51
|
Murakami R, Denda-Nagai K, Hashimoto SI, Nagai S, Hattori M, Irimura T. A unique dermal dendritic cell subset that skews the immune response toward Th2. PLoS One 2013; 8:e73270. [PMID: 24039898 PMCID: PMC3767795 DOI: 10.1371/journal.pone.0073270] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/23/2013] [Indexed: 01/22/2023] Open
Abstract
Dendritic cell (DC) subsets in the skin and draining lymph nodes (LNs) are likely to elicit distinct immune response types. In skin and skin-draining LNs, a dermal DC subset expressing macrophage galactose-type C-type lectin 2 (MGL2/CD301b) was found distinct from migratory Langerhans cells (LCs) or CD103+ dermal DCs (dDCs). Lower expression levels of Th1-promoting and/or cross-presentation-related molecules were suggested by the transcriptome analysis and verified by the quantitative real-time PCR analysis in MGL2+ dDCs than in CD103+ dDCs. Transfer of MGL2+ dDCs but not CD103+ dDCs from FITC-sensitized mice induced a Th2-type immune response in vivo in a model of contact hypersensitivity. Targeting MGL2+ dDCs with a rat monoclonal antibody against MGL2 efficiently induced a humoral immune response with Th2-type properties, as determined by the antibody subclass. We propose that the properties of MGL2+ dDCs, are complementary to those of CD103+ dDCs and skew the immune response toward a Th2-type response.
Collapse
Affiliation(s)
- Ryuichi Murakami
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| | - Kaori Denda-Nagai
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
- * E-mail: (KD); (TI)
| | - Shin-ichi Hashimoto
- Department of Computational Biology, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Japan
| | - Shigenori Nagai
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Masahira Hattori
- Department of Computational Biology, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Japan
| | - Tatsuro Irimura
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
- * E-mail: (KD); (TI)
| |
Collapse
|
52
|
Stock AT, Bedoui S. Vitamin A notches up CD11b hi DC development. Eur J Immunol 2013; 43:1441-4. [PMID: 23661510 DOI: 10.1002/eji.201343631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 04/18/2013] [Accepted: 05/02/2013] [Indexed: 11/12/2022]
Abstract
Vitamin A and its metabolite retinoic acid influence various aspects of immunity. Although the capacity of vitamin A to condition intestinal CD103(+) DCs to imprint tissue-specific homing programs onto activated lymphocytes is well documented, it is unclear whether vitamin A also regulates DC populations in other tissues. A study published in this issue of the European Journal of Immunology, Beijer et al. [Eur. J. Immunol. 2013. 43: 1608-1616] now demonstrates that vitamin A exerts profound effects on the subset composition of splenic DCs. By resolving that splenic ESAM(hi) CD11b(hi) DCs are preferentially responsive to regulation by vitamin A, these novel insights not only further support the notion that ESAM expression marks two distinct lineages of splenic CD11b(hi) DCs, but also provide an important extension to our understanding of how vitamin A influences the immune system.
Collapse
Affiliation(s)
- Angus T Stock
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
53
|
Apte SH, Redmond AM, Groves PL, Schussek S, Pattinson DJ, Doolan DL. Subcutaneous cholera toxin exposure induces potent CD103⁺ dermal dendritic cell activation and migration. Eur J Immunol 2013; 43:2707-17. [PMID: 23794196 DOI: 10.1002/eji.201343475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/08/2013] [Accepted: 06/18/2013] [Indexed: 12/31/2022]
Abstract
CD103⁺ dermal dendritic cells (dDCs) are a recently described DC subset of the skin shown to be the principal migratory DCs capable of efficiently cross-presenting antigens and activating CD8⁺ T cells. Harnessing their activity would promote vaccine efficacy, but it has been unclear how this can be achieved. We tested a panel of adjuvants for their ability to affect dDCs. In comparison to the other adjuvants tested, the capacity of cholera toxin (CT) to induce the migration of dDCs was unique. Within 24 h of CT injection, large numbers of highly activated dDCs (including CD103⁺ dDCs) migrated to the draining lymph nodes and cross-presented coinjected antigens, potently activating naïve CD8⁺ T cells. Peptide vaccines adjuvanted with CT induced T-cell responses uniquely characterized by dynamic cytokine responses including the production of IL-2, and such vaccines were protective in situations reliant on CD8⁺ T-cell responses, including liver-stage Plasmodium challenge, or tumor challenge. This study is the first to examine the effects of adjuvants on CD103⁺ dDCs and identifies CT as a prototypical adjuvant for the activation of CD103⁺ dDCs, opening the way to development of vaccines and adjuvants that specifically target dDCs and generate effective CD8⁺ T-cell responses.
Collapse
Affiliation(s)
- Simon H Apte
- Queensland Institute of Medical Research, Queensland Tropical Health Alliance and Australian Centre for Vaccine Development, Royal Brisbane Hospital, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
54
|
Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 2013; 31:563-604. [PMID: 23516985 DOI: 10.1146/annurev-immunol-020711-074950] [Citation(s) in RCA: 1747] [Impact Index Per Article: 145.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) form a remarkable cellular network that shapes adaptive immune responses according to peripheral cues. After four decades of research, we now know that DCs arise from a hematopoietic lineage distinct from other leukocytes, establishing the DC system as a unique hematopoietic branch. Recent work has also established that tissue DCs consist of developmentally and functionally distinct subsets that differentially regulate T lymphocyte function. This review discusses major advances in our understanding of the regulation of DC lineage commitment, differentiation, diversification, and function in situ.
Collapse
Affiliation(s)
- Miriam Merad
- Department of Oncological Sciences, Mount Sinai Medical School, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
55
|
Bell BD, Kitajima M, Larson RP, Stoklasek TA, Dang K, Sakamoto K, Wagner KU, Kaplan DH, Reizis B, Hennighausen L, Ziegler SF. The transcription factor STAT5 is critical in dendritic cells for the development of TH2 but not TH1 responses. Nat Immunol 2013; 14:364-71. [PMID: 23435120 PMCID: PMC4161284 DOI: 10.1038/ni.2541] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/08/2013] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) are critical in immune responses, linking innate and adaptive immunity. We found here that DC-specific deletion of the transcription factor STAT5 was not critical for development but was required for T helper type 2 (TH2), but not TH1, allergic responses in both the skin and lungs. Loss of STAT5 in DCs led to the inability to respond to thymic stromal lymphopoietin (TSLP). STAT5 was required for TSLP-dependent DC activation, including upregulation of the expression of costimulatory molecules and chemokine production. Furthermore, TH2 responses in mice with DC-specific loss of STAT5 resembled those seen in mice deficient in the receptor for TSLP. Our results show that the TSLP-STAT5 axis in DCs is a critical component for the promotion of type 2 immunity at barrier surfaces.
Collapse
Affiliation(s)
- Bryan D Bell
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Leyva-Castillo JM, Hener P, Jiang H, Li M. TSLP Produced by Keratinocytes Promotes Allergen Sensitization through Skin and Thereby Triggers Atopic March in Mice. J Invest Dermatol 2013; 133:154-63. [DOI: 10.1038/jid.2012.239] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
57
|
|
58
|
Abstract
Life-threatening fungal infections have increased in recent years while treatment options remain limited. The development of vaccines against fungal pathogens represents a key advance sorely needed to combat the increasing fungal disease threat. Dendritic cells (DC) are uniquely able to shape antifungal immunity by initiating and modulating naive T cell responses. Targeting DC may allow for the generation of potent vaccines against fungal pathogens. In the context of antifungal vaccine design, we describe the characteristics of the varied DC subsets, how DC recognize fungi, their function in immunity against fungal pathogens, and how DC can be targeted in order to create new antifungal vaccines. Ongoing studies continue to highlight the critical role of DC in antifungal immunity and will help guide DC-based vaccine strategies.
Collapse
|
59
|
Bajaña S, Roach K, Turner S, Paul J, Kovats S. IRF4 promotes cutaneous dendritic cell migration to lymph nodes during homeostasis and inflammation. THE JOURNAL OF IMMUNOLOGY 2012; 189:3368-77. [PMID: 22933627 DOI: 10.4049/jimmunol.1102613] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Migration of resident dendritic cells (DC) from the skin to local lymph nodes (LN) triggers T cell-mediated immune responses during cutaneous infection, autoimmune disease, and vaccination. In this study, we investigated whether the development and migration of skin-resident DC were regulated by IFN regulatory factor 4 (IRF4), a transcription factor that is required for the development of CD11b(+) splenic DC. We found that the skin of naive IRF4(-/-) mice contained normal numbers of epidermal Langerhans cells (eLC) and increased numbers of CD11b(+) and CD103(+) dermal DC (dDC) populations, indicating that tissue DC development and skin residency is not disrupted by IRF4 deficiency. In contrast, numbers of migratory eLC and CD11b(+) dDC were significantly reduced in the cutaneous LN of IRF4(-/-) mice, suggesting a defect in constitutive migration from the dermis during homeostasis. Upon induction of skin inflammation, CD11b(+) dDC in IRF4(-/-) mice did not express the chemokine receptor CCR7 and failed to migrate to cutaneous LN, whereas the migration of eLC was only mildly impaired. Thus, although dispensable for their development, IRF4 is crucial for the CCR7-mediated migration of CD11b(+) dDC, a predominant population in murine and human skin that plays a vital role in normal and pathogenic cutaneous immunity.
Collapse
Affiliation(s)
- Sandra Bajaña
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
60
|
Weiss R, Hessenberger M, Kitzmüller S, Bach D, Weinberger EE, Krautgartner WD, Hauser-Kronberger C, Malissen B, Boehler C, Kalia YN, Thalhamer J, Scheiblhofer S. Transcutaneous vaccination via laser microporation. J Control Release 2012; 162:391-9. [PMID: 22750193 PMCID: PMC3462999 DOI: 10.1016/j.jconrel.2012.06.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/16/2012] [Accepted: 06/23/2012] [Indexed: 01/15/2023]
Abstract
Driven by constantly increasing knowledge about skin immunology, vaccine delivery via the cutaneous route has recently gained renewed interest. Considering its richness in immunocompetent cells, targeting antigens to the skin is considered to be more effective than intramuscular or subcutaneous injections. However, circumvention of the superficial layer of the skin, the stratum corneum, represents the major challenge for cutaneous immunization. An optimal delivery method has to be effective and reliable, but also highly adaptable to specific demands, should avoid the use of hypodermic needles and the requirement of specially trained healthcare workers. The P.L.E.A.S.E.® (Precise Laser Epidermal System) device employed in this study for creation of aqueous micropores in the skin fulfills these prerequisites by combining the precision of its laser scanning technology with the flexibility to vary the number, density and the depth of the micropores in a user-friendly manner. We investigated the potential of transcutaneous immunization via laser-generated micropores for induction of specific immune responses and compared the outcomes to conventional subcutaneous injection. By targeting different layers of the skin we were able to bias polarization of T cells, which could be modulated by addition of adjuvants. The P.L.E.A.S.E.® device represents a highly effective and versatile platform for transcutaneous vaccination.
Collapse
Affiliation(s)
- Richard Weiss
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | | | - Sophie Kitzmüller
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Doris Bach
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | | | - Wolf D. Krautgartner
- Department of Light & Electron Microscopy, Organismic Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Cornelia Hauser-Kronberger
- Department of Pathology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, INSERM-CNRS-Aix-Marseille University, Campus de Luminy, Case 906, 13288 Marseille, France
| | | | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, 1211 Geneva, Switzerland
| | - Josef Thalhamer
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
- Corresponding author. Tel.: + 43 662 8044 5737; fax: 43 662 8044 5751.
| | - Sandra Scheiblhofer
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
61
|
da Silva HB, Caetano SS, Monteiro I, Gómez-Conde I, Hanson K, Penha-Gonçalves C, Olivieri DN, Mota MM, Marinho CR, D'Imperio Lima MR, Tadokoro CE. Early skin immunological disturbance after Plasmodium-infected mosquito bites. Cell Immunol 2012; 277:22-32. [PMID: 22784562 DOI: 10.1016/j.cellimm.2012.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/04/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
Although the role of regulatory T cells (Tregs) during malaria infection has been studied extensively, such studies have focused exclusively on the role of Treg during the blood stage of infection; little is known about the detailed mechanisms of Tregs and sporozoite deposition in the dermis by mosquito bites. In this paper we show that sporozoites introduced into the skin by mosquito bites increase the mobility of skin Tregs and dendritic cells (DCs). We also show differences in MHC class II and/or CD86 expression on skin-resident dendritic cell subtypes and macrophages. From the observed decrease of the number of APCs into draining lymph nodes, suppression of CD28 expression in conventional CD4 T cells, and a low homeostatic proliferation of skin-migrated CD4 T found in nude mice indicate that Tregs may play a fundamental role during the initial phase of malaria parasite inoculation into the mammalian host.
Collapse
|
62
|
Lutz MB. Therapeutic potential of semi-mature dendritic cells for tolerance induction. Front Immunol 2012; 3:123. [PMID: 22629255 PMCID: PMC3355325 DOI: 10.3389/fimmu.2012.00123] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/30/2012] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) are major players in the control of adaptive tolerance and immunity. Therefore, their specific generation and adoptive transfer into patients or their in vivo targeting is attractive for clinical applications. While injections of mature immunogenic DCs are tested in clinical trials, tolerogenic DCs still are awaiting this step. Besides the tolerogenic potential of immature DCs, also semi-mature DCs can show tolerogenic activity but both types also bear unfavorable features. Optimal tolerogenic DCs, their molecular tool bar, and their use for specific diseases still have to be defined. Here, the usefulness of in vitro generated and adoptively transferred semi-mature DCs for tolerance induction is outlined. The in vivo targeting of semi-mature DCs as represented by steady state migratory DCs are discussed for treatment of autoimmune diseases and allergies. First clinical trials with transcutaneous allergen application may point to their therapeutic use in the future.
Collapse
Affiliation(s)
- Manfred B Lutz
- Institute of Virology and Immunobiology, University of Wuerzburg Wuerzburg, Germany
| |
Collapse
|
63
|
Udey MC. Epidermal Langerhans cells tune skin reactivity to contact allergens. J Clin Invest 2012; 122:1602-5. [PMID: 22523061 DOI: 10.1172/jci63190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Allergic contact dermatitis is a common disorder that has fascinated dermatologists and immunologists for decades. Extensive studies of contact sensitivity reactions in mice established a mechanistic paradigm that has been revisited in recent years, and the involvement of Langerhans cells (LCs), a population of epidermal dendritic cells, in immune responses to epicutaneously applied antigens has been questioned. In this issue of the JCI, Gomez de Agüero et al. describe an elegant series of experiments that implicate LCs in tolerance induction, positioning these cells as key regulators of immunologic barrier function.
Collapse
Affiliation(s)
- Mark C Udey
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1908, USA.
| |
Collapse
|
64
|
Zanoni I, Ostuni R, Barresi S, Di Gioia M, Broggi A, Costa B, Marzi R, Granucci F. CD14 and NFAT mediate lipopolysaccharide-induced skin edema formation in mice. J Clin Invest 2012; 122:1747-57. [PMID: 22466648 DOI: 10.1172/jci60688] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inflammation is a multistep process triggered when innate immune cells - for example, DCs - sense a pathogen or injured cell or tissue. Edema formation is one of the first steps in the inflammatory response; it is fundamental for the local accumulation of inflammatory mediators. Injection of LPS into the skin provides a model for studying the mechanisms of inflammation and edema formation. While it is known that innate immune recognition of LPS leads to activation of numerous transcriptional activators, including nuclear factor of activated T cells (NFAT) isoforms, the molecular pathways that lead to edema formation have not been determined. As PGE2 regulates many proinflammatory processes, including swelling and pain, and it is induced by LPS, we hypothesized that PGE2 mediates the local generation of edema following LPS exposure. Here, we show that tissue-resident DCs are the main source of PGE2 and the main controllers of tissue edema formation in a mouse model of LPS-induced inflammation. LPS exposure induced expression of microsomal PGE synthase-1 (mPGES-1), a key enzyme in PGE2 biosynthesis. mPGES-1 activation, PGE2 production, and edema formation required CD14 (a component of the LPS receptor) and NFAT. Therefore, tissue edema formation induced by LPS is DC and CD14/NFAT dependent. Moreover, DCs can regulate free antigen arrival at the draining lymph nodes by controlling edema formation and interstitial fluid pressure in the presence of LPS. We therefore suggest that the CD14/NFAT/mPGES-1 pathway represents a possible target for antiinflammatory therapies.
Collapse
Affiliation(s)
- Ivan Zanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Liang G, Barker T, Xie Z, Charles N, Rivera J, Druey KM. Naive T cells sense the cysteine protease allergen papain through protease-activated receptor 2 and propel TH2 immunity. J Allergy Clin Immunol 2012; 129:1377-1386.e13. [PMID: 22460072 DOI: 10.1016/j.jaci.2012.02.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 02/16/2012] [Accepted: 02/22/2012] [Indexed: 12/24/2022]
Abstract
BACKGROUND Sensitization to protease allergens, such as papain, or helminth infection is associated with basophil recruitment to draining lymph nodes (LNs). Basophils have the capacity to present antigen to naive T cells and promote T(H)2 differentiation directly or indirectly through IL-4 production. OBJECTIVE We studied how papain induces basophil migration to LNs and the contribution of various leukocytes to papain-induced immune responses. METHODS We immunized mice in the footpad with papain and studied leukocyte recruitment and inflammatory cytokine and chemokine production in the draining popliteal LNs. RESULTS Papain directly activated naive T cells through protease-activated receptor (PAR) 2 to initiate a chemokine/cytokine program that includes CCL17, CCL22, and IL-4. Papain-triggered innate immune responses were dependent on both CD4 T cells and PAR2 and were strongly reduced in the absence of CCR4, the primary receptor for CCL17/CCL22. CONCLUSION These results elucidate a novel innate allergen-recognition pathway mediated by naive T cells through PAR2, which provide an immediate source of chemokines and IL-4 upstream of basophils and antigen-restricted T(H)2 differentiation. PAR2 antagonism might thus hold promise for the treatment of allergic disease.
Collapse
Affiliation(s)
- Genqing Liang
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
66
|
Elnekave M, Furmanov K, Hovav AH. Intradermal naked plasmid DNA immunization: mechanisms of action. Expert Rev Vaccines 2012; 10:1169-82. [PMID: 21854310 DOI: 10.1586/erv.11.66] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plasmid DNA is a promising vaccine modality that is regularly examined in prime-boost immunization regimens. Recent advances in skin immunity increased our understanding of the sophisticated cutaneous immune network, which revived scientific interest in delivering vaccines to the skin. Intradermal administration of plasmid DNA via needle injection is a simple and inexpensive procedure that exposes the plasmid and its encoded antigen to the dermal immune surveillance system. This triggers unique mechanisms for eliciting local and systemic immunity that can confer protection against pathogens and tumors. Understanding the mechanisms of intradermal plasmid DNA immunization is essential for enhancing and modulating its immunogenicity. With regard to vaccination, this is of greater importance as this routine injection technique is highly desirable for worldwide immunization. This article will focus on the current understanding of the mechanisms involved in antigen expression and presentation during primary and secondary syringe and needle intradermal plasmid DNA immunization.
Collapse
Affiliation(s)
- Mazal Elnekave
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine, PO Box 122722, Jerusalem 91120, Israel
| | | | | |
Collapse
|
67
|
Flacher V, Tripp CH, Haid B, Kissenpfennig A, Malissen B, Stoitzner P, Idoyaga J, Romani N. Skin langerin+ dendritic cells transport intradermally injected anti-DEC-205 antibodies but are not essential for subsequent cytotoxic CD8+ T cell responses. THE JOURNAL OF IMMUNOLOGY 2012; 188:2146-55. [PMID: 22291181 DOI: 10.4049/jimmunol.1004120] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Incorporation of Ags by dendritic cells (DCs) increases when Ags are targeted to endocytic receptors by mAbs. We have previously demonstrated in the mouse that mAbs against C-type lectins administered intradermally are taken up by epidermal Langerhans cells (LCs), dermal Langerin(neg) DCs, and dermal Langerin(+) DCs in situ. However, the relative contribution of these skin DC subsets to the induction of immune responses after Ag targeting has not been addressed in vivo. We show in this study that murine epidermal LCs and dermal DCs transport intradermally injected mAbs against the lectin receptor DEC-205/CD205 in vivo. Skin DCs targeted in situ with mAbs migrated through lymphatic vessels in steady state and inflammation. In the skin-draining lymph nodes, targeting mAbs were found in resident CD8α(+) DCs and in migrating skin DCs. More than 70% of targeted DCs expressed Langerin, including dermal Langerin(+) DCs and LCs. Numbers of targeted skin DCs in the nodes increased 2-3-fold when skin was topically inflamed by the TLR7 agonist imiquimod. Complete removal of the site where OVA-coupled anti-DEC-205 had been injected decreased endogenous cytotoxic responses against OVA peptide-loaded target cells by 40-50%. Surprisingly, selective ablation of all Langerin(+) skin DCs in Langerin-DTR knock-in mice did not affect such responses independently of the adjuvant chosen. Thus, in cutaneous immunization strategies where Ag is targeted to DCs, Langerin(+) skin DCs play a major role in transport of anti-DEC-205 mAb, although Langerin(neg) dermal DCs and CD8α(+) DCs are sufficient to subsequent CD8(+) T cell responses.
Collapse
Affiliation(s)
- Vincent Flacher
- Department of Dermatology and Venereology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Regulation and function of the E-cadherin/catenin complex in cells of the monocyte-macrophage lineage and DCs. Blood 2011; 119:1623-33. [PMID: 22174153 DOI: 10.1182/blood-2011-10-384289] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
E-cadherin is best characterized as adherens junction protein, which through homotypic interactions contributes to the maintenance of the epithelial barrier function. In epithelial cells, the cytoplasmic tail of E-cadherin forms a dynamic complex with catenins and regulates several intracellular signal transduction pathways, including Wnt/β-catenin, PI3K/Akt, Rho GTPase, and NF-κB signaling. Recent progress uncovered a novel and critical role for this adhesion molecule in mononuclear phagocyte functions. E-cadherin regulates the maturation and migration of Langerhans cells, and its ligation prevents the induction of a tolerogenic state in bone marrow-derived dendritic cells (DCs). In this respect, the functionality of β-catenin could be instrumental in determining the balance between immunogenicity and tolerogenicity of DCs in vitro and in vivo. Fusion of alternatively activated macrophages and osteoclasts is also E-cadherin-dependent. In addition, the E-cadherin ligands CD103 and KLRG1 are expressed on DC-, T-, and NK-cell subsets and contribute to their interaction with E-cadherin-expressing DCs and macrophages. Here we discuss the regulation, function, and implications of E-cadherin expression in these central orchestrators of the immune system.
Collapse
|
69
|
Recent advances in the administration of vaccines for infectious diseases: microneedles as painless delivery devices for mass vaccination. Drug Discov Today 2011; 16:1061-8. [DOI: 10.1016/j.drudis.2011.07.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 05/31/2011] [Accepted: 07/04/2011] [Indexed: 12/28/2022]
|
70
|
Zahner SP, Kel JM, Martina CAE, Brouwers-Haspels I, van Roon MA, Clausen BE. Conditional deletion of TGF-βR1 using Langerin-Cre mice results in Langerhans cell deficiency and reduced contact hypersensitivity. THE JOURNAL OF IMMUNOLOGY 2011; 187:5069-76. [PMID: 21998450 DOI: 10.4049/jimmunol.1101880] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The critical role of Langerhans cells (LC) in contact hypersensitivity (CHS) was recently questioned in studies using different LC-depletion mouse models. On one hand, inducible ablation of LC led to diminished ear swelling, suggesting functional redundancy between LC and (Langerin(+)) dermal dendritic cells (DC). On the other hand, constitutive or acute depletion of LC resulted in an enhanced reaction, supporting a regulatory role of LC in CHS. To address this controversy by conditional gene targeting, we generated Langerin-Cre knockin mice. Breeding these mice to a Cre-reporter strain demonstrated robust and specific DNA recombination in LC, as well as other Langerin(+) tissue DC. In agreement with the vital requirement of TGF-β signaling for LC development, crossing Langerin-Cre to mice homozygous for a loxP-flanked TGF-βR1 allele resulted in permanent LC deficiency, whereas the homeostasis of dermal Langerin(+) DC was unaffected. In the absence of LC, induction of CHS in these Langerin(+) DC-specific TGF-βR1-deficient mice elicited decreased ear swelling compared with controls. This novel approach provided further evidence against a regulatory function of LC in CHS. Moreover, these Langerin-Cre mice represent a unique and powerful tool to dissect the role and molecular control of Langerin(+) DC populations beyond LC.
Collapse
Affiliation(s)
- Sonja P Zahner
- Department of Immunology, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
71
|
Brandt EB, Sivaprasad U. Th2 Cytokines and Atopic Dermatitis. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2011; 2:110. [PMID: 21994899 PMCID: PMC3189506 DOI: 10.4172/2155-9899.1000110] [Citation(s) in RCA: 445] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Atopic dermatitis (AD), a chronic relapsing inflammatory skin disease, is increasing in prevalence around the world. Intensive research is ongoing to understand the mechanisms involved in the development of AD and offer new treatment options for patients suffering from AD. In this review, we highlight the importance of allergic Th2 responses in the development of the disease and summarize relevant literature, including genetic studies, studies of human skin and mechanistic studies on keratinocytes and mouse models of AD. We discuss the importance of the skin barrier and review recent findings on the pro-Th2 cytokines TSLP, IL-25, and IL-33, notably their ability to polarize dendritic cells and promote Th2 responses. After a brief update on the contribution of different T-cell subsets to AD, we focus on Th2 cells and the respective contributions of each of the Th2 cytokines (IL-4, IL-13, IL-5, IL-31, and IL-10) to AD. We conclude with a brief discussion of the current gaps in our knowledge and technical limitations.
Collapse
Affiliation(s)
- Eric B. Brandt
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Umasundari Sivaprasad
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| |
Collapse
|
72
|
Anandasabapathy N, Victora GD, Meredith M, Feder R, Dong B, Kluger C, Yao K, Dustin ML, Nussenzweig MC, Steinman RM, Liu K. Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain. ACTA ACUST UNITED AC 2011; 208:1695-705. [PMID: 21788405 PMCID: PMC3149213 DOI: 10.1084/jem.20102657] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As shown by analyses of morphology, gene expression, antigen-presenting function, and Flt3 dependence, the steady-state mouse brain contains a population of DCs that exhibits similarities to splenic DCs and differences from microglia. Antigen-presenting cells in the disease-free brain have been identified primarily by expression of antigens such as CD11b, CD11c, and MHC II, which can be shared by dendritic cells (DCs), microglia, and monocytes. In this study, starting with the criterion of Flt3 (FMS-like receptor tyrosine kinase 3)-dependent development, we characterize the features of authentic DCs within the meninges and choroid plexus in healthy mouse brains. Analyses of morphology, gene expression, and antigen-presenting function established a close relationship between meningeal and choroid plexus DCs (m/chDCs) and spleen DCs. DCs in both sites shared an intrinsic requirement for Flt3 ligand. Microarrays revealed differences in expression of transcripts encoding surface molecules, transcription factors, pattern recognition receptors, and other genes in m/chDCs compared with monocytes and microglia. Migrating pre-DC progenitors from bone marrow gave rise to m/chDCs that had a 5–7-d half-life. In contrast to microglia, DCs actively present self-antigens and stimulate T cells. Therefore, the meninges and choroid plexus of a steady-state brain contain DCs that derive from local precursors and exhibit a differentiation and antigen-presenting program similar to spleen DCs and distinct from microglia.
Collapse
Affiliation(s)
- Niroshana Anandasabapathy
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Soudja SM, Henri S, Mello M, Chasson L, Mas A, Wehbe M, Auphan-Anezin N, Leserman L, Van den Eynde B, Schmitt-Verhulst AM. Disrupted lymph node and splenic stroma in mice with induced inflammatory melanomas is associated with impaired recruitment of T and dendritic cells. PLoS One 2011; 6:e22639. [PMID: 21811640 PMCID: PMC3141075 DOI: 10.1371/journal.pone.0022639] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 07/02/2011] [Indexed: 11/19/2022] Open
Abstract
Migration of dendritic cells (DC) from the tumor environment to the T cell cortex in tumor-draining lymph nodes (TDLN) is essential for priming naïve T lymphocytes (TL) to tumor antigen (Ag). We used a mouse model of induced melanoma in which similar oncogenic events generate two phenotypically distinct melanomas to study the influence of tumor-associated inflammation on secondary lymphoid organ (SLO) organization. One tumor promotes inflammatory cytokines, leading to mobilization of immature myeloid cells (iMC) to the tumor and SLO; the other does not. We report that inflammatory tumors induced alterations of the stromal cell network of SLO, profoundly altering the distribution of TL and the capacity of skin-derived DC and TL to migrate or home to TDLN. These defects, which did not require tumor invasion, correlated with loss of fibroblastic reticular cells in T cell zones and in impaired production of CCL21. Infiltrating iMC accumulated in the TDLN medulla and the splenic red pulp. We propose that impaired function of the stromal cell network during chronic inflammation induced by some tumors renders spleens non-receptive to TL and TDLN non-receptive to TL and migratory DC, while the entry of iMC into these perturbed SLO is enhanced. This could constitute a mechanism by which inflammatory tumors escape immune control. If our results apply to inflammatory tumors in general, the demonstration that SLO are poorly receptive to CCR7-dependent migration of skin-derived DC and naïve TL may constitute an obstacle for proposed vaccination or adoptive TL therapies of their hosts.
Collapse
Affiliation(s)
- Saïdi M. Soudja
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, UMR6546, Marseille, France
- INSERM, UMR631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, UMR6546, Marseille, France
- INSERM, UMR631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Marielle Mello
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, UMR6546, Marseille, France
- INSERM, UMR631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Lionel Chasson
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, UMR6546, Marseille, France
- INSERM, UMR631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Amandine Mas
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, UMR6546, Marseille, France
- INSERM, UMR631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Maria Wehbe
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, UMR6546, Marseille, France
- INSERM, UMR631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Nathalie Auphan-Anezin
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, UMR6546, Marseille, France
- INSERM, UMR631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Lee Leserman
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, UMR6546, Marseille, France
- INSERM, UMR631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Benoît Van den Eynde
- Ludwig Institute for Cancer Research and de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Anne-Marie Schmitt-Verhulst
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, UMR6546, Marseille, France
- INSERM, UMR631, Marseille, France
- CNRS, UMR6102, Marseille, France
- * E-mail:
| |
Collapse
|
74
|
von Stebut E. Research in practice: Different dendritic cell types in skin with various functions - important implications for intradermal vaccines. J Dtsch Dermatol Ges 2011; 9:506-9. [PMID: 21539709 DOI: 10.1111/j.1610-0387.2011.07696.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It was long believed that epidermal Langerhans cells (LC) are responsible for the initiation of cellular immunity. Only recently it has been shown that in skin alone 5 different subtypes of dendritic cells (DC) can be identified. Among these, LC, but also two Langerin-expressing dermal DC populations and two more Langerin-negative DC subtypes exist. Novel findings in the model disease leishmaniasis, as well as evidence from research in contact hypersensitivity, have revealed that activation of LC in skin leads to induction of regulatory, immunosuppressive T cells, whereas the other skin DC subtypes stimulate effector T cells. Thus, when producing vaccines designed for intradermal use, it would seem advisable to attempt to activate dermal DC subtypes while avoiding activation of epidermal LC.
Collapse
|
75
|
Kastenmüller K, Wille-Reece U, Lindsay RWB, Trager LR, Darrah PA, Flynn BJ, Becker MR, Udey MC, Clausen BE, Igyarto BZ, Kaplan DH, Kastenmüller W, Germain RN, Seder RA. Protective T cell immunity in mice following protein-TLR7/8 agonist-conjugate immunization requires aggregation, type I IFN, and multiple DC subsets. J Clin Invest 2011; 121:1782-96. [PMID: 21540549 DOI: 10.1172/jci45416] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 02/16/2011] [Indexed: 01/08/2023] Open
Abstract
The success of a non-live vaccine requires improved formulation and adjuvant selection to generate robust T cell immunity following immunization. Here, using protein linked to a TLR7/8 agonist (conjugate vaccine), we investigated the functional properties of vaccine formulation, the cytokines, and the DC subsets required to induce protective multifunctional T cell immunity in vivo. The conjugate vaccine required aggregation of the protein to elicit potent Th1 CD4+ and CD8+ T cell responses. Remarkably, the conjugate vaccine, through aggregation of the protein and activation of TLR7 in vivo, led to an influx of migratory DCs to the LN and increased antigen uptake by several resident and migratory DC subsets, with the latter effect strongly influenced by vaccine-induced type I IFN. Ex vivo migratory CD8-DEC205+CD103-CD326- langerin-negative dermal DCs were as potent in cross-presenting antigen to naive CD8+ T cells as CD11c+CD8+ DCs. Moreover, these cells also influenced Th1 CD4+ T cell priming. In summary, we propose a model in which broad-based T cell-mediated responses upon vaccination can be maximized by codelivery of aggregated protein and TLR7/8 agonist, which together promote optimal antigen acquisition and presentation by multiple DC subsets in the context of critical proinflammatory cytokines.
Collapse
Affiliation(s)
- Kathrin Kastenmüller
- Vaccine Research Center and Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs. Nat Rev Immunol 2010; 10:813-25. [DOI: 10.1038/nri2886] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
77
|
Guilliams M, Henri S, Tamoutounour S, Ardouin L, Schwartz-Cornil I, Dalod M, Malissen B. From skin dendritic cells to a simplified classification of human and mouse dendritic cell subsets. Eur J Immunol 2010; 40:2089-94. [DOI: 10.1002/eji.201040498] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
78
|
Martin MDP, Seth S, Koutsonanos DG, Jacob J, Compans RW, Skountzou I. Adjuvanted influenza vaccine administered intradermally elicits robust long-term immune responses that confer protection from lethal challenge. PLoS One 2010; 5:e10897. [PMID: 20531947 PMCID: PMC2878352 DOI: 10.1371/journal.pone.0010897] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 05/10/2010] [Indexed: 11/18/2022] Open
Abstract
Background The respiratory illnesses caused by influenza virus can be dramatically reduced by vaccination. The current trivalent inactivated influenza vaccine is effective in eliciting systemic virus-specific antibodies sufficient to control viral replication. However, influenza protection generated after parenteral immunization could be improved by the induction of mucosal immune responses. Methodology/Principal Findings Transcutaneous immunization, a non-invasive vaccine delivery method, was used to investigate the quality, duration and effectiveness of the immune responses induced in the presence of inactivated influenza virus co-administered with retinoic acid or oleic acid. We observed an increased migration of dendritic cells to the draining lymph nodes after dermal vaccination. Here we demonstrate that this route of vaccine delivery in combination with certain immunomodulators can induce potent immune responses that result in long-term protective immunity. Additionally, mice vaccinated with inactivated virus in combination with retinoic acid show an enhanced sIgA antibody response, increased number of antibody secreting cells in the mucosal tissues, and protection from a higher influenza lethal dose. Conclusions/Significance The present study demonstrates that transdermal administration of inactivated virus in combination with immunomodulators stimulates dendritic cell migration, results in long-lived systemic and mucosal responses that confer effective protective immunity.
Collapse
Affiliation(s)
- Maria del P. Martin
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Shaguna Seth
- MDRNA, Inc., Bothel, Washington, United States of America
| | - Dimitrios G. Koutsonanos
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Joshy Jacob
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Richard W. Compans
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (IS); (RWC)
| | - Ioanna Skountzou
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (IS); (RWC)
| |
Collapse
|
79
|
Stoitzner P. The Langerhans cell controversy: are they immunostimulatory or immunoregulatory cells of the skin immune system? Immunol Cell Biol 2010; 88:348-50. [PMID: 20445631 PMCID: PMC4821364 DOI: 10.1038/icb.2010.46] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Patrizia Stoitzner
- Department of Dermatology, Innsbruck Medical University, Innsbruck, Austria,
| |
Collapse
|