51
|
Panchal P, Budree S, Scheeler A, Medina G, Seng M, Wong WF, Elliott R, Eliott R, Mitchell T, Kassam Z, Allegretti JR, Osman M. Scaling Safe Access to Fecal Microbiota Transplantation: Past, Present, and Future. Curr Gastroenterol Rep 2018; 20:14. [PMID: 29594746 DOI: 10.1007/s11894-018-0619-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
PURPOSE OF REVIEW Universal stool banks (USBs) have emerged as a potential model for scaling access to fecal microbiota transplantation (FMT) for Clostridium difficile infection (CDI). In this review, we outline the historical barriers constraining access to FMT, the evidence on methods and outcomes of USBs, and potential future directions for expanding access. RECENT FINDINGS Key historical barriers to FMT access include regulatory uncertainty, operational complexity of sourcing screened donor material, and logistical challenges of delivering fresh treatment preparations. USBs have demonstrated that FMT can be delivered safely at scale by centralizing donor selection, material processing, and safety monitoring. More evidence is needed to optimize USB methods, including for donor screening, material processing, and novel delivery modalities. USBs have catalyzed broad access to FMT in North America and Europe. Future directions include developing evidence regarding oral preparations, harmonizing guidelines, disseminating best practice protocols, establishing long-term safety profiles, and expanding access to geographic areas of unmet need.
Collapse
Affiliation(s)
- Pratik Panchal
- OpenBiome, Somerville, MA, USA.
- Harvard University T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Shrish Budree
- OpenBiome, Somerville, MA, USA
- University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | | | | | | | | | | | | | | | - Zain Kassam
- Finch Therapeutics Group, Somerville, MA, USA
| | - Jessica R Allegretti
- Harvard Medical School, Boston, MA, 02115, USA
- Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Majdi Osman
- OpenBiome, Somerville, MA, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
52
|
Erturk-Hasdemir D, Kasper DL. Finding a needle in a haystack: Bacteroides fragilis polysaccharide A as the archetypical symbiosis factor. Ann N Y Acad Sci 2018. [PMID: 29528123 DOI: 10.1111/nyas.13660] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Starting from birth, all animals develop a symbiotic relationship with their resident microorganisms that benefits both the microbe and the host. Recent advances in technology have substantially improved our ability to direct research toward the identification of important microbial species that affect host physiology. The identification of specific commensal molecules from these microbes and their mechanisms of action is still in its early stages. Polysaccharide A (PSA) of Bacteroides fragilis is the archetypical example of a commensal molecule that can modulate the host immune system in health and disease. This zwitterionic polysaccharide has a critical impact on the development of the mammalian immune system and also on the stimulation of interleukin 10-producing CD4+ T cells; consequently, PSA confers benefits to the host with regard to experimental autoimmune, inflammatory, and infectious diseases. In this review, we summarize the current understanding of the immunomodulatory effects of B. fragilis PSA and discuss these effects as a novel immunological paradigm. In particular, we discuss recent advances in our understanding of the unique functional mechanisms of this molecule and its therapeutic potential, and we review the recent literature in the field of microbiome research aimed at discovering new commensal products and their immunomodulatory potential.
Collapse
Affiliation(s)
- Deniz Erturk-Hasdemir
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - Dennis L Kasper
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
53
|
Diao H, Yan HL, Xiao Y, Yu B, Zheng P, He J, Yu J, Mao XB, Chen DW. Modulation of intestine development by fecal microbiota transplantation in suckling pigs. RSC Adv 2018; 8:8709-8720. [PMID: 35539874 PMCID: PMC9078615 DOI: 10.1039/c7ra11234c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/12/2018] [Indexed: 11/21/2022] Open
Abstract
The present study was conducted to investigate the effects of early fecal microbiota transplantation on gut development in sucking piglets. A total of 24 3 day-old DLY sucking piglets (2.11 ± 0.15) kg were randomly divided into four groups (TMP, YMP, RMP and control group (CON)), which were transplanted with intact fecal microbiota of Tibetan pig (TP), Yorkshire pig (YP), Rongchang pig (RP), and without transplantation, respectively. The whole trial lasted for 56 d. The results are as follows: when compared with the YMP and RMP treatments, TMP and CON had a lower diarrhea index (P < 0.05), TMP and CON had higher GLP-2 and ANG4 mRNA abundances in the ileum (P < 0.05), and the TMP had a higher jejunal villus height: crypt depth and a higher colonic GLP-2 mRNA abundance (P < 0.05). Moreover, when compared with the YMP and RMP treatments, TMP had an enhanced DMT1 mRNA abundance in the duodenum (P < 0.05), TMP and CON had a greater lactase activity and a higher DMT1 mRNA abundance in the jejunum (P < 0.05), and CON had a higher γ-GT activity in the jejunum (P < 0.05). The jejunal Ca2+, Mg2+-ATPase activity in TMP was higher than that in CON, and the jejunal Na+, K+-ATPase activity in TMP was higher than that in the other three treatments (P < 0.05). Besides, when compared with the YMP and RMP treatments, TMP had a lower MDA content and a higher MUC1 mRNA abundance in the jejunum (P < 0.05); CON had a higher SOD activity in the jejunum (P < 0.05), whereas TMP and CON had a higher butyric acid concentration in the colon and a lower LPS content in the serum (P < 0.05). Finally, when compared with the TMP treatment, the other three treatments had an enhanced IL-10 mRNA abundance in the colon (P < 0.05), YMP and CON had higher counts of Escherichia coli in the colonic digesta (P < 0.05), and the CON had lower counts of Lactobacillus spp in the cecal and colonic digesta (P < 0.05). These data indicated that early transplantation of the fecal microbiota from the Yorkshire pigs and Rongchang pigs to DLY suckling piglets would destroy the gut microbiota balance and thus damage intestinal health.
Collapse
Affiliation(s)
- H Diao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education Xinkang Road 46# Ya'an Sichuan Province 625014 People's Republic of China +86-835-288-5106 +86-835-288-5106
- Institute of Animal Nutrition, Sichuan Academy of Animal Science No. 7 Niusha Road Chengdu Sichuan 610066 People's Republic of China
| | - H L Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education Xinkang Road 46# Ya'an Sichuan Province 625014 People's Republic of China +86-835-288-5106 +86-835-288-5106
| | - Y Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education Xinkang Road 46# Ya'an Sichuan Province 625014 People's Republic of China +86-835-288-5106 +86-835-288-5106
| | - B Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education Xinkang Road 46# Ya'an Sichuan Province 625014 People's Republic of China +86-835-288-5106 +86-835-288-5106
| | - P Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education Xinkang Road 46# Ya'an Sichuan Province 625014 People's Republic of China +86-835-288-5106 +86-835-288-5106
| | - J He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education Xinkang Road 46# Ya'an Sichuan Province 625014 People's Republic of China +86-835-288-5106 +86-835-288-5106
| | - J Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education Xinkang Road 46# Ya'an Sichuan Province 625014 People's Republic of China +86-835-288-5106 +86-835-288-5106
| | - X B Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education Xinkang Road 46# Ya'an Sichuan Province 625014 People's Republic of China +86-835-288-5106 +86-835-288-5106
| | - D W Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education Xinkang Road 46# Ya'an Sichuan Province 625014 People's Republic of China +86-835-288-5106 +86-835-288-5106
| |
Collapse
|
54
|
Gonçalves P, Araújo JR, Di Santo JP. A Cross-Talk Between Microbiota-Derived Short-Chain Fatty Acids and the Host Mucosal Immune System Regulates Intestinal Homeostasis and Inflammatory Bowel Disease. Inflamm Bowel Dis 2018; 24:558-572. [PMID: 29462379 DOI: 10.1093/ibd/izx029] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 12/22/2022]
Abstract
Gut microbiota has a fundamental role in the energy homeostasis of the host and is essential for proper "education" of the immune system. Intestinal microbial communities are able to ferment dietary fiber releasing short-chain fatty acids (SCFAs). The SCFAs, particularly butyrate (BT), regulate innate and adaptive immune cell generation, trafficing, and function. For example, BT has an anti-inflammatory effect by inhibiting the recruitment and proinflammatory activity of neutrophils, macrophages, dendritic cells, and effector T cells and by increasing the number and activity of regulatory T cells. Gut microbial dysbiosis, ie, a microbial community imbalance, has been suggested to play a role in the development of inflammatory bowel disease (IBD). The relationship between dysbiosis and IBD has been difficult to prove, especially in humans, and is probably complex and dynamic, rather than one of a simple cause and effect relationship. However, IBD patients have dysbiosis with reduced numbers of SCFAs-producing bacteria and reduced BT concentration that is linked to a marked increase in the number of proinflammatory immune cells in the gut mucosa of these patients. Thus, microbial dysbiosis and reduced BT concentration may be a factor in the emergence and severity of IBD. Understanding the relationship between microbial dysbiosis and reduced BT concentration to IBD may lead to novel therapeutic interventions.
Collapse
Affiliation(s)
- Pedro Gonçalves
- Innate Immunity Unit, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France
| | - João Ricardo Araújo
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1202, Paris, France
| | - James P Di Santo
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France
| |
Collapse
|
55
|
Cooper M, Li XC, Adams AB. What's hot, what's new: Report from the American Transplant Congress 2017. Am J Transplant 2018; 18:308-320. [PMID: 29265693 DOI: 10.1111/ajt.14628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 01/25/2023]
Abstract
Significant advances in clinical practice as well as basic and translational science were presented at the American Transplant Congress this year. Topics included innovative clinical trials to recent advances in our basic understanding of the scientific underpinnings of transplant immunology. Key areas of interest included the following: clinical trials utilizing hepatitis C virus-positive (HCV+ ) donors for HCV- recipients, the impact of the new allocation policies, normothermic perfusion, novel treatments for desensitization, attempts at precision medicine, advances in xenotransplantation, the role of mitochondria and exosomes in rejection, nanomedicine, and the impact of the microbiota on transplant outcomes. This review highlights some of the most interesting and noteworthy presentations from the meeting.
Collapse
Affiliation(s)
- Matthew Cooper
- Medstar Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, USA
| | - Xian C Li
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX, USA
| | - Andrew B Adams
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
56
|
Shen ZH, Zhu CX, Quan YS, Yang ZY, Wu S, Luo WW, Tan B, Wang XY. Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J Gastroenterol 2018; 24:5-14. [PMID: 29358877 PMCID: PMC5757125 DOI: 10.3748/wjg.v24.i1.5] [Citation(s) in RCA: 450] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/07/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory disease that mainly affects the colon and rectum. It is believed that genetic factors, host immune system disorders, intestinal microbiota dysbiosis, and environmental factors contribute to the pathogenesis of UC. However, studies on the role of intestinal microbiota in the pathogenesis of UC have been inconclusive. Studies have shown that probiotics improve intestinal mucosa barrier function and immune system function and promote secretion of anti-inflammatory factors, thereby inhibiting the growth of harmful bacteria in the intestine. Fecal microbiota transplantation (FMT) can reduce bowel permeability and thus the severity of disease by increasing the production of short-chain fatty acids, especially butyrate, which help maintain the integrity of the epithelial barrier. FMT can also restore immune dysbiosis by inhibiting Th1 differentiation, activity of T cells, leukocyte adhesion, and production of inflammatory factors. Probiotics and FMT are being increasingly used to treat UC, but their use is controversial because of uncertain efficacy. Here, we briefly review the role of intestinal microbiota in the pathogenesis and treatment of UC.
Collapse
Affiliation(s)
- Zhao-Hua Shen
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| | - Chang-Xin Zhu
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| | - Yong-Sheng Quan
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| | - Zhen-Yu Yang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| | - Shuai Wu
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| | - Wei-Wei Luo
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| | - Bei Tan
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| | - Xiao-Yan Wang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| |
Collapse
|
57
|
Allegretti JR, Kassam Z, Chan WW. Small Intestinal Bacterial Overgrowth: Should Screening Be Included in the Pre-fecal Microbiota Transplantation Evaluation? Dig Dis Sci 2018; 63:193-197. [PMID: 29188472 PMCID: PMC6139025 DOI: 10.1007/s10620-017-4864-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/19/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) is safe and effective for recurrent Clostridium difficile infection (rCDI) and often involves terminal ileal (TI) stool infusion. Patients report gastrointestinal (GI) symptoms post-FMT despite rCDI resolution. Small intestinal bacterial overgrowth (SIBO) screening is not routinely performed pre-FMT. The effect of donor/recipient SIBO status on FMT outcomes and post-FMT GI symptoms is unclear. We aim to evaluate the value of pre-FMT SIBO screening on post-FMT outcomes and symptoms. METHODS This was a prospective pilot study of consecutive adults with rCDI undergoing FMT by colonoscopy at a tertiary center. Routine pre-FMT screening and baseline lactulose breath tests (LBTs) were performed for donors and recipients. Positive LBT required a rise > 20 ppm in breath hydrogen or any methane level > 10 ppm within 90 min. The presence of GI symptoms and CDI resolution were assessed 8 weeks post-FMT. Fisher's exact/Student's t tests were performed for statistical analyses. RESULTS Twenty recipients (58.3 years, 85% women) enrolled in the study. Fourteen (70%) FMTs involved TI stool infusion. Four (20%) recipients and six (30%) donors had positive LBT pre-FMT. At 8 weeks post-FMT, 17 (85%) recipients had CDI resolution and five (25%) reported GI symptoms. Pre-FMT LBT result was not associated with post-FMT CDI resolution or GI symptoms. There was a trend toward increased GI symptoms among recipients receiving stool from LBT-positive donors (50 vs 14.2%, p = 0.09). CONCLUSIONS FMT is effective and well tolerated for rCDI. Positive LBT in asymptomatic donors may have an effect on post-FMT GI symptoms. Larger studies are needed.
Collapse
Affiliation(s)
- Jessica R. Allegretti
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Boston MA,Harvard Medical School, Boston, MA
| | - Zain Kassam
- OpenBiome, Somerville, MA,Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Walter W. Chan
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Boston MA,Harvard Medical School, Boston, MA
| |
Collapse
|
58
|
Shen Z, Zhu C, Quan Y, Yuan W, Wu S, Yang Z, Luo W, Tan B, Wang X. Update on intestinal microbiota in Crohn's disease 2017: Mechanisms, clinical application, adverse reactions, and outlook. J Gastroenterol Hepatol 2017; 32:1804-1812. [PMID: 28677158 DOI: 10.1111/jgh.13861] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/30/2017] [Indexed: 12/17/2022]
Abstract
The pathogenesis of Crohn's disease (CD) is complex, and it is thought to be associated with the environment, immune, hereditary, microbe, and other factors. If the balance between the host and the intestinal microbes in CD patients was broken, immune-inflammatory response of susceptible individuals might be triggered. Probiotics could improve the intestinal microbial flora balance and treat human effectively. There are several new mechanisms that might explain the role of probiotics. Fecal microbiota transplantation (FMT) is becoming more and more attractive in treating a large amount of digestive system diseases that are related to the dysbiosis of intestinal microbiota. FMT has been widely used in recurrent Clostridium difficile infection. More and more attention has been paid on the clinical application of FMT in CD, while the exact mechanism is still a mystery. So in this review, we explore the mechanism, clinical application, and adverse reactions of intestinal microbiota in CD so that we can use the tool to cure more diseases. Enteric microbiota leads to new therapeutic strategies for CD.
Collapse
Affiliation(s)
- Zhaohua Shen
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan, China
| | - Changxin Zhu
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan, China
| | - Yongsheng Quan
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan, China
| | - Wei Yuan
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan, China
| | - Shuai Wu
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan, China
| | - Zhenyu Yang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan, China
| | - Weiwei Luo
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan, China
| | - Bei Tan
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xiaoyan Wang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan, China
| |
Collapse
|
59
|
Kim S, Covington A, Pamer EG. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol Rev 2017; 279:90-105. [PMID: 28856737 PMCID: PMC6026851 DOI: 10.1111/imr.12563] [Citation(s) in RCA: 460] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human gastrointestinal tract hosts a diverse network of microorganisms, collectively known as the microbiota that plays an important role in health and disease. For instance, the intestinal microbiota can prevent invading microbes from colonizing the gastrointestinal tract, a phenomenon known as colonization resistance. Perturbations to the microbiota, such as antibiotic administration, can alter microbial composition and result in the loss of colonization resistance. Consequently, the host may be rendered susceptible to colonization by a pathogen. This is a particularly relevant concern in the hospital setting, where antibiotic use and antibiotic-resistant pathogen exposure are more frequent. Many nosocomial infections arise from gastrointestinal colonization. Due to their resistance to antibiotics, treatment is often very challenging. However, recent studies have demonstrated that manipulating the commensal microbiota can prevent and treat various infections in the intestine. In this review, we discuss the members of the microbiota, as well as the mechanisms, that govern colonization resistance against specific pathogens. We also review the effects of antibiotics on the microbiota, as well as the unique epidemiology of immunocompromised patients that renders them a particularly high-risk population to intestinal nosocomial infections.
Collapse
Affiliation(s)
- Sohn Kim
- Immunology Program and Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - April Covington
- Immunology Program and Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric G Pamer
- Immunology Program and Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
60
|
Lewis BB, Pamer EG. Microbiota-Based Therapies for Clostridium difficile and Antibiotic-Resistant Enteric Infections. Annu Rev Microbiol 2017; 71:157-178. [PMID: 28617651 DOI: 10.1146/annurev-micro-090816-093549] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacterial pathogens are increasingly antibiotic resistant, and development of clinically effective antibiotics is lagging. Curing infections increasingly requires antimicrobials that are broader spectrum, more toxic, and more expensive, and mortality attributable to antibiotic-resistant pathogens is rising. The commensal microbiota, comprising microbes that colonize the mammalian gastrointestinal tract, can provide high levels of resistance to infection, and the contributions of specific bacterial species to resistance are being discovered and characterized. Microbiota-mediated mechanisms of colonization resistance and pathogen clearance include bactericidal activity, nutrient depletion, immune activation, and manipulation of the gut's chemical environment. Current research is focusing on development of microbiota-based therapies to reduce intestinal colonization with antibiotic-resistant pathogens, with the goal of reducing pathogen transmission and systemic dissemination.
Collapse
Affiliation(s)
- Brittany B Lewis
- Infectious Diseases Service, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065; ,
| | - Eric G Pamer
- Infectious Diseases Service, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065; ,
| |
Collapse
|
61
|
Caballero S, Kim S, Carter RA, Leiner IM, Sušac B, Miller L, Kim GJ, Ling L, Pamer EG. Cooperating Commensals Restore Colonization Resistance to Vancomycin-Resistant Enterococcus faecium. Cell Host Microbe 2017; 21:592-602.e4. [PMID: 28494240 PMCID: PMC5494988 DOI: 10.1016/j.chom.2017.04.002] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/13/2017] [Accepted: 04/14/2017] [Indexed: 12/14/2022]
Abstract
Antibiotic-mediated microbiota destruction and the consequent loss of colonization resistance can result in intestinal domination with vancomycin-resistant Enterococcus (VRE), leading to bloodstream infection in hospitalized patients. Clearance of VRE remains a challenging goal that, if achieved, would reduce systemic VRE infections and patient-to-patient transmission. Although obligate anaerobic commensal bacteria have been associated with colonization resistance to VRE, the specific bacterial species involved remain undefined. Herein, we demonstrate that a precisely defined consortium of commensal bacteria containing the Clostridium cluster XIVa species Blautia producta and Clostridium bolteae restores colonization resistance against VRE and clears VRE from the intestines of mice. While C. bolteae did not directly mediate VRE clearance, it enabled intestinal colonization with B. producta, which directly inhibited VRE growth. These findings suggest that therapeutic or prophylactic administration of defined bacterial consortia to individuals with compromised microbiota composition may reduce inter-patient transmission and intra-patient dissemination of highly antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Silvia Caballero
- Immunology Program and Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Sohn Kim
- Immunology Program and Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rebecca A Carter
- Immunology Program and Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ingrid M Leiner
- Immunology Program and Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bože Sušac
- Immunology Program and Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Liza Miller
- Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Grace J Kim
- Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lilan Ling
- Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric G Pamer
- Immunology Program and Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
62
|
Small Molecules That Sabotage Bacterial Virulence. Trends Pharmacol Sci 2017; 38:339-362. [PMID: 28209403 DOI: 10.1016/j.tips.2017.01.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/01/2017] [Accepted: 01/06/2017] [Indexed: 02/08/2023]
Abstract
The continued rise of antibiotic-resistant bacterial infections has motivated alternative strategies for target discovery and treatment of infections. Antivirulence therapies function through inhibition of in vivo required virulence factors to disarm the pathogen instead of directly targeting viability or growth. This approach to treating bacteria-mediated diseases may have advantages over traditional antibiotics because it targets factors specific for pathogenesis, potentially reducing selection for resistance and limiting collateral damage to the resident microbiota. This review examines vulnerable molecular mechanisms used by bacteria to cause disease and the antivirulence compounds that sabotage these virulence pathways. By expanding the study of antimicrobial targets beyond those that are essential for growth, antivirulence strategies offer new and innovative opportunities to combat infectious diseases.
Collapse
|
63
|
|
64
|
Vemuri RC, Gundamaraju R, Shinde T, Eri R. Therapeutic interventions for gut dysbiosis and related disorders in the elderly: antibiotics, probiotics or faecal microbiota transplantation? Benef Microbes 2016; 8:179-192. [PMID: 28008784 DOI: 10.3920/bm2016.0115] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ageing and physiological functions of the human body are inversely proportional to each other. The gut microbiota and host immune system co-evolve from infants to the elderly. Ageing is accompanied by a decline in gut microbial diversity, immunity and metabolism, which increases susceptibility to infections. Any compositional change in the gut is directly linked to gastrointestinal disorders, obesity and metabolic diseases. Increase in opportunistic pathogen invasion in the gut like Clostridium difficile leading to C. difficile infection is more common in the elderly population. Frequent hospitalisation and high prevalence of nosocomial infections with the ageing is also well documented. Long-term utilisation of broad-spectrum antibiotic therapy is being followed in order to control these infections. Nosocomial infections and antibiotic therapy in combination or alone is leading to gastroenteritis followed by Clostridium associated diarrhoea or antibiotic associated diarrhoea. Above all, use of broad-spectrum antibiotics is highly debated all over the world due to growing antimicrobial resistance. The use of narrow spectrum antibiotics could be helpful to some extent. Dietary supplementation of probiotics with prebiotics (synbiotics) or without prebiotics has improved gut commensal diversity and regulated the immune system. The recent emergence of faecal microbiota transplantation has played an important role in treating recurrent Clostridium associated diarrhoea. This review focuses on various therapeutic interventions for gut dysbiosis and gastrointestinal diseases in the elderly. The possible mechanism for antimicrobial resistance and mechanism of action of probiotics are also discussed in detail.
Collapse
Affiliation(s)
- R C Vemuri
- 1 School of Health Sciences, University of Tasmania, Newnham Campus, Locked Bag 1362, Launceston, Tasmania 7250, Australia
| | - R Gundamaraju
- 1 School of Health Sciences, University of Tasmania, Newnham Campus, Locked Bag 1362, Launceston, Tasmania 7250, Australia
| | - T Shinde
- 2 School of Land and Food, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - R Eri
- 1 School of Health Sciences, University of Tasmania, Newnham Campus, Locked Bag 1362, Launceston, Tasmania 7250, Australia
| |
Collapse
|
65
|
Yang L, Wang L, Wang X, Xian CJ, Lu H. A Possible Role of Intestinal Microbiota in the Pathogenesis of Ankylosing Spondylitis. Int J Mol Sci 2016; 17:ijms17122126. [PMID: 27999312 PMCID: PMC5187926 DOI: 10.3390/ijms17122126] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/09/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease primarily affecting the sacroiliac joints and the spine, for which the pathogenesis is thought to be a result of the combination of host genetic factors and environmental triggers. However, the precise factors that determine one’s susceptibility to AS remain to be unraveled. With 100 trillion bacteria residing in the mammalian gut having established a symbiotic relation with their host influencing many aspects of host metabolism, physiology, and immunity, a growing body of evidence suggests that intestinal microbiota may play an important role in AS. Several mechanisms have been suggested to explain the potential role of the microbiome in the etiology of AS, such as alterations of intestinal permeability, stimulation of immune responses, and molecular mimicry. In this review, the existing evidence for the involvement of the microbiome in AS pathogenesis was discussed and the potential of intestinal microbiome-targeting strategies in the prevention and treatment of AS was evaluated.
Collapse
Affiliation(s)
- Lianjun Yang
- Academy of Orthopedics of Guangdong Province, Orthopaedic Hospital of Guangdong Province, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| | - Liping Wang
- Academy of Orthopedics of Guangdong Province, Orthopaedic Hospital of Guangdong Province, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA5001, Australia.
| | - Xin Wang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane QLD4059, Australia.
| | - Cory J Xian
- Academy of Orthopedics of Guangdong Province, Orthopaedic Hospital of Guangdong Province, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA5001, Australia.
| | - Hai Lu
- Academy of Orthopedics of Guangdong Province, Orthopaedic Hospital of Guangdong Province, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| |
Collapse
|
66
|
Boyle ML, Ruth-Sahd LA, Zhou Z. Fecal microbiota transplant to treat recurrent Clostridium difficile infections. Crit Care Nurse 2016; 35:51-64; quiz 65. [PMID: 25834008 DOI: 10.4037/ccn2015356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The prevalence of recurrent or refractory Clostridium difficile infection has been steadily increasing since 2000. Consequently, alternative treatments to the standard antibiotic therapies are now being considered. One alternative treatment is fecal microbiota transplant. Although fecal microbiota transplant is relatively new--and not appealing to most people--it has been around for many years and has great promise as an inexpensive, safe, and efficient treatment of refractory and recurrent C difficile infection. With a better understanding of the intricacies of the colonic microbiome and its role in colonic physiology and pathophysiology, critical care nurses will recognize that fecal microbiota transplant has the potential to become the standard of care for treatment of recurrent or refractory C difficile infection. The American College of Gastroenterology and the Infectious Diseases Society of America provide the latest treatment guidelines for care of patients with these clostridial infections.
Collapse
Affiliation(s)
- Miriam L Boyle
- Lisa Ruth-Sahd is an associate professor of nursing at York College of Pennsylvania. She is also a nurse extern coordinator at Lancaster General Hospital, Lancaster, Pennsylvania.Zehao Zhou is an assistant professor and information services librarian of Schmidt Library, York College of Pennsylvania
| | - Lisa A Ruth-Sahd
- Lisa Ruth-Sahd is an associate professor of nursing at York College of Pennsylvania. She is also a nurse extern coordinator at Lancaster General Hospital, Lancaster, Pennsylvania.Zehao Zhou is an assistant professor and information services librarian of Schmidt Library, York College of Pennsylvania.
| | - Zehao Zhou
- Lisa Ruth-Sahd is an associate professor of nursing at York College of Pennsylvania. She is also a nurse extern coordinator at Lancaster General Hospital, Lancaster, Pennsylvania.Zehao Zhou is an assistant professor and information services librarian of Schmidt Library, York College of Pennsylvania
| |
Collapse
|
67
|
Diao H, Yan HL, Xiao Y, Yu B, Yu J, He J, Zheng P, Zeng B, Wei H, Mao X, Chen D. Intestinal microbiota could transfer host Gut characteristics from pigs to mice. BMC Microbiol 2016; 16:238. [PMID: 27729007 PMCID: PMC5057279 DOI: 10.1186/s12866-016-0851-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/27/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The present study was conducted to compare the differences in gut microbiota composition and gut-phenotypes among pig breeds, and determine whether these differences would transmit to mice colonized with fecal microbiota of different pig breeds. A total of 24 1-day-old germ-free BALB/C mice were divided into 3 groups (TFM, YFM and RFM), which were transplanted with intact fecal microbiota of Tibetan pig (TP), Yorkshire pig (YP) and Rongchang pig (RP), respectively. RESULTS Results showed that different pig breeds exhibited distinct gut microbiota profile based on high-throughput pyrosequencing. YP exhibited a lower Firmicutes/Bacteroidetes ratio and apparent genera differences compared with RP and TP, and higher levels of bacteria from Spirochaetes were observed in TP compared with RP and YP (P < 0.05). Transplanted porcine microbiota into GF mice replicated the phenotypes of pig donors. Moreover, the three groups of donor pigs and their mice recipients exhibited different intestinal index and morphology. TP and RP had higher intestinal weight and relative CDX2 mRNA expression in ileum than YP, and longer intestine, higher villus height of duodenum and jejunum were observed in TP compared with YP and RP (P < 0.05). TP exhibited higher GLP-2 mRNA expression in duodenum and jejunum than RP (P < 0.05). Similarly, YFM had lower intestine weight and CDX2 mRNA expression in ileum than TFM and RFM (P < 0.05). The intestine length in TFM was longer than that in RFM, and TFM had higher villus height in duodenum and jejunum and GLP-2 mRNA expression in ileum than the other two groups (P < 0.05). Besides, the digestive and absorptive ability was different among the three groups in donor pigs and mice recipients. YP had higher jejunal lactase and maltase activities than TP and RP, while TP had higher activities of jejunal ATPase, γ-GT, and relative SGLT1 mRNA expression in duodenum and jejunum than YP and RP (P < 0.05). Likewise, YFM had higher jejunal sucrase and maltase activities than TFM and RFM, whereas higher jejunal γ-GT activity and relative SGLT1 mRNA expression in duodenum and ileum were observed in TFM compared with YFM and RFM (P < 0.05). In addition, Tibetan pigs-derived microbiota improved gut barrier in mice recipients. The concentration of MDA in YP was higher than that in TP and RP (P = 0.078), and the relative ZO-1 mRNA expression in ileum in TP was higher than that in YP (P < 0.05). Likely, compared with TFM and RFM, YFM exhibited increasing MDA concentration in jejunum (P = 0.098), and the relative ZO-1 mRNA expression in duodenum and ileum in TFM were higher than that in YFM (P < 0.05). CONCLUSIONS There were huge differences in gut microbiota composition and gut characteristics among pig breeds, and gut microbiota could partially convey host gut characteristics from pigs to mice.
Collapse
Affiliation(s)
- H. Diao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Xinkang Road 46#, Ya’an, Sichuan Province 625014 People’s Republic of China
| | - H. L. Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Xinkang Road 46#, Ya’an, Sichuan Province 625014 People’s Republic of China
| | - Y. Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Xinkang Road 46#, Ya’an, Sichuan Province 625014 People’s Republic of China
| | - B. Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Xinkang Road 46#, Ya’an, Sichuan Province 625014 People’s Republic of China
| | - J. Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Xinkang Road 46#, Ya’an, Sichuan Province 625014 People’s Republic of China
| | - J. He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Xinkang Road 46#, Ya’an, Sichuan Province 625014 People’s Republic of China
| | - P. Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Xinkang Road 46#, Ya’an, Sichuan Province 625014 People’s Republic of China
| | - B.H. Zeng
- Department of Laboratory Animal Science, College of Basic Medical Sciences Third Military Medical University, Gaotanyan Street, Chongqing, 400038 People’s Republic of China
| | - H. Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences Third Military Medical University, Gaotanyan Street, Chongqing, 400038 People’s Republic of China
| | - X.B. Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Xinkang Road 46#, Ya’an, Sichuan Province 625014 People’s Republic of China
| | - D.W. Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Xinkang Road 46#, Ya’an, Sichuan Province 625014 People’s Republic of China
| |
Collapse
|
68
|
Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front Microbiol 2016; 7:979. [PMID: 27446020 PMCID: PMC4923077 DOI: 10.3389/fmicb.2016.00979] [Citation(s) in RCA: 1075] [Impact Index Per Article: 119.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
With the increasing amount of evidence linking certain disorders of the human body to a disturbed gut microbiota, there is a growing interest for compounds that positively influence its composition and activity through diet. Besides the consumption of probiotics to stimulate favorable bacterial communities in the human gastrointestinal tract, prebiotics such as inulin-type fructans (ITF) and arabinoxylan-oligosaccharides (AXOS) can be consumed to increase the number of bifidobacteria in the colon. Several functions have been attributed to bifidobacteria, encompassing degradation of non-digestible carbohydrates, protection against pathogens, production of vitamin B, antioxidants, and conjugated linoleic acids, and stimulation of the immune system. During life, the numbers of bifidobacteria decrease from up to 90% of the total colon microbiota in vaginally delivered breast-fed infants to <5% in the colon of adults and they decrease even more in that of elderly as well as in patients with certain disorders such as antibiotic-associated diarrhea, inflammatory bowel disease, irritable bowel syndrome, obesity, allergies, and regressive autism. It has been suggested that the bifidogenic effects of ITF and AXOS are the result of strain-specific yet complementary carbohydrate degradation mechanisms within cooperating bifidobacterial consortia. Except for a bifidogenic effect, ITF and AXOS also have shown to cause a butyrogenic effect in the human colon, i.e., an enhancement of colon butyrate production. Butyrate is an essential metabolite in the human colon, as it is the preferred energy source for the colon epithelial cells, contributes to the maintenance of the gut barrier functions, and has immunomodulatory and anti-inflammatory properties. It has been shown that the butyrogenic effects of ITF and AXOS are the result of cross-feeding interactions between bifidobacteria and butyrate-producing colon bacteria, such as Faecalibacterium prausnitzii (clostridial cluster IV) and Anaerostipes, Eubacterium, and Roseburia species (clostridial cluster XIVa). These kinds of interactions possibly favor the co-existence of bifidobacterial strains with other bifidobacteria and with butyrate-producing colon bacteria in the human colon.
Collapse
Affiliation(s)
| | | | | | | | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit BrusselBrussels, Belgium
| |
Collapse
|
69
|
Clavel T, Lagkouvardos I, Hiergeist A. Microbiome sequencing: challenges and opportunities for molecular medicine. Expert Rev Mol Diagn 2016; 16:795-805. [DOI: 10.1080/14737159.2016.1184574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Thomas Clavel
- ZIEL Institute for Food and Health, Technical University of Munich, Munich, Germany
| | - Ilias Lagkouvardos
- ZIEL Institute for Food and Health, Technical University of Munich, Munich, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
70
|
Montassier E, Al-Ghalith GA, Ward T, Corvec S, Gastinne T, Potel G, Moreau P, de la Cochetiere MF, Batard E, Knights D. Pretreatment gut microbiome predicts chemotherapy-related bloodstream infection. Genome Med 2016; 8:49. [PMID: 27121964 PMCID: PMC4848771 DOI: 10.1186/s13073-016-0301-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/11/2016] [Indexed: 02/07/2023] Open
Abstract
Background Bacteremia, or bloodstream infection (BSI), is a leading cause of death among patients with certain types of cancer. A previous study reported that intestinal domination, defined as occupation of at least 30 % of the microbiota by a single bacterial taxon, is associated with BSI in patients undergoing allo-HSCT. However, the impact of the intestinal microbiome before treatment initiation on the risk of subsequent BSI remains unclear. Our objective was to characterize the fecal microbiome collected before treatment to identify microbes that predict the risk of BSI. Methods We sampled 28 patients with non-Hodgkin lymphoma undergoing allogeneic hematopoietic stem cell transplantation (HSCT) prior to administration of chemotherapy and characterized 16S ribosomal RNA genes using high-throughput DNA sequencing. We quantified bacterial taxa and used techniques from machine learning to identify microbial biomarkers that predicted subsequent BSI. Results We found that patients who developed subsequent BSI exhibited decreased overall diversity and decreased abundance of taxa including Barnesiellaceae, Coriobacteriaceae, Faecalibacterium, Christensenella, Dehalobacterium, Desulfovibrio, and Sutterella. Using machine-learning methods, we developed a BSI risk index capable of predicting BSI incidence with a sensitivity of 90 % at a specificity of 90 % based only on the pretreatment fecal microbiome. Conclusions These results suggest that the gut microbiota can identify high-risk patients before HSCT and that manipulation of the gut microbiota for prevention of BSI in high-risk patients may be a useful direction for future research. This approach may inspire the development of similar microbiome-based diagnostic and prognostic models in other diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0301-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emmanuel Montassier
- Université de Nantes, EA 3826 Thérapeutiques cliniques et expérimentales des infections. Faculté de médecine, 1 Rue G Veil, Nantes, 44000, France.,Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Gabriel A Al-Ghalith
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.,Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Tonya Ward
- Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Stephane Corvec
- Université de Nantes, EA 3826 Thérapeutiques cliniques et expérimentales des infections. Faculté de médecine, 1 Rue G Veil, Nantes, 44000, France.,Nantes University Hospital, Microbiology Laboratory, Nantes, France
| | - Thomas Gastinne
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Gilles Potel
- Université de Nantes, EA 3826 Thérapeutiques cliniques et expérimentales des infections. Faculté de médecine, 1 Rue G Veil, Nantes, 44000, France
| | - Phillipe Moreau
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Marie France de la Cochetiere
- Université de Nantes, EA 3826 Thérapeutiques cliniques et expérimentales des infections. Faculté de médecine, 1 Rue G Veil, Nantes, 44000, France
| | - Eric Batard
- Université de Nantes, EA 3826 Thérapeutiques cliniques et expérimentales des infections. Faculté de médecine, 1 Rue G Veil, Nantes, 44000, France
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, 55455, USA. .,Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
71
|
Ramanan D, Cadwell K. Intrinsic Defense Mechanisms of the Intestinal Epithelium. Cell Host Microbe 2016; 19:434-41. [PMID: 27049583 DOI: 10.1016/j.chom.2016.03.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The intestinal epithelium is a single cell layer that facilitates the absorption of nutrients but also provides a tight barrier to prevent pathogen invasion and dissemination of commensal microbes. Specialized epithelial cells of the gastrointestinal tract achieve this frontline defense by working in concert with lymphoid, myeloid, and stromal cells to secrete an array of factors that limit direct contact between the epithelium and infectious agents. The importance of these mechanisms is underscored by the ability of enteric pathogens to target these mechanisms to achieve invasion and dissemination. This review highlights recent advances in our understanding of these intricate molecular and cellular mechanisms adopted by these cells to promote spatial segregation and barrier maintenance.
Collapse
Affiliation(s)
- Deepshika Ramanan
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA; Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY 10016, USA
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
72
|
Abt MC, Buffie CG, Sušac B, Becattini S, Carter RA, Leiner I, Keith JW, Artis D, Osborne LC, Pamer EG. TLR-7 activation enhances IL-22-mediated colonization resistance against vancomycin-resistant enterococcus. Sci Transl Med 2016; 8:327ra25. [PMID: 26912904 PMCID: PMC4991618 DOI: 10.1126/scitranslmed.aad6663] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibiotic administration can disrupt the intestinal microbiota and down-regulate innate immune defenses, compromising colonization resistance against orally acquired bacterial pathogens. Vancomycin-resistant Enterococcus faecium (VRE), a major cause of antibiotic-resistant infections in hospitalized patients, thrives in the intestine when colonization resistance is compromised, achieving extremely high densities that can lead to bloodstream invasion and sepsis. Viral infections, by mechanisms that remain incompletely defined, can stimulate resistance against invading bacterial pathogens. We report that murine norovirus infection correlates with reduced density of VRE in the intestinal tract of mice with antibiotic-induced loss of colonization resistance. Resiquimod (R848), a synthetic ligand for Toll-like receptor 7 (TLR-7) that stimulates antiviral innate immune defenses, restores expression of the antimicrobial peptide Reg3γ and reestablishes colonization resistance against VRE in antibiotic-treated mice. Orally administered R848 triggers TLR-7 on CD11c(+) dendritic cells, inducing interleukin-23 (IL-23) expression followed by a burst of IL-22 secretion by innate lymphoid cells, leading to Reg3γ expression and restoration of colonization resistance against VRE. Our findings reveal that an orally bioavailable TLR-7 ligand that stimulates innate antiviral immune pathways in the intestine restores colonization resistance against a highly antibiotic-resistant bacterial pathogen.
Collapse
Affiliation(s)
- Michael C Abt
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Charlie G Buffie
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bože Sušac
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Simone Becattini
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rebecca A Carter
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ingrid Leiner
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James W Keith
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
| | - Lisa C Osborne
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric G Pamer
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
73
|
Goldszmid RS, Dzutsev A, Viaud S, Zitvogel L, Restifo NP, Trinchieri G. Microbiota modulation of myeloid cells in cancer therapy. Cancer Immunol Res 2015; 3:103-9. [PMID: 25660553 DOI: 10.1158/2326-6066.cir-14-0225] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Myeloid cells represent a major component of the tumor microenvironment, where they play divergent dual roles. They can induce antitumor immune responses, but mostly they promote immune evasion, tumor progression, and metastasis formation. Thus, strategies aiming at reprogramming the tumor microenvironment represent a promising immunotherapy approach. Myeloid cells respond to environmental factors including signals derived from commensal microbes. In this Cancer Immunology at the Crossroads overview, we discuss recent advances on the effects of the commensal microbiota on myeloid-cell functions and how they affect the response to cancer therapy.
Collapse
Affiliation(s)
- Romina S Goldszmid
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| | - Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland. Leidos Biomedical Research, Inc., Bethesda, Maryland
| | - Sophie Viaud
- Institut National de la Santé et de la Recherche Médicale, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud, Kremlin Bicêtre, France
| | - Laurence Zitvogel
- Institut National de la Santé et de la Recherche Médicale, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud, Kremlin Bicêtre, France
| | - Nicholas P Restifo
- Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
74
|
Bender KO, Garland M, Ferreyra JA, Hryckowian AJ, Child MA, Puri AW, Solow-Cordero DE, Higginbottom SK, Segal E, Banaei N, Shen A, Sonnenburg JL, Bogyo M. A small-molecule antivirulence agent for treating Clostridium difficile infection. Sci Transl Med 2015; 7:306ra148. [PMID: 26400909 DOI: 10.1126/scitranslmed.aac9103] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/04/2015] [Indexed: 12/22/2022]
Abstract
Clostridium difficile infection (CDI) is a worldwide health threat that is typically triggered by the use of broad-spectrum antibiotics, which disrupt the natural gut microbiota and allow this Gram-positive anaerobic pathogen to thrive. The increased incidence and severity of disease coupled with decreased response, high recurrence rates, and emergence of multiple antibiotic-resistant strains have created an urgent need for new therapies. We describe pharmacological targeting of the cysteine protease domain (CPD) within the C. difficile major virulence factor toxin B (TcdB). Through a targeted screen with an activity-based probe for this protease domain, we identified a number of potent CPD inhibitors, including one bioactive compound, ebselen, which is currently in human clinical trials for a clinically unrelated indication. This drug showed activity against both major virulence factors, TcdA and TcdB, in biochemical and cell-based studies. Treatment in a mouse model of CDI that closely resembles the human infection confirmed a therapeutic benefit in the form of reduced disease pathology in host tissues that correlated with inhibition of the release of the toxic glucosyltransferase domain (GTD). Our results show that this non-antibiotic drug can modulate the pathology of disease and therefore could potentially be developed as a therapeutic for the treatment of CDI.
Collapse
Affiliation(s)
- Kristina Oresic Bender
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - Megan Garland
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - Jessica A Ferreyra
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Andrew J Hryckowian
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Matthew A Child
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - Aaron W Puri
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - David E Solow-Cordero
- Stanford University High-Throughput Bioscience Center, 1291 Welch Road, Stanford, CA 94305-5174, USA
| | - Steven K Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Ehud Segal
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA. Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305-5107, USA
| | - Aimee Shen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA. Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA.
| |
Collapse
|
75
|
Abstract
The mammalian virome includes diverse commensal and pathogenic viruses that evoke a broad range of immune responses from the host. Sustained viral immunomodulation is implicated in a variety of inflammatory diseases, but also confers unexpected benefits to the host. These outcomes of viral infections are often dependent on host genotype. Moreover, it is becoming clear that the virome is part of a dynamic network of microorganisms that inhabit the body. Therefore, viruses can be viewed as a component of the microbiome, and interactions with commensal bacteria and other microbial agents influence their behavior. This piece is a review of our current understanding of how the virome, together with other components of the microbiome, affects the function of the host immune system to regulate health and disease.
Collapse
Affiliation(s)
- Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
76
|
Yan FY, Ju J, Gao F, Wang XQ. Application of fecal microbiota transplantation in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2015; 23:3406-3412. [DOI: 10.11569/wcjd.v23.i21.3406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is the transplantation of the fecal microbiota from a healthy donor into the intestine of a patient via a special way, which can help regulate the intestinal flora and make the patient restore normal intestinal micro ecology system. FMT represents a novel treatment for intestinal flora imbalance caused by a variety of intestinal diseases, with the aim to restore the normal intestinal flora and improve the abnormal intestinal inflammation, immune status, energy metabolism, and neurotransmitter activation. FMT is a selective, rather than primary, treatment for patients after failed conventional treatment. Currently, FMT has been reported to be used for treatment of more and more diseases; however, there has been no unified standard for this promising treatment. Greater efforts should be taken to standardize FMT. This article reviews the application of FMT in inflammatory bowel disease (IBD).
Collapse
|
77
|
Fishman JA, Thomson AW. Clinical Implications of Basic Science Discoveries: Immune Homeostasis and the Microbiome-Dietary and Therapeutic Modulation and Implications for Transplantation. Am J Transplant 2015; 15:1755-8. [PMID: 25810247 DOI: 10.1111/ajt.13236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/07/2015] [Accepted: 01/23/2015] [Indexed: 01/25/2023]
Abstract
Links between the human microbiome and the innate and adaptive immune systems and their impact on autoimmune and inflammatory diseases are only beginning to be recognized. Characterization of the complex human microbial community is facilitated by culture-independent nucleic acid sequencing tools and bioinformatics systems. Specific organisms and microbial antigens are linked with initiation of innate immune responses that, depending on the context, may be associated with tolerogenic or effector immune responses. Further complexity is introduced by preclinical data that demonstrate the impacts of dietary manipulation on the prevention of genetically determined, systemic autoimmune disorders and on gastrointestinal microbiota. Investigation of interactions of complex microbial populations with the human immune system may provide new targets for clinical management in allotransplantation.
Collapse
Affiliation(s)
- J A Fishman
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - A W Thomson
- University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
78
|
Effectiveness of fecal-derived microbiota transfer using orally administered capsules for recurrent Clostridium difficile infection. BMC Infect Dis 2015; 15:191. [PMID: 25885020 PMCID: PMC4506624 DOI: 10.1186/s12879-015-0930-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/10/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Clostridium difficile infection (CDI), a complication of antibiotic-induced injury to the gut microbiome, is a prevalent and dangerous cause of infectious diarrhea. Antimicrobial therapy for CDI is typically effective for acute symptoms, but up to one third of patients later experience recurrent CDI. Fecal-derived microbiota transplantation (FMT) can ameliorate the underlying dysbiosis and is highly effective for recurrent CDI. Traditional methods of FMT are limited by patient discomfort, risk and inefficient procedures. Many individuals with recurrent CDI have extensive comorbidities and advanced age. Widespread use of FMT requires strategies that are non-invasive, scalable and applicable across healthcare settings. METHODS A method to facilitate microbiota transfer was developed. Fecal samples were collected and screened for potential pathogens. Bacteria were purified, concentrated, cryopreserved and formulated into multi-layered capsules. Capsules were administered to patients with recurrent CDI, who were then monitored for 90 days. RESULTS Thirteen women and six men with recurrent CDI were provided with microbiota transfer with orally administered capsules. The procedure was well tolerated. Thirteen individuals responded to a single course. Four patients were cured after a second course. There were 2 failures. The cumulative clinical cure rate of 89% is similar to the rates achieved with reported fecal-derived transplantation procedures. CONCLUSIONS Recurrent CDI represents a profound dysbiosis and a debilitating chronic disease. Stable cure can be achieved by restoring the gut microbiome with an effective, well-tolerated oral capsule treatment. This strategy of microbiota transfer can be widely applied and is particularly appropriate for frail patients.
Collapse
|
79
|
Zapata HJ, Quagliarello VJ. The microbiota and microbiome in aging: potential implications in health and age-related diseases. J Am Geriatr Soc 2015; 63:776-81. [PMID: 25851728 DOI: 10.1111/jgs.13310] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Advances in bacterial deoxyribonucleic acid sequencing allow for characterization of the human commensal bacterial community (microbiota) and its corresponding genome (microbiome). Surveys of healthy adults reveal that a signature composite of bacteria characterizes each unique body habitat (e.g., gut, skin, oral cavity, vagina). A myriad of clinical changes, including a basal proinflammatory state (inflamm-aging), that directly interface with the microbiota of older adults and enhance susceptibility to disease accompany aging. Studies in older adults demonstrate that the gut microbiota correlates with diet, location of residence (e.g., community dwelling, long-term care settings), and basal level of inflammation. Links exist between the microbiota and a variety of clinical problems plaguing older adults, including physical frailty, Clostridium difficile colitis, vulvovaginal atrophy, colorectal carcinoma, and atherosclerotic disease. Manipulation of the microbiota and microbiome of older adults holds promise as an innovative strategy to influence the development of comorbidities associated with aging.
Collapse
Affiliation(s)
- Heidi J Zapata
- Infectious Diseases Section, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut
| | | |
Collapse
|
80
|
Abstract
Obesity is a major modifiable risk factor for the development of numerous types of cancer. Although many factors contribute to obesity-driven tumorigenesis, this review focuses on the functioning of the gut microbiota (the microbiome) as an environmental risk factor for certain types of cancers, and presents possible biological mediators. Obesity is a well-studied condition that is associated with microbiotal dysbiosis, which could result in several physiologic changes that may contribute to the relationship between obesity and cancer risk. These include altered microbial metabolism, which contributes to the generation of procarcinogenic toxic metabolites; increased extraction of energy and nutrient availability leading to metabolic dysregulation that contributes to tumor growth; and/or the induction of subclinical inflammation initiating tumorigenesis. Thus, the gut microbiota may serve as a key link between obesity and cancer and, therefore, viable strategies to alter the microbiota may provide novel therapeutics to reduce obesity-associated cancer risk.
Collapse
|
81
|
Crouzet L, Rigottier-Gois L, Serror P. Potential use of probiotic and commensal bacteria as non-antibiotic strategies against vancomycin-resistant enterococci. FEMS Microbiol Lett 2015; 362:fnv012. [DOI: 10.1093/femsle/fnv012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2015] [Indexed: 12/17/2022] Open
|
82
|
Vyas D, Aekka A, Vyas A. Fecal transplant policy and legislation. World J Gastroenterol 2015; 21:6-11. [PMID: 25574076 PMCID: PMC4284361 DOI: 10.3748/wjg.v21.i1.6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/16/2014] [Accepted: 07/24/2014] [Indexed: 02/06/2023] Open
Abstract
Fecal microbiota transplantation (FMT) has garnered significant attention in recent years in the face of a reemerging Clostridium difficile (C. difficile) epidemic. Positive results from the first randomized control trial evaluating FMT have encouraged the medical community to explore the process further and expand its application beyond C. difficile infections and even the gastrointestinal domain. However promising and numerous the prospects of FMT appear, the method remains limited in scope today due to several important barriers, most notably a poorly defined federal regulatory policy. The Food and Drug Administration has found it difficult to standardize and regulate the administration of inherently variable, metabolically active, and ubiquitously available fecal material. The current cumbersome policy, which classifies human feces as a drug, has prevented physicians from providing FMT and deserving patients from accessing FMT in a timely fashion, and subsequent modifications seem only to be temporary. The argument for reclassifying fecal material as human tissue is well supported. Essentially, this would allow for a regulatory framework that is sufficiently flexible to expand access to care and facilitate research, but also appropriately restrictive and centralized to ensure patient safety. Such an approach can facilitate the advancement of FMT to a more refined, controlled, and aesthetic process, perhaps in the form of a customized and well-characterized stool substitute therapy.
Collapse
|
83
|
Caballero S, Pamer EG. Microbiota-mediated inflammation and antimicrobial defense in the intestine. Annu Rev Immunol 2015; 33:227-56. [PMID: 25581310 DOI: 10.1146/annurev-immunol-032713-120238] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The diverse microbial populations constituting the intestinal microbiota promote immune development and differentiation, but because of their complex metabolic requirements and the consequent difficulty culturing them, they remained, until recently, largely uncharacterized and mysterious. In the last decade, deep nucleic acid sequencing platforms, new computational and bioinformatics tools, and full-genome characterization of several hundred commensal bacterial species facilitated studies of the microbiota and revealed that differences in microbiota composition can be associated with inflammatory, metabolic, and infectious diseases, that each human is colonized by a distinct bacterial flora, and that the microbiota can be manipulated to reduce and even cure some diseases. Different bacterial species induce distinct immune cell populations that can play pro- and anti-inflammatory roles, and thus the composition of the microbiota determines, in part, the level of resistance to infection and susceptibility to inflammatory diseases. This review summarizes recent work characterizing commensal microbes that contribute to the antimicrobial defense/inflammation axis.
Collapse
Affiliation(s)
- Silvia Caballero
- Immunology Program, Sloan Kettering Institute, Infectious Diseases Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| | | |
Collapse
|
84
|
Baquero F, Lanza VF, Cantón R, Coque TM. Public health evolutionary biology of antimicrobial resistance: priorities for intervention. Evol Appl 2014; 8:223-39. [PMID: 25861381 PMCID: PMC4380917 DOI: 10.1111/eva.12235] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/12/2014] [Indexed: 12/19/2022] Open
Abstract
The three main processes shaping the evolutionary ecology of antibiotic resistance (AbR) involve the emergence, invasion and occupation by antibiotic-resistant genes of significant environments for human health. The process of emergence in complex bacterial populations is a high-frequency, continuous swarming of ephemeral combinatory genetic and epigenetic explorations inside cells and among cells, populations and communities, expanding in different environments (migration), creating the stochastic variation required for evolutionary progress. Invasion refers to the process by which AbR significantly increases in frequency in a given (invaded) environment, led by external invaders local multiplication and spread, or by endogenous conversion. Conversion occurs because of the spread of AbR genes from an exogenous resistant clone into an established (endogenous) bacterial clone(s) colonizing the environment; and/or because of dissemination of particular resistant genetic variants that emerged within an endogenous clonal population. Occupation of a given environment by a resistant variant means a permanent establishment of this organism in this environment, even in the absence of antibiotic selection. Specific interventions on emergence influence invasion, those acting on invasion also influence occupation and interventions on occupation determine emergence. Such interventions should be simultaneously applied, as they are not simple solutions to the complex problem of AbR.
Collapse
Affiliation(s)
- Fernando Baquero
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| | - Val F Lanza
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| | - Rafael Cantón
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III Madrid, Spain
| | - Teresa M Coque
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| |
Collapse
|
85
|
LeBlanc ADMD, LeBlanc JG. Effect of probiotic administration on the intestinal microbiota, current knowledge and potential applications. World J Gastroenterol 2014; 20:16518-16528. [PMID: 25469019 PMCID: PMC4248194 DOI: 10.3748/wjg.v20.i44.16518] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/22/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
Although it is now known that the human body is colonized by a wide variety of microbial populations in different parts (such as the mouth, pharynx and respiratory system, the skin, the gastro- and urogenital tracts), many effects of the complex interactions between the human host and microbial symbionts are still not completely understood. The dysbiosis of the gastrointestinal tract microbiota is considered to be one of the most important contributing factors in the development of many gastrointestinal diseases such as inflammatory bowel disease, irritable bowel syndrome and colorectal cancer, as well as systemic diseases like obesity, diabetes, atherosclerosis and non-alcoholic fatty liver disease. Fecal microbial transplantations appear to be promising therapies for dysbiosis-associated diseases; however, probiotic microorganisms have been growing in popularity due to increasing numbers of studies proving that certain strains present health promoting properties, among them the beneficial balance of the intestinal microbiota. Inflammatory bowel diseases and obesity are the pathologies in which there are more studies showing this beneficial association using animal models and even in human clinical trials. In this review, the association of the human gut microbiota and human health will be discussed along with the benefits that probiotics can confer on this symbiotic activity and on the prevention or treatment of associated diseases.
Collapse
|
86
|
Dzutsev A, Goldszmid RS, Viaud S, Zitvogel L, Trinchieri G. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur J Immunol 2014; 45:17-31. [PMID: 25328099 DOI: 10.1002/eji.201444972] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/19/2014] [Accepted: 10/13/2014] [Indexed: 12/11/2022]
Abstract
Commensal microorganisms colonize barrier surfaces of all multicellular organisms, including those of humans. For more than 500 million years, commensal microorganisms and their hosts have coevolved and adapted to each other. As a result, the commensal microbiota affects many immune and nonimmune functions of their hosts, and de facto the two together comprise one metaorganism. The commensal microbiota communicates with the host via biologically active molecules. Recently, it has been reported that microbial imbalance may play a critical role in the development of multiple diseases, such as cancer, autoimmune conditions, and increased susceptibility to infection. In this review, we focus on the role of the commensal microbiota in the development, progression, and immune evasion of cancer, as well as some modulatory effects on the treatment of cancer. In particular, we discuss the mechanisms of microbiota-mediated regulation of innate and adaptive immune responses to tumors, and the consequences on cancer progression and whether tumors subsequently become resistant or susceptible to different anticancer therapeutic regiments.
Collapse
Affiliation(s)
- Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA; Leidos Biomedical Research, Inc, Frederick, MD, USA
| | | | | | | | | |
Collapse
|
87
|
Dubin K, Pamer EG. Enterococci and Their Interactions with the Intestinal Microbiome. Microbiol Spectr 2014; 5:10.1128/microbiolspec.bad-0014-2016. [PMID: 29125098 PMCID: PMC5691600 DOI: 10.1128/microbiolspec.bad-0014-2016] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 12/15/2022] Open
Abstract
The Enterococcus genus comprises over 50 species that live as commensal bacteria in the gastrointestinal (GI) tracts of insects, birds, reptiles, and mammals. Named "entero" to emphasize their intestinal habitat, Enterococcus faecalis and Enterococcus faecium were first isolated in the early 1900s and are the most abundant species of this genus found in the human fecal microbiota. In the past 3 decades, enterococci have developed increased resistance to several classes of antibiotics and emerged as a prevalent causative agent of health care-related infections. In U.S. hospitals, antibiotic use has increased the transmission of multidrug-resistant enterococci. Antibiotic treatment depletes broad communities of commensal microbes from the GI tract, allowing resistant enterococci to densely colonize the gut. The reestablishment of a diverse intestinal microbiota is an emerging approach to combat infections caused by antibiotic-resistant bacteria in the GI tract. Because enterococci exist as commensals, modifying the intestinal microbiome to eliminate enterococcal clinical pathogens poses a challenge. To better understand how enterococci exist as both commensals and pathogens, in this article we discuss their clinical importance, antibiotic resistance, diversity in genomic composition and habitats, and interaction with the intestinal microbiome that may be used to prevent clinical infection.
Collapse
Affiliation(s)
- Krista Dubin
- Immunology Program and Infectious Disease Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| | - Eric G Pamer
- Immunology Program and Infectious Disease Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
- Lucille Castori Center for Microbes, Inflammation, and Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
88
|
Abstract
The Enterococcus genus comprises over 50 species that live as commensal bacteria in the gastrointestinal (GI) tracts of insects, birds, reptiles, and mammals. Named "entero" to emphasize their intestinal habitat, Enterococcus faecalis and Enterococcus faecium were first isolated in the early 1900s and are the most abundant species of this genus found in the human fecal microbiota. In the past 3 decades, enterococci have developed increased resistance to several classes of antibiotics and emerged as a prevalent causative agent of health care-related infections. In U.S. hospitals, antibiotic use has increased the transmission of multidrug-resistant enterococci. Antibiotic treatment depletes broad communities of commensal microbes from the GI tract, allowing resistant enterococci to densely colonize the gut. The reestablishment of a diverse intestinal microbiota is an emerging approach to combat infections caused by antibiotic-resistant bacteria in the GI tract. Because enterococci exist as commensals, modifying the intestinal microbiome to eliminate enterococcal clinical pathogens poses a challenge. To better understand how enterococci exist as both commensals and pathogens, in this article we discuss their clinical importance, antibiotic resistance, diversity in genomic composition and habitats, and interaction with the intestinal microbiome that may be used to prevent clinical infection.
Collapse
|
89
|
Surana NK, Kasper DL. Deciphering the tête-à-tête between the microbiota and the immune system. J Clin Invest 2014; 124:4197-203. [PMID: 25036709 PMCID: PMC4191050 DOI: 10.1172/jci72332] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The past decade has witnessed an explosion in studies--both clinical and basic science--examining the relationship between the microbiota and human health, and it is now clear that the effects of commensal organisms are much broader than previously believed. Among the microbiota's major contributions to host physiology is regulation of the development and maintenance of the immune system. There are now a handful of examples of intestinal commensal bacteria with defined immunomodulatory properties, but our mechanistic understanding of how microbes influence the immune system is still in its infancy. Nevertheless, several themes have emerged that provide a framework for appreciating microbe-induced immunoregulation. In this Review, we discuss the current state of knowledge regarding the role of the intestinal microbiota in immunologic development, highlighting mechanistic principles that can guide future work.
Collapse
Affiliation(s)
- Neeraj K. Surana
- Division of Infectious Diseases, Department of Medicine,
Boston Children’s Hospital, Boston, Massachusetts, USA. Department of
Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Dennis L. Kasper
- Division of Infectious Diseases, Department of Medicine,
Boston Children’s Hospital, Boston, Massachusetts, USA. Department of
Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
90
|
Abstract
Clostridium difficile infection (CDI) is an increasingly common and severe international health problem. Customary treatment of this infection, usually with antibiotics, is often ineffective and its recurrence is common. In recent years the treatment of recurrent or refractory CDI by the transfer of stool from an uninfected person, so called fecal "microbiota transplantation" has become recognized as effective and generally safe. The effectiveness of this novel treatment is incompletely defined but is likely to be due to its correction of the intestinal dysbiosis that characterizes the disease. Practical methods for the administration of the transplantation have been described. This review summarizes the current reported experiences with fecal microbiota transplantation in the treatment for CDI.
Collapse
Affiliation(s)
- William R Brown
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
91
|
Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 2014; 16:1024-33. [PMID: 24798552 PMCID: PMC4143175 DOI: 10.1111/cmi.12308] [Citation(s) in RCA: 694] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 02/07/2023]
Abstract
Mammalian immune system development depends on instruction from resident commensal microorganisms. Diseases associated with abnormal immune responses towards environmental and self antigens have been rapidly increasing over the last 50 years. These diseases include inflammatory bowel disease (IBD), multiple sclerosis (MS), type I diabetes (T1D), allergies and asthma. The observation that people with immune mediated diseases house a different microbial community when compared to healthy individuals suggests that pathogenesis arises from improper training of the immune system by the microbiota. However, with hundreds of different microorganisms on our bodies it is hard to know which of these contribute to health and more importantly how? Microbiologists studying pathogenic organisms have long adhered to Koch's postulates to directly relate a certain disease to a specific microbe, raising the question of whether this might be true of commensal–host relationships as well. Emerging evidence supports that rather than one or two dominant organisms inducing host health, the composition of the entire community of microbial residents influences a balanced immune response. Thus, perturbations to the structure of complex commensal communities (referred to as dysbiosis) can lead to deficient education of the host immune system and subsequent development of immune mediated diseases. Here we will overview the literature that describes the causes of dysbiosis and the mechanisms evolved by the host to prevent these changes to community structure. Building off these studies, we will categorize the different types of dysbiosis and define how collections of microorganisms can influence the host response. This research has broad implications for future therapies that go beyond the introduction of a single organism to induce health. We propose that identifying mechanisms to re-establish a healthy complex microbiota after dysbiosis has occurred, a process we will refer to as rebiosis, will be fundamental to treating complex immune diseases.
Collapse
Affiliation(s)
- Charisse Petersen
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | | |
Collapse
|
92
|
Fijan S. Microorganisms with claimed probiotic properties: an overview of recent literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:4745-67. [PMID: 24859749 PMCID: PMC4053917 DOI: 10.3390/ijerph110504745] [Citation(s) in RCA: 558] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/17/2014] [Accepted: 03/25/2014] [Indexed: 12/14/2022]
Abstract
Probiotics are defined as live microorganisms, which when administered in adequate amounts, confer a health benefit on the host. Health benefits have mainly been demonstrated for specific probiotic strains of the following genera: Lactobacillus, Bifidobacterium, Saccharomyces, Enterococcus, Streptococcus, Pediococcus, Leuconostoc, Bacillus, Escherichia coli. The human microbiota is getting a lot of attention today and research has already demonstrated that alteration of this microbiota may have far-reaching consequences. One of the possible routes for correcting dysbiosis is by consuming probiotics. The credibility of specific health claims of probiotics and their safety must be established through science-based clinical studies. This overview summarizes the most commonly used probiotic microorganisms and their demonstrated health claims. As probiotic properties have been shown to be strain specific, accurate identification of particular strains is also very important. On the other hand, it is also demonstrated that the use of various probiotics for immunocompromised patients or patients with a leaky gut has also yielded infections, sepsis, fungemia, bacteraemia. Although the vast majority of probiotics that are used today are generally regarded as safe and beneficial for healthy individuals, caution in selecting and monitoring of probiotics for patients is needed and complete consideration of risk-benefit ratio before prescribing is recommended.
Collapse
Affiliation(s)
- Sabina Fijan
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia.
| |
Collapse
|
93
|
Hill JM, Bhattacharjee S, Pogue AI, Lukiw WJ. The gastrointestinal tract microbiome and potential link to Alzheimer's disease. Front Neurol 2014; 5:43. [PMID: 24772103 PMCID: PMC3983497 DOI: 10.3389/fneur.2014.00043] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/21/2014] [Indexed: 12/26/2022] Open
Affiliation(s)
- James M Hill
- LSU Neuroscience Center, Louisiana State University Health Sciences Center , New Orleans, LA , USA ; Department of Microbiology, Louisiana State University Health Sciences Center , New Orleans, LA , USA ; Department of Ophthalmology, Louisiana State University Health Sciences Center , New Orleans, LA , USA
| | | | | | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center , New Orleans, LA , USA ; Department of Ophthalmology, Louisiana State University Health Sciences Center , New Orleans, LA , USA ; Alchem Biotek , Toronto, ON , Canada ; Department of Neurology, Louisiana State University Health Sciences Center , New Orleans, LA , USA
| |
Collapse
|
94
|
Guo WT, Dong LN, Wang JP, Liu P. New advances in clinical application of fecal microbiota transplantation. Shijie Huaren Xiaohua Zazhi 2014; 22:4593. [DOI: 10.11569/wcjd.v22.i30.4593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|