51
|
New World Cactaceae Plants Harbor Diverse Geminiviruses. Viruses 2021; 13:v13040694. [PMID: 33923787 PMCID: PMC8073023 DOI: 10.3390/v13040694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
The family Cactaceae comprises a diverse group of typically succulent plants that are native to the American continent but have been introduced to nearly all other continents, predominantly for ornamental purposes. Despite their economic, cultural, and ecological importance, very little research has been conducted on the viral community that infects them. We previously identified a highly divergent geminivirus that is the first known to infect cacti. Recent research efforts in non-cultivated and asymptomatic plants have shown that the diversity of this viral family has been under-sampled. As a consequence, little is known about the effects and interactions of geminiviruses in many plants, such as cacti. With the objective to expand knowledge on the diversity of geminiviruses infecting cacti, we used previously acquired high-throughput sequencing results to search for viral sequences using BLASTx against a viral RefSeq protein database. We identified two additional sequences with similarity to geminiviruses, for which we designed abutting primers and recovered full-length genomes. From 42 cacti and five scale insects, we derived 42 complete genome sequences of a novel geminivirus species that we have tentatively named Opuntia virus 2 (OpV2) and 32 genomes of an Opuntia-infecting becurtovirus (which is a new strain of the spinach curly top Arizona virus species). Interspecies recombination analysis of the OpV2 group revealed several recombinant regions, in some cases spanning half of the genome. Phylogenetic analysis demonstrated that OpV2 is a novel geminivirus more closely related to viruses of the genus Curtovirus, which was further supported by the detection of three recombination events between curtoviruses and OpV2. Both OpV2 and Opuntia becurtoviruses were identified in mixed infections, which also included the previously characterized Opuntia virus 1. Viral quantification of the co-infected cactus plants compared with single infections did not show any clear trend in viral dynamics that might be associated with the mixed infections. Using experimental Rhizobium-mediated inoculations, we found that the initial accumulation of OpV2 is facilitated by co-infection with OpV1. This study shows that the diversity of geminiviruses that infect cacti is under-sampled and that cacti harbor diverse geminiviruses. The detection of the Opuntia becurtoviruses suggests spill-over events between viruses of cultivated species and native vegetation. The threat this poses to cacti needs to be further investigated.
Collapse
|
52
|
Kutnjak D, Tamisier L, Adams I, Boonham N, Candresse T, Chiumenti M, De Jonghe K, Kreuze JF, Lefebvre M, Silva G, Malapi-Wight M, Margaria P, Mavrič Pleško I, McGreig S, Miozzi L, Remenant B, Reynard JS, Rollin J, Rott M, Schumpp O, Massart S, Haegeman A. A Primer on the Analysis of High-Throughput Sequencing Data for Detection of Plant Viruses. Microorganisms 2021; 9:841. [PMID: 33920047 PMCID: PMC8071028 DOI: 10.3390/microorganisms9040841] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022] Open
Abstract
High-throughput sequencing (HTS) technologies have become indispensable tools assisting plant virus diagnostics and research thanks to their ability to detect any plant virus in a sample without prior knowledge. As HTS technologies are heavily relying on bioinformatics analysis of the huge amount of generated sequences, it is of utmost importance that researchers can rely on efficient and reliable bioinformatic tools and can understand the principles, advantages, and disadvantages of the tools used. Here, we present a critical overview of the steps involved in HTS as employed for plant virus detection and virome characterization. We start from sample preparation and nucleic acid extraction as appropriate to the chosen HTS strategy, which is followed by basic data analysis requirements, an extensive overview of the in-depth data processing options, and taxonomic classification of viral sequences detected. By presenting the bioinformatic tools and a detailed overview of the consecutive steps that can be used to implement a well-structured HTS data analysis in an easy and accessible way, this paper is targeted at both beginners and expert scientists engaging in HTS plant virome projects.
Collapse
Affiliation(s)
- Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Lucie Tamisier
- Plant Pathology Laboratory, Université de Liège, Gembloux Agro-Bio Tech, TERRA, Passage des Déportés, 2, 5030 Gembloux, Belgium; (L.T.); (J.R.); (S.M.)
| | - Ian Adams
- Fera Science Limited, York YO41 1LZ, UK; (I.A.); (S.M.)
| | - Neil Boonham
- Institute for Agri-Food Research and Innovation, Newcastle University, King’s Rd, Newcastle Upon Tyne NE1 7RU, UK;
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, University of Bordeaux, 33140 Villenave d’Ornon, France; (T.C.); (M.L.)
| | - Michela Chiumenti
- Institute for Sustainable Plant Protection, National Research Council, Via Amendola, 122/D, 70126 Bari, Italy;
| | - Kris De Jonghe
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Burg. Van Gansberghelaan 96, 9820 Merelbeke, Belgium; (K.D.J.); (A.H.)
| | - Jan F. Kreuze
- International Potato Center (CIP), Avenida la Molina 1895, La Molina, Lima 15023, Peru;
| | - Marie Lefebvre
- UMR 1332 Biologie du Fruit et Pathologie, INRA, University of Bordeaux, 33140 Villenave d’Ornon, France; (T.C.); (M.L.)
| | - Gonçalo Silva
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK;
| | - Martha Malapi-Wight
- Biotechnology Risk Analysis Programs, Biotechnology Regulatory Services, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Riverdale, MD 20737, USA;
| | - Paolo Margaria
- Leibniz Institute-DSMZ, Inhoffenstrasse 7b, 38124 Braunschweig, Germany;
| | - Irena Mavrič Pleško
- Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000 Ljubljana, Slovenia;
| | - Sam McGreig
- Fera Science Limited, York YO41 1LZ, UK; (I.A.); (S.M.)
| | - Laura Miozzi
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy;
| | - Benoit Remenant
- ANSES Plant Health Laboratory, 7 Rue Jean Dixméras, CEDEX 01, 49044 Angers, France;
| | | | - Johan Rollin
- Plant Pathology Laboratory, Université de Liège, Gembloux Agro-Bio Tech, TERRA, Passage des Déportés, 2, 5030 Gembloux, Belgium; (L.T.); (J.R.); (S.M.)
- DNAVision, 6041 Charleroi, Belgium
| | - Mike Rott
- Sidney Laboratory, Canadian Food Inspection Agency, 8801 East Saanich Rd, North Saanich, BC V8L 1H3, Canada;
| | - Olivier Schumpp
- Agroscope, Route de Duillier 50, 1260 Nyon, Switzerland; (J.-S.R.); (O.S.)
| | - Sébastien Massart
- Plant Pathology Laboratory, Université de Liège, Gembloux Agro-Bio Tech, TERRA, Passage des Déportés, 2, 5030 Gembloux, Belgium; (L.T.); (J.R.); (S.M.)
| | - Annelies Haegeman
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Burg. Van Gansberghelaan 96, 9820 Merelbeke, Belgium; (K.D.J.); (A.H.)
| |
Collapse
|
53
|
Thompson JR, Gomez AL, Younas A, González-Tobón J, Cha A, Perry KL. Grapevine Asteroid Mosaic-Associated Virus is Resident and Prevalent in Wild, Noncultivated Grapevine of New York State. PLANT DISEASE 2021; 105:758-763. [PMID: 33151814 DOI: 10.1094/pdis-10-20-2191-sc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In North America, uncultivated, free-living grapevines (Vitis spp.) frequently grow alongside their cultivated counterparts, thus increasing the potential for exchange of microbiota. For this study, we used high-throughput sequencing (HTS) of small RNAs to survey for virus populations in free-living grapevines of the Finger Lakes region of New York State. Of 32 grapevines analyzed, 23 were free-living vines, while the remaining 9 were commercially grown Vitis vinifera plants from the same region. In total, 18 (78.3%) of the free-living grapevines tested were positive for grapevine asteroid mosaic-associated virus (GAMaV) infection by HTS, with detection confirmed by seminested reverse-transcription PCR and sequencing of nine isolates. Phylogenetic analyses of an ungapped alignment of the New York GAMaV sequences (length: 2,334 nucleotides) with the five known full-length or close to full-length global sequences showed that the New York isolates were broadly grouped. Of the nine cultivated plants, eight were infected with both hop stunt viroid and grapevine yellow speckle viroid 1, three were singly infected with grapevine leafroll-associated virus 3, and one harbored GAMaV. This limited survey of free-living grapevines, one of the first to use HTS, has highlighted the high incidence of a virus associated with disease in commercial V. vinifera.
Collapse
Affiliation(s)
- Jeremy R Thompson
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Annika L Gomez
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Aisha Younas
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
- Department of Biotechnology of Lahore College for Women University, Lahore, Pakistan
| | - Juliana González-Tobón
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Alex Cha
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Keith L Perry
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
54
|
Ma Y, Fort T, Marais A, Lefebvre M, Theil S, Vacher C, Candresse T. Leaf-associated fungal and viral communities of wild plant populations differ between cultivated and natural ecosystems. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:87-99. [PMID: 37284285 PMCID: PMC10168098 DOI: 10.1002/pei3.10043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 06/08/2023]
Abstract
Plants are colonized by diverse fungal and viral communities that influence their growth and survival as well as ecosystem functioning. Viruses interact with both plants and the fungi they host. Our understanding of plant-fungi-virus interactions is very limited, especially in wild plants. Combining metagenomic and culturomic approaches, we assessed the richness, diversity, and composition of leaf-associated fungal and viral communities from pools of herbaceous wild plants representative of four sites corresponding to cultivated or natural ecosystems. We identified 161 fungal families and 18 viral families comprising 249 RNA-dependent RNA polymerase-based operational taxonomic units (RdRp OTUs) from leaves. Fungal culturomics captured 12.3% of the fungal diversity recovered with metagenomic approaches and, unexpectedly, retrieved viral OTUs that were almost entirely different from those recovered by leaf metagenomics. Ecosystem management had a significant influence on both leaf mycobiome and virome, with a higher fungal community richness in natural ecosystems and a higher viral family richness in cultivated ecosystems, suggesting that leaf-associated fungal and viral communities are under the influence of different ecological drivers. Both the leaf-associated fungal and viral community compositions showed a strong site-specificity. Further research is needed to confirm these trends and unravel the factors structuring plant-fungi-virus interactions in wild plant populations.
Collapse
Affiliation(s)
- Yuxin Ma
- Univ. BordeauxINRAEUMR 1332 BFPVillenave d’Ornon cedexFrance
| | | | - Armelle Marais
- Univ. BordeauxINRAEUMR 1332 BFPVillenave d’Ornon cedexFrance
| | - Marie Lefebvre
- Univ. BordeauxINRAEUMR 1332 BFPVillenave d’Ornon cedexFrance
| | - Sébastien Theil
- Univ. BordeauxINRAEUMR 1332 BFPVillenave d’Ornon cedexFrance
- Present address:
INRA UMRF20, côte de ReyneAurillac15000France
| | | | | |
Collapse
|
55
|
Schumpp O, Bréchon A, Brodard J, Dupuis B, Farinelli L, Frei P, Otten P, Pellet D. Large-Scale RT-qPCR Diagnostics for Seed Potato Certification. POTATO RESEARCH 2021; 64:553-569. [PMID: 34789926 PMCID: PMC8572825 DOI: 10.1007/s11540-021-09491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/13/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Every year, Agroscope examines nearly 300,000 tubers for the presence of viruses, as regulated for the certification of seed potatoes intended for Swiss growers. Since 2016, this examination has been performed via RT-qPCR on dormant tubers directly after harvest. This method offers fast results and eliminates the need for the use of Rindite, which is a toxic and polluting gaseous compound previously used in Switzerland to break the dormancy of seed tubers. The implementation of this molecular analytical method for the routine diagnosis of regulated viruses makes it possible to conduct additional analyses via Illumina sequencing to assess the conformity of the primers and probes used with the sequences of the different viral isolates. This form of quality control in routine diagnosis is a source of information that can answer more fundamental scientific questions related to the epidemiology of viral strains related to certification. The datasets produced in this framework can also be used to explore the diversity of rare or unknown virus species in potato crops. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11540-021-09491-3.
Collapse
Affiliation(s)
- Olivier Schumpp
- Plant Protection Department, Agroscope, 1260 Nyon, Switzerland
| | - Amanda Bréchon
- Plant Protection Department, Agroscope, 1260 Nyon, Switzerland
- Present Address: Department of Agriculture, Food and the Marine, Plant Health Laboratory, Backweston, Celbridge, W23 X3PH Ireland
| | - Justine Brodard
- Plant Protection Department, Agroscope, 1260 Nyon, Switzerland
| | - Brice Dupuis
- Plants and Plants Products Department, Agroscope, 1260 Nyon, Switzerland
| | | | - Peter Frei
- Plants and Plants Products Department, Agroscope, 1260 Nyon, Switzerland
| | - Patricia Otten
- Fasteris SA, Plan-les-Ouates, CH-1228 Geneva, Switzerland
| | - Didier Pellet
- Plants and Plants Products Department, Agroscope, 1260 Nyon, Switzerland
| |
Collapse
|
56
|
McLeish MJ, Fraile A, García-Arenal F. Population Genomics of Plant Viruses: The Ecology and Evolution of Virus Emergence. PHYTOPATHOLOGY 2021; 111:32-39. [PMID: 33210987 DOI: 10.1094/phyto-08-20-0355-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The genomics era has revolutionized studies of adaptive evolution by monitoring large numbers of loci throughout the genomes of many individuals. Ideally, the investigation of emergence in plant viruses requires examining the population dynamics of both virus and host, their interactions with each other, with other organisms and the abiotic environment. Genetic mechanisms that affect demographic processes are now being studied with high-throughput technologies, traditional genetics methods, and new computational tools for big-data. In this review, we discuss the utility of these approaches to monitor and detect changes in virus populations within cells and individuals, and over wider areas across species and communities of ecosystems. The advent of genomics in virology has fostered a multidisciplinary approach to tackling disease risk. The ability to make sense of the information now generated in this integrated setting is by far the most substantial obstacle to the ultimate goal of plant virology to minimize the threats to food security posed by disease. To achieve this goal, it is imperative to understand and forecast how populations respond to future changes in complex natural systems.
Collapse
Affiliation(s)
- Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
57
|
Two viruses from Stylosanthes guianensis may represent a new genus within Potyviridae. Virus Res 2020; 293:198257. [PMID: 33309914 DOI: 10.1016/j.virusres.2020.198257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 11/21/2022]
Abstract
Forage crops occupy large areas of tropical pastures for cattle feeding in Brazil. The use of stylos (Stylosanthes spp.) in these pastures, which are leguminous shrubs, has increased in the country due to their outstanding nutritional value and for being an efficient and alternative source for nitrogen fixation in the soil. In recent years, virus-like mosaic symptoms on S.guianensis leaves have often been observed in the field, indicating possible virus-like pathogen infections. In an effort to identify the causal agent, virus semi-purification protocol was performed using symptomatic S. guianensis leaves collected at EMBRAPA Beef Cattle Research Center. Total RNA extracted from this semi-purified preparation was submitted to high-throughput sequencing, which revealed complete genome sequences of novel viruses of the family Potyviridae. These viruses, tentatively named stylo mosaic-associated virus 1 (StyMaV-1) and stylo mosaic-associated virus 2 (StyMaV-2), shared 73 % CP aa identity and 77 % polyprotein aa identity with each other and, after that, being closest related to blackberry virus Y, genus Brambyvirus (only 41 % CP aa identity). Based on ICTV genus demarcation criteria, StyMaV-1 and StyMaV-2 represent new species of a new genus within the family Potyviridae. StyMaV-1 and StyMaV-2 are also not efficiently transmitted to other plant species by mechanical inoculation.
Collapse
|
58
|
Sallinen S, Norberg A, Susi H, Laine AL. Intraspecific host variation plays a key role in virus community assembly. Nat Commun 2020; 11:5610. [PMID: 33154373 PMCID: PMC7644774 DOI: 10.1038/s41467-020-19273-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Infection by multiple pathogens of the same host is ubiquitous in both natural and managed habitats. While intraspecific variation in disease resistance is known to affect pathogen occurrence, how differences among host genotypes affect the assembly of pathogen communities remains untested. In our experiment using cloned replicates of naive Plantago lanceolata plants as sentinels during a seasonal virus epidemic, we find non-random co-occurrence patterns of five focal viruses. Using joint species distribution modelling, we attribute the non-random virus occurrence patterns primarily to differences among host genotypes and local population context. Our results show that intraspecific variation among host genotypes may play a large, previously unquantified role in pathogen community structure.
Collapse
Affiliation(s)
- Suvi Sallinen
- Organismal and Evolutionary Biology Research Programme, Viikinkaari 1 (PO box 65), FI-00014, University of Helsinki, Helsinki, Finland.
| | - Anna Norberg
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, CH-8067, Zürich, Switzerland
| | - Hanna Susi
- Organismal and Evolutionary Biology Research Programme, Viikinkaari 1 (PO box 65), FI-00014, University of Helsinki, Helsinki, Finland
| | - Anna-Liisa Laine
- Organismal and Evolutionary Biology Research Programme, Viikinkaari 1 (PO box 65), FI-00014, University of Helsinki, Helsinki, Finland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, CH-8067, Zürich, Switzerland
| |
Collapse
|
59
|
Maclot F, Candresse T, Filloux D, Malmstrom CM, Roumagnac P, van der Vlugt R, Massart S. Illuminating an Ecological Blackbox: Using High Throughput Sequencing to Characterize the Plant Virome Across Scales. Front Microbiol 2020; 11:578064. [PMID: 33178159 PMCID: PMC7596190 DOI: 10.3389/fmicb.2020.578064] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023] Open
Abstract
The ecology of plant viruses began to be explored at the end of the 19th century. Since then, major advances have revealed mechanisms of virus-host-vector interactions in various environments. These advances have been accelerated by new technlogies for virus detection and characterization, most recently including high throughput sequencing (HTS). HTS allows investigators, for the first time, to characterize all or nearly all viruses in a sample without a priori information about which viruses might be present. This powerful approach has spurred new investigation of the viral metagenome (virome). The rich virome datasets accumulated illuminate important ecological phenomena such as virus spread among host reservoirs (wild and domestic), effects of ecosystem simplification caused by human activities (and agriculture) on the biodiversity and the emergence of new viruses in crops. To be effective, however, HTS-based virome studies must successfully navigate challenges and pitfalls at each procedural step, from plant sampling to library preparation and bioinformatic analyses. This review summarizes major advances in plant virus ecology associated with technological developments, and then presents important considerations and best practices for HTS use in virome studies.
Collapse
Affiliation(s)
- François Maclot
- Plant Pathology Laboratory, Terra-Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
| | | | - Denis Filloux
- CIRAD, BGPI, Montpellier, France
- BGPI, INRAE, CIRAD, Institut Agro, Montpellier University, Montpellier, France
| | - Carolyn M. Malmstrom
- Department of Plant Biology and Graduate Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, MI, United States
| | - Philippe Roumagnac
- CIRAD, BGPI, Montpellier, France
- BGPI, INRAE, CIRAD, Institut Agro, Montpellier University, Montpellier, France
| | - René van der Vlugt
- Laboratory of Virology, Wageningen University and Research Centre (WUR-PRI), Wageningen, Netherlands
| | - Sébastien Massart
- Plant Pathology Laboratory, Terra-Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
| |
Collapse
|
60
|
Bejerman N, Debat H, Dietzgen RG. The Plant Negative-Sense RNA Virosphere: Virus Discovery Through New Eyes. Front Microbiol 2020; 11:588427. [PMID: 33042103 PMCID: PMC7524893 DOI: 10.3389/fmicb.2020.588427] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
The use of high-throughput sequencing (HTS) for virus diagnostics, as well as the importance of this technology as a valuable tool for discovery of novel viruses has been extensively investigated. In this review, we consider the application of HTS approaches to uncover novel plant viruses with a focus on the negative-sense, single-stranded RNA virosphere. Plant viruses with negative-sense and ambisense RNA (NSR) genomes belong to several taxonomic families, including Rhabdoviridae, Aspiviridae, Fimoviridae, Tospoviridae, and Phenuiviridae. They include both emergent pathogens that infect a wide range of plant species, and potential endophytes which appear not to induce any visible symptoms. As a consequence of biased sampling based on a narrow focus on crops with disease symptoms, the number of NSR plant viruses identified so far represents only a fraction of this type of viruses present in the virosphere. Detection and molecular characterization of NSR viruses has often been challenging, but the widespread implementation of HTS has facilitated not only the identification but also the characterization of the genomic sequences of at least 70 NSR plant viruses in the last 7 years. Moreover, continuing advances in HTS technologies and bioinformatic pipelines, concomitant with a significant cost reduction has led to its use as a routine method of choice, supporting the foundations of a diverse array of novel applications such as quarantine analysis of traded plant materials and genetic resources, virus detection in insect vectors, analysis of virus communities in individual plants, and assessment of virus evolution through ecogenomics, among others. The insights from these advancements are shedding new light on the extensive diversity of NSR plant viruses and their complex evolution, and provide an essential framework for improved taxonomic classification of plant NSR viruses as part of the realm Riboviria. Thus, HTS-based methods for virus discovery, our ‘new eyes,’ are unraveling in real time the richness and magnitude of the plant RNA virosphere.
Collapse
Affiliation(s)
- Nicolás Bejerman
- Instituto de Patología Vegetal - Centro de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Unidad de Fitopatología y Modelización Agrícola, Buenos Aires, Argentina
| | - Humberto Debat
- Instituto de Patología Vegetal - Centro de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Unidad de Fitopatología y Modelización Agrícola, Buenos Aires, Argentina
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
61
|
Bejerman N, Roumagnac P, Nemchinov LG. High-Throughput Sequencing for Deciphering the Virome of Alfalfa ( Medicago sativa L.). Front Microbiol 2020; 11:553109. [PMID: 33042059 PMCID: PMC7518122 DOI: 10.3389/fmicb.2020.553109] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Alfalfa (Medicago sativa L.), also known as lucerne, is a major forage crop worldwide. In the United States, it has recently become the third most valuable field crop, with an estimated value of over $9.3 billion. Alfalfa is naturally infected by many different pathogens, including viruses, obligate parasites that reproduce only inside living host cells. Traditionally, viral infections of alfalfa have been considered by breeders, growers, producers and researchers to be diseases of limited importance, although they are widespread in all major cultivation areas. However, over the past few years, due to the rapid development of high-throughput sequencing (HTS), viral metagenomics, bioinformatics tools for interpreting massive amounts of HTS data and the increasing accessibility of public data repositories for transcriptomic discoveries, several emerging viruses of alfalfa with the potential to cause serious yield losses have been described. They include alfalfa leaf curl virus (family Geminiviridae), alfalfa dwarf virus (family Rhabdoviridae), alfalfa enamovirus 1 (family Luteoviridae), alfalfa virus S (family Alphaflexiviridae) and others. These discoveries have called into question the assumed low economic impact of viral diseases in alfalfa and further suggested their possible contribution to the severity of complex infections involving multiple pathogens. In this review, we will focus on viruses of alfalfa recently described in different laboratories on the basis of the above research methodologies.
Collapse
Affiliation(s)
| | - Philippe Roumagnac
- CIRAD, BGPI, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Université Montpellier, Montpellier, France
| | - Lev G Nemchinov
- Molecular Plant Pathology Laboratory, USDA-ARS-BARC, Beltsville, MD, United States
| |
Collapse
|
62
|
Fontenele RS, Roumagnac P, Richet C, Kraberger S, Stainton D, Aleamotu'a M, Filloux D, Bernardo P, Harkins GW, McCarthy J, Charles LS, Lamas NS, Abreu EFM, Abreu RA, Batista GB, Lacerda ALM, Salywon A, Wojciechowski MF, Majure LC, Martin DP, Ribeiro SG, Lefeuvre P, Varsani A. Diverse genomoviruses representing twenty-nine species identified associated with plants. Arch Virol 2020; 165:2891-2901. [PMID: 32893316 DOI: 10.1007/s00705-020-04801-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023]
Abstract
Genomoviruses (family Genomoviridae) are circular single-stranded DNA viruses that have been mainly identified through metagenomics studies in a wide variety of samples from various environments. Here, we describe 98 genomes of genomoviruses found associated with members of 19 plant families from Australia, Brazil, France, South Africa and the USA. These 98 genomoviruses represent 29 species, 26 of which are new, in the genera Gemykolovirus (n = 37), Gemyduguivirus (n = 9), Gemygorvirus (n = 8), Gemykroznavirus (n = 6), Gemycircularvirus (n = 21) and Gemykibivirus (n = 17).
Collapse
Affiliation(s)
- Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics and Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287-5001, USA.,School of Life sciences, Arizona State University, Tempe, AZ, 85287-5001, USA
| | - Philippe Roumagnac
- CIRAD, BGPI, 34398, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, 34398, Montpellier, France
| | - Cécile Richet
- CIRAD, BGPI, 34398, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, 34398, Montpellier, France
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics and Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287-5001, USA
| | - Daisy Stainton
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR, 72701, USA
| | - Maketalena Aleamotu'a
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Denis Filloux
- CIRAD, BGPI, 34398, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, 34398, Montpellier, France
| | - Pauline Bernardo
- CIRAD, BGPI, 34398, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, 34398, Montpellier, France.,Enza Zaden, Haling 1-E, 1602 DB, Enkhuizen, The Netherlands
| | - Gordon W Harkins
- South African MRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - James McCarthy
- Manaaki Whenua, Landcare Research, Lincoln, 7640, New Zealand
| | - Lachlan S Charles
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92507, USA
| | - Natalia S Lamas
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | | | - Rayane A Abreu
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil.,PPG Ciências Naturais e Biotecnologia, Universidade Federal de Campina Grande, Cuité, PB, Brazil
| | - Graciete B Batista
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil.,PPG Ciências Naturais e Biotecnologia, Universidade Federal de Campina Grande, Cuité, PB, Brazil
| | - Ana L M Lacerda
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | | | | | - Lucas C Majure
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Darren P Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Simone G Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil.,PPG Ciências Naturais e Biotecnologia, Universidade Federal de Campina Grande, Cuité, PB, Brazil
| | | | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics and Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287-5001, USA. .,School of Life sciences, Arizona State University, Tempe, AZ, 85287-5001, USA. .,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| |
Collapse
|
63
|
Millet Could Be both a Weed and Serve as a Virus Reservoir in Crop Fields. PLANTS 2020; 9:plants9080954. [PMID: 32731617 PMCID: PMC7463774 DOI: 10.3390/plants9080954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/27/2022]
Abstract
Millet is a dangerous weed in crop fields. A lack of seed dormancy helps it to spread easily and be present in maize, wheat, and other crop fields. Our previous report revealed the possibility that millet can also play a role as a virus reservoir. In that study, we focused on visual symptoms and detected the presence of several viruses in millet using serological methods, which can only detect the presence of the investigated pathogen. In this current work, we used small RNA high-throughput sequencing as an unbiased virus diagnostic method to uncover presenting viruses in randomly sampled millet grown as a volunteer weed in two maize fields, showing stunting, chlorosis, and striped leaves. Our results confirmed the widespread presence of wheat streak mosaic virus at both locations. Moreover, barley yellow striate mosaic virus and barley virus G, neither of which had been previously described in Hungary, were also identified. As these viruses can cause severe diseases in wheat and other cereals, their presence in a weed implies a potential infection risk. Our study indicates that the presence of millet in fields requires special control to prevent the emergence of new viral diseases in crop fields.
Collapse
|
64
|
Alonso P, Blondin L, Gladieux P, Mahé F, Sanguin H, Ferdinand R, Filloux D, Desmarais E, Cerqueira F, Jin B, Huang H, He X, Morel JB, Martin DP, Roumagnac P, Vernière C. Heterogeneity of the rice microbial community of the Chinese centuries-old Honghe Hani rice terraces system. Environ Microbiol 2020; 22:3429-3445. [PMID: 32510843 PMCID: PMC7497281 DOI: 10.1111/1462-2920.15114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 11/30/2022]
Abstract
The Honghe Hani rice terraces system (HHRTS) is a traditional rice cultivation system where Hani people cultivate remarkably diverse rice varieties. Recent introductions of modern rice varieties to the HHRTS have significantly increased the severity of rice diseases within the terraces. Here, we determine the impacts of these recent introductions on the composition of the rice-associated microbial communities. We confirm that the HHRTS contains a range of both traditional HHRTS landraces and introduced modern rice varieties and find differences between the microbial communities of these two groups. However, this introduction of modern rice varieties has not strongly impacted the overall diversity of the HHRTS rice microbial community. Furthermore, we find that the rice varieties (i.e. groups of closely related genotypes) have significantly structured the rice microbial community composition (accounting for 15%-22% of the variance) and that the core microbial community of HHRTS rice plants represents less than 3.3% of all the microbial taxa identified. Collectively, our study suggests a highly diverse HHRTS rice holobiont (host with its associated microbes) where the diversity of rice hosts mirrors the diversity of their microbial communities. Further studies will be needed to better determine how such changes might impact the sustainability of the HHRTS.
Collapse
Affiliation(s)
- Pascal Alonso
- CIRAD, BGPI, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France
| | - Laurence Blondin
- CIRAD, BGPI, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France
| | - Pierre Gladieux
- BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France.,INRA, BGPI, Montpellier, France
| | - Frédéric Mahé
- CIRAD, BGPI, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France
| | - Hervé Sanguin
- CIRAD, BGPI, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France
| | - Romain Ferdinand
- CIRAD, BGPI, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France
| | - Denis Filloux
- CIRAD, BGPI, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France
| | - Eric Desmarais
- ISEM, CNRS, University of Montpellier, IRD, EPHE, Montpellier, France
| | | | - Baihui Jin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,Southwest Forestry University, Kunming, China
| | - Jean-Benoit Morel
- BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France.,INRA, BGPI, Montpellier, France
| | - Darren P Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, 4579, South Africa
| | - Philippe Roumagnac
- CIRAD, BGPI, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France
| | - Christian Vernière
- CIRAD, BGPI, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France
| |
Collapse
|
65
|
Peláez A, McLeish MJ, Paswan RR, Dubay B, Fraile A, García-Arenal F. Ecological fitting is the forerunner to diversification in a plant virus with broad host range. J Evol Biol 2020; 34:1917-1931. [PMID: 32618008 DOI: 10.1111/jeb.13672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/23/2020] [Accepted: 06/24/2020] [Indexed: 11/29/2022]
Abstract
The evolution and diversification of ssRNA plant viruses are often examined under reductionist conditions that ignore potentially much wider biotic interactions. The host range of a plant virus is central to interactions at higher levels that are organized by both fitness and ecological criteria. Here we employ a strategy to minimize sampling biases across distinct plant communities and combine it with a high-throughput sequencing approach to examine the influence of four habitats on the evolution of Watermelon mosaic virus (WMV). Local, regional and global levels of genetic diversity that correspond to spatial and temporal extents are used to infer haplotype relationships using network and phylogenetic approaches. We find that the incidence and genetic diversity of WMV were structured significantly by host species and habitat type. A single haplotype that infected 11 host species of a total of 24 showed that few constraints on host species use exist in the crop communities. When the evolution of WMV was examined at broader levels of organization, we found variation in genetic diversity and contrasting host use footprints that broadly corresponded to habitat effects. The findings demonstrated that nondeterministic ecological factors structured the genetic diversity of WMV. Habitat-driven constraints underlie host use preferences.
Collapse
Affiliation(s)
- Adrián Peláez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Madrid, Spain
| | - Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Madrid, Spain
| | - Ricky R Paswan
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Madrid, Spain
| | - Bhumika Dubay
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Madrid, Spain
| |
Collapse
|
66
|
Iriart V, Baucom RS, Ashman TL. Herbicides as anthropogenic drivers of eco-evo feedbacks in plant communities at the agro-ecological interface. Mol Ecol 2020; 30:5406-5421. [PMID: 32542840 DOI: 10.1111/mec.15510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/27/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
Herbicides act as human-mediated novel selective agents and community disruptors, yet their full effects on eco-evolutionary dynamics in natural communities have only begun to be appreciated. Here, we synthesize how herbicide exposures can result in dramatic phenotypic and compositional shifts within communities at the agro-ecological interface and how these in turn affect species interactions and drive plant (and plant-associates') evolution in ways that can feedback to continue to affect the ecology and ecosystem functions of these assemblages. We advocate a holistic approach to understanding these dynamics that includes plastic changes and plant community transformations and also extends beyond this single trophic level targeted by herbicides to the effects on nontarget plant-associated organisms and their potential to evolve, thereby embracing the complexity of these real-world systems. We make explicit recommendations for future research to achieve this goal and specifically address impacts of ecology on evolution, evolution on ecology and their feedbacks so that we can gain a more predictive view of the fates of herbicide-impacted communities.
Collapse
Affiliation(s)
- Veronica Iriart
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Regina S Baucom
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
67
|
Wu J, Zhang S, Atta S, Yang C, Zhou Y, Di Serio F, Zhou C, Cao M. Discovery and Survey of a New Mandarivirus Associated with Leaf Yellow Mottle Disease of Citrus in Pakistan. PLANT DISEASE 2020; 104:1593-1600. [PMID: 32357118 DOI: 10.1094/pdis-08-19-1744-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During biological indexing for viruses in citrus trees, in a collection of Symons sweet orange (SSO) (Citrus sinensis L. Osbeck) graft inoculated with bark tissues of citrus trees from the Punjab Province in Pakistan, several SSO trees exhibited leaf symptoms of vein yellowing and mottle. High-throughput sequencing by Illumina of RNA preparation depleted of ribosomal RNAs from one symptomatic tree, followed by BLAST analyses, allowed identification of a novel virus, tentatively named citrus yellow mottle-associated virus (CiYMaV). Genome features of CiYMaV are typical of members of the genus Mandarivirus (family Alphaflexiviridae). Virus particles with elongated flexuous shape and size resembling those of mandariviruses were observed by transmission electron microscopy. The proteins encoded by CiYMaV share high sequence identity, conserved motifs, and phylogenetic relationships with the corresponding proteins encoded by Indian citrus ringspot virus (ICRSV) and citrus yellow vein clearing virus (CYVCV), the two current members of the genus Mandarivirus. Although CYVCV is the virus most closely related to CiYMaV, the two viruses can be serologically and biologically discriminated from each other. A reverse-transcription PCR method designed to specifically detect CiYMaV revealed high prevalence (62%) of this virus in 120 citrus trees from the Punjab Province, Pakistan, where the novel virus was found mainly in mixed infection with CYVCV and citrus tristeza virus. However, a preliminary survey on samples from 200 citrus trees from the Yunnan Province, China failed to detect CiYMaV in this region, suggesting that the molecular, serological, and biological data provided here are timely and can help to prevent the spread of this virus in citrus-producing countries.
Collapse
Affiliation(s)
- Jiaxing Wu
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Song Zhang
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Sagheer Atta
- Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan 32200, Pakistan
| | - Caixia Yang
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering Shenyang University, Shenyang 110044, China
| | - Yan Zhou
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari 70126, Italy
| | - Changyong Zhou
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| |
Collapse
|
68
|
Fontenele RS, Salywon AM, Majure LC, Cobb IN, Bhaskara A, Avalos-Calleros JA, Argüello-Astorga GR, Schmidlin K, Khalifeh A, Smith K, Schreck J, Lund MC, Köhler M, Wojciechowski MF, Hodgson WC, Puente-Martinez R, Van Doorslaer K, Kumari S, Vernière C, Filloux D, Roumagnac P, Lefeuvre P, Ribeiro SG, Kraberger S, Martin DP, Varsani A. A Novel Divergent Geminivirus Identified in Asymptomatic New World Cactaceae Plants. Viruses 2020; 12:E398. [PMID: 32260283 PMCID: PMC7232249 DOI: 10.3390/v12040398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022] Open
Abstract
Cactaceae comprise a diverse and iconic group of flowering plants which are almost exclusively indigenous to the New World. The wide variety of growth forms found amongst the cacti have led to the trafficking of many species throughout the world as ornamentals. Despite the evolution and physiological properties of these plants having been extensively studied, little research has focused on cactus-associated viral communities. While only single-stranded RNA viruses had ever been reported in cacti, here we report the discovery of cactus-infecting single-stranded DNA viruses. These viruses all apparently belong to a single divergent species of the family Geminiviridae and have been tentatively named Opuntia virus 1 (OpV1). A total of 79 apparently complete OpV1 genomes were recovered from 31 different cactus plants (belonging to 20 different cactus species from both the Cactoideae and Opuntioideae clades) and from nine cactus-feeding cochineal insects (Dactylopius sp.) sampled in the USA and Mexico. These 79 OpV1 genomes all share > 78.4% nucleotide identity with one another and < 64.9% identity with previously characterized geminiviruses. Collectively, the OpV1 genomes display evidence of frequent recombination, with some genomes displaying up to five recombinant regions. In one case, recombinant regions span ~40% of the genome. We demonstrate that an infectious clone of an OpV1 genome can replicate in Nicotiana benthamiana and Opuntia microdasys. In addition to expanding the inventory of viruses that are known to infect cacti, the OpV1 group is so distantly related to other known geminiviruses that it likely represents a new geminivirus genus. It remains to be determined whether, like its cactus hosts, its geographical distribution spans the globe.
Collapse
Affiliation(s)
- Rafaela S. Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Andrew M. Salywon
- Desert Botanical Garden, Phoenix, AZ 85008, USA; (A.M.S.); (L.C.M.); (W.C.H.); (R.P.-M.)
| | - Lucas C. Majure
- Desert Botanical Garden, Phoenix, AZ 85008, USA; (A.M.S.); (L.C.M.); (W.C.H.); (R.P.-M.)
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Ilaria N. Cobb
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amulya Bhaskara
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- Center for Research in Engineering, Science and Technology, Paradise Valley High School, 3950 E Bell Rd, Phoenix, AZ 85032, USA
| | - Jesús A. Avalos-Calleros
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa de San José 2055, Lomas 4ta Secc, San Luis Potosi 78216, S.L.P., Mexico; (J.A.A.-C.); (G.R.A.-A.)
| | - Gerardo R. Argüello-Astorga
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa de San José 2055, Lomas 4ta Secc, San Luis Potosi 78216, S.L.P., Mexico; (J.A.A.-C.); (G.R.A.-A.)
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Anthony Khalifeh
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Kendal Smith
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Joshua Schreck
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Michael C. Lund
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Matias Köhler
- Departamento de BotânicaPrograma de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501970, Brazil;
| | | | - Wendy C. Hodgson
- Desert Botanical Garden, Phoenix, AZ 85008, USA; (A.M.S.); (L.C.M.); (W.C.H.); (R.P.-M.)
| | - Raul Puente-Martinez
- Desert Botanical Garden, Phoenix, AZ 85008, USA; (A.M.S.); (L.C.M.); (W.C.H.); (R.P.-M.)
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, Department of Immunobiology, BIO5 Institute, and UA Cancer Center, University of Arizona, Tucson, AZ 85721, USA;
| | - Safaa Kumari
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol Station, Beqa’a, Zahle, Lebanon;
| | - Christian Vernière
- CIRAD, BGPI, 34398 Montpellier, France; (C.V.); (D.F.); (P.R.)
- BGPI, INRAE, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France
| | - Denis Filloux
- CIRAD, BGPI, 34398 Montpellier, France; (C.V.); (D.F.); (P.R.)
- BGPI, INRAE, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France
| | - Philippe Roumagnac
- CIRAD, BGPI, 34398 Montpellier, France; (C.V.); (D.F.); (P.R.)
- BGPI, INRAE, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France
| | | | - Simone G. Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, CEP 70770-917, Brazil;
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
| | - Darren P. Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa;
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
69
|
Alcaide C, Rabadán MP, Moreno-Pérez MG, Gómez P. Implications of mixed viral infections on plant disease ecology and evolution. Adv Virus Res 2020; 106:145-169. [PMID: 32327147 DOI: 10.1016/bs.aivir.2020.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mixed viral infections occur more commonly than would be expected by chance in nature. Virus-virus interactions may affect viral traits and leave a genetic signature in the population, and thus influence the prevalence and emergence of viral diseases. Understanding about how the interactions between viruses within a host shape the evolutionary dynamics of the viral populations is needed for viral disease prevention and management. Here, we first synthesize concepts implied in the occurrence of virus-virus interactions. Second, we consider the role of the within-host interactions of virus-virus and virus-other pathogenic microbes, on the composition and structure of viral populations. Third, we contemplate whether mixed viral infections can create opportunities for the generation and maintenance of viral genetic diversity. Fourth, we attempt to summarize the evolutionary response of viral populations to mixed infections to understand how they shape the spatio-temporal dynamics of viral populations at the individual plant and field scales. Finally, we anticipate the future research under the reconciliation of molecular epidemiology and evolutionary ecology, drawing attention to the need of adding more complexity to future research in order to gain a better understanding about the mechanisms operating in nature.
Collapse
Affiliation(s)
- Cristina Alcaide
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - M Pilar Rabadán
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - Manuel G Moreno-Pérez
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - Pedro Gómez
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain.
| |
Collapse
|
70
|
Moury B, Desbiez C. Host Range Evolution of Potyviruses: A Global Phylogenetic Analysis. Viruses 2020; 12:v12010111. [PMID: 31963241 PMCID: PMC7020010 DOI: 10.3390/v12010111] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/28/2022] Open
Abstract
Virus host range, i.e., the number and diversity of host species of viruses, is an important determinant of disease emergence and of the efficiency of disease control strategies. However, for plant viruses, little is known about the genetic or ecological factors involved in the evolution of host range. Using available genome sequences and host range data, we performed a phylogenetic analysis of host range evolution in the genus Potyvirus, a large group of plant RNA viruses that has undergone a radiative evolution circa 7000 years ago, contemporaneously with agriculture intensification in mid Holocene. Maximum likelihood inference based on a set of 59 potyviruses and 38 plant species showed frequent host range changes during potyvirus evolution, with 4.6 changes per plant species on average, including 3.1 host gains and 1.5 host loss. These changes were quite recent, 74% of them being inferred on the terminal branches of the potyvirus tree. The most striking result was the high frequency of correlated host gains occurring repeatedly in different branches of the potyvirus tree, which raises the question of the dependence of the molecular and/or ecological mechanisms involved in adaptation to different plant species.
Collapse
|
71
|
Rodríguez-Nevado C, G Gavilán R, Pagán I. Host Abundance and Identity Determine the Epidemiology and Evolution of a Generalist Plant Virus in a Wild Ecosystem. PHYTOPATHOLOGY 2020; 110:94-105. [PMID: 31589103 DOI: 10.1094/phyto-07-19-0271-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing evidence indicates that in wild ecosystems plant viruses are important ecological agents, and with potential to jump into crops, but only recently have the diversity and population dynamics of wild plant viruses begun to be explored. Theory proposes that biotic factors (e.g., ecosystem biodiversity, host abundance, and host density) and climatic conditions would determine the epidemiology and evolution of wild plant viruses. However, these predictions seldom have been empirically tested. For 3 years, we analyzed the prevalence and genetic diversity of Potyvirus species in preserved riparian forests of Spain. Results indicated that potyviruses were always present in riparian forests, with a novel generalist potyvirus species provisionally named Iberian hop mosaic virus (IbHMV), explaining the largest fraction of infected plants. Focusing on this potyvirus, we analyzed the biotic and climatic factors affecting virus infection risk and population genetic diversity in its native ecosystem. The main predictors of IbHMV infection risk were host relative abundance and species richness. Virus prevalence and host relative abundance were the major factors determining the genetic diversity and selection pressures in the virus population. These observations support theoretical predictions assigning these ecological factors a key role in parasite epidemiology and evolution. Finally, our phylogenetic analysis indicated that the viral population was genetically structured according to host and location of origin, as expected if speciation is largely sympatric. Thus, this work contributes to characterizing viral diversity and provides novel information on the determinants of plant virus epidemiology and evolution in wild ecosystems.
Collapse
Affiliation(s)
- Cristina Rodríguez-Nevado
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Departamento de Biotecnología-Biología Vegetal, Universidad Politécnica de Madrid, Madrid, Spain
| | - Rosario G Gavilán
- Facultad de Farmacia, Departamento de Farmacología, Farmacognosia y Botánica, unidad de Botánica, Universidad Complutense de Madrid, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Departamento de Biotecnología-Biología Vegetal, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
72
|
Alcaide C, Rabadán MP, Juárez M, Gómez P. Long-Term Cocirculation of Two Strains of Pepino Mosaic Virus in Tomato Crops and Its Effect on Population Genetic Variability. PHYTOPATHOLOGY 2020; 110:49-57. [PMID: 31524081 DOI: 10.1094/phyto-07-19-0247-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mixed viral infections are common in plants, and the evolutionary dynamics of viral populations may differ depending on whether the infection is caused by single or multiple viral strains. However, comparative studies of single and mixed infections using viral populations in comparable agricultural and geographical locations are lacking. Here, we monitored the occurrence of pepino mosaic virus (PepMV) in tomato crops in two major tomato-producing areas in Murcia (southeastern Spain), supporting evidence showing that PepMV disease-affected plants had single infections of the Chilean 2 (CH2) strain in one area and the other area exhibited long-term (13 years) coexistence of the CH2 and European (EU) strains. We hypothesized that circulating strains of PepMV might be modulating the differentiation between them and shaping the evolutionary dynamics of PepMV populations. Our phylogenetic analysis of 106 CH2 isolates randomly selected from both areas showed a remarkable divergence between the CH2 isolates, with increased nucleotide variability in the geographical area where both strains cocirculate. Furthermore, the potential virus-virus interaction was studied further by constructing six full-length infectious CH2 clones from both areas, and assessing their viral fitness in the presence and absence of an EU-type isolate. All CH2 clones showed decreased fitness in mixed infections and although complete genome sequencing indicated a nucleotide divergence of those CH2 clones by area, the magnitude of the fitness response was irrespective of the CH2 origin. Overall, these results suggest that although agroecological cropping practices may be particularly important for explaining the evolutionary dynamics of PepMV in tomato crops, the cocirculation of both strains may have implications on the genetic variability of PepMV populations.
Collapse
Affiliation(s)
- C Alcaide
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Campus de Espinardo, Espinardo, CP.30100, Murcia, Spain
| | - M P Rabadán
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Campus de Espinardo, Espinardo, CP.30100, Murcia, Spain
| | - M Juárez
- Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández de Elche, Orihuela 03312, Alicante, Spain
| | - P Gómez
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Campus de Espinardo, Espinardo, CP.30100, Murcia, Spain
| |
Collapse
|
73
|
Phytovirome Analysis of Wild Plant Populations: Comparison of Double-Stranded RNA and Virion-Associated Nucleic Acid Metagenomic Approaches. J Virol 2019; 94:JVI.01462-19. [PMID: 31597769 DOI: 10.1128/jvi.01462-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 12/29/2022] Open
Abstract
Metagenomic studies have indicated that the diversity of plant viruses was until recently far underestimated. As important components of ecosystems, there is a need to explore the diversity and richness of the viruses associated with plant populations and to understand the drivers shaping their diversity in space and time. Two viral sequence enrichment approaches, double-stranded RNA (dsRNA) and virion-associated nucleic acids (VANA), have been used and compared here for the description of the virome of complex plant pools representative of the most prevalent plant species in unmanaged and cultivated ecosystems. A novel bioinformatics strategy was used to assess viral richness not only at the family level but also by determining operational taxonomic units (OTU) following the clustering of conserved viral domains. A large viral diversity dominated by novel dsRNA viruses was detected in all sites, while a large between-site variability limited the ability to draw a clear conclusion on the impact of cultivation. A trend for a higher diversity of dsRNA viruses was nevertheless detected in unmanaged sites (118 versus 77 unique OTUs). The dsRNA-based approach consistently revealed a broader and more comprehensive diversity for RNA viruses than the VANA approach, whatever the assessment criterion. In addition, dissimilarity analyses indicated both approaches to be largely reproducible but not necessarily convergent. These findings illustrate features of phytoviromes in various ecosystems and a novel strategy for precise virus richness estimation. These results allow us to reason methodological choices in phytovirome studies and likely in other virome studies where RNA viruses are the focal taxa.IMPORTANCE There are today significant knowledge gaps on phytovirus populations and on the drivers impacting them but also on the comparative performance-methodological approaches for their study. We used and compared two viral sequence enrichment approaches, double-stranded RNAs (dsRNA) and virion-associated nucleic acids (VANA), for phytovirome description in complex pools representative of the most prevalent plant species in unmanaged and cultivated ecosystems. Viral richness was assessed by determining operational taxonomic units (OTU) following the clustering of conserved viral domains. There is some limited evidence of an impact of cultivation on viral populations. These results provide data allowing us to reason the methodological choices in virome studies. For researchers primarily interested in RNA viruses, the dsRNA approach is recommended because it consistently provided a more comprehensive description of the analyzed phytoviromes, but it understandably underrepresented DNA viruses and bacteriophages.
Collapse
|
74
|
Alonso P, Gladieux P, Moubset O, Shih PJ, Mournet P, Frouin J, Blondin L, Ferdinand R, Fernandez E, Julian C, Filloux D, Adreit H, Fournier E, Ducasse A, Grosbois V, Morel JB, Huang H, Jin B, He X, Martin DP, Vernière C, Roumagnac P. Emergence of Southern Rice Black-Streaked Dwarf Virus in the Centuries-Old Chinese Yuanyang Agrosystem of Rice Landraces. Viruses 2019; 11:v11110985. [PMID: 31731529 PMCID: PMC6893465 DOI: 10.3390/v11110985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 01/17/2023] Open
Abstract
Southern rice black-streaked dwarf virus (SRBSDV), which causes severe disease symptoms in rice (Oriza sativa L.) has been emerging in the last decade throughout northern Vietnam, southern Japan and southern, central and eastern China. Here we attempt to quantify the prevalence of SRBSDV in the Honghe Hani rice terraces system (HHRTS)-a Chinese 1300-year-old traditional rice production system. We first confirm that genetically diverse rice varieties are still being cultivated in the HHRTS and categorize these varieties into three main genetic clusters, including the modern hybrid varieties group (MH), the Hongyang improved modern variety group (HY) and the traditional indica landraces group (TIL). We also show over a 2-year period that SRBSDV remains prevalent in the HHRTS (20.1% prevalence) and that both the TIL (17.9% prevalence) and the MH varieties (5.1% prevalence) were less affected by SRBSDV than were the HY varieties (30.2% prevalence). Collectively we suggest that SRBSDV isolates are freely moving within the HHRTS and that TIL, HY and MH rice genetic clusters are not being preferentially infected by particular SRBSDV lineages. Given that SRBSDV can cause 30-50% rice yield losses, our study emphasizes both the need to better monitor the disease in the HHRTS, and the need to start considering ways to reduce its burden on rice production.
Collapse
Affiliation(s)
- Pascal Alonso
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
| | - Pierre Gladieux
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
- INRA, BGPI, 34398 Montpellier, France
| | - Oumaima Moubset
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
| | - Pei-Jung Shih
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
- Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan
| | - Pierre Mournet
- CIRAD, UMR AGAP, 34398 Montpellier, France; (P.M.); (J.F.)
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34398 Montpellier, France
| | - Julien Frouin
- CIRAD, UMR AGAP, 34398 Montpellier, France; (P.M.); (J.F.)
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34398 Montpellier, France
| | - Laurence Blondin
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
| | - Romain Ferdinand
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
| | - Emmanuel Fernandez
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
| | - Charlotte Julian
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
| | - Denis Filloux
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
| | - Henry Adreit
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
| | - Elisabeth Fournier
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
- INRA, BGPI, 34398 Montpellier, France
| | - Aurélie Ducasse
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
- INRA, BGPI, 34398 Montpellier, France
| | | | - Jean-Benoit Morel
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
- INRA, BGPI, 34398 Montpellier, France
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (H.H.); (X.H.)
| | - Baihui Jin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (H.H.); (X.H.)
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (H.H.); (X.H.)
- Southwest Forestry University, Kunming 650224, China
| | - Darren P. Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 4579, South Africa;
| | - Christian Vernière
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
| | - Philippe Roumagnac
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
- Correspondence: ; Tel.: +33(0)-4-99-62-48-53; Fax: +33(0)-4-99-62-48-48
| |
Collapse
|
75
|
Bergner LM, Orton RJ, Benavides JA, Becker DJ, Tello C, Biek R, Streicker DG. Demographic and environmental drivers of metagenomic viral diversity in vampire bats. Mol Ecol 2019; 29:26-39. [PMID: 31561274 PMCID: PMC7004108 DOI: 10.1111/mec.15250] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/17/2019] [Indexed: 01/09/2023]
Abstract
Viruses infect all forms of life and play critical roles as agents of disease, drivers of biochemical cycles and sources of genetic diversity for their hosts. Our understanding of viral diversity derives primarily from comparisons among host species, precluding insight into how intraspecific variation in host ecology affects viral communities or how predictable viral communities are across populations. Here we test spatial, demographic and environmental hypotheses explaining viral richness and community composition across populations of common vampire bats, which occur in diverse habitats of North, Central and South America. We demonstrate marked variation in viral communities that was not consistently predicted by a null model of declining community similarity with increasing spatial or genetic distances separating populations. We also find no evidence that larger bat colonies host greater viral diversity. Instead, viral diversity follows an elevational gradient, is enriched by juvenile-biased age structure, and declines with local anthropogenic food resources as measured by livestock density. Our results establish the value of linking the modern influx of metagenomic sequence data with comparative ecology, reveal that snapshot views of viral diversity are unlikely to be representative at the species level, and affirm existing ecological theories that link host ecology not only to single pathogen dynamics but also to viral communities.
Collapse
Affiliation(s)
- Laura M Bergner
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Richard J Orton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Julio A Benavides
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Departamento de Ecología, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Daniel J Becker
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.,Department of Biology, Indiana University, Bloomington, IN, USA
| | - Carlos Tello
- Association for the Conservation and Development of Natural Resources, Lima, Peru.,Yunkawasi, Lima, Peru
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
76
|
Claverie S, Ouattara A, Hoareau M, Filloux D, Varsani A, Roumagnac P, Martin DP, Lett JM, Lefeuvre P. Exploring the diversity of Poaceae-infecting mastreviruses on Reunion Island using a viral metagenomics-based approach. Sci Rep 2019; 9:12716. [PMID: 31481704 PMCID: PMC6722101 DOI: 10.1038/s41598-019-49134-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/20/2019] [Indexed: 01/22/2023] Open
Abstract
Mostly found in Africa and its surrounding islands, African streak viruses (AfSV) represent the largest group of known mastreviruses. Of the thirteen AfSV species that are known to infect either cultivated or wild Poaceae plant species, six have been identified on Reunion Island. To better characterize AfSV diversity on this island, we undertook a survey of a small agroecosystem using a new metagenomics-based approach involving rolling circle amplification with random PCR amplification tagging (RCA-RA-PCR), high-throughput sequencing (Illumina HiSeq) and the mastrevirus reads classification using phylogenetic placement. Mastreviruses that likely belong to three new species were discovered and full genome sequences of these were determined by Sanger sequencing. The geminivirus-focused metagenomics approach we applied in this study was useful in both the detection of known and novel mastreviruses. The results confirm that Reunion Island is indeed a hotspot of AfSV diversity and that many of the mastrevirus species have likely been introduced multiple times. Applying a similar approach in other natural and agricultural environments should yield sufficient detail on the composition and diversity of geminivirus communities to precipitate major advances in our understanding of the ecology and the evolutionary history of this important group of viruses.
Collapse
Affiliation(s)
- Sohini Claverie
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France.,Université de La Réunion, UMR PVBMT, Pôle de Protection des Plantes, 7 Chemin de l'IRAT, Saint-Pierre, 97410, France
| | - Alassane Ouattara
- INERA, 01 BP 476, Ouagadougou 01, Burkina Faso.,Laboratoire Biosciences, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | | | - Denis Filloux
- CIRAD, UMR BGPI, F-34398, Montpellier, France.,BGPI, Université de Montpellier, INRA, CIRAD, Montpellier SupAgro, F-34398, Montpellier, France
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287-5001, USA.,Structural Biology Research Unit, Departement of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Philippe Roumagnac
- CIRAD, UMR BGPI, F-34398, Montpellier, France.,BGPI, Université de Montpellier, INRA, CIRAD, Montpellier SupAgro, F-34398, Montpellier, France
| | - Darren P Martin
- Computational Biology Division, Departement of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | | | | |
Collapse
|
77
|
Lefeuvre P, Martin DP, Elena SF, Shepherd DN, Roumagnac P, Varsani A. Evolution and ecology of plant viruses. Nat Rev Microbiol 2019; 17:632-644. [PMID: 31312033 DOI: 10.1038/s41579-019-0232-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
The discovery of the first non-cellular infectious agent, later determined to be tobacco mosaic virus, paved the way for the field of virology. In the ensuing decades, research focused on discovering and eliminating viral threats to plant and animal health. However, recent conceptual and methodological revolutions have made it clear that viruses are not merely agents of destruction but essential components of global ecosystems. As plants make up over 80% of the biomass on Earth, plant viruses likely have a larger impact on ecosystem stability and function than viruses of other kingdoms. Besides preventing overgrowth of genetically homogeneous plant populations such as crop plants, some plant viruses might also promote the adaptation of their hosts to changing environments. However, estimates of the extent and frequencies of such mutualistic interactions remain controversial. In this Review, we focus on the origins of plant viruses and the evolution of interactions between these viruses and both their hosts and transmission vectors. We also identify currently unknown aspects of plant virus ecology and evolution that are of practical importance and that should be resolvable in the near future through viral metagenomics.
Collapse
Affiliation(s)
| | - Darren P Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Paterna, València, Spain.,The Santa Fe Institute, Santa Fe, NM, USA
| | | | - Philippe Roumagnac
- CIRAD, UMR BGPI, Montpellier, France.,BGPI, CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA. .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
78
|
Roossinck MJ. Viruses in the phytobiome. Curr Opin Virol 2019; 37:72-76. [PMID: 31310864 DOI: 10.1016/j.coviro.2019.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 11/18/2022]
Abstract
The phytobiome, defined as plants and all the entities that interact with them, is rich in viruses, but with the exception of plant viruses of crop plants, most of the phytobiome viruses remain very understudied. This review focuses on the neglected portions of the phytobiome, including viruses of other microbes interacting with plants, viruses in the soil, viruses of wild plants, and relationships between viruses and the vectors of plant viruses.
Collapse
Affiliation(s)
- Marilyn J Roossinck
- Center for Infectious Disease Dynamics, Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, USA.
| |
Collapse
|
79
|
New Ca. Liberibacter psyllaurous haplotype resurrected from a 49-year-old specimen of Solanum umbelliferum: a native host of the psyllid vector. Sci Rep 2019; 9:9530. [PMID: 31267035 PMCID: PMC6606623 DOI: 10.1038/s41598-019-45975-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/18/2019] [Indexed: 11/29/2022] Open
Abstract
Over the last century, repeated emergence events within the Candidatus Liberibacter taxon have produced pathogens with devastating effects. Presently, our knowledge of Ca. Liberibacter diversity, host associations, and interactions with vectors is limited due to a focus on studying this taxon within crops. But to understand traits associated with pathogen emergence it is essential to study pathogen diversity in wild vegetation as well. Here, we explore historical native host plant associations and diversity of the cosmopolitan species, Ca. L. psyllaurous, also known as Ca. L. solanacearum, which is associated with psyllid yellows disease and zebra chip disease, especially in potato. We screened tissue from herbarium samples of three native solanaceous plants collected near potato-growing regions throughout Southern California over the last century. This screening revealed a new haplotype of Ca. L. psyllaurous (G), which, based on our sampling, has been present in the U.S. since at least 1970. Phylogenetic analysis of this new haplotype suggests that it may be closely related to a newly emerged North American haplotype (F) associated with zebra chip disease in potatoes. Our results demonstrate the value of herbarium sampling for discovering novel Ca. Liberibacter haplotypes not previously associated with disease in crops.
Collapse
|
80
|
Rodríguez-Negrete EA, Morales-Aguilar JJ, Domínguez-Duran G, Torres-Devora G, Camacho-Beltrán E, Leyva-López NE, Voloudakis AE, Bejarano ER, Méndez-Lozano J. High-Throughput Sequencing Reveals Differential Begomovirus Species Diversity in Non-Cultivated Plants in Northern-Pacific Mexico. Viruses 2019; 11:v11070594. [PMID: 31261973 PMCID: PMC6669537 DOI: 10.3390/v11070594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/28/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022] Open
Abstract
Plant DNA viruses of the genus Begomovirus have been documented as the most genetically diverse in the family Geminiviridae and present a serious threat for global horticultural production, especially considering climate change. It is important to characterize naturally existing begomoviruses, since viral genetic diversity in non-cultivated plants could lead to future disease epidemics in crops. In this study, high-throughput sequencing (HTS) was employed to determine viral diversity of samples collected in a survey performed during 2012–2016 in seven states of Northern-Pacific Mexico, areas of diverse climatic conditions where different vegetable crops are subject to intensive farming. In total, 132 plant species, belonging to 34 families, were identified and sampled in the natural ecosystems surrounding cultivated areas (agro-ecological interface). HTS analysis and subsequent de novo assembly revealed a number of geminivirus-related DNA signatures with 80 to 100% DNA similarity with begomoviral sequences present in the genome databank. The analysis revealed DNA signatures corresponding to 52 crop-infecting and 35 non-cultivated-infecting geminiviruses that, interestingly, were present in different plant species. Such an analysis deepens our knowledge of geminiviral diversity and could help detecting emerging viruses affecting crops in different agro-climatic regions.
Collapse
Affiliation(s)
- Edgar Antonio Rodríguez-Negrete
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Juan José Morales-Aguilar
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Gustavo Domínguez-Duran
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Gadiela Torres-Devora
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Erika Camacho-Beltrán
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Norma Elena Leyva-López
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Andreas E Voloudakis
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, 75 Iera Odos, Athens 11855, Greece
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain
| | - Jesús Méndez-Lozano
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico.
| |
Collapse
|
81
|
García-Arenal F, Zerbini FM. Life on the Edge: Geminiviruses at the Interface Between Crops and Wild Plant Hosts. Annu Rev Virol 2019; 6:411-433. [PMID: 31180812 DOI: 10.1146/annurev-virology-092818-015536] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses constitute the largest group of emerging pathogens, and geminiviruses (plant viruses with circular, single-stranded DNA genomes) are the major group of emerging plant viruses. With their high potential for genetic variation due to mutation and recombination, their efficient spread by vectors, and their wide host range as a group, including both wild and cultivated hosts, geminiviruses are attractive models for the study of the evolutionary and ecological factors driving virus emergence. Studies on the epidemiological features of geminivirus diseases have traditionally focused primarily on crop plants. Nevertheless, knowledge of geminivirus infection in wild plants, and especially at the interface between wild and cultivated plants, is necessary to provide a complete view of their ecology, evolution, and emergence. In this review, we address the most relevant aspects of geminivirus variability and evolution in wild and crop plants and geminiviruses' potential to emerge in crops.
Collapse
Affiliation(s)
- Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain;
| | - Francisco Murilo Zerbini
- Departamento de Fitopatologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), and National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil;
| |
Collapse
|
82
|
Plant virus-based materials for biomedical applications: Trends and prospects. Adv Drug Deliv Rev 2019; 145:96-118. [PMID: 30176280 DOI: 10.1016/j.addr.2018.08.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Nanomaterials composed of plant viral components are finding their way into medical technology and health care, as they offer singular properties. Precisely shaped, tailored virus nanoparticles (VNPs) with multivalent protein surfaces are efficiently loaded with functional compounds such as contrast agents and drugs, and serve as carrier templates and targeting vehicles displaying e.g. peptides and synthetic molecules. Multiple modifications enable uses including vaccination, biosensing, tissue engineering, intravital delivery and theranostics. Novel concepts exploit self-organization capacities of viral building blocks into hierarchical 2D and 3D structures, and their conversion into biocompatible, biodegradable units. High yields of VNPs and proteins can be harvested from plants after a few days so that various products have reached or are close to commercialization. The article delineates potentials and limitations of biomedical plant VNP uses, integrating perspectives of chemistry, biomaterials sciences, molecular plant virology and process engineering.
Collapse
|
83
|
Valdano E, Manrubia S, Gómez S, Arenas A. Endemicity and prevalence of multipartite viruses under heterogeneous between-host transmission. PLoS Comput Biol 2019; 15:e1006876. [PMID: 30883545 PMCID: PMC6438571 DOI: 10.1371/journal.pcbi.1006876] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 03/28/2019] [Accepted: 02/17/2019] [Indexed: 01/29/2023] Open
Abstract
Multipartite viruses replicate through a puzzling evolutionary strategy. Their genome is segmented into two or more parts, and encapsidated in separate particles that appear to propagate independently. Completing the replication cycle, however, requires the full genome, so that a systemic infection of a host requires the concurrent presence of several particles. This represents an apparent evolutionary drawback of multipartitism, while its advantages remain unclear. A transition from monopartite to multipartite viral forms has been described in vitro under conditions of high multiplicity of infection, suggesting that cooperation between defective mutants is a plausible evolutionary pathway towards multipartitism. However, it is unknown how the putative advantages that multipartitism might enjoy at the microscopic level affect its epidemiology, or if an explicit advantange is needed to explain its ecological persistence. In order to disentangle which mechanisms might contribute to the rise and fixation of multipartitism, we here investigate the interaction between viral spreading dynamics and host population structure. We set up a compartmental model of the spread of a virus in its different forms and explore its epidemiology using both analytical and numerical techniques. We uncover that the impact of host contact structure on spreading dynamics entails a rich phenomenology of ecological relationships that includes cooperation, competition, and commensality. Furthermore, we find out that multipartitism might rise to fixation even in the absence of explicit microscopic advantages. Multipartitism allows the virus to colonize environments that could not be invaded by the monopartite form, while homogeneous contacts between hosts facilitate its spread. We conjecture that these features might have led to an increase in the diversity and prevalence of multipartite viral forms concomitantly with the expansion of agricultural practices.
Collapse
Affiliation(s)
- Eugenio Valdano
- Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain
| | - Susanna Manrubia
- National Centre for Biotechnology (CSIC), Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Sergio Gómez
- Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain
| | - Alex Arenas
- Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
84
|
Susi H, Filloux D, Frilander MJ, Roumagnac P, Laine AL. Diverse and variable virus communities in wild plant populations revealed by metagenomic tools. PeerJ 2019; 7:e6140. [PMID: 30648011 PMCID: PMC6330959 DOI: 10.7717/peerj.6140] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
Wild plant populations may harbour a myriad of unknown viruses. As the majority of research efforts have targeted economically important plant species, the diversity and prevalence of viruses in the wild has remained largely unknown. However, the recent shift towards metagenomics-based sequencing methodologies, especially those targeting small RNAs, is finally enabling virus discovery from wild hosts. Understanding this diversity of potentially pathogenic microbes in the wild can offer insights into the components of natural biodiversity that promotes long-term coexistence between hosts and parasites in nature, and help predict when and where risks of disease emergence are highest. Here, we used small RNA deep sequencing to identify viruses in Plantago lanceolata populations, and to understand the variation in their prevalence and distribution across the Åland Islands, South-West Finland. By subsequent design of PCR primers, we screened the five most common viruses from two sets of P. lanceolata plants: 164 plants collected from 12 populations irrespective of symptoms, and 90 plants collected from five populations showing conspicuous viral symptoms. In addition to the previously reported species Plantago lanceolata latent virus (PlLV), we found four potentially novel virus species belonging to Caulimovirus, Betapartitivirus, Enamovirus, and Closterovirus genera. Our results show that virus prevalence and diversity varied among the sampled host populations. In six of the virus infected populations only a single virus species was detected, while five of the populations supported between two to five of the studied virus species. In 20% of the infected plants, viruses occurred as coinfections. When the relationship between conspicuous viral symptoms and virus infection was investigated, we found that plants showing symptoms were usually infected (84%), but virus infections were also detected from asymptomatic plants (44%). Jointly, these results reveal a diverse virus community with newly developed tools and protocols that offer exciting opportunities for future studies on the eco-evolutionary dynamics of viruses infecting plants in the wild.
Collapse
Affiliation(s)
- Hanna Susi
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Finland
| | - Denis Filloux
- CIRAD, BGPI, Montpellier, France.,BGPI, INRA, CIRAD, SupAgro, University Montpellier, Montpellier, France
| | - Mikko J Frilander
- Institute of Biotechnology, Genome Biology Program, University of Helsinki, Finland
| | - Philippe Roumagnac
- CIRAD, BGPI, Montpellier, France.,BGPI, INRA, CIRAD, SupAgro, University Montpellier, Montpellier, France
| | - Anna-Liisa Laine
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Finland
| |
Collapse
|
85
|
Shates TM, Sun P, Malmstrom CM, Dominguez C, Mauck KE. Addressing Research Needs in the Field of Plant Virus Ecology by Defining Knowledge Gaps and Developing Wild Dicot Study Systems. Front Microbiol 2019; 9:3305. [PMID: 30687284 PMCID: PMC6333650 DOI: 10.3389/fmicb.2018.03305] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/19/2018] [Indexed: 11/30/2022] Open
Abstract
Viruses are ubiquitous within all habitats that support cellular life and represent the most important emerging infectious diseases of plants. Despite this, it is only recently that we have begun to describe the ecological roles of plant viruses in unmanaged systems and the influence of ecosystem properties on virus evolution. We now know that wild plants frequently harbor infections by diverse virus species, but much remains to be learned about how viruses influence host traits and how hosts influence virus evolution and vector interactions. To identify knowledge gaps and suggest avenues for alleviating research deficits, we performed a quantitative synthesis of a representative sample of virus ecology literature, developed criteria for expanding the suite of pathosystems serving as models, and applied these criteria through a case study. We found significant gaps in the types of ecological systems studied, which merit more attention. In particular, there is a strong need for a greater diversity of logistically tractable, wild dicot perennial study systems suitable for experimental manipulations of infection status. Based on criteria developed from our quantitative synthesis, we evaluated three California native dicot perennials typically found in Mediterranean-climate plant communities as candidate models: Cucurbita foetidissima (buffalo gourd), Cucurbita palmata (coyote gourd), and Datura wrightii (sacred thorn-apple). We used Illumina sequencing and network analyses to characterize viromes and viral links among species, using samples taken from multiple individuals at two different reserves. We also compared our Illumina workflow with targeted RT-PCR detection assays of varying costs. To make this process accessible to ecologists looking to incorporate virology into existing studies, we describe our approach in detail and discuss advantages and challenges of different protocols. We also provide a bioinformatics workflow based on open-access tools with graphical user interfaces. Our study provides evidence that dicot perennials in xeric habitats support multiple, asymptomatic infections by viruses known to be pathogenic in related crop hosts. Quantifying the impacts of these interactions on plant performance and virus epidemiology in our logistically tractable host systems will provide fundamental information about plant virus ecology outside of crop environments.
Collapse
Affiliation(s)
- Tessa M. Shates
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Penglin Sun
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Carolyn M. Malmstrom
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Graduate Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, United States
| | - Chrysalyn Dominguez
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Kerry E. Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
86
|
Filloux D, Fernandez E, Loire E, Claude L, Galzi S, Candresse T, Winter S, Jeeva ML, Makeshkumar T, Martin DP, Roumagnac P. Nanopore-based detection and characterization of yam viruses. Sci Rep 2018; 8:17879. [PMID: 30552347 PMCID: PMC6294787 DOI: 10.1038/s41598-018-36042-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/04/2018] [Indexed: 01/07/2023] Open
Abstract
We here assessed the capability of the MinION sequencing approach to detect and characterize viruses infecting a water yam plant. This sequencing platform consistently revealed the presence of several plant virus species, including Dioscorea bacilliform virus, Yam mild mosaic virus and Yam chlorotic necrosis virus. A potentially novel ampelovirus was also detected by a complimentary Illumina sequencing approach. The full-length genome sequence of yam chlorotic necrosis virus was determined using Sanger sequencing, which enabled determination of the coverage and sequencing accuracy of the MinION technology. Whereas the total mean sequencing error rate of yam chlorotic necrosis virus-related MinION reads was 11.25%, we show that the consensus sequence obtained either by de novo assembly or after mapping the MinION reads on the virus genomic sequence was >99.8% identical with the Sanger-derived reference sequence. From the perspective of potential plant disease diagnostic applications of MinION sequencing, these degrees of sequencing accuracy demonstrate that the MinION approach can be used to both reliably detect and accurately sequence nearly full-length positive-sense single-strand polyadenylated RNA plant virus genomes.
Collapse
Affiliation(s)
- Denis Filloux
- CIRAD, BGPI, Montpellier, France
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, Montpellier, France
| | - Emmanuel Fernandez
- CIRAD, BGPI, Montpellier, France
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, Montpellier, France
| | - Etienne Loire
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
- ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | - Lisa Claude
- CIRAD, BGPI, Montpellier, France
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, Montpellier, France
| | - Serge Galzi
- CIRAD, BGPI, Montpellier, France
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, Montpellier, France
| | - Thierry Candresse
- UMR 1332 BFP, INRA, University Bordeaux, CS20032, 33882, Villenave d'Ornon cedex, France
| | - Stephan Winter
- DSMZ Plant Virus Department, Messeweg 11/12, 38102, Braunschweig, Germany
| | - M L Jeeva
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala, India
| | - T Makeshkumar
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala, India
| | - Darren P Martin
- Computational Biology Group, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Philippe Roumagnac
- CIRAD, BGPI, Montpellier, France.
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, Montpellier, France.
| |
Collapse
|
87
|
Filloux D, Fernandez E, Comstock JC, Mollov D, Roumagnac P, Rott P. Viral Metagenomic-Based Screening of Sugarcane from Florida Reveals Occurrence of Six Sugarcane-Infecting Viruses and High Prevalence of Sugarcane yellow leaf virus. PLANT DISEASE 2018; 102:2317-2323. [PMID: 30207899 DOI: 10.1094/pdis-04-18-0581-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A viral metagenomics study of the sugarcane virome in Florida was carried out in 2013 to 2014 to analyze occurrence of known and potentially new viruses. In total, 214 sugarcane leaf samples were collected from different commercial sugarcane (Saccharum interspecific hybrids) fields in Florida and from other Saccharum and related species taken from two local germplasm collections. Virion-associated nucleic acids (VANA) metagenomics was used for detection and identification of viruses present within the collected leaf samples. VANA sequence reads were obtained for 204 leaf samples and all four previously reported sugarcane viruses occurring in Florida were detected: Sugarcane yellow leaf virus (SCYLV, 150 infected samples out of 204), Sugarcane mosaic virus (1 of 204), Sugarcane mild mosaic virus (13 of 204), and Sugarcane bacilliform virus (54 of 204). High prevalence of SCYLV in Florida commercial fields and germplasm collections was confirmed by reverse-transcription polymerase chain reaction. Sequence analyses revealed the presence of SCYLV isolates belonging to two different phylogenetic clades (I and II), including a new genotype of this virus. This viral metagenomics approach also resulted in the detection of a new sugarcane-infecting mastrevirus (recently described and named Sugarcane striate virus), and two potential new viruses in the genera Chrysovirus and Umbravirus.
Collapse
Affiliation(s)
- D Filloux
- CIRAD, BGPI, Montpellier, France, and BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, Montpellier, France
| | - E Fernandez
- CIRAD, BGPI, Montpellier, France, and BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, Montpellier, France
| | - J C Comstock
- Sugarcane Field Station, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Canal Point, FL 33438
| | - D Mollov
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD 20705
| | | | - P Rott
- University of Florida, Department of Plant Pathology, Everglades Research & Education Center, Belle Glade 33430
| |
Collapse
|
88
|
Makarova S, Makhotenko A, Spechenkova N, Love AJ, Kalinina NO, Taliansky M. Interactive Responses of Potato ( Solanum tuberosum L.) Plants to Heat Stress and Infection With Potato Virus Y. Front Microbiol 2018; 9:2582. [PMID: 30425697 PMCID: PMC6218853 DOI: 10.3389/fmicb.2018.02582] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/10/2018] [Indexed: 11/13/2022] Open
Abstract
Potato (Solanum tuberosum) plants are exposed to diverse environmental stresses, which may modulate plant-pathogen interactions, and potentially cause further decreases in crop productivity. To provide new insights into interactive molecular responses to heat stress combined with virus infection in potato, we analyzed expression of genes encoding pathogenesis-related (PR) proteins [markers of salicylic acid (SA)-mediated plant defense] and heat shock proteins (HSPs), in two potato cultivars that differ in tolerance to elevated temperatures and in susceptibility to potato virus Y (PVY). In plants of cv. Chicago (thermosensitive and PVY-susceptible), increased temperature reduced PR gene expression and this correlated with enhancement of PVY infection (virus accumulation and symptom production). In contrast, with cv. Gala (thermotolerant and PVY resistant), which displayed a greater increase in PR gene expression in response to PVY infection, temperature affected neither PR transcript levels nor virus accumulation. HSP genes were induced by elevated temperature in both cultivars but to higher levels in the thermotolerant (Gala) cultivar. PVY infection did not alter expression of HSP genes in the Gala cultivar (possibly because of the low level of virus accumulation) but did induce expression of HSP70 and HSP90 in the susceptible cultivar (Chicago). These findings suggest that responses to heat stress and PVY infection in potato have some common underlying mechanisms, which may be integrated in a specific consolidated network that controls plant sensitivity to multiple stresses in a cultivar-specific manner. We also found that the SA pre-treatment subverted the sensitive combined (heat and PVY) stress phenotype in Chicago, implicating SA as a key component of such a regulatory network.
Collapse
Affiliation(s)
- Svetlana Makarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Antonida Makhotenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Natalia O. Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
89
|
The Westward Journey of Alfalfa Leaf Curl Virus. Viruses 2018; 10:v10100542. [PMID: 30287751 PMCID: PMC6212810 DOI: 10.3390/v10100542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 01/13/2023] Open
Abstract
Alfalfa leaf curl virus (ALCV), which causes severe disease symptoms in alfalfa (Medicago sativa L.) and is transmitted by the widespread aphid species, Aphis craccivora Koch, has been found throughout the Mediterranean basin as well as in Iran and Argentina. Here we reconstruct the evolutionary history of ALCV and attempt to determine whether the recent discovery and widespread detection of ALCV is attributable either to past diagnostic biases or to the emergence and global spread of the virus over the past few years. One hundred and twenty ALCV complete genome sequences recovered from ten countries were analyzed and four ALCV genotypes (ALCV-A, ALCV-B, ALCV-C, and ALCV-D) were clearly distinguished. We further confirm that ALCV isolates are highly recombinogenic and that recombination has been a major determinant in the origins of the various genotypes. Collectively, the sequence data support the hypothesis that, of all the analyzed locations, ALCV likely emerged and diversified in the Middle East before spreading to the western Mediterranean basin and Argentina.
Collapse
|
90
|
Novel circular DNA viruses associated with Apiaceae and Poaceae from South Africa and New Zealand. Arch Virol 2018; 164:237-242. [PMID: 30220037 DOI: 10.1007/s00705-018-4031-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
Abstract
Advances in molecular techniques used in viral metagenomics coupled with high throughput sequencing is rapidly expanding our knowledge of plant-associated virus diversity. Applying such approaches, we have identified five novel circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA viruses from Poaceae and Apiaceae plant from South Africa and New Zealand. These viruses have a simple genomic organization, including two open reading frames that likely encode a Rep and a capsid protein (CP), a conserved nonanucleotide motif on the apex of a putative stem loop structure, and conserved rolling-circle replication and helicase motifs within their likely Rep: all suggesting that they replicate through rolling-circle replication. The Reps and the CPs putatively encoded by these five novel viruses share low to moderate degrees of similarity (22.1 - 44.6%) with other CRESS DNA viruses.
Collapse
|
91
|
Hao X, Zhang W, Zhao F, Liu Y, Qian W, Wang Y, Wang L, Zeng J, Yang Y, Wang X. Discovery of Plant Viruses From Tea Plant ( Camellia sinensis (L.) O. Kuntze) by Metagenomic Sequencing. Front Microbiol 2018; 9:2175. [PMID: 30254625 PMCID: PMC6141721 DOI: 10.3389/fmicb.2018.02175] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/24/2018] [Indexed: 12/23/2022] Open
Abstract
The tea plant (Camellia sinensis (L.) O. Kuntze) is an economically important woody species. In this study, we collected 26 tea plant samples with typical discoloration symptoms from different tea gardens and performed metagenomic analysis based on next-generation sequencing. Homology annotation and PCR sequencing validation finally identified seven kinds of plant viruses from tea plant. Based on abundance distribution analysis, the two most abundant plant viruses were highlighted. Genetic characterization suggested that they are two novel virus species with relatively high homology to Blueberry necrotic ring blotch virus and American plum line pattern virus. We named the newly discovered viruses tea plant necrotic ring blotch virus (TPNRBV) and tea plant line pattern virus (TPLPV). Evolutionary relationship analysis indicated that TPNRBV and TPLPV should be grouped into the Blunervirus and the Ilarvirus genera, respectively. TPLPV might have same genome activation process with known ilarviruses based on sequence analysis. Moreover, specific primers for both viruses detection were designed and validated. The symptoms and ultrastructure of TPNRBV infected leaves were first recorded. Virus detections in the symptomatic and asymptomatic tissues from field plants showing tea plant necrotic ring blotch disease suggest that TPNRBV has a systemic movement feature. In summary, we first identified seven kinds of putative plant viruses by metagenomic analysis and report two novel viruses being latent pathogens to tea plant. The results will advance our understanding of tea plant virology and have significance for the genetic breeding of tea plants in the future.
Collapse
Affiliation(s)
- Xinyuan Hao
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Weifu Zhang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Fumei Zhao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ying Liu
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Wenjun Qian
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yuchun Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Lu Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Jianming Zeng
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yajun Yang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinchao Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
92
|
Hily JM, Candresse T, Garcia S, Vigne E, Tannière M, Komar V, Barnabé G, Alliaume A, Gilg S, Hommay G, Beuve M, Marais A, Lemaire O. High-Throughput Sequencing and the Viromic Study of Grapevine Leaves: From the Detection of Grapevine-Infecting Viruses to the Description of a New Environmental Tymovirales Member. Front Microbiol 2018; 9:1782. [PMID: 30210456 PMCID: PMC6123372 DOI: 10.3389/fmicb.2018.01782] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022] Open
Abstract
In the past decade, high-throughput sequencing (HTS) has had a major impact on virus diversity studies as well as on diagnosis, providing an unbiased and more comprehensive view of the virome of a wide range of organisms. Rather than the serological and molecular-based methods, with their more "reductionist" view focusing on one or a few known agents, HTS-based approaches are able to give a "holistic snapshot" of the complex phytobiome of a sample of interest. In grapevine for example, HTS is powerful enough to allow for the assembly of complete genomes of the various viral species or variants infecting a sample of known or novel virus species. In the present study, a total RNAseq-based approach was used to determine the full genome sequences of various grapevine fanleaf virus (GFLV) isolates and to analyze the eventual presence of other viral agents. From four RNAseq datasets, a few complete grapevine-infecting virus and viroid genomes were de-novo assembled: (a) three GFLV genomes, 11 grapevine rupestris stem-pitting associated virus (GRSPaV) and six viroids. In addition, a novel viral genome was detected in all four datasets, consisting of a single-stranded, positive-sense RNA molecule of 6033 nucleotides. This genome displays an organization similar to Tymoviridae family members in the Tymovirales order. Nonetheless, the new virus shows enough differences to be considered as a new species defining a new genus. Detection of this new agent in the original grapevines proved very erratic and was only consistent at the end of the growing season. This virus was never detected in the spring period, raising the possibility that it might not be a grapevine-infecting virus, but rather a virus infecting a grapevine-associated organism that may be transiently present on grapevine samples at some periods of the year. Indeed, the Tymoviridae family comprises isometric viruses infecting a wide range of hosts in different kingdoms (Plantae, Fungi, and Animalia). The present work highlights the fact that even though HTS technologies produce invaluable data for the description of the sanitary status of a plant, in-depth biological studies are necessary before assigning a new virus to a particular host in such metagenomic approaches.
Collapse
Affiliation(s)
- Jean-Michel Hily
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Villenave d'Ornon, Bordeaux, France
| | - Shahinez Garcia
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Emmanuelle Vigne
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Mélanie Tannière
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Véronique Komar
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Guillaume Barnabé
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Antoine Alliaume
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Sophie Gilg
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Gérard Hommay
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Monique Beuve
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Armelle Marais
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Villenave d'Ornon, Bordeaux, France
| | - Olivier Lemaire
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| |
Collapse
|
93
|
Pagán I. The diversity, evolution and epidemiology of plant viruses: A phylogenetic view. INFECTION GENETICS AND EVOLUTION 2018; 65:187-199. [PMID: 30055330 DOI: 10.1016/j.meegid.2018.07.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
During the past four decades, the scientific community has seen an exponential advance in the number, sophistication, and quality of molecular techniques and bioinformatics tools for the genetic characterization of plant virus populations. Predating these advances, the field of Phylogenetics has significantly contributed to understand important aspects of plant virus evolution. This review aims at summarizing the impact of Phylogenetics in the current knowledge on three major aspects of plant virus evolution that have benefited from the development of phylogenetic inference: (1) The identification and classification of plant virus diversity. (2) The mechanisms and forces shaping the evolution of plant virus populations. (3) The understanding of the interaction between plant virus evolution, epidemiology and ecology. The work discussed here highlights the important role of phylogenetic approaches in the study of the dynamics of plant virus populations.
Collapse
Affiliation(s)
- Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid 28223, Spain.
| |
Collapse
|
94
|
Jones RAC. Plant and Insect Viruses in Managed and Natural Environments: Novel and Neglected Transmission Pathways. Adv Virus Res 2018; 101:149-187. [PMID: 29908589 DOI: 10.1016/bs.aivir.2018.02.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The capacity to spread by diverse transmission pathways enhances a virus' ability to spread effectively and survive when circumstances change. This review aims to improve understanding of how plant and insect viruses spread through natural and managed environments by drawing attention to 12 novel or neglected virus transmission pathways whose contribution is underestimated. For plant viruses, the pathways reviewed are vertical and horizontal transmission via pollen, and horizontal transmission by parasitic plants, natural root grafts, wind-mediated contact, chewing insects, and contaminated water or soil. For insect viruses, they are transmission by plants serving as passive "vectors," arthropod vectors, and contamination of pollen and nectar. Based on current understanding of the spatiotemporal dynamics of virus spread, the likely roles of each pathway in creating new primary infection foci, enlarging previously existing infection foci, and promoting generalized virus spread are estimated. All pathways except transmission via parasitic plants, root grafts, and wind-mediated contact transmission are likely to produce new primary infection foci. All 12 pathways have the capability to enlarge existing infection foci, but only to a limited extent when spread occurs via virus-contaminated soil or vertical pollen transmission. All pathways except those via parasitic plant, root graft, contaminated soil, and vertical pollen transmission likely contribute to generalized virus spread, but to different extents. For worst-case scenarios, where mixed populations of host species occur under optimal virus spread conditions, the risk that host species jumps or virus emergence events will arise is estimated to be "high" for all four insect virus pathways considered, and, "very high" or "moderate" for plant viruses transmitted by parasitic plant and root graft pathways, respectively. To establish full understanding of virus spread and thereby optimize effective virus disease management, it is important to examine all transmission pathways potentially involved, regardless of whether the virus' ecology is already presumed to be well understood or otherwise.
Collapse
Affiliation(s)
- Roger A C Jones
- Institute of Agriculture, Faculty of Science, University of Western Australia, Crawley, WA, Australia; Department of Primary Industries and Regional Development, South Perth, WA, Australia.
| |
Collapse
|
95
|
Passion Fruit Chlorotic Mottle Virus: Molecular Characterization of a New Divergent Geminivirus in Brazil. Viruses 2018; 10:v10040169. [PMID: 29614801 PMCID: PMC5923463 DOI: 10.3390/v10040169] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 12/23/2022] Open
Abstract
Brazil is one of the major passion fruit producers worldwide. Viral diseases are among the most important constraints for passion fruit production. Here we identify and characterize a new passion fruit infecting-virus belonging to the family Geminiviridae: passion fruit chlorotic mottle virus (PCMoV). PCMoV is a divergent geminivirus unlike previously characterized passion fruit-infecting geminiviruses that belonged to the genus Begomovirus. Among the presently known geminiviruses, it is most closely related to, and shares ~62% genome-wide identity with citrus chlorotic dwarf associated virus (CCDaV) and camelia chlorotic dwarf associated virus (CaCDaV). The 3743 nt PCMoV genome encodes a capsid protein (CP) and replication-associated protein (Rep) that respectively share 56 and 60% amino acid identity with those encoded by CaCDaV. The CPs of PCMoV, CCDaV, and CaCDaV cluster with those of begomovirus whereas their Reps with those of becurtoviruses. Hence, these viruses likely represent a lineage of recombinant begomo-like and becurto-like ancestral viruses. Furthermore, PCMoV, CCDaV, and CaCDaV genomes are ~12-30% larger than monopartite geminiviruses and this is primarily due to the encoded movement protein (MP; 891-921 nt) and this MP is most closely related to that encoded by the DNA-B component of bipartite begomoviruses. Hence, PCMoV, CCDaV, and CaCDaV lineage of viruses may represent molecules in an intermediary step in the evolution of bipartite begomoviruses (~5.3 kb) from monopartite geminiviruses (~2.7-3 kb). An infectious clone of PCMoV systemically infected Nicotiana benthamina, Arabidopsis thaliana, and Passiflora edulis.
Collapse
|
96
|
Nanovirus-alphasatellite complex identified in Vicia cracca in the Rhône delta region of France. Arch Virol 2017; 163:695-700. [PMID: 29159590 DOI: 10.1007/s00705-017-3634-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
Abstract
Nanoviruses are multi-component plant-infecting single-stranded DNA viruses. Using a viral metagenomics-informed approach, a new nanovirus and two associated alphasatellite molecules have been identified in an uncultivated asymptomatic Vicia cracca plant in the Rhône region of France. This novel nanovirus genome includes eight genomic components (named DNA-R, DNA-S, DNA-M, DNA-C, DNA-N, DNA-U1, DNA-U2 and DNA-U4) and, across all components, shares < 66% pairwise sequence identity with other nanovirus genomes. The two associated alphasatellites share 62% identity with each other and < 81% identity will all other nanovirus-associated alphasatellites.
Collapse
|