed: 12/25/2022] Open
Abstract
Coxsackievirus A16 (CV-A16), CV-A6, and enterovirus D68 (EV-D68) belong to the Picornaviridae family and are major causes of hand, foot, and mouth disease (HFMD) and pediatric respiratory disease worldwide. The biological characteristics of these viruses, especially their interplay with the host innate immune system, have not been well investigated. In this study, we discovered that the 3Cpro proteins from CV-A16, CV-A6, and EV-D68 bind melanoma differentiation-associated gene 5 (MDA5) and inhibit its interaction with MAVS. Consequently, MDA5-triggered type I interferon (IFN) signaling in the retinoic acid-inducible gene I-like receptor (RLR) pathway was blocked by the CV-A16, CV-A6, and EV-D68 3Cpro proteins. Furthermore, the CV-A16, CV-A6, and EV-D68 3Cpro proteins all cleave transforming growth factor β-activated kinase 1 (TAK1), resulting in the inhibition of NF-κB activation, a host response also critical for Toll-like receptor (TLR)-mediated signaling. Thus, our data demonstrate that circulating HFMD-associated CV-A16 and CV-A6, as well as severe respiratory disease-associated EV-D68, have developed novel mechanisms to subvert host innate immune responses by targeting key factors in the RLR and TLR pathways. Blocking the ability of 3Cpro proteins from diverse enteroviruses and coxsackieviruses to interfere with type I IFN induction should restore IFN antiviral function, offering a potential novel antiviral strategy.IMPORTANCE CV-A16, CV-A6, and EV-D68 are emerging pathogens associated with hand, foot, and mouth disease and pediatric respiratory disease worldwide. The pathogenic mechanisms of these viruses are largely unknown. Here we demonstrate that the CV-A16, CV-A6, and EV-D68 3Cpro proteins block MDA5-triggered type I IFN induction. The 3Cpro proteins of these viruses bind MDA5 and inhibit its interaction with MAVS. In addition, the CV-A16, CV-A6, and EV-D68 3Cpro proteins cleave TAK1 to inhibit the NF-κB response. Thus, our data demonstrate that circulating HFMD-associated CV-A16 and CV-A6, as well as severe respiratory disease-associated EV-D68, have developed a mechanism to subvert host innate immune responses by simultaneously targeting key factors in the RLR and TLR pathways. These findings indicate the potential merit of targeting the CV-A16, CV-A6, and EV-D68 3Cpro proteins as an antiviral strategy.
Collapse
Affiliation(s)
- Yajuan Rui
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jiaming Su
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hong Wang
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
| | - Junliang Chang
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
| | - Shaohua Wang
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
| | - Wenwen Zheng
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
| | - Yong Cai
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Wei Wei
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
| | - James T Gordy
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Richard Markham
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Wei Kong
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Wenyan Zhang
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
| | - Xiao-Fang Yu
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
79
|
Vajjhala PR, Ve T, Bentham A, Stacey KJ, Kobe B. The molecular mechanisms of signaling by cooperative assembly formation in innate immunity pathways. Mol Immunol 2017; 86:23-37. [PMID: 28249680 DOI: 10.1016/j.molimm.2017.02.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/16/2017] [Accepted: 02/19/2017] [Indexed: 12/25/2022]
Abstract
The innate immune system is the first line of defense against infection and responses are initiated by pattern recognition receptors (PRRs) that detect pathogen-associated molecular patterns (PAMPs). PRRs also detect endogenous danger-associated molecular patterns (DAMPs) that are released by damaged or dying cells. The major PRRs include the Toll-like receptor (TLR) family members, the nucleotide binding and oligomerization domain, leucine-rich repeat containing (NLR) family, the PYHIN (ALR) family, the RIG-1-like receptors (RLRs), C-type lectin receptors (CLRs) and the oligoadenylate synthase (OAS)-like receptors and the related protein cyclic GMP-AMP synthase (cGAS). The different PRRs activate specific signaling pathways to collectively elicit responses including the induction of cytokine expression, processing of pro-inflammatory cytokines and cell-death responses. These responses control a pathogenic infection, initiate tissue repair and stimulate the adaptive immune system. A central theme of many innate immune signaling pathways is the clustering of activated PRRs followed by sequential recruitment and oligomerization of adaptors and downstream effector enzymes, to form higher-order arrangements that amplify the response and provide a scaffold for proximity-induced activation of the effector enzymes. Underlying the formation of these complexes are co-operative assembly mechanisms, whereby association of preceding components increases the affinity for downstream components. This ensures a rapid immune response to a low-level stimulus. Structural and biochemical studies have given key insights into the assembly of these complexes. Here we review the current understanding of assembly of immune signaling complexes, including inflammasomes initiated by NLR and PYHIN receptors, the myddosomes initiated by TLRs, and the MAVS CARD filament initiated by RIG-1. We highlight the co-operative assembly mechanisms during assembly of each of these complexes.
Collapse
Affiliation(s)
- Parimala R Vajjhala
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Ve
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Adam Bentham
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
80
|
Corby MJ, Stoneman MR, Biener G, Paprocki JD, Kolli R, Raicu V, Frick DN. Quantitative microspectroscopic imaging reveals viral and cellular RNA helicase interactions in live cells. J Biol Chem 2017; 292:11165-11177. [PMID: 28483922 DOI: 10.1074/jbc.m117.777045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/29/2017] [Indexed: 01/12/2023] Open
Abstract
Human cells detect RNA viruses through a set of helicases called RIG-I-like receptors (RLRs) that initiate the interferon response via a mitochondrial signaling complex. Many RNA viruses also encode helicases, which are sometimes covalently linked to proteases that cleave signaling proteins. One unresolved question is how RLRs interact with each other and with viral proteins in cells. This study examined the interactions among the hepatitis C virus (HCV) helicase and RLR helicases in live cells with quantitative microspectroscopic imaging (Q-MSI), a technique that determines FRET efficiency and subcellular donor and acceptor concentrations. HEK293T cells were transfected with various vector combinations to express cyan fluorescent protein (CFP) or YFP fused to either biologically active HCV helicase or one RLR (i.e. RIG-I, MDA5, or LGP2), expressed in the presence or absence of polyinosinic-polycytidylic acid (poly(I:C)), which elicits RLR accumulation at mitochondria. Q-MSI confirmed previously reported RLR interactions and revealed an interaction between HCV helicase and LGP2. Mitochondria in CFP-RIG-I:YFP-RIG-I cells, CFP-MDA5:YFP-MDA5 cells, and CFP-MDA5:YFP-LGP2 cells had higher FRET efficiencies in the presence of poly(I:C), indicating that RNA causes these proteins to accumulate at mitochondria in higher-order complexes than those formed in the absence of poly(I:C). However, mitochondria in CFP-LGP2:YFP-LGP2 cells had lower FRET signal in the presence of poly(I:C), suggesting that LGP2 oligomers disperse so that LGP2 can bind MDA5. Data support a new model where an LGP2-MDA5 oligomer shuttles NS3 to the mitochondria to block antiviral signaling.
Collapse
Affiliation(s)
- M J Corby
- From the Departments of Chemistry and Biochemistry
| | | | | | | | - Rajesh Kolli
- From the Departments of Chemistry and Biochemistry
| | - Valerica Raicu
- Physics, and .,Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201
| | | |
Collapse
|
81
|
Delgui LR, Colombo MI. A Novel Mechanism Underlying the Innate Immune Response Induction upon Viral-Dependent Replication of Host Cell mRNA: A Mistake of +sRNA Viruses' Replicases. Front Cell Infect Microbiol 2017; 7:5. [PMID: 28164038 PMCID: PMC5247633 DOI: 10.3389/fcimb.2017.00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/04/2017] [Indexed: 12/25/2022] Open
Abstract
Viruses are lifeless particles designed for setting virus-host interactome assuring a new generation of virions for dissemination. This interactome generates a pressure on host organisms evolving mechanisms to neutralize viral infection, which places the pressure back onto virus, a process known as virus-host cell co-evolution. Positive-single stranded RNA (+sRNA) viruses are an important group of viral agents illustrating this interesting phenomenon. During replication, their genomic +sRNA is employed as template for translation of viral proteins; among them the RNA-dependent RNA polymerase (RdRp) is responsible of viral genome replication originating double-strand RNA molecules (dsRNA) as intermediates, which accumulate representing a potent threat for cellular dsRNA receptors to initiate an antiviral response. A common feature shared by these viruses is their ability to rearrange cellular membranes to serve as platforms for genome replication and assembly of new virions, supporting replication efficiency increase by concentrating critical factors and protecting the viral genome from host anti-viral systems. This review summarizes current knowledge regarding cellular dsRNA receptors and describes prototype viruses developing replication niches inside rearranged membranes. However, for several viral agents it's been observed both, a complex rearrangement of cellular membranes and a strong innate immune antiviral response induction. So, we have included recent data explaining the mechanism by, even though viruses have evolved elegant hideouts, host cells are still able to develop dsRNA receptors-dependent antiviral response.
Collapse
Affiliation(s)
- Laura R Delgui
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza, Universidad Nacional de CuyoMendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de CuyoMendoza, Argentina
| | - María I Colombo
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo Mendoza, Argentina
| |
Collapse
|
82
|
Zhang J, Pearson JZ, Gorbet GE, Cölfen H, Germann MW, Brinton MA, Demeler B. Spectral and Hydrodynamic Analysis of West Nile Virus RNA-Protein Interactions by Multiwavelength Sedimentation Velocity in the Analytical Ultracentrifuge. Anal Chem 2017; 89:862-870. [PMID: 27977168 PMCID: PMC5505516 DOI: 10.1021/acs.analchem.6b03926] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Interactions between nucleic acids and proteins are critical for many cellular processes, and their study is of utmost importance to many areas of biochemistry, cellular biology, and virology. Here, we introduce a new analytical method based on sedimentation velocity (SV) analytical ultracentrifugation, in combination with a novel multiwavelength detector to characterize such interactions. We identified the stoichiometry and molar mass of a complex formed during the interaction of a West Nile virus RNA stem loop structure with the human T cell-restricted intracellular antigen-1 related protein. SV has long been proven as a powerful technique for studying dynamic assembly processes under physiological conditions in solution. Here, we demonstrate, for the first time, how the new multiwavelength technology can be exploited to study protein-RNA interactions, and show how the spectral information derived from the new detector complements the traditional hydrodynamic information from analytical ultracentrifugation. Our method allows the protein and nucleic acid signals to be separated by spectral decomposition such that sedimentation information from each individual species, including any complexes, can be clearly identified based on their spectral signatures. The method presented here extends to any interacting system where the interaction partners are spectrally separable.
Collapse
Affiliation(s)
- Jin Zhang
- Georgia State University, Department of Chemistry, 50 Decatur St. SE, Atlanta, Georgia 30303, United States
- Georgia State University, Department of Biology, P.O. 4010, Atlanta, Georgia 30303, United States
| | - Joseph Z. Pearson
- University of Konstanz, Department of Chemistry, Physical Chemistry, Universitätsstraße 10, Box 714, D-78457 Konstanz, Germany
| | - Gary E. Gorbet
- The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7760, San Antonio, Texas 78229-3901, United States
| | - Helmut Cölfen
- University of Konstanz, Department of Chemistry, Physical Chemistry, Universitätsstraße 10, Box 714, D-78457 Konstanz, Germany
| | - Markus W. Germann
- Georgia State University, Department of Chemistry, 50 Decatur St. SE, Atlanta, Georgia 30303, United States
- Georgia State University, Department of Biology, P.O. 4010, Atlanta, Georgia 30303, United States
| | - Margo A. Brinton
- Georgia State University, Department of Biology, P.O. 4010, Atlanta, Georgia 30303, United States
| | - Borries Demeler
- The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7760, San Antonio, Texas 78229-3901, United States
| |
Collapse
|
83
|
|
84
|
Pugh C, Kolaczkowski O, Manny A, Korithoski B, Kolaczkowski B. Resurrecting ancestral structural dynamics of an antiviral immune receptor: adaptive binding pocket reorganization repeatedly shifts RNA preference. BMC Evol Biol 2016; 16:241. [PMID: 27825296 PMCID: PMC5101713 DOI: 10.1186/s12862-016-0818-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023] Open
Abstract
Background Although resurrecting ancestral proteins is a powerful tool for understanding the molecular-functional evolution of gene families, nearly all studies have examined proteins functioning in relatively stable biological processes. The extent to which more dynamic systems obey the same ‘rules’ governing stable processes is unclear. Here we present the first detailed investigation of the functional evolution of the RIG-like receptors (RLRs), a family of innate immune receptors that detect viral RNA in the cytoplasm. Results Using kinetic binding assays and molecular dynamics simulations of ancestral proteins, we demonstrate how a small number of adaptive protein-coding changes repeatedly shifted the RNA preference of RLRs throughout animal evolution by reorganizing the shape and electrostatic distribution across the RNA binding pocket, altering the hydrogen bond network between the RLR and its RNA target. In contrast to observations of proteins involved in metabolism and development, we find that RLR-RNA preference ‘flip flopped’ between two functional states, and shifts in RNA preference were not always coupled to gene duplications or speciation events. We demonstrate at least one reversion of RLR-RNA preference from a derived to an ancestral function through a novel structural mechanism, indicating multiple structural implementations of similar functions. Conclusions Our results suggest a model in which frequent shifts in selection pressures imposed by an evolutionary arms race preclude the long-term functional optimization observed in stable biological systems. As a result, the evolutionary dynamics of immune receptors may be less constrained by structural epistasis and historical contingency. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0818-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charles Pugh
- Department of Microbiology & Cell Science and Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA
| | - Oralia Kolaczkowski
- Department of Microbiology & Cell Science and Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA
| | - Austin Manny
- Department of Microbiology & Cell Science and Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA
| | - Bryan Korithoski
- Department of Microbiology & Cell Science and Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA
| | - Bryan Kolaczkowski
- Department of Microbiology & Cell Science and Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA. .,Genetics Institute, University of Florida, Gainesville, USA.
| |
Collapse
|
85
|
Chatterjee S, Basler CF, Amarasinghe GK, Leung DW. Molecular Mechanisms of Innate Immune Inhibition by Non-Segmented Negative-Sense RNA Viruses. J Mol Biol 2016; 428:3467-82. [PMID: 27487481 DOI: 10.1016/j.jmb.2016.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 12/25/2022]
Abstract
The host innate immune system serves as the first line of defense against viral infections. Germline-encoded pattern recognition receptors detect molecular patterns associated with pathogens and activate innate immune responses. Of particular relevance to viral infections are those pattern recognition receptors that activate type I interferon responses, which establish an antiviral state. The order Mononegavirales is composed of viruses that possess single-stranded, non-segmented negative-sense (NNS) RNA genomes and are important human pathogens that consistently antagonize signaling related to type I interferon responses. NNS viruses have limited encoding capacity compared to many DNA viruses, and as a likely consequence, most open reading frames encode multifunctional viral proteins that interact with host factors in order to evade host cell defenses while promoting viral replication. In this review, we will discuss the molecular mechanisms of innate immune evasion by select NNS viruses. A greater understanding of these interactions will be critical in facilitating the development of effective therapeutics and viral countermeasures.
Collapse
Affiliation(s)
- Srirupa Chatterjee
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher F Basler
- Center of Microbial Pathogenesis, Georgia State University, Atlanta, GA 30303, USA.
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
86
|
Buers I, Nitschke Y, Rutsch F. Novel interferonopathies associated with mutations in RIG-I like receptors. Cytokine Growth Factor Rev 2016; 29:101-7. [PMID: 26993858 DOI: 10.1016/j.cytogfr.2016.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Type I interferonopathies are a relatively new class of inherited autoimmune disorders associated with an inborn elevated interferon response. Activation of cytosolic receptors which recognize viral double stranded RNA including the RIG-I (retinoic acid-inducible gene I) like receptors RIG-I and MDA5 (melanoma differentiation-associated gene 5) has been shown to induce the transcription of type I interferon genes. Within recent years, with the help of next generation sequencing techniques in syndromic families, mutations in the genes encoding for RIG-I and MDA5 have been identified to cause rare diseases including Aicardi-Goutières syndrome, Systemic Lupus Erythematosus in certain individuals as well as classic and atypical Singleton-Merten syndrome. Patients carrying mono-allelic mutations in MDA5 and RIG-I show constitutive activation of the RIG-I receptors and downstream signalling associated with increased type I interferon production. Although differing in the degree of phenotypic expression and severity, the phenotype of these "novel" diseases shows a considerable overlap reflecting their common pathogenetic pathway.
Collapse
Affiliation(s)
- Insa Buers
- Department of General Pediatrics, Muenster University Children's Hospital, Albert-Schweitzer-Campus 1, Building A1, 48149 Muenster, Germany.
| | - Yvonne Nitschke
- Department of General Pediatrics, Muenster University Children's Hospital, Albert-Schweitzer-Campus 1, Building A1, 48149 Muenster, Germany.
| | - Frank Rutsch
- Department of General Pediatrics, Muenster University Children's Hospital, Albert-Schweitzer-Campus 1, Building A1, 48149 Muenster, Germany.
| |
Collapse
|
87
|
Li C, Greiner-Tollersrud L, Robertsen B. Infectious salmon anemia virus segment 7 ORF1 and segment 8 ORF2 proteins inhibit IRF mediated activation of the Atlantic salmon IFNa1 promoter. FISH & SHELLFISH IMMUNOLOGY 2016; 52:258-262. [PMID: 27012395 DOI: 10.1016/j.fsi.2016.03.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
Infectious salmon anemia virus (ISAV) is an orthomyxovirus, which may cause multisystemic disease and high mortality of Atlantic salmon (Salmo salar L). This suggests that ISAV encodes proteins that antagonize the type I interferon (IFN-I) system, which is of crucial importance in innate antiviral immunity. To find out how ISAV might inhibit IFN-I synthesis, we have here studied whether the two ISAV proteins s7ORF1 and s8ORF2 might interfere with activation of the IFNa1 promoter mediated by overexpression of interferon regulatory factors (IRFs) or by the IFN promoter activation protein IPS-1. The IRF tested were IRF1, IRF3, IRF7A and IRF7B. Promoter activation was measured using a luciferase reporter assay where Atlantic salmon TO cells were co-transfected with the IFNa1 promoter reporter plasmid together with an IRF plasmid and the s7ORF1 or the s8ORF2 construct or a control plasmid. The results showed that s7ORF1 significantly inhibited IRF3 and IRF7B induced IFN promoter activity, while s8ORF2 significantly inhibited IRF1 and IRF3 induced promoter activity. Neither s7ORF1 nor s8ORF2 inhibited IPS-1 mediated promoter activation. Immunoprecipitation data suggest that both s7ORF1 and s8ORF2 can bind to all four IRFs. Taken together, this study thus shows that the ISAV proteins s7ORF1 and s8ORF2 antagonizes IFN-I transcription activation mediated by the IRFs. As such this work provides further insight into the pathogenic properties of ISAV.
Collapse
Affiliation(s)
- Chun Li
- Norwegian College of Fishery Science, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Linn Greiner-Tollersrud
- Norwegian College of Fishery Science, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Børre Robertsen
- Norwegian College of Fishery Science, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway.
| |
Collapse
|
88
|
Sohn J, Hur S. Filament assemblies in foreign nucleic acid sensors. Curr Opin Struct Biol 2016; 37:134-44. [PMID: 26859869 DOI: 10.1016/j.sbi.2016.01.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/24/2022]
Abstract
Helical filamentous assembly is ubiquitous in biology, but was only recently realized to be broadly employed in the innate immune system of vertebrates. Accumulating evidence suggests that the filamentous assemblies and helical oligomerization play important roles in detection of foreign nucleic acids and activation of the signaling pathways to produce antiviral and inflammatory mediators. In this review, we focus on the helical assemblies observed in the signaling pathways of RIG-I-like receptors (RLRs) and AIM2-like receptors (ALRs). We describe ligand-dependent oligomerization of receptor, receptor-dependent oligomerization of signaling adaptor molecules, and their functional implications and regulations.
Collapse
Affiliation(s)
- Jungsan Sohn
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Sun Hur
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
89
|
Leung DW, Amarasinghe GK. When your cap matters: structural insights into self vs non-self recognition of 5' RNA by immunomodulatory host proteins. Curr Opin Struct Biol 2016; 36:133-41. [PMID: 26916433 PMCID: PMC5218996 DOI: 10.1016/j.sbi.2016.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 12/13/2022]
Abstract
Cytosolic recognition of viral RNA is important for host innate immune responses. Differential recognition of self vs non-self RNA is a considerable challenge as the inability to differentiate may trigger aberrant immune responses. Recent work identified the composition of the RNA 5', including the 5' cap and its methylation state, as an important determinant of recognition by the host. Recent studies have advanced our understanding of the modified 5' RNA recognition and viral antagonism of RNA receptors. Here, we will discuss RIG-I and IFIT proteins as examples of host proteins that detect dsRNA and ssRNA, respectively.
Collapse
Affiliation(s)
- Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St Louis, MO 63110, United States.
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St Louis, MO 63110, United States.
| |
Collapse
|
90
|
Lässig C, Matheisl S, Sparrer KMJ, de Oliveira Mann CC, Moldt M, Patel JR, Goldeck M, Hartmann G, García-Sastre A, Hornung V, Conzelmann KK, Beckmann R, Hopfner KP. ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA. eLife 2015; 4:e10859. [PMID: 26609812 PMCID: PMC4733034 DOI: 10.7554/elife.10859] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/25/2015] [Indexed: 12/24/2022] Open
Abstract
The cytosolic antiviral innate immune sensor RIG-I distinguishes 5' tri- or diphosphate containing viral double-stranded (ds) RNA from self-RNA by an incompletely understood mechanism that involves ATP hydrolysis by RIG-I's RNA translocase domain. Recently discovered mutations in ATPase motifs can lead to the multi-system disorder Singleton-Merten Syndrome (SMS) and increased interferon levels, suggesting misregulated signaling by RIG-I. Here we report that SMS mutations phenocopy a mutation that allows ATP binding but prevents hydrolysis. ATPase deficient RIG-I constitutively signals through endogenous RNA and co-purifies with self-RNA even from virus infected cells. Biochemical studies and cryo-electron microscopy identify a 60S ribosomal expansion segment as a dominant self-RNA that is stably bound by ATPase deficient RIG-I. ATP hydrolysis displaces wild-type RIG-I from this self-RNA but not from 5' triphosphate dsRNA. Our results indicate that ATP-hydrolysis prevents recognition of self-RNA and suggest that SMS mutations lead to unintentional signaling through prolonged RNA binding.
Collapse
Affiliation(s)
- Charlotte Lässig
- Gene Center, Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sarah Matheisl
- Gene Center, Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Konstantin MJ Sparrer
- Max von Pettenkofer-Institute, Gene Center, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Manuela Moldt
- Gene Center, Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jenish R Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Marion Goldeck
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Gunther Hartmann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Veit Hornung
- Institute of Molecular Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer-Institute, Gene Center, Ludwig Maximilian University of Munich, Munich, Germany
| | - Roland Beckmann
- Gene Center, Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany
- Center for Integrated Protein Science Munich, Munich, Germany
| | - Karl-Peter Hopfner
- Gene Center, Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany
- Center for Integrated Protein Science Munich, Munich, Germany
| |
Collapse
|
91
|
Parronchi P, Radice A, Palterer B, Liotta F, Scaletti C. MDA5-positive dermatomyositis: an uncommon entity in Europe with variable clinical presentations. Clin Mol Allergy 2015; 13:22. [PMID: 26557046 PMCID: PMC4637993 DOI: 10.1186/s12948-015-0031-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/26/2015] [Indexed: 11/10/2022] Open
Abstract
Clinically amyopathic dermatomyositis (CADM), described almost 50 years ago, is defined on the basis of still not validated criteria and characterized by skin findings almost without muscle weakness. Autoantibodies directed against the cytosolic pathogen sensor MDA5 (CADM 140) can mark this subtype of dermatomyositis which has been reported to associate, in particular ethnic groups, with severe progressive interstitial lung disease, poor prognosis and an hyperferritinemic status resembling hemophagocytic-like syndromes. MDA5 may be relevant in that Interferon-signature claimed to characterize inflammatory myopathies and dermatomyosits itself, but its role is not clear. However, the titre of anti-MDA5 autoantibodies seems to correlate with the outcome. In Caucasian populations the association between anti-MDA5 positive CADM and rapidly progressive interstitial lung disease seems to be weaker, but the limited numbers of patients described so far could explain the lack of statistical significance. As a fact, European patients with circulating anti-MDA5 autoantibodies may be clinically inhomogeneous and exhibit different rates of severity. The two patients affected by anti-MDA5 positive dermatomyositis described hereafter provide a clear example of the extreme variability of the disease in terms of laboratory findings and clinical features.
Collapse
Affiliation(s)
- Paola Parronchi
- Unit of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Anna Radice
- Unit of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Boaz Palterer
- Unit of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Francesco Liotta
- Unit of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Cristina Scaletti
- Unit of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
92
|
Looney BM, Xia CQ, Concannon P, Ostrov DA, Clare-Salzler MJ. Effects of type 1 diabetes-associated IFIH1 polymorphisms on MDA5 function and expression. Curr Diab Rep 2015; 15:96. [PMID: 26385483 DOI: 10.1007/s11892-015-0656-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent evidence has highlighted the role of the innate immune system in type 1 diabetes (T1D) pathogenesis. Specifically, aberrant activation of the interferon response prior to seroconversion of T1D-associated autoantibodies supports a role for the interferon response as a precipitating event toward activation of autoimmunity. Melanoma differentiation-associated protein 5 (MDA5), encoded by IFIH1, mediates the innate immune system's interferon response to certain viral species that form double-stranded RNA (dsRNA), the MDA5 ligand, during their life cycle. Extensive research has associated single nucleotide polymorphisms (SNPs) within the coding region of IFIH1 with T1D. This review discusses the different risk and protective IFIH1 alleles in the context of recent structural and functional analysis that relate to MDA5 regulation of interferon responses. These studies have provided a functional hypothesis for IFIH1 T1D-associated SNPs' effects on MDA5-mediated interferon responses as well as supporting the genome-wide association (GWA) studies that first associated IFIH1 with T1D.
Collapse
Affiliation(s)
- Benjamin M Looney
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine Interdisciplinary Program in Biomedical Sciences, University of Florida, 1600 SW Archer Rd., Gainesville, FL, 32610, USA.
| | - Chang-Qing Xia
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd., Gainesville, FL, 32610, USA.
| | - Patrick Concannon
- University of Florida Genetics Institute, 2033 Mowry Rd., P.O. Box 103610, Gainesville, FL, 32611, USA.
| | - David A Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 2033 Mowry Rd., P.O. Box 103633, Gainesville, FL, 32611, USA.
| | - Michael J Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 2033 Mowry Rd., P.O. Box 103633, Gainesville, FL, 32611, USA.
- Center for Immunology and Transplantation, University of Florida, 1600 SW Archer Rd., P.O. Box 100275, Gainesville, FL, 32610, USA.
| |
Collapse
|
93
|
Gu T, Rao Y, Su J, Yang C, Chen X, Chen L, Yan N. Functions of MDA5 and its domains in response to GCRV or bacterial PAMPs. FISH & SHELLFISH IMMUNOLOGY 2015; 46:693-702. [PMID: 26260315 DOI: 10.1016/j.fsi.2015.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 06/04/2023]
Abstract
Melanoma differentiation-associated gene 5 (MDA5) is a member of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family which can initiate type I IFN expression in response to RNA virus infection. In this study, we constructed six mutants of Ctenopharyngodon idella MDA5 (CiMAD5) overexpression plasmids and generated stable transfected C. idella kidney (CIK) cell lines to study the function of different domains of CiMAD5. After ploy(I:C) stimulation, the downstream genes of CiMDA5 in transfected cells was repressed. Overexpression of CiMDA5 or its variant repressed the replication of grass carp reovirus (GCRV) in CIK cells and decreased the viral titer of GCRV more or less compared to that in control cells. After GCRV or bacterial pathogen-associated molecular patterns (PAMPs) stimulation, overexpression of CiMDA5 or CARD domain significantly induced the expression of CiIFN-I, CiIL-1β and CiMx1. The deletion of Helicase or RD domain reduced the inductive effect of CiMDA5 on CiIFN-I, CiIL-1β and CiMx1 expression. RD overexpression resulted in an enhanced expression of CiIFN-I, CiIL-1β and CiMx1. These observations collectively demonstrate that, in CIK cells, after GCRV or bacterial PAMPs stimulation, CARD domain alone can mediate signaling; Helicase or RD domain alone negatively regulates CARD function by intramolecular interaction with CARD. However, RD domain acts as an enhancer by intermolecular interaction. These results enlarge the response spectrum of MDA5 and contribute to a further understanding of the functions of MDA5 and its domains in evolution.
Collapse
Affiliation(s)
- Tianle Gu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Youliang Rao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jianguo Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Chunrong Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaohui Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Lijun Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Nana Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
94
|
Hsu WM, Huang CC, Lee HY, Wu PY, Wu MT, Chuang HC, Lin LL, Chuang JH. MDA5 complements TLR3 in suppression of neuroblastoma. Oncotarget 2015; 6:24935-46. [PMID: 26208481 PMCID: PMC4694805 DOI: 10.18632/oncotarget.4511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/26/2015] [Indexed: 12/28/2022] Open
Abstract
Toll-like receptor3 (TLR3) has been confirmed to be differentially expressed in neuroblastoma (NB), and predicts a favorable prognosis with a high expression in tumor tissues. Treatment with TLR3 agonist--polyinosinic-polycytidylic acid [poly(I:C)] could induce significant but limited apoptosis in TLR3-expressing NB cells, suggesting that other viral RNA sensors, including melanoma differentiation-associated gene 5 (MDA5) and retinoic acid-inducible gene-I (RIG-I) in the cytosolic compartment might also be implicated in poly(I:C)-induced NB cell death. MDA5 and RIG-I were induced by poly(I:C) to express in two of six NB cell lines, SK-N-AS (AS) and SK-N-FI, which were associated with up-regulation of caspase9 and active caspase3. While knockdown of either MDA5 or RIG-I alone is ineffective to decrease caspase9 and active caspase3, simultaneously targeting MDA5 and TLR3 showed the best effect to rescue poly(I:C) induced up-regulation of mitochondrial antiviral signaling protein (MAVS), caspase9, active caspase3, and apoptosis in AS cells. Over-expression of MDA5 in FaDu cells resulted in significantly less colony formation and more poly(I:C)-induced cell death. Further studies in human NB tissue samples revealed that MDA5 expression in NB tissues predicted a favorable prognosis synergistically with TLR3. Our findings indicate that MDA5 may serve as a complementary role in the TLR3 activated suppression of NB.
Collapse
Affiliation(s)
- Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsin-Yu Lee
- Department of Life Science and Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Pei-Yi Wu
- Department of Life Science and Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Min-Tsui Wu
- Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hui-Ching Chuang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Li-Ling Lin
- Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
95
|
Rawling DC, Fitzgerald ME, Pyle AM. Establishing the role of ATP for the function of the RIG-I innate immune sensor. eLife 2015; 4:e09391. [PMID: 26371557 PMCID: PMC4622095 DOI: 10.7554/elife.09391] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/14/2015] [Indexed: 12/24/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) initiates a rapid innate immune response upon detection and binding to viral ribonucleic acid (RNA). This signal activation occurs only when pathogenic RNA is identified, despite the ability of RIG-I to bind endogenous RNA while surveying the cytoplasm. Here we show that ATP binding and hydrolysis by RIG-I play a key role in the identification of viral targets and the activation of signaling. Using biochemical and cell-based assays together with mutagenesis, we show that ATP binding, and not hydrolysis, is required for RIG-I signaling on viral RNA. However, we show that ATP hydrolysis does provide an important function by recycling RIG-I and promoting its dissociation from non-pathogenic RNA. This activity provides a valuable proof-reading mechanism that enhances specificity and prevents an antiviral response upon encounter with host RNA molecules.
Collapse
Affiliation(s)
- David C Rawling
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | - Megan E Fitzgerald
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, Yale University, New Haven, United States
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
- Department of Chemistry, Howard Hughes Medical Institute, Yale University, New Haven, United States
| |
Collapse
|
96
|
Bruns AM, Horvath CM. LGP2 synergy with MDA5 in RLR-mediated RNA recognition and antiviral signaling. Cytokine 2015; 74:198-206. [PMID: 25794939 PMCID: PMC4475439 DOI: 10.1016/j.cyto.2015.02.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 12/24/2022]
Abstract
Mammalian cells have the ability to recognize virus infection and mount a powerful antiviral response. Pattern recognition receptor proteins detect molecular signatures of virus infection and activate antiviral signaling. The RIG-I-like receptor (RLR) proteins are expressed in the cytoplasm of nearly all cells and specifically recognize virus-derived RNA species as a molecular feature discriminating the pathogen from the host. The RLR family is composed of three homologous proteins, RIG-I, MDA5, and LGP2. All RLRs have the ability to detect virus-derived dsRNA and hydrolyze ATP, but display individual differences in enzymatic activity, intrinsic ability to recognize RNA, and mechanisms of activation. Emerging evidence suggests that MDA5 and RIG-I utilize distinct mechanisms to form oligomeric complexes along dsRNA. Aligning of their signaling domains creates a platform capable of propagating and amplifying antiviral signaling responses. LGP2 with intact ATP hydrolysis is critical for the MDA5-mediated antiviral response, but LGP2 lacks the domains essential for activation of antiviral signaling, leaving the role of LGP2 in antiviral signaling unclear. Recent studies revealed a mechanistic basis of synergy between LGP2 and MDA5 leading to enhanced antiviral signaling. This review briefly summarizes the RLR system, and focuses on the relationship between LGP2 and MDA5, describing in detail how these two proteins work together to detect foreign RNA and generate a fully functional antiviral response.
Collapse
Affiliation(s)
- Annie M Bruns
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Curt M Horvath
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
97
|
Louber J, Brunel J, Uchikawa E, Cusack S, Gerlier D. Kinetic discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5. BMC Biol 2015; 13:54. [PMID: 26215161 PMCID: PMC4517655 DOI: 10.1186/s12915-015-0166-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/11/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The cytoplasmic RIG-like receptors are responsible for the early detection of viruses and other intracellular microbes by activating the innate immune response mediated by type I interferons (IFNs). RIG-I and MDA5 detect virus-specific RNA motifs with short 5'-tri/diphosphorylated, blunt-end double-stranded RNA (dsRNA) and >0.5-2 kb long dsRNA as canonical agonists, respectively. However, in vitro, they can bind to many RNA species, while in cells there is an activation threshold. As SF2 helicase/ATPase family members, ATP hydrolysis is dependent on co-operative RNA and ATP binding. Whereas simultaneous ATP and cognate RNA binding is sufficient to activate RIG-I by releasing autoinhibition of the signaling domains, the physiological role of the ATPase activity of RIG-I and MDA5 remains controversial. RESULTS A cross-analysis of a rationally designed panel of RNA binding and ATPase mutants and truncated receptors, using type I IFN promoter activation as readout, allows us to refine our understanding of the structure-function relationships of RIG-I and MDA5. RNA activation of RIG-I depends on multiple critical RNA binding sites in its helicase domain as confirmed by functional evidence using novel mutations. We found that RIG-I or MDA5 mutants with low ATP hydrolysis activity exhibit constitutive activity but this was fully reverted when associated with mutations preventing RNA binding to the helicase domain. We propose that the turnover kinetics of the ATPase domain enables the discrimination of self/non-self RNA by both RIG-I and MDA5. Non-cognate, possibly self, RNA binding would lead to fast ATP turnover and RNA disassociation and thus insufficient time for the caspase activation and recruitment domains (CARDs) to promote downstream signaling, whereas tighter cognate RNA binding provides a longer time window for downstream events to be engaged. CONCLUSIONS The exquisite fine-tuning of RIG-I and MDA5 RNA-dependent ATPase activity coupled to CARD release allows a robust IFN response from a minor subset of non-self RNAs within a sea of cellular self RNAs. This avoids the eventuality of deleterious autoimmunity effects as have been recently described to arise from natural gain-of-function alleles of RIG-I and MDA5.
Collapse
Affiliation(s)
- Jade Louber
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France.
- INSERM, U1111, Lyon, France.
- Ecole Normale Supérieure de Lyon, Lyon, France.
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.
- CNRS, UMR5308, Lyon, France.
| | - Joanna Brunel
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France.
- INSERM, U1111, Lyon, France.
- Ecole Normale Supérieure de Lyon, Lyon, France.
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.
- CNRS, UMR5308, Lyon, France.
| | - Emiko Uchikawa
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, BP 181, 38042, Grenoble, Cedex 9, France.
- Unit of Virus Host Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, BP 181, 38042, Grenoble, Cedex 9, France.
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, BP 181, 38042, Grenoble, Cedex 9, France.
- Unit of Virus Host Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, BP 181, 38042, Grenoble, Cedex 9, France.
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France.
- INSERM, U1111, Lyon, France.
- Ecole Normale Supérieure de Lyon, Lyon, France.
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.
- CNRS, UMR5308, Lyon, France.
| |
Collapse
|
98
|
Wu B, Hur S. How RIG-I like receptors activate MAVS. Curr Opin Virol 2015; 12:91-8. [PMID: 25942693 PMCID: PMC4470786 DOI: 10.1016/j.coviro.2015.04.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/26/2015] [Accepted: 04/16/2015] [Indexed: 12/22/2022]
Abstract
RIG-I and MDA5 are well-conserved cytoplasmic pattern recognition receptors that detect viral RNAs during infection and activate the type I interferon (IFN)-mediated antiviral immune response. While much is known about how these receptors recognize viral RNAs, how they interact with their common signaling adaptor molecule MAVS and activate the downstream signaling pathway had been less clear. Previous studies have shown that the signaling domains (tandem CARDs or 2CARDs) of RIG-I and MDA5 must form homo-oligomers in order to interact with MAVS, and that their interactions lead to filament formation of MAVS, a pre-requisite for downstream signal activation. More recent data suggest that multiple mechanisms synergistically promote tetramer formation of RIG-I 2CARD, and that this tetramer resembles a lock-washer, which serves as a helical template to nucleate the MAVS filament. We here summarize these recent findings and discuss the current understanding of the signal activation mechanisms of RIG-I and MDA5.
Collapse
Affiliation(s)
- Bin Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, United States; Program in Cellular and Molecular Medicine, Boston Children's Hospital, United States
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, United States; Program in Cellular and Molecular Medicine, Boston Children's Hospital, United States.
| |
Collapse
|
99
|
Errett JS, Gale M. Emerging complexity and new roles for the RIG-I-like receptors in innate antiviral immunity. Virol Sin 2015; 30:163-73. [PMID: 25997992 PMCID: PMC7090589 DOI: 10.1007/s12250-015-3604-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/13/2015] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is critical for the control of virus infection and operates to restrict viral susceptibility and direct antiviral immunity for protection from acute or chronic viral-associated diseases including cancer. RIG-I like receptors (RLRs) are cytosolic RNA helicases that function as pathogen recognition receptors to detect RNA pathogen associated molecular patterns (PAMPs) of virus infection. The RLRs include RIG-I, MDA5, and LGP2. They function to recognize and bind to PAMP motifs within viral RNA in a process that directs the RLR to trigger downstream signaling cascades that induce innate immunity that controls viral replication and spread. Products of RLR signaling also serve to modulate the adaptive immune response to infection. Recent studies have additionally connected RLRs to signaling cascades that impart inflammatory and apoptotic responses to virus infection. Viral evasion of RLR signaling supports viral outgrowth and pathogenesis, including the onset of viral-associated cancer.
Collapse
Affiliation(s)
- John S Errett
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine, University of Washington, Seattle, 98109, USA
| | | |
Collapse
|
100
|
Insights into the antiviral immunity against grass carp (Ctenopharyngodon idella) reovirus (GCRV) in grass carp. J Immunol Res 2015; 2015:670437. [PMID: 25759845 PMCID: PMC4337036 DOI: 10.1155/2015/670437] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022] Open
Abstract
Global fish production from aquaculture has rapidly grown over the past decades, and grass carp shares the largest portion. However, hemorrhagic disease caused by grass carp reovirus (GCRV) results in tremendous loss of grass carp (Ctenopharyngodon idella) industry. During the past years, development of molecular biology and cellular biology technologies has promoted significant advances in the understanding of the pathogen and the immune system. Immunoprophylaxis based on stimulation of the immune system of fish has also got some achievements. In this review, authors summarize the recent progresses in basic researches on GCRV; viral nucleic acid sensors, high-mobility group box proteins (HMGBs); pattern recognition receptors (PRRs), Toll-like receptors (TLRs) and retinoic acid inducible gene I- (RIG-I-) like receptors (RLRs); antiviral immune responses induced by PRRs-mediated signaling cascades of type I interferon (IFN-I) and IFN-stimulated genes (ISGs) activation. The present review also notices the potential applications of molecule genetic markers. Additionally, authors discuss the current preventive and therapeutic strategies (vaccines, RNAi, and prevention medicine) and highlight the importance of innate immunity in long term control for grass carp hemorrhagic disease.
Collapse
|