51
|
Potential therapeutic applications of microRNAs in cancer diagnosis and treatment: Sharpening a double-edged sword? Eur J Pharmacol 2022; 932:175210. [PMID: 35981607 DOI: 10.1016/j.ejphar.2022.175210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Cancer is a leading cause of increased morbidity and mortality worldwide despite advancements in diagnosis and treatment. Lack of early detection and diagnosis of different cancers and adverse effects and toxicity associated with conventional cancer treatments, such as chemotherapy and radiation, remains a problem. MicroRNAs can act as oncogenes or tumour suppressors in different types of cancers. Their distinct gene expression in various stages and types of cancerous cells make them attractive targets for cancer diagnosis and therapy. The growing research and clinical interests in gene therapy and nano-drug delivery systems have led to the development of potential miRNA-targeted treatments encompassing miRNA mimics, antagonists, and their use in cancer chemotherapy sensitization. In this review, we discuss the recent advancements in understanding the role of miRNAs in cancer development and their potential use as biomarkers in clinical diagnostics and as targets in chemotherapy of cancer.
Collapse
|
52
|
Holjencin C, Jakymiw A. MicroRNAs and Their Big Therapeutic Impacts: Delivery Strategies for Cancer Intervention. Cells 2022; 11:cells11152332. [PMID: 35954176 PMCID: PMC9367537 DOI: 10.3390/cells11152332] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/19/2022] Open
Abstract
Three decades have passed from the initial discovery of a microRNA (miRNA) in Caenorhabditis elegans to our current understanding that miRNAs play essential roles in regulating fundamental physiological processes and that their dysregulation can lead to many human pathologies, including cancer. In effect, restoration of miRNA expression or downregulation of aberrantly expressed miRNAs using miRNA mimics or anti-miRNA inhibitors (anti-miRs/antimiRs), respectively, continues to show therapeutic potential for the treatment of cancer. Although the manipulation of miRNA expression presents a promising therapeutic strategy for cancer treatment, it is predominantly reliant on nucleic acid-based molecules for their application, which introduces an array of hurdles, with respect to in vivo delivery. Because naked nucleic acids are quickly degraded and/or removed from the body, they require delivery vectors that can help overcome the many barriers presented upon their administration into the bloodstream. As such, in this review, we discuss the strengths and weaknesses of the current state-of-the-art delivery systems, encompassing viral- and nonviral-based systems, with a specific focus on nonviral nanotechnology-based miRNA delivery platforms, including lipid-, polymer-, inorganic-, and extracellular vesicle-based delivery strategies. Moreover, we also shed light on peptide carriers as an emerging technology that shows great promise in being a highly efficacious delivery platform for miRNA-based cancer therapeutics.
Collapse
Affiliation(s)
- Charles Holjencin
- Department of Oral Health Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA;
| | - Andrew Jakymiw
- Department of Oral Health Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA;
- Department of Biochemistry & Molecular Biology, College of Medicine, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
- Correspondence: ; Tel.: +1-843-792-2551
| |
Collapse
|
53
|
MiRNAs in Lung Cancer: Diagnostic, Prognostic, and Therapeutic Potential. Diagnostics (Basel) 2022; 12:diagnostics12071610. [PMID: 35885514 PMCID: PMC9322918 DOI: 10.3390/diagnostics12071610] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the dominant emerging factor in cancer-related mortality around the globe. Therapeutic interventions for lung cancer are not up to par, mainly due to reoccurrence/relapse, chemoresistance, and late diagnosis. People are currently interested in miRNAs, which are small double-stranded (20–24 ribonucleotides) structures that regulate molecular targets (tumor suppressors, oncogenes) involved in tumorigeneses such as cell proliferation, apoptosis, metastasis, and angiogenesis via post-transcriptional regulation of mRNA. Many studies suggest the emerging role of miRNAs in lung cancer diagnostics, prognostics, and therapeutics. Therefore, it is necessary to intensely explore the miRNOME expression of lung tumors and the development of anti-cancer strategies. The current review focuses on the therapeutic, diagnostic, and prognostic potential of numerous miRNAs in lung cancer.
Collapse
|
54
|
Yi WR, Tu MJ, Yu AX, Lin J, Yu AM. Bioengineered miR-34a modulates mitochondrial inner membrane protein 17 like 2 (MPV17L2) expression toward the control of cancer cell mitochondrial functions. Bioengineered 2022; 13:12489-12503. [PMID: 35579419 PMCID: PMC9276019 DOI: 10.1080/21655979.2022.2076399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genome-derived microRNAs (miRNAs or miRs) control post-transcriptional gene expression critical for various cellular processes. Recently, we have invented a novel platform technology to achieve high-yield production of fully humanized, bioengineered miRNA agents (hBERAs) for research and development. This study is aimed to produce and utilize a new biologic miR-34a-5p (or miR-34a) molecule, namely, hBERA/miR-34a, to delineate the role of miR-34a-5p in the regulation of mitochondrial functions in human carcinoma cells. Bioengineered hBERA/miR-34a was produced through in vivo fermentation production and purified by anion exchange fast protein liquid chromatography. hEBRA/miR-34a was processed to target miR-34a-5p in human osteosarcoma and lung cancer cells, as determined by selective stem-loop reverse transcription quantitative polymerase chain reaction analysis. The mitochondrial inner membrane protein MPV17 like 2 (MPV17L2) was validated as a direct target for miR-34a-5p by dual luciferase reporter assay. Western blot analysis revealed that bioengineered miR-34a-5p effectively reduced MPV17L2 protein outcomes, leading to much lower levels of respiratory chain Complex I activities and intracellular ATP that were determined with specific assay kits. Moreover, Seahorse Mito Stress Test assay was conducted, and the results showed that biologic miR-34a-5p sharply reduced cancer cell mitochondrial respiration capacity, accompanied by a remarkable increase of oxidative stress and elevated apoptotic cell death, which are manifested by greater levels of reactive oxygen species and selective apoptosis biomarkers, respectively. These results demonstrate the presence and involvement of the miR-34a-5p-MPV17L2 pathway in the control of mitochondrial functions in human carcinoma cells and support the utility of novel bioengineered miRNA molecules for functional studies.
Collapse
Affiliation(s)
- Wan-Rong Yi
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Ai-Xi Yu
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jun Lin
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
55
|
Ahmed N, Ahmed N, Pezacki JP. miR-383 Regulates Hepatic Lipid Homeostasis and Response to Dengue Virus Infection. ACS Infect Dis 2022; 8:928-941. [PMID: 35254825 DOI: 10.1021/acsinfecdis.1c00470] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, microRNAs (miRNAs), as endogenous noncoding RNAs that inhibit mRNA translation, have been identified to broadly possess functional roles in regulating cellular signaling and metabolic processes due to their chemical and biological properties. In addition, they have emerged to be of critical importance in modulating host-virus interactions, especially for RNA viruses. Herein, we discovered that miR-383-5p targets certain lipid and cholesterol biosynthetic pathways and restricts Dengue virus (DENV) infection in hepatic cells. Global transcriptomics analysis of Huh7 human hepatoma cells overexpressing miR-383-5p revealed enrichment of lipid and cholesterol metabolic processes. Bioinformatics analysis of genes repressed in miR-383-5p overexpressing cells divulged the repression of a key target PLA2G4A, a pro-viral host factor essential for the production of infectious DENV particles. Our study demonstrated the effectiveness of miRNA mimics as tools to study cellular signaling pathways that contribute to viral pathogenesis. Overall, our study identifies miR-383-5p as an interesting host factor during DENV propagation and highlights a potential therapeutic role in the regulation of hepatic lipid metabolism and an antiviral response to DENV.
Collapse
Affiliation(s)
- Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Noreen Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
56
|
Pouya FD, Rasmi Y, Gazouli M, Zografos E, Nemati M. MicroRNAs as therapeutic targets in breast cancer metastasis. Drug Deliv Transl Res 2022; 12:1029-1046. [PMID: 33987801 DOI: 10.1007/s13346-021-00999-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is a complex disease with multiple risk factors involved in its pathogenesis. Among these factors, microRNAs are considered for playing a fundamental role in the development and progression of malignant breast tumors. In recent years, various studies have demonstrated that several microRNAs exhibit increased or decreased expression in metastatic breast cancer, acting as indicators of metastatic potential in body fluids and tissue samples. The identification of these microRNA expression patterns could prove instrumental for the development of novel therapeutic molecules that either mimic or inhibit microRNA action. Additionally, an efficient delivery system mediated by viral vectors, nonviral carriers, or scaffold biomaterials is a prerequisite for implementing microRNA-based therapies; therefore, this review attempts to highlight essential microRNA molecules involved in the metastatic process of breast cancer and discuss recent advances in microRNA-based therapeutic approaches with potential future applications to the treatment sequence of breast cancer.
Collapse
Affiliation(s)
- Fahima Danesh Pouya
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Eleni Zografos
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
57
|
Popov A, Mandys V. Senescence-Associated miRNAs and Their Role in Pancreatic Cancer. Pathol Oncol Res 2022; 28:1610156. [PMID: 35570840 PMCID: PMC9098800 DOI: 10.3389/pore.2022.1610156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/12/2022] [Indexed: 01/17/2023]
Abstract
Replicative senescence is irreversible cell proliferation arrest for somatic cells which can be circumvented in cancers. Cellular senescence is a process, which may play two opposite roles. On the one hand, this is a natural protection of somatic cells against unlimited proliferation and malignant transformation. On the other hand, cellular secretion caused by senescence can stimulate inflammation and proliferation of adjacent cells that may promote malignancy. The main genes controlling the senescence pathways are also well known as tumor suppressors. Almost 140 genes regulate both cellular senescence and cancer pathways. About two thirds of these genes (64%) are regulated by microRNAs. Senescence-associated miRNAs can stimulate cancer progression or act as tumor suppressors. Here we review the role playing by senescence-associated miRNAs in development, diagnostics and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Alexey Popov
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czechia
| | | |
Collapse
|
58
|
Yin L, Yan L, Yu Q, Wang J, Liu C, Wang L, Zheng L. Characterization of the MicroRNA Profile of Ginger Exosome-like Nanoparticles and Their Anti-Inflammatory Effects in Intestinal Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4725-4734. [PMID: 35261246 DOI: 10.1021/acs.jafc.1c07306] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plant-derived exosome-like nanoparticles (PELNs) have been shown to enter mammalian cells for disease treatment. Although abundant miRNAs are contained in ginger exosome-like nanoparticles (GELNs), little is known about their type and function. Herein, we extracted GELNs with desirable particle sizes (156 ± 36 nm) and a negative surface charge (-26.6 ± 5 mV). The miRNA profiles in ginger and GELNs were analyzed using high-throughput sequencing, and the results of the sequencing were validated by real-time quantitative polymerase chain reaction (RT-qPCR). There were 27 miRNAs with higher expression levels in the GELNs, and they were mainly involved in the regulation of inflammatory and cancer-related pathways. Furthermore, GELNs could be specifically internalized by intestine cells via caveolin-mediated endocytosis and micropinocytosis, as well as counteract lipopolysaccharide (LPS)-induced inflammation by downregulating NF-κβ, IL-6, IL-8, and TNF-α expression. Importantly, the positive effects were further proved to be possibly related to the miRNAs enriched in the GELNs. Overall, these results indicated that PELNs could target human digestive organs and play a cross-kingdom physiological regulation role through miRNAs.
Collapse
Affiliation(s)
- Lifen Yin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ling Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qian Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ju Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Changhong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
59
|
李 帅, 斯 海, 沈 彬. [Application of tetrahedral framework nucleic acids in the treatment of osteoarthritis]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:505-510. [PMID: 35426293 PMCID: PMC9011070 DOI: 10.7507/1002-1892.202112054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/24/2023]
Abstract
Objective To introduce the characteristics of tetrahedral framework nucleic acids (tFNA), focusing on its application in the treatment of osteoarthritis (OA) and relationship with microRNA (miRNA), and prospect the application of tFNA in the treatment of OA and the new idea of constructing miR-tFNA functional complex to treat OA. Methods Recent studies were extensively reviewed to analyze the mechanism of tFNA and its relationship with OA and miRNA. Results tFNA, a new type of new carrier, can not only play an indirect role in the treatment of OA as a small molecular carrier with therapeutic effect, but also play a direct role through the regulation of chondrocytes. It can bind with the miRNA that can regulate OA. The therapeutic effect of constructing tFNA functional complex loaded with miRNA has been verified in various diseases, and tFNA has advantages compared with other vectors. Conclusion tFNA, a novel framework nucleic acid structure, plays an important role in the treatment of OA. Constructing miR-tFNA functional complex may be an innovative idea in the treatment of OA.
Collapse
Affiliation(s)
- 帅 李
- 四川大学华西医院骨科研究所 骨科(成都 610041)Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - 海波 斯
- 四川大学华西医院骨科研究所 骨科(成都 610041)Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - 彬 沈
- 四川大学华西医院骨科研究所 骨科(成都 610041)Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| |
Collapse
|
60
|
Di Gioacchino M, Della Valle L, Allegra A, Pioggia G, Gangemi S. AllergoOncology: Role of immune cells and immune proteins. Clin Transl Allergy 2022; 12:e12133. [PMID: 35344301 PMCID: PMC8967267 DOI: 10.1002/clt2.12133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/21/2021] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Background Immune cells and immune proteins play a pivotal role in host responses to pathogens, allergens and cancer. Understanding the crosstalk between allergic response and cancer, immune surveillance, immunomodulation, role of immunoglobulin E (IgE)‐mediated functions and help to develop novel therapeutic strategies. Allergy and oncology show two opposite scenarios: whereas immune tolerance is desired in allergy, it is detrimental in cancer. Aim The current review provides an update on the role of immune cells and immune proteins in allergy and cancer fields. Methods Authors investigated the role of relevant immunological markers and the correlation with cancer progression or cancer suppression. Results Activated immune cells such as macrophages ‘M1’, dendritic cells (DCs), innate lymphoid cells (ILC2), NK cells, Th1, follicular T helper cells (TFH), TCD8+, B lymphocytes and eosinophils have inhibitory effects on tumourigenesis, while tolerogenic cells such as macrophages ‘M2,’ tolerogenic DCs, ILC3, T and B regulatory lymphocytes appear to favour carcinogenesis. Mastocytes and alarmins can have both effects. RIgE antibodies and CCCL5 chemokine have an anticancer role, whereas IgG4, free light chains, Il‐10, TGF‐β, lipocalin‐2, CCL1 chemokine promote cancer progression. Fundamental is also the contribution of epigenetic changes regulated by the microRNA in cancer progression. Conclusion This knowledge represents the key to developing new anticancer therapies.
Collapse
Affiliation(s)
- Mario Di Gioacchino
- Center for Advanced Science and Technology, G. d'Annunzio University, Chieti, Italy.,IDA - Institute of Clinical Immunotherapy and Advanced Biological Treatments, Pescara, Italy
| | - Loredana Della Valle
- Center for Advanced Science and Technology, G. d'Annunzio University, Chieti, Italy.,IDA - Institute of Clinical Immunotherapy and Advanced Biological Treatments, Pescara, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood 'Gaetano Barresi', University of Messina, Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, and Operative Unit of Allergy and Clinical Immunology, University of Messina, Messina, Italy
| |
Collapse
|
61
|
Szczepanek J, Skorupa M, Tretyn A. MicroRNA as a Potential Therapeutic Molecule in Cancer. Cells 2022; 11:1008. [PMID: 35326459 PMCID: PMC8947269 DOI: 10.3390/cells11061008] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Small noncoding RNAs, as post-translational regulators of many target genes, are not only markers of neoplastic disease initiation and progression, but also markers of response to anticancer therapy. Hundreds of miRNAs have been identified as biomarkers of drug resistance, and many have demonstrated the potential to sensitize cancer cells to therapy. Their properties of modulating the response of cells to therapy have made them a promising target for overcoming drug resistance. Several methods have been developed for the delivery of miRNAs to cancer cells, including introducing synthetic miRNA mimics, DNA plasmids containing miRNAs, and small molecules that epigenetically alter endogenous miRNA expression. The results of studies in animal models and preclinical studies for solid cancers and hematological malignancies have confirmed the effectiveness of treatment protocols using microRNA. Nevertheless, the use of miRNAs in anticancer therapy is not without limitations, including the development of a stable nanoconstruct, delivery method choices, and biodistribution. The aim of this review was to summarize the role of miRNAs in cancer treatment and to present new therapeutic concepts for these molecules. Supporting anticancer therapy with microRNA molecules has been verified in numerous clinical trials, which shows great potential in the treatment of cancer.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
| | - Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
62
|
Kornmueller K, Amri EZ, Scheideler M, Prassl R. Delivery of miRNAs to the adipose organ for metabolic health. Adv Drug Deliv Rev 2022; 181:114110. [PMID: 34995679 DOI: 10.1016/j.addr.2021.114110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
Despite the increasing prevalence of obesity and diabetes, there is no efficient treatment to combat these epidemics. The adipose organ is the main site for energy storage and plays a pivotal role in whole body lipid metabolism and energy homeostasis, including remodeling and dysfunction of adipocytes and adipose tissues in obesity and diabetes. Thus, restoring and balancing metabolic functions in the adipose organ is in demand. MiRNAs represent a novel class of drugs and drug targets, as they are heavily involved in the regulation of many cellular and metabolic processes and diseases, likewise in adipocytes. In this review, we summarize key regulatory activities of miRNAs in the adipose organ, discuss various miRNA replacement and inhibition strategies, promising delivery systems for miRNAs and reflect the future of novel miRNA-based therapeutics to target adipose tissues with the ultimate goal to combat metabolic disorders.
Collapse
Affiliation(s)
- Karin Kornmueller
- Department of Biophysics, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | | | - Marcel Scheideler
- Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ruth Prassl
- Department of Biophysics, Gottfried Schatz Research Center, Medical University of Graz, Austria.
| |
Collapse
|
63
|
Ji H, Fan L, Shan A, Wang W, Ning G, Cao Y, Jiang X. Let7b-5p inhibits insulin secretion and decreases pancreatic β-cell mass in mice. Mol Cell Endocrinol 2022; 540:111506. [PMID: 34801668 DOI: 10.1016/j.mce.2021.111506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
MicroRNAs are crucial regulators for the development, mass and function of pancreatic β-cells. MiRNA dysregulation is associated with β-cell dysfunction and development of diabetes. The members of let7 family are important players in regulating cellular growth and metabolism. In this study we investigated the functional role of let7b-5p in the mouse pancreatic β-cells. We generated pancreatic β-cell-specific let7b-5p transgenic mouse model and analyzed the glucose metabolic phenotype, β-cells mass and insulin secretion in vivo. Luciferase reporter assay, immunofluorescence staining and western blot were carried out to study the target genes of let7b-5p in β-cells. Let7b-5p overexpression impaired the insulin production and secretion of β-cells and resulted impaired glucose tolerance in mice. The overexpressed let7b-5p inhibited pancreatic β-cell proliferation and decreased the expression of cyclin D1 and cyclin D2. Our findings demonstrated that let7b-5p was critical in regulating the proliferation and insulin secretion of pancreatic β-cells.
Collapse
Affiliation(s)
- He Ji
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwen Fan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aijing Shan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Research Center for Translational Medicine, National Key Scientific Infrastructure for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China
| | - Xiuli Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
64
|
Dedeoğlu BG, Noyan S. Experimental MicroRNA Targeting Validation. Methods Mol Biol 2022; 2257:79-90. [PMID: 34432274 DOI: 10.1007/978-1-0716-1170-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
microRNAs (miRNAs) have recently been recognized as a new dimension of posttranscriptional regulation. It is well defined that most human protein-coding genes are regulated by one or more miRNAs. Therefore, it is crucial to identify genes targeted by the miRNAs to better understand their functions. Although bioinformatics tools have the ability to identify target candidates it is still essential to identify physiological targets by experimental approaches. Currently, the majority of miRNA-target experimental validation approaches assess the changes in target expression in mRNA or protein level upon miRNA upregulation or downregulation. Additionally, finding out direct physical interactions between miRNAs and their targets is also among the experimental techniques. In this chapter we reviewed the existing experimental techniques for miRNA target identification by considering their advantages and potential drawbacks.
Collapse
Affiliation(s)
| | - Senem Noyan
- Biotechnology Institute, Ankara University, Ankara, Turkey
| |
Collapse
|
65
|
Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022; 180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers that is threatening women's life. Current clinical treatment regimens for breast cancer often involve neoadjuvant and adjuvant systemic therapies, which somewhat are associated with unfavorable features. Also, the heterogeneous nature of breast cancers requires precision medicine that cannot be fulfilled by a single type of systemically administered drug. Taking advantage of the nanocarriers, nanomedicines emerge as promising therapeutic agents for breast cancer that could resolve the defects of drugs and achieve precise drug delivery to almost all sites of primary and metastatic breast tumors (e.g. tumor vasculature, tumor stroma components, breast cancer cells, and some immune cells). Seven nanomedicines as represented by Doxil® have been approved for breast cancer clinical treatment so far. More nanomedicines including both non-targeting and active targeting nanomedicines are being evaluated in the clinical trials. However, we have to realize that the translation of nanomedicines, particularly the active targeting nanomedicines is not as successful as people have expected. This review provides a comprehensive landscape of the nanomedicines for breast cancer treatment, from laboratory investigations to clinical applications. We also highlight the key advances in the understanding of the biological fate and the targeting strategies of breast cancer nanomedicine and the implications to clinical translation.
Collapse
|
66
|
Zeng Q, Jin F, Qian H, Chen H, Wang Y, Zhang D, Wei Y, Chen T, Guo B, Chai C. The miR-345-3p/PPP2CA signaling axis promotes proliferation and invasion of breast cancer cells. Carcinogenesis 2021; 43:150-159. [PMID: 34922339 DOI: 10.1093/carcin/bgab124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/27/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is the most common malignancy among women worldwide. Functional studies have demonstrated that miRNA dysregulation in many cases of cancer, in which miRNAs acting as either oncogenes or tumor suppressor. Here we report that miR-345-3p is generally upregulated in breast cancer tissues and breast cancer cell lines. Overexpression and inhibition of miR-345-3p revealed its capacity in regulating proliferation and invasion of breast cancer cells. Further research identified protein phosphatase 2 catalytic subunit alpha (PPP2CA), a suppressor of AKT phosphorylation, as a candidate target of miR-345-3p. In vitro, miR-345-3p mimics promoted AKT phosphorylation by targeting its negative regulator, PPP2CA. Blocking miR-345-3p relieves its inhibition of PPP2CA, which attenuated PI3K-AKT signaling pathway. In vivo, inhibiting miR-345-3p with miR-345-3p-inhibition lentivirus suppressed tumor growth and invasiveness in mice. Together, the miR-345-3p/PPP2CA signaling axis exhibits tumor promoting functions by regulating proliferation and invasion of breast cancer cells. These data provide a clue to novel therapeutic approaches for breast cancer.
Collapse
Affiliation(s)
- Qian Zeng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Fangfang Jin
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Husun Qian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Hongling Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Yange Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Dian Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Yu Wei
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Bianqin Guo
- Department of Clinical Laboratory, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Chengsen Chai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
67
|
Hu D, Shao W, Liu L, Wang Y, Yuan S, Liu Z, Liu J, Zhang J. Intricate crosstalk between MYB and noncoding RNAs in cancer. Cancer Cell Int 2021; 21:653. [PMID: 34876130 PMCID: PMC8650324 DOI: 10.1186/s12935-021-02362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022] Open
Abstract
MYB is often overexpressed in malignant tumors and plays a carcinogenic role in the initiation and development of cancer. Deletion of the MYB regulatory C-terminal domain may be a driving mutation leading to tumorigenesis, therefore, different tumor mechanisms produce similar MYB proteins. As MYB is a transcription factor, priority has been given to identifying the genes that it regulates. All previous attention has been focused on protein-coding genes. However, an increasing number of studies have suggested that MYB can affect the complexity of cancer progression by regulating tumor-associated noncoding RNAs (ncRNAs), such as microRNAs, long-non-coding RNAs and circular RNAs. ncRNAs can regulate the expression of numerous downstream genes at the transcription, RNA processing and translation levels, thereby having various biological functions. Additionally, ncRNAs play important roles in regulating MYB expression. This review focuses on the intricate crosstalk between oncogenic MYB and ncRNAs, which play a pivotal role in tumorigenesis, including proliferation, apoptosis, angiogenesis, metastasis, senescence and drug resistance. In addition, we discuss therapeutic strategies for crosstalk between MYB and ncRNAs to prevent the occurrence and development of cancer.
Collapse
Affiliation(s)
- Dingyu Hu
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wenjun Shao
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Li Liu
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yanyan Wang
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Shunling Yuan
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaoping Liu
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jing Liu
- Hunan Province Key Laboratory of Basic and Applied Hematology, Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Ji Zhang
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China. .,Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
68
|
Arghiani N, Shah K. Modulating microRNAs in cancer: Next-generation therapies. Cancer Biol Med 2021; 19:j.issn.2095-3941.2021.0294. [PMID: 34846108 PMCID: PMC8958885 DOI: 10.20892/j.issn.2095-3941.2021.0294] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenously expressed non-coding regulators of the genome with an ability to mediate a variety of biological and pathological processes. There is growing evidence demonstrating frequent dysregulation of microRNAs in cancer cells, which is associated with tumor initiation, development, migration, invasion, resisting cell death, and drug resistance. Studies have shown that modulation of these small RNAs is a novel and promising therapeutic tool in the treatment of a variety of diseases, especially cancer, due to their broad influence on multiple cellular processes. However, suboptimal delivery of the appropriate miRNA to the cancer sites, quick degradation by nucleases in the blood circulation, and off target effects have limited their research and clinical applications. Therefore, there is a pressing need to improve the therapeutic efficacy of miRNA modulators, while at the same time reducing their toxicities. Several delivery vehicles for miRNA modulators have been shown to be effective in vitro and in vivo. In this review, we will discuss the role and importance of miRNAs in cancer and provide perspectives on currently available carriers for miRNA modulation. We will also summarize the challenges and prospects for the clinical translation of miRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Nahid Arghiani
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
69
|
Chen Z, Cao X, Lu Q, Zhou J, Wang Y, Wu Y, Mao Y, Xu H, Yang Z. circ01592 regulates unsaturated fatty acid metabolism through adsorbing miR-218 in bovine mammary epithelial cells. Food Funct 2021; 12:12047-12058. [PMID: 34761771 DOI: 10.1039/d1fo02797b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The composition of fatty acids plays a key role in regulating milk flavor and quality. Therefore, to improve the quality of milk, it is particularly important to study the regulatory mechanism of fatty acid metabolism in dairy cows. In this study, the expression profiles at non-lactation, peak-lactation, mid-lactation and late-lactation were constructed by high-throughput sequencing. Considering non-lactation as the control group and the other points as the experimental groups, the differentially expressed genes were screened. ELOVL5 was significantly upregulated and was selected for subsequent analyses. Bioinformatics prediction, a dual-luciferase assay, qPCR analysis and western blot analysis were used for verification. The results showed that ELOVL5 was a downstream target gene of miR-218 that regulated milk fat metabolism. A dual-luciferase assay and expression level analysis showed that circ01592 can directly bind to miR-218 and that overexpression of circ01592 (pcDNA-circ01592) significantly reduced the expression of miR-218 and enhanced the expression of ELOVL5, the target gene of miR-218 in BMECs. A functional study of BMECs showed that circ01592 promoted the synthesis of TAG and increased the content of UFA. The function of miR-218 was opposite to that of circ01592. Overall, the data showed that circ01592 promoted TAG synthesis and fatty acid composition by binding miR-218, alleviating the inhibitory effect of miR-218 on ELOVL5 expression. These mechanisms provide a new research approach and theoretical basis for improving milk quality.
Collapse
Affiliation(s)
- Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xiang Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Qinyue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Jingpeng Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yuhao Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yanni Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yongjiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Huifen Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
70
|
miRNA Delivery by Nanosystems: State of the Art and Perspectives. Pharmaceutics 2021; 13:pharmaceutics13111901. [PMID: 34834316 PMCID: PMC8619868 DOI: 10.3390/pharmaceutics13111901] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) are short (~21-23 nucleotides), non-coding endogenous RNA molecules that modulate gene expression at the post-transcriptional level via the endogenous RNA interference machinery of the cell. They have emerged as potential biopharmaceuticals candidates for the treatment of various diseases, including cancer, cardiovascular and metabolic diseases. However, in order to advance miRNAs therapeutics into clinical settings, their delivery remains a major challenge. Different types of vectors have been investigated to allow the delivery of miRNA in the diseased tissue. In particular, non-viral delivery systems have shown important advantages such as versatility, low cost, easy fabrication and low immunogenicity. Here, we present a general overview of the main types of non-viral vectors developed for miRNA delivery, with their advantages, limitations and future perspectives.
Collapse
|
71
|
Tan HY, Qing B, Luo XM, Liang HX. Downregulation of miR-223 promotes HMGB2 expression and induces oxidative stress to activate JNK and promote autophagy in an in vitro model of acute lung injury. J Inflamm (Lond) 2021; 18:29. [PMID: 34732212 PMCID: PMC8565047 DOI: 10.1186/s12950-021-00295-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Excessive autophagic activity in alveolar epithelial cells is one of the main causes of acute lung injury (ALI), but the underlying molecular mechanism has not been fully elucidated. Previous studies have shown that microRNAs (miRs) are involved in regulating autophagy in several diseases. This study aimed to determine the role of miR-223 in excessive autophagic activity in alveolar epithelial cells and the underlying mechanism to identify a novel therapeutic targets for the development of new drugs to treat acute respiratory distress syndrome (ARDS). METHODS A549 cells were treated with lipopolysaccharide (LPS) to establish an ALI in vitro model. The expression of miR-223 and its role of miR-223 in regulating oxidative stress and autophagy in the LPS-treated A549 cells, were examined using RT-PCR, flow cytometry and ELISA. A luciferase reporter assay was performed to verify the interaction between miR-223 and the high-mobility group box 2 (HMGB2) protein. RESULTS The results showed that the LPS treatment downregulated miR-223 expression in alveolar epithelial cells. We further proved that miR-223 directly targeted the 3-untranslated region of the HMGB2 gene and the downregulation of miR-223 increased HMGB2 protein level, which activated the JNK signalling pathway and thus induced oxidative stress and autophagy in LPS-treated alveolar epithelial cells. Knockdown of HMGB2 protein deactivated the JNK signalling pathway and inhibited autophagy and oxidative stress in alveolar epithelial cells. CONCLUSIONS The results of this study suggest that miR-223 regulates oxidative stress and autophagy in alveolar epithelial cells by targeting HMGB2 via the JNK signalling pathway.
Collapse
Affiliation(s)
- Hao-Yu Tan
- Department of Cardio-vascular Surgery, the Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Hunan Province, 410011, Changsha, People's Republic of China
| | - Bei Qing
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Hunan Province, 410011, Changsha, People's Republic of China
| | - Xian-Mei Luo
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Hunan Province, 410011, Changsha, People's Republic of China
| | - Heng-Xing Liang
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Hunan Province, 410011, Changsha, People's Republic of China.
| |
Collapse
|
72
|
Perri P, Ponzoni M, Corrias MV, Ceccherini I, Candiani S, Bachetti T. A Focus on Regulatory Networks Linking MicroRNAs, Transcription Factors and Target Genes in Neuroblastoma. Cancers (Basel) 2021; 13:5528. [PMID: 34771690 PMCID: PMC8582685 DOI: 10.3390/cancers13215528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroblastoma (NB) is a tumor of the peripheral sympathetic nervous system that substantially contributes to childhood cancer mortality. NB originates from neural crest cells (NCCs) undergoing a defective sympathetic neuronal differentiation and although the starting events leading to the development of NB remain to be fully elucidated, the master role of genetic alterations in key oncogenes has been ascertained: (1) amplification and/or over-expression of MYCN, which is strongly associated with tumor progression and invasion; (2) activating mutations, amplification and/or over-expression of ALK, which is involved in tumor initiation, angiogenesis and invasion; (3) amplification and/or over-expression of LIN28B, promoting proliferation and suppression of neuroblast differentiation; (4) mutations and/or over-expression of PHOX2B, which is involved in the regulation of NB differentiation, stemness maintenance, migration and metastasis. Moreover, altered microRNA (miRNA) expression takes part in generating pathogenetic networks, in which the regulatory loops among transcription factors, miRNAs and target genes lead to complex and aberrant oncogene expression that underlies the development of a tumor. In this review, we have focused on the circuitry linking the oncogenic transcription factors MYCN and PHOX2B with their transcriptional targets ALK and LIN28B and the tumor suppressor microRNAs let-7, miR-34 and miR-204, which should act as down-regulators of their expression. We have also looked at the physiologic role of these genetic and epigenetic determinants in NC development, as well as in terminal differentiation, with their pathogenic dysregulation leading to NB oncogenesis.
Collapse
Affiliation(s)
- Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Maria Valeria Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Tiziana Bachetti
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
- Department of Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
73
|
Liu QL, Zhang Z, Wei X, Zhou ZG. Noncoding RNAs in tumor metastasis: molecular and clinical perspectives. Cell Mol Life Sci 2021; 78:6823-6850. [PMID: 34499209 PMCID: PMC11073083 DOI: 10.1007/s00018-021-03929-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Metastasis is the main culprit of cancer-associated mortality and involves a complex and multistage process termed the metastatic cascade, which requires tumor cells to detach from the primary site, intravasate, disseminate in the circulation, extravasate, adapt to the foreign microenvironment, and form organ-specific colonization. Each of these processes has been already studied extensively for molecular mechanisms focused mainly on protein-coding genes. Recently, increasing evidence is pointing towards RNAs without coding potential for proteins, referred to as non-coding RNAs, as regulators in shaping cellular activity. Since those first reports, the detection and characterization of non-coding RNA have explosively thrived and greatly enriched the understanding of the molecular regulatory networks in metastasis. Moreover, a comprehensive description of ncRNA dysregulation will provide new insights into novel tools for the early detection and treatment of metastatic cancer. In this review, we focus on discussion of the emerging role of ncRNAs in governing cancer metastasis and describe step by step how ncRNAs impinge on cancer metastasis. In particular, we highlight the diagnostic and therapeutic applications of ncRNAs in metastatic cancer.
Collapse
Affiliation(s)
- Qiu-Luo Liu
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Zong-Guang Zhou
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
74
|
Sempere LF, Azmi AS, Moore A. microRNA-based diagnostic and therapeutic applications in cancer medicine. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1662. [PMID: 33998154 PMCID: PMC8519065 DOI: 10.1002/wrna.1662] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 01/18/2023]
Abstract
It has been almost two decades since the first link between microRNAs and cancer was established. In the ensuing years, this abundant class of short noncoding regulatory RNAs has been studied in virtually all cancer types. This tremendously large body of research has generated innovative technological advances for detection of microRNAs in tissue and bodily fluids, identified the diagnostic, prognostic, and/or predictive value of individual microRNAs or microRNA signatures as potential biomarkers for patient management, shed light on regulatory mechanisms of RNA-RNA interactions that modulate gene expression, uncovered cell-autonomous and cell-to-cell communication roles of specific microRNAs, and developed a battery of viral and nonviral delivery approaches for therapeutic intervention. Despite these intense and prolific research efforts in preclinical and clinical settings, there are a limited number of microRNA-based applications that have been incorporated into clinical practice. We review recent literature and ongoing clinical trials that highlight most promising approaches and standing challenges to translate these findings into viable microRNA-based clinical tools for cancer medicine. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Lorenzo F. Sempere
- Department of Radiology, Precision Health ProgramMichigan State UniversityEast LansingMichiganUSA
| | - Asfar S. Azmi
- Department of OncologyWayne State University School of MedicineDetroitMichiganUSA
- Karmanos Cancer InstituteDetroitMichiganUSA
| | - Anna Moore
- Departments of Radiology and Physiology, Precision Health ProgramMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
75
|
Yang M, Weng T, Zhang W, Zhang M, He X, Han C, Wang X. The Roles of Non-coding RNA in the Development and Regeneration of Hair Follicles: Current Status and Further Perspectives. Front Cell Dev Biol 2021; 9:720879. [PMID: 34708037 PMCID: PMC8542792 DOI: 10.3389/fcell.2021.720879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Alopecia is a common problem that affects almost every age group and is considered to be an issue for cosmetic or psychiatric reasons. The loss of hair follicles (HFs) and hair caused by alopecia impairs self-esteem, thermoregulation, tactile sensation and protection from ultraviolet light. One strategy to solve this problem is HF regeneration. Many signalling pathways and molecules participate in the morphology and regeneration of HF, such as Wnt/β-catenin, Sonic hedgehog, bone morphogenetic protein and Notch. Non-coding RNAs (ncRNAs), especially microRNAs and long ncRNAs, have significant modulatory roles in HF development and regeneration via regulation of these signalling pathways. This review provides a comprehensive overview of the status and future prospects of ncRNAs in HF regeneration and could prompt novel ncRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Min Yang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Tingting Weng
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Wei Zhang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Manjia Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaojie He
- Department of General Practice, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Chunmao Han
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| |
Collapse
|
76
|
Abstract
RNA-based therapeutics have shown great promise in treating a broad spectrum of diseases through various mechanisms including knockdown of pathological genes, expression of therapeutic proteins, and programmed gene editing. Due to the inherent instability and negative-charges of RNA molecules, RNA-based therapeutics can make the most use of delivery systems to overcome biological barriers and to release the RNA payload into the cytosol. Among different types of delivery systems, lipid-based RNA delivery systems, particularly lipid nanoparticles (LNPs), have been extensively studied due to their unique properties, such as simple chemical synthesis of lipid components, scalable manufacturing processes of LNPs, and wide packaging capability. LNPs represent the most widely used delivery systems for RNA-based therapeutics, as evidenced by the clinical approvals of three LNP-RNA formulations, patisiran, BNT162b2, and mRNA-1273. This review covers recent advances of lipids, lipid derivatives, and lipid-derived macromolecules used in RNA delivery over the past several decades. We focus mainly on their chemical structures, synthetic routes, characterization, formulation methods, and structure-activity relationships. We also briefly describe the current status of representative preclinical studies and clinical trials and highlight future opportunities and challenges.
Collapse
Affiliation(s)
- Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Changzhen Sun
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katarina E Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
77
|
Baltan S, Sandau US, Brunet S, Bastian C, Tripathi A, Nguyen H, Liu H, Saugstad JA, Zarnegarnia Y, Dutta R. Identification of miRNAs That Mediate Protective Functions of Anti-Cancer Drugs During White Matter Ischemic Injury. ASN Neuro 2021; 13:17590914211042220. [PMID: 34619990 PMCID: PMC8642107 DOI: 10.1177/17590914211042220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have previously shown that two anti-cancer drugs, CX-4945 and MS-275, protect and preserve white matter (WM) architecture and improve functional recovery in a model of WM ischemic injury. While both compounds promote recovery, CX-4945 is a selective Casein kinase 2 (CK2) inhibitor and MS-275 is a selective Class I histone deacetylase (HDAC) inhibitor. Alterations in microRNAs (miRNAs) mediate some of the protective actions of these drugs. In this study, we aimed to (1) identify miRNAs expressed in mouse optic nerves (MONs); (2) determine which miRNAs are regulated by oxygen glucose deprivation (OGD); and (3) determine the effects of CX-4945 and MS-275 treatment on miRNA expression. RNA isolated from MONs from control and OGD-treated animals with and without CX-4945 or MS-275 treatment were quantified using NanoString nCounter® miRNA expression profiling. Comparative analysis of experimental groups revealed that 12 miRNAs were expressed at high levels in MONs. OGD upregulated five miRNAs (miR-1959, miR-501-3p, miR-146b, miR-201, and miR-335-3p) and downregulated two miRNAs (miR-1937a and miR-1937b) compared to controls. OGD with CX-4945 upregulated miR-1937a and miR-1937b, and downregulated miR-501-3p, miR-200a, miR-1959, and miR-654-3p compared to OGD alone. OGD with MS-275 upregulated miR-2134, miR-2141, miR-2133, miR-34b-5p, miR-153, miR-487b, miR-376b, and downregulated miR-717, miR-190, miR-27a, miR-1959, miR-200a, miR-501-3p, and miR-200c compared to OGD alone. Interestingly, miR-501-3p and miR-1959 were the only miRNAs upregulated by OGD, and downregulated by OGD plus CX-4945 and MS-275. Therefore, we suggest that protective functions of CX-4945 or MS-275 against WM injury maybe mediated, in part, through miRNA expression.
Collapse
Affiliation(s)
- Selva Baltan
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Selva Baltan, Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Mackenzie Hall 2140A, L459, 3181 S.W. Sam Jackson Park Rd., Portland, OR 97239, USA.
| | - Ursula S. Sandau
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sylvain Brunet
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Chinthasagar Bastian
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Ajai Tripathi
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Hung Nguyen
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Helen Liu
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Julie A. Saugstad
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yalda Zarnegarnia
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ranjan Dutta
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
78
|
Ma Y, Shen N, Wicha MS, Luo M. The Roles of the Let-7 Family of MicroRNAs in the Regulation of Cancer Stemness. Cells 2021; 10:cells10092415. [PMID: 34572067 PMCID: PMC8469079 DOI: 10.3390/cells10092415] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer has long been viewed as a disease of normal development gone awry. Cancer stem-like cells (CSCs), also termed as tumor-initiating cells (TICs), are increasingly recognized as a critical tumor cell population that drives not only tumorigenesis but also cancer progression, treatment resistance and metastatic relapse. The let-7 family of microRNAs (miRNAs), first identified in C. elegans but functionally conserved from worms to human, constitutes an important class of regulators for diverse cellular functions ranging from cell proliferation, differentiation and pluripotency to cancer development and progression. Here, we review the current state of knowledge regarding the roles of let-7 miRNAs in regulating cancer stemness. We outline several key RNA-binding proteins, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) involved in the regulation of let-7 biogenesis, maturation and function. We then highlight key gene targets and signaling pathways that are regulated or mutually regulated by the let-7 family of miRNAs to modulate CSC characteristics in various types of cancer. We also summarize the existing evidence indicating distinct metabolic pathways regulated by the let-7 miRNAs to impact CSC self-renewal, differentiation and treatment resistance. Lastly, we review current preclinical studies and discuss the clinical implications for developing let-7-based replacement strategies as potential cancer therapeutics that can be delivered through different platforms to target CSCs and reduce/overcome treatment resistance when applied alone or in combination with current chemo/radiation or molecularly targeted therapies. By specifically targeting CSCs, these strategies have the potential to significantly improve the efficacy of cancer therapies.
Collapse
Affiliation(s)
- Yuxi Ma
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.M.); (N.S.)
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Na Shen
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.M.); (N.S.)
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Max S. Wicha
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.M.); (N.S.)
- Correspondence: (M.S.W.); (M.L.)
| | - Ming Luo
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.M.); (N.S.)
- Correspondence: (M.S.W.); (M.L.)
| |
Collapse
|
79
|
Verma AK, Goyal Y, Bhatt D, Dev K, Beg MMA. MicroRNA: Biogenesis and potential role as biomarkers in lung diseases. Meta Gene 2021; 29:100920. [DOI: 10.1016/j.mgene.2021.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
80
|
Fu Z, Wang L, Li S, Chen F, Au-Yeung KKW, Shi C. MicroRNA as an Important Target for Anticancer Drug Development. Front Pharmacol 2021; 12:736323. [PMID: 34512363 PMCID: PMC8425594 DOI: 10.3389/fphar.2021.736323] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer has become the second greatest cause of death worldwide. Although there are several different classes of anticancer drugs that are available in clinic, some tough issues like side-effects and low efficacy still need to dissolve. Therefore, there remains an urgent need to discover and develop more effective anticancer drugs. MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs that regulate gene expression by inhibiting mRNA translation or reducing the stability of mRNA. An abnormal miRNA expression profile was found to exist widely in cancer cell, which induces limitless replicative potential and evading apoptosis. MiRNAs function as oncogenes (oncomiRs) or tumor suppressors during tumor development and progression. It was shown that regulation of specific miRNA alterations using miRNA mimics or antagomirs can normalize the gene regulatory network and signaling pathways, and reverse the phenotypes in cancer cells. The miRNA hence provides an attractive target for anticancer drug development. In this review, we will summarize the latest publications on the role of miRNA in anticancer therapeutics and briefly describe the relationship between abnormal miRNAs and tumorigenesis. The potential of miRNA-based therapeutics for anticancer treatment has been critically discussed. And the current strategies in designing miRNA targeting therapeutics are described in detail. Finally, the current challenges and future perspectives of miRNA-based therapy are conferred.
Collapse
Affiliation(s)
- Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Liu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Fen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | | | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| |
Collapse
|
81
|
Xie C, Liu S, Wu B, Zhao Y, Chen B, Guo J, Qiu S, Cao YM. miR-19 Promotes Cell Proliferation, Invasion, Migration, and EMT by Inhibiting SPRED2-mediated Autophagy in Osteosarcoma Cells. Cell Transplant 2021; 29:963689720962460. [PMID: 33023313 PMCID: PMC7784565 DOI: 10.1177/0963689720962460] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Osteosarcoma is an aggressive malignancy with rapid development and poor prognosis. microRNA-19 (miR-19) plays an important role in several biological processes. Sprouty-related EVH1 domain protein 2 (SPRED2) is a suppressor of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling to inhibit tumor development and progression by promoting autophagy. In this study, we investigated the roles of miR-19, SPRED2, and autophagy in osteosarcoma. We detected the expression of miR-19, SPRED2, epithelial-mesenchymal transition (EMT) markers, and autophagy-related proteins via quantitative real-time polymerase chain reaction or western blot. To evaluate the function of miR-19 and SPRED2, we used MTT and colony formation assays to detect cell proliferation, Transwell, and wound-healing assays to detect cell invasion and migration. Targetscan and luciferase reporter assays confirmed the relationship between SPRED2 and miR-19. The expression of miR-19 was significantly upregulated in osteosarcoma, while SPRED2 was downregulated. miR-19 inhibitor reduced cell proliferation, invasion, migration, and EMT, while its cell biological effects were partially reversed by addition of autophagy inhibitor 3-methyladenine (3-MA) or SPRED2 siRNA in osteosarcoma. SPRED2, a suppressor of ERK/MAPK pathway that is known to trigger autophagy, was identified as a direct target of miR-19. SPRED2 overexpression increased cell proliferation, invasion, migration, and EMT by promoting autophagy, and the effects could be inhibited by 3-MA. Collectively, these findings reveal an underlying mechanism for development of osteosarcoma. miR-19 was upregulated in osteosarcoma cells, and negatively regulated SPRED2, thus promoting the malignant transformation of osteosarcoma cells via inhibiting SPRED2-induced autophagy. Therefore, miR-19/SPRED2 may be a potential target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Chuhai Xie
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shengyao Liu
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Boyi Wu
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Zhao
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Binwei Chen
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianhong Guo
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - ShouHong Qiu
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan-Ming Cao
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
82
|
Fattal E, Fay F. Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases. Adv Drug Deliv Rev 2021; 175:113809. [PMID: 34033819 DOI: 10.1016/j.addr.2021.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
Thanks to their abilities to modulate the expression of virtually any genes, RNA therapeutics have attracted considerable research efforts. Among the strategies focusing on nucleic acid gene inhibitors, antisense oligonucleotides and small interfering RNAs have reached advanced clinical trial phases with several of them having recently been marketed. These successes were obtained by overcoming stability and cellular delivery issues using either chemically modified nucleic acids or nanoparticles. As nucleic acid gene inhibitors are promising strategies to treat inflammatory diseases, this review focuses on the barriers, from manufacturing issues to cellular/subcellular delivery, that still need to be overcome to deliver the nucleic acids to sites of inflammation other than the liver. Furthermore, key examples of applications in rheumatoid arthritis, inflammatory bowel, and lung diseases are presented as case studies of systemic, oral, and lung nucleic acid delivery.
Collapse
|
83
|
Di Y, Jiang Y, Shen X, Liu J, Gao Y, Cai H, Sun X, Ning D, Liu B, Lei J, Jin S. Downregulation of miR-135b-5p Suppresses Progression of Esophageal Cancer and Contributes to the Effect of Cisplatin. Front Oncol 2021; 11:679348. [PMID: 34277424 PMCID: PMC8281352 DOI: 10.3389/fonc.2021.679348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/03/2021] [Indexed: 01/02/2023] Open
Abstract
Esophageal cancer (EC) is one of the commonest human cancers, which accompany high morbidity. MicroRNAs (miRNAs) play a pivotal role in various cancers, including EC. Our research aimed to reveal the function and mechanism of miR-135b-5p. Our research identified that miR-135b-5p was elevated in EC samples from TCGA database. Correspondingly real-time PCR assay also showed the miR-135b-5p is also higher expressed in Eca109, EC9706, KYSE150 cells than normal esophageal epithelial cells (Het-1A). CCK8, Edu, wound healing, Transwell assay, and western blot demonstrated miR-135b-5p inhibition suppresses proliferation, invasion, migration and promoted the apoptosis in Eca109 and EC9706 cells. Moreover, the miR-135b-5p inhibition also inhibited xenograft lump growth. We then predicted the complementary gene of miR-135b-5p using miRTarBase, TargetScan, and DIANA-microT. TXNIP was estimated as a complementary gene for miR-135b-5p. Luciferase report assay verified the direct binding site for miR-135b-5p and TXNIP. Real-time PCR and western blot assays showed that the inhibition of miR-135b-5p remarkably enhanced the levels of TXNIP in Eca109 and EC9706 cells. Furthermore, cisplatin (cis-diamminedichloroplatinum II, DDP) decreased miR-135b-5p expression and increased TXNIP expression. Enhanced expression of miR-135b-5p attenuated the inhibitory ability of cisplatin (cis-diamminedichloroplatinum II, DDP) in Eca109 cells, accompanied by TXNIP downregulation. In conclusion, the downregulation of miR-135b-5p suppresses the progression of EC through targeting TXNIP. MiR-135b-5p/TXNIP pathway contributes to the anti-tumor effect of DDP. These findings may provide new insight into the treatment of EC.
Collapse
Affiliation(s)
- Yuzhu Di
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xiuyun Shen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jing Liu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huimin Cai
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoli Sun
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dandan Ning
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Liu
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Jiaji Lei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shizhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
84
|
Alvanegh AG, Ganji SM, Kamel A, Tavallaie M, Rafati A, Arpanaei A, Dorostkar R, Ghaleh HEG. Comparison of oncolytic virotherapy and nanotherapy as two new miRNA delivery approaches in lung cancer. Biomed Pharmacother 2021; 140:111755. [PMID: 34044282 DOI: 10.1016/j.biopha.2021.111755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is known as the second leading cause of cancer death. Finding ways to detect early-stage lung cancer can remarkably increase the survival rate. Biomarkers such as microRNAs can be helpful in cancer diagnosis, predicting its prognosis, and patients' chances of survival. Numerous studies have confirmed the correlation between microRNA expression and the likelihood of patients surviving after treatment. Consequently, it is necessary to study the expression profile of microRNAs during and after treatment. Oncolytic virotherapy and nanotherapy are two neoteric methods that use various vectors to deliver microRNAs into cancer cells. Although these treatments have not yet entered into the clinical trials, much progress has been made in this area. Analyzing the expression profile of microRNAs after applying nanotherapy and oncolytic virotherapy can evaluate the effectiveness of these methods. This review refers to the studies conducted about these two approaches. The advantages and disadvantages of these methods in delivery and affecting microRNA expression patterns are discussed below.
Collapse
Affiliation(s)
- Akbar Ghorbani Alvanegh
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Shahla Mohammad Ganji
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Kamel
- Cellular and Molecular Research Center, Basic health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmood Tavallaie
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Rafati
- Instructor of Human Genetics, Laboratory Sciences, School of Medical Sciences, Sirjan Faculty of Medical Sciences, Sirjan, Iran
| | - Ayyoob Arpanaei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | | |
Collapse
|
85
|
Kumar S, Ashraf MU, Kumar A, Bae YS. Therapeutic Potential of microRNA Against Th2-associated Immune Disorders. Curr Top Med Chem 2021; 21:753-766. [PMID: 33655864 DOI: 10.2174/1568026621666210303150235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/17/2020] [Accepted: 11/28/2020] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are short ~18-22 nucleotide, single-stranded, non-coding RNA molecules playing a crucial role in regulating diverse biological processes and are frequently dysregulated during disease pathogenesis. Thus, targeting miRNA could be a potential candidate for therapeutic invention. This systemic review aims to summarize our current understanding regarding the role of miRNAs associated with Th2-mediated immune disorders and strategies for therapeutic drug development and current clinical trials.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, South Korea
| | - Muhammad Umer Ashraf
- Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, South Korea
| | - Anil Kumar
- Amity Institute of Biotechnology, Amity University Haryana, Amity Education Valley, Gurugram-122413, India
| | - Yong-Soo Bae
- Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, South Korea
| |
Collapse
|
86
|
Rezaei R, Baghaei K, Hashemi SM, Zali MR, Ghanbarian H, Amani D. Tumor-Derived Exosomes Enriched by miRNA-124 Promote Anti-tumor Immune Response in CT-26 Tumor-Bearing Mice. Front Med (Lausanne) 2021; 8:619939. [PMID: 33987190 PMCID: PMC8110712 DOI: 10.3389/fmed.2021.619939] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
Exosomes have been introduced as a new alternative delivery system for the transmission of small molecules. Tumor-derived exosomes (TEXs) not only contain tumor-associated antigens to stimulate antitumor immune responses but also act as natural carriers of microRNAs. The aim of the current study was to evaluate the efficacy of miR-124-3p-enriched TEX (TEXomiR) as cell-free vaccine in the induction of antitumor immune responses in a mouse model of colorectal cancer. Briefly, the exosomes were isolated from cultured CT-26 cell line, and modified calcium chloride method was used to deliver miR-124-3p mimic into the exosomes. We used a CT-26-induced BALB/c mouse model of colorectal cancer and analyzed the effect of TEXomiR on survival, tumor size, spleen and tumor-infiltrated lymphocytes, and splenocyte proliferation. Furthermore, intra-tumor regulatory T cells, cytotoxic activity of the splenocytes, and cytokine secretion was also evaluated to describe the anti-tumor immune response. When the tumor size reached 100 mm3, the mice were injected with TEXomiR, TEX, and/or phosphate-buffered saline (PBS) subcutaneously three times with 3-day interval, and then tumor size was monitored every 2 days. The in vitro results indicated that TEXs could efficiently deliver functional miR-124-3p mimic. The in vivo evaluation in tumor-bearing mice showed that treatment with TEXomiR can elicit a stronger anti-tumor immune response than unloaded TEX and PBS. Significant tumor growth inhibition and increased median survival time was achieved in tumor-bearing mice treated with TEXomiR. A significant decrease in CD4/CD8 and Treg/CD8 ratio in tumor tissue was demonstrated. Moreover, increased cytotoxicity and proliferation of splenocytes in the TEXomiR group compared to the TEX and PBS groups were identified. Taken together, our data demonstrated that tumor-derived exosomes efficiently deliver miR-124-3p mimic, and TEXomiR promotes anti-tumor immune responses.
Collapse
Affiliation(s)
- Ramazan Rezaei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davar Amani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
87
|
Azizi MIHN, Othman I, Naidu R. The Role of MicroRNAs in Lung Cancer Metabolism. Cancers (Basel) 2021; 13:cancers13071716. [PMID: 33916349 PMCID: PMC8038585 DOI: 10.3390/cancers13071716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are short-strand non-coding RNAs that are responsible for post-transcriptional regulation of many biological processes. Their differential expression is important in supporting tumorigenesis by causing dysregulation in normal biological functions including cell proliferation, apoptosis, metastasis and invasion and cellular metabolism. Cellular metabolic processes are a tightly regulated mechanism. However, cancer cells have adapted features to circumvent these regulations, recognizing metabolic reprogramming as an important hallmark of cancer. The miRNA expression profile may differ between localized lung cancers, advanced lung cancers and solid tumors, which lead to a varying extent of metabolic deregulation. Emerging evidence has shown the relationship between the differential expression of miRNAs with lung cancer metabolic reprogramming in perpetuating tumorigenesis. This review provides an insight into the role of different miRNAs in lung cancer metabolic reprogramming by targeting key enzymes, transporter proteins or regulatory components alongside metabolic signaling pathways. These discussions would allow a deeper understanding of the importance of miRNAs in tumor progression therefore providing new avenues for diagnostic, therapeutic and disease management applications.
Collapse
|
88
|
Le P, Romano G, Nana-Sinkam P, Acunzo M. Non-Coding RNAs in Cancer Diagnosis and Therapy: Focus on Lung Cancer. Cancers (Basel) 2021; 13:cancers13061372. [PMID: 33803619 PMCID: PMC8003033 DOI: 10.3390/cancers13061372] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last several decades, clinical evaluation and treatment of lung cancers have largely improved with the classification of genetic drivers of the disease, such as EGFR, ALK, and ROS1. There are numerous regulatory factors that exert cellular control over key oncogenic pathways involved in lung cancers. In particular, non-coding RNAs (ncRNAs) have a diversity of regulatory roles in lung cancers such that they have been shown to be involved in inducing proliferation, suppressing apoptotic pathways, increasing metastatic potential of cancer cells, and acquiring drug resistance. The dysregulation of various ncRNAs in human cancers has prompted preclinical studies examining the therapeutic potential of restoring and/or inhibiting these ncRNAs. Furthermore, ncRNAs demonstrate tissue-specific expression in addition to high stability within biological fluids. This makes them excellent candidates as cancer biomarkers. This review aims to discuss the relevance of ncRNAs in cancer pathology, diagnosis, and therapy, with a focus on lung cancer.
Collapse
|
89
|
Xi Q, Zhang J, Yang G, Zhang L, Chen Y, Wang C, Zhang Z, Guo X, Zhao J, Xue Z, Li Y, Zhang Q, Da Y, Liu L, Yao Z, Zhang R. Restoration of miR-340 controls pancreatic cancer cell CD47 expression to promote macrophage phagocytosis and enhance antitumor immunity. J Immunother Cancer 2021; 8:jitc-2019-000253. [PMID: 32503944 PMCID: PMC7279671 DOI: 10.1136/jitc-2019-000253] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2020] [Indexed: 01/15/2023] Open
Abstract
Background Immune checkpoint blockade has emerged as a potential cancer immunotherapy. The “don’t eat me” signal CD47 in cancer cells binds signal regulatory protein-α on macrophages and prevents their phagocytosis. The role of miR-340 in pancreatic ductal adenocarcinoma (PDAC), especially in tumor immunity, has not been explored. Here, we examined the clinical and biological relevance of miR-340 and the molecular pathways regulated by miR-340 in PDAC. Methods CD47 and miR-340 expression and the relationship with cancer patient survival were analyzed by bioinformatics. The mechanism of miR-340 action was explored through bioinformatics, luciferase reporter, qRT-PCR and western blot analyses. The effects of miR-340 on cancer cells were analyzed in terms of apoptosis, proliferation, migration and phagocytosis by macrophages. In vivo tumorigenesis was studied in orthotopic and subcutaneous models, and immune cells from the peripheral and tumor immune microenvironments were analyzed by flow cytometry. Depletion of macrophages was used to verify the role of macrophages in impacting the function of miR-340 in tumor progression. Results miR-340 directly regulates and inversely correlates with CD47, and it predicts patient survival in PDAC. The restoration of miR-340 expression in pancreatic cancer cells was sufficient to downregulate CD47 and promote phagocytosis of macrophages, further inhibiting tumor growth. The overexpression of miR-340 promoted macrophages to become M1-like phenotype polarized in peripheral and tumor immune microenvironments and increased T cells, especially CD8+ T cells, contributing to the antitumor effect of miR-340. Conclusions miR-340 is a key regulator of phagocytosis and antitumor immunity, and it could offer a new opportunity for immunotherapy for PDAC.
Collapse
Affiliation(s)
- Qing Xi
- Department of Immunology and Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Jieyou Zhang
- Department of Immunology and Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Guangze Yang
- Department of Immunology and Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Lijuan Zhang
- Department of Immunology and Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Ying Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chengzhi Wang
- Department of Immunology and Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Zimu Zhang
- Department of Immunology and Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Xiangdong Guo
- Department of Immunology and Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Jingyi Zhao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenyi Xue
- Department of Immunology and Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Yan Li
- Department of Immunology and Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Qi Zhang
- Tianjin Key Laboratory of A cute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicines for Acute Abdominal Diseases, Nankai Hospital, Tianjin, China
| | - Yurong Da
- Department of Immunology and Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Li Liu
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhi Yao
- Department of Immunology and Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Rongxin Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China; Department of Immunology and Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
90
|
Li WJ, Wang Y, Liu R, Kasinski AL, Shen H, Slack FJ, Tang DG. MicroRNA-34a: Potent Tumor Suppressor, Cancer Stem Cell Inhibitor, and Potential Anticancer Therapeutic. Front Cell Dev Biol 2021; 9:640587. [PMID: 33763422 PMCID: PMC7982597 DOI: 10.3389/fcell.2021.640587] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Overwhelming evidence indicates that virtually all treatment-naive tumors contain a subpopulation of cancer cells that possess some stem cell traits and properties and are operationally defined as cancer cell stem cells (CSCs). CSCs manifest inherent heterogeneity in that they may exist in an epithelial and proliferative state or a mesenchymal non-proliferative and invasive state. Spontaneous tumor progression, therapeutic treatments, and (epi)genetic mutations may also induce plasticity in non-CSCs and reprogram them into stem-like cancer cells. Intrinsic cancer cell heterogeneity and induced cancer cell plasticity, constantly and dynamically, generate a pool of CSC subpopulations with varying levels of epigenomic stability and stemness. Despite the dynamic and transient nature of CSCs, they play fundamental roles in mediating therapy resistance and tumor relapse. It is now clear that the stemness of CSCs is coordinately regulated by genetic factors and epigenetic mechanisms. Here, in this perspective, we first provide a brief updated overview of CSCs. We then focus on microRNA-34a (miR-34a), a tumor-suppressive microRNA (miRNA) devoid in many CSCs and advanced tumors. Being a member of the miR-34 family, miR-34a was identified as a p53 target in 2007. It is a bona fide tumor suppressor, and its expression is dysregulated and downregulated in various human cancers. By targeting stemness factors such as NOTCH, MYC, BCL-2, and CD44, miR-34a epigenetically and negatively regulates the functional properties of CSCs. We shall briefly discuss potential reasons behind the failure of the first-in-class clinical trial of MRX34, a liposomal miR-34a mimic. Finally, we offer several clinical settings where miR-34a can potentially be deployed to therapeutically target CSCs and advanced, therapy-resistant, and p53-mutant tumors in order to overcome therapy resistance and curb tumor relapse.
Collapse
Affiliation(s)
- Wen Jess Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.,Experimental Therapeutics Graduate Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Yunfei Wang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.,Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ruifang Liu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Andrea L Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, United States
| | - Frank J Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.,Experimental Therapeutics Graduate Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
91
|
|
92
|
Raue R, Frank AC, Syed SN, Brüne B. Therapeutic Targeting of MicroRNAs in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22042210. [PMID: 33672261 PMCID: PMC7926641 DOI: 10.3390/ijms22042210] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor-microenvironment (TME) is an amalgamation of various factors derived from malignant cells and infiltrating host cells, including cells of the immune system. One of the important factors of the TME is microRNAs (miRs) that regulate target gene expression at a post transcriptional level. MiRs have been found to be dysregulated in tumor as well as in stromal cells and they emerged as important regulators of tumorigenesis. In fact, miRs regulate almost all hallmarks of cancer, thus making them attractive tools and targets for novel anti-tumoral treatment strategies. Tumor to stroma cell cross-propagation of miRs to regulate protumoral functions has been a salient feature of the TME. MiRs can either act as tumor suppressors or oncogenes (oncomiRs) and both miR mimics as well as miR inhibitors (antimiRs) have been used in preclinical trials to alter cancer and stromal cell phenotypes. Owing to their cascading ability to regulate upstream target genes and their chemical nature, which allows specific pharmacological targeting, miRs are attractive targets for anti-tumor therapy. In this review, we cover a recent update on our understanding of dysregulated miRs in the TME and provide an overview of how these miRs are involved in current cancer-therapeutic approaches from bench to bedside.
Collapse
Affiliation(s)
- Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| |
Collapse
|
93
|
Chakraborty C, Sharma AR, Sharma G, Lee SS. Therapeutic advances of miRNAs: A preclinical and clinical update. J Adv Res 2021; 28:127-138. [PMID: 33364050 PMCID: PMC7753224 DOI: 10.1016/j.jare.2020.08.012] [Citation(s) in RCA: 270] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
miRNAs, a class of small endogenous RNAs, are one of the essential biopharmaceuticals which are in commercial spans as next-generation medicine in recent times. A snapshot of the current scenario regarding the miRNAs as biopharmaceuticals have been discussed. In this work, biopharmaceutical companies working with miRNAs and the current status of preclinical/clinical trials about miRNA therapeutics have been reviewed. Finally, recent updates on the absorption, distribution, metabolism, and excretion (ADME), as well as a delivery system of miRNAs, have been illustrated.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West Bengal 700126, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| |
Collapse
|
94
|
Singh AK, Ghosh M, Kumar V, Aggarwal S, Patil SA. Interplay between miRNAs and Mycobacterium tuberculosis: diagnostic and therapeutic implications. Drug Discov Today 2021; 26:1245-1255. [PMID: 33497829 DOI: 10.1016/j.drudis.2021.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/14/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
Increasing evidence suggests that mycobacteria change the host miRNA profile to their advantage. The active participation of miRNAs in controlling immune responses in TB has raised the possibility of utilizing miRNA-based therapy itself or canonically with a standard drug regimen for shortening the duration of treatment. The development of delivery systems for optimal delivery of oligonucleotides, including small interfering (si)RNA/miRNAs-based therapeutics has shown potential as a new therapeutic intervention. However, studies related to the exploitation of miRNAs as both biomarkers and as therapeutics in TB are scarce; thus, more in vitro and in vivo studies are required to fully determine the role of miRNAs as potential diagnostic biomarkers and to improve the pharmacological profile of this class of therapeutics.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute For Leprosy & Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, Uttar Pradesh, India.
| | - Mrinmoy Ghosh
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar-751024
| | - Vimal Kumar
- Experimental Animal Facility, ICMR-National JALMA Institute For Leprosy & Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, Uttar Pradesh, India
| | - Sumit Aggarwal
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, Ansari Nagar, New Delhi, India
| | - Shripad A Patil
- Immunology Division, ICMR-National JALMA Institute For Leprosy & Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, India
| |
Collapse
|
95
|
Xing S, Tian Z, Zheng W, Yang W, Du N, Gu Y, Yin J, Liu H, Jia X, Huang D, Liu W, Deng M. Hypoxia downregulated miR-4521 suppresses gastric carcinoma progression through regulation of IGF2 and FOXM1. Mol Cancer 2021; 20:9. [PMID: 33407516 PMCID: PMC7786912 DOI: 10.1186/s12943-020-01295-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/15/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) show considerable promise as therapeutic agents to improve tumor treatment, as they have been revealed as crucial modulators in tumor progression. However, our understanding of their roles in gastric carcinoma (GC) metastasis is limited. Here, we aimed to identify novel miRNAs involved in GC metastasis and explored their regulatory mechanisms and therapeutic significance in GC. METHODS The microRNA expression profiles of GC tumors at different stages and at different metastasis statuses were compared respectively using the stomach adenocarcinoma (STAD) miRNASeq dataset in TCGA. Using the above method, miR-4521 was picked out for further study. miR-4521 expression in GC tissues was examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH). Highly and lowly invasive cell sublines were established using a repetitive transwell assay. Gain-of-function and loss-of-function analyses were performed to investigate the functions of miR-4521 and its upstream and downstream regulatory mechanisms in vitro and in vivo. Moreover, we investigated the therapeutic role of miR-4521 in a mouse xenograft model. RESULTS In this study, we found that miR-4521 expression was downregulated in GC tissues compared with adjacent normal tissues and that its downregulation was positively correlated with advanced clinical stage, metastasis status and poor patient prognosis. Functional experiments revealed that miR-4521 inhibited GC cell invasion and metastasis in vitro and in vivo. Further studies showed that hypoxia repressed miR-4521 expression via inducing ETS1 and miR-4521 mitigated hypoxia-mediated metastasis, while miR-4521 inactivated the AKT/GSK3β/Snai1 pathway by targeting IGF2 and FOXM1, thereby inhibiting the epithelial-mesenchymal transition (EMT) process and metastasis. In addition, we demonstrated that therapeutic delivery of synthetic miR-4521 suppressed gastric carcinoma progression in vivo. CONCLUSIONS Our results suggest an important role for miR-4521 in regulating GC metastasis and hypoxic response of tumor cells as well as the therapeutic significance of this miRNA in GC.
Collapse
Affiliation(s)
- Shan Xing
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhi Tian
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, 33612, USA
| | - Wenying Zheng
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China
| | - Wenjuan Yang
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China
| | - Nan Du
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yixue Gu
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China
| | - Jiang Yin
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China
| | - Hao Liu
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China
| | - Xiaoting Jia
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China
| | - Donglan Huang
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China.
| | - Wanli Liu
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Min Deng
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China.
| |
Collapse
|
96
|
Toden S, Zumwalt TJ, Goel A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188491. [PMID: 33316377 PMCID: PMC7856203 DOI: 10.1016/j.bbcan.2020.188491] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
Recent advances have begun to clarify the physiological and pathological roles of non-coding RNAs (ncRNAs) in various diseases, including cancer. Among these, microRNAs (miRNAs) have been the most studied and have emerged as key players that are involved in the regulation of important growth regulatory pathways in cancer pathogenesis. The ability of a single ncRNA to modulate the expression of multiple downstream gene targets and associated pathways, have provided a rationale to pursue them for therapeutic drug development in cancer. In this context, early data from pre-clinical studies have demonstrated that synthetic miRNA-based therapeutic molecules, along with various protective coating approaches, has allowed for their efficient delivery and anti-tumor activity. In fact, some of the miRNA-based cancer therapeutic strategies have shown promising results even in early-phase human clinical trials. While the enthusiasm for ncRNA-based cancer therapeutics continue to evolve, the field is still in the midst of unraveling a more precise understanding of the molecular mechanisms and specific downstream therapeutic targets of other lesser studied ncRNAs such as the long-non-coding RNAs, transfer RNAs, circular RNAs, small nucleolar RNAs, and piwi-interacting RNAs. This review article provides the current state of knowledge and the evolving principles for ncRNA-based therapeutic approaches in cancer, and specifically highlights the importance of data to date and the approaches that are being developed to overcome the challenges associated with their delivery and mitigating the off-target effects in human cancers.
Collapse
Affiliation(s)
- Shusuke Toden
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Timothy J Zumwalt
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA; Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
97
|
MicroRNA‑34a‑5p serves as a tumor suppressor by regulating the cell motility of bladder cancer cells through matrix metalloproteinase‑2 silencing. Oncol Rep 2020; 45:911-920. [PMID: 33650650 PMCID: PMC7859909 DOI: 10.3892/or.2020.7910] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022] Open
Abstract
Bladder cancer (BC), a common urologic cancer, is the fifth most frequently diagnosed tumor worldwide. hsa-miR-34a displays antitumor activity in several types of cancer. However, the functional mechanisms underlying hsa-miR-34a in BC remains largely unknown. We observed that hsa-mir-34a levels were significantly and negatively associated with clinical disease stage as well as regional lymph node metastasis in human BC. In a series of in vitro investigations, overexpression of hsa-miR-34a inhibited cell migration and invasion in BC cell lines 5637 and UMUC3 as detected by Transwell assays. We further found that hsa-miR-34a inhibited cell migration and invasion by silencing matrix metalloproteinase-2 (MMP-2) expression and thus interrupting MMP-2-mediated cell motility. Our analysis of BC datasets from The Cancer Genome Atlas database revealed a negative correlation between hsa-miR-34a and MMP-2. Moreover, higher MMP-2 protein expression was observed in the BC tissues when compared with that noted in the normal tissue. MMP-2 levels were also significantly associated with clinical disease stage and poor survival rate in human BC. These findings indicate that MMP-2 plays a critical role in regulating BC progression. Therefore, hsa-miR-34a is a promising treatment to target MMP-2 for the prevention and inhibition of cell migration and invasion in BC.
Collapse
|
98
|
Zhang S, Gong Y, Li C, Yang W, Li L. Beyond regulations at DNA levels: A review of epigenetic therapeutics targeting cancer stem cells. Cell Prolif 2020; 54:e12963. [PMID: 33314500 PMCID: PMC7848960 DOI: 10.1111/cpr.12963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/05/2023] Open
Abstract
In the past few years, the paramount role of cancer stem cells (CSCs), in terms of cancer initiation, proliferation, metastasis, invasion and chemoresistance, has been revealed by accumulating studies. However, this level of cellular plasticity cannot be entirely explained by genetic mutations. Research on epigenetic modifications as a complementary explanation for the properties of CSCs has been increasing over the past several years. Notably, therapeutic strategies are currently being developed in an effort to reverse aberrant epigenetic alterations using specific chemical inhibitors. In this review, we summarize the current understanding of CSCs and their role in cancer progression, and provide an overview of epigenetic alterations seen in CSCs. Importantly, we focus on primary cancer therapies that target the epigenetic modification of CSCs by the use of specific chemical inhibitors, such as histone deacetylase (HDAC) inhibitors, DNA methyltransferase (DNMT) inhibitors and microRNA‐based (miRNA‐based) therapeutics.
Collapse
Affiliation(s)
- Shunhao Zhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Sichuan Province, Chengdu, China
| | - Yanji Gong
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China.,State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Chunjie Li
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Wenbin Yang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Sichuan Province, Chengdu, China
| | - Longjiang Li
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
99
|
Ahn YH, Ko YH. Diagnostic and Therapeutic Implications of microRNAs in Non-Small Cell Lung Cancer. Int J Mol Sci 2020; 21:E8782. [PMID: 33233641 PMCID: PMC7699705 DOI: 10.3390/ijms21228782] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
microRNAs (miRNAs), endogenous suppressors of target mRNAs, are deeply involved in every step of non-small cell lung cancer (NSCLC) development, from tumor initiation to progression and metastasis. They play roles in cell proliferation, apoptosis, angiogenesis, epithelial-to-mesenchymal transition, migration, invasion, and metastatic colonization, as well as immunosuppression. Due to their versatility, numerous attempts have been made to use miRNAs for clinical applications. miRNAs can be used as cancer subtype classifiers, diagnostic markers, drug-response predictors, prognostic markers, and therapeutic targets in NSCLC. Many challenges remain ahead of their actual clinical application; however, when achieved, the use of miRNAs in the clinic is expected to enable great progress in the diagnosis and treatment of patients with NSCLC.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Biomarkers, Pharmacological/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Carcinoma, Non-Small-Cell Lung/diagnosis
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/immunology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Epithelial-Mesenchymal Transition/immunology
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/diagnosis
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lymphatic Metastasis
- MicroRNAs/agonists
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/immunology
- Neovascularization, Pathologic/diagnosis
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Signal Transduction
- Tumor Escape/drug effects
- Tumor Escape/genetics
Collapse
Affiliation(s)
- Young-Ho Ahn
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
100
|
Yuan W, Gao H, Wang G, Miao Y, Jiang K, Zhang K, Wu J. Higher miR-543 levels correlate with lower STK31 expression and longer pancreatic cancer survival. Cancer Med 2020; 9:9632-9640. [PMID: 33128354 PMCID: PMC7774731 DOI: 10.1002/cam4.3559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 01/03/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most malignant gastrointestinal tumors and the 5‐year survival is only 9%. The expression of miRNAs in serum has been proved to be related to tumorigenesis and development of cancers. The miRNA targets and gene targets were predicted in microRNA.org, miRDB, TargetScan, and RNAInter. The expression data of STK31 (Serine/Threonine Kinase 31) and miRNAs generated from PC samples was from TCGA and the relationship of expression of STK31 and miR‐543 was confirmed in PC samples from our center. Double luciferase reporter gene assay was used to demonstrate the direct binding between miR‐543 and STK31. The effect of expression level of miRNAs on survival time was assessed by Kaplan–Meier curves. The Go Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of miR‐543‐related genes were performed. The results showed that miR‐543 had a statistically significant correlation with the expression of STK31 and contained the direct binding site with STK31. The expression level of miR‐543 may affect the survival of PC. The results of GO and KEGG pathway analysis showed that miR‐543 might play a key role in Insulin signaling pathway. MiR‐543 could be combined with STK31 and affect the expression of STK31. The expression of miR‐543 could also predict the survival of patients with PC, which suggested that miR‐543 might play an important role in PC. The GO and KEGG pathway analysis also displayed that miR‐543 was involved in several other pathways of pancreas.
Collapse
Affiliation(s)
- Weizhong Yuan
- Pancreatic Center & Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Pancreas Institute of Nanjing Medical UniversityNanjingJiangsuChina
- Department of General SurgeryNanjing Meishan HospitalNanjingJiangsuChina
| | - Hao Gao
- Pancreatic Center & Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Pancreas Institute of Nanjing Medical UniversityNanjingJiangsuChina
| | - Guangfu Wang
- Pancreatic Center & Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Pancreas Institute of Nanjing Medical UniversityNanjingJiangsuChina
| | - Yi Miao
- Pancreatic Center & Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Pancreas Institute of Nanjing Medical UniversityNanjingJiangsuChina
| | - Kuirong Jiang
- Pancreatic Center & Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Pancreas Institute of Nanjing Medical UniversityNanjingJiangsuChina
| | - Kai Zhang
- Pancreatic Center & Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Pancreas Institute of Nanjing Medical UniversityNanjingJiangsuChina
| | - Junli Wu
- Pancreatic Center & Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Pancreas Institute of Nanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|