51
|
Joshi KK, Phung W, Han G, Yin Y, Kim I, Sandoval W, Carter PJ. Elucidating heavy/light chain pairing preferences to facilitate the assembly of bispecific IgG in single cells. MAbs 2019; 11:1254-1265. [PMID: 31286843 PMCID: PMC6748609 DOI: 10.1080/19420862.2019.1640549] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/19/2019] [Accepted: 06/29/2019] [Indexed: 12/30/2022] Open
Abstract
Multiple strategies have been developed to facilitate the efficient production of bispecific IgG (BsIgG) in single host cells. For example, we previously demonstrated near quantitative (≥90%) formation of BsIgG of different species and isotypes by combining 'knob-into-hole' mutations for heavy chain heterodimerization with engineered antigen-binding fragments (Fabs) for preferential cognate heavy/light chain pairing. Surprisingly, in this study we found high yield (>65%) of BsIgG1without Fab engineering to be a common occurrence, i.e., observed for 33 of the 99 different antibody pairs evaluated. Installing charge mutations at both CH1/CL interfaces was sufficient for near quantitative yield (>90%) of BsIgG1 for most (9 of 11) antibody pairs tested with this inherent cognate chain pairing preference. Mechanistically, we demonstrate that a strong cognate pairing preference in one Fab arm can be sufficient for high BsIgG1 yield. These observed chain pairing preferences are apparently driven by variable domain sequences and can result from a few specific residues in the complementarity-determining region (CDR) L3 and H3. Transfer of these CDR residues into other antibodies increased BsIgG1 yield in most cases. Mutational analysis revealed that the disulfide bond between heavy and light chains did not affect the yield of BsIgG1. This study provides some mechanistic understanding of factors contributing to antibody heavy/light chain pairing preference and subsequently contributes to the efficient production of BsIgG in single host cells.
Collapse
Affiliation(s)
- Kamal Kishore Joshi
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA, USA
| | - Wilson Phung
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Guanghui Han
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Yiyuan Yin
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA, USA
| | - Ingrid Kim
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA, USA
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Paul J. Carter
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
52
|
Wang Q, Chen Y, Park J, Liu X, Hu Y, Wang T, McFarland K, Betenbaugh MJ. Design and Production of Bispecific Antibodies. Antibodies (Basel) 2019; 8:antib8030043. [PMID: 31544849 PMCID: PMC6783844 DOI: 10.3390/antib8030043] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
With the current biotherapeutic market dominated by antibody molecules, bispecific antibodies represent a key component of the next-generation of antibody therapy. Bispecific antibodies can target two different antigens at the same time, such as simultaneously binding tumor cell receptors and recruiting cytotoxic immune cells. Structural diversity has been fast-growing in the bispecific antibody field, creating a plethora of novel bispecific antibody scaffolds, which provide great functional variety. Two common formats of bispecific antibodies on the market are the single-chain variable fragment (scFv)-based (no Fc fragment) antibody and the full-length IgG-like asymmetric antibody. Unlike the conventional monoclonal antibodies, great production challenges with respect to the quantity, quality, and stability of bispecific antibodies have hampered their wider clinical application and acceptance. In this review, we focus on these two major bispecific types and describe recent advances in the design, production, and quality of these molecules, which will enable this important class of biologics to reach their therapeutic potential.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yiqun Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jaeyoung Park
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xiao Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yifeng Hu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tiexin Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kevin McFarland
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
53
|
Acheampong DO. Bispecific Antibody (bsAb) Construct Formats and their Application in Cancer Therapy. Protein Pept Lett 2019; 26:479-493. [DOI: 10.2174/0929866526666190311163820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 12/15/2022]
Abstract
Development of cancers mostly involves more than one signal pathways, because of the complicated nature of cancer cells. As such, the most effective treatment option is the one that stops the cancer cells in their tracks by targeting these signal pathways simultaneously. This explains why therapeutic monoclonal antibodies targeted at cancers exert utmost activity when two or more are used as combination therapy. This notwithstanding, studies elsewhere have proven that when bispecific antibody (bsAb) is engineered from two conventional monoclonal antibodies or their chains, it produces better activity than when used as combination therapy. This therefore presents bispecific antibody (bsAb) as the appropriate and best therapeutic agent for the treatment of such cancers. This review therefore discusses the various engineering formats for bispecific antibodies (bsAbs) and their applications.
Collapse
Affiliation(s)
- Desmond O. Acheampong
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Science, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
54
|
Dietrich S, Gross AW, Becker S, Hock B, Stadlmayr G, Rüker F, Wozniak-Knopp G. Constant domain-exchanged Fab enables specific light chain pairing in heterodimeric bispecific SEED-antibodies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140250. [PMID: 31295556 DOI: 10.1016/j.bbapap.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Bispecific antibodies promise to broadly expand the clinical utility of monoclonal antibody technology. Several approaches for heterodimerization of heavy chains have been established to produce antibodies with two different Fab arms, but promiscuous pairing of heavy and light chains remains a challenge for their manufacturing. METHODS We have designed a solution in which the CH1 and CL domain pair in one of the Fab fragments is replaced with a CH3-domain pair and heterodimerized to facilitate correct modified Fab-chain pairing in bispecific heterodimeric antibodies based on a strand-exchange engineered domain (SEED) scaffold with specificity for epithelial growth factor receptor and either CD3 or CD16 (FcγRIII). RESULTS Bispecific antibodies retained binding to their target antigens and redirected primary T cells or NK cells to induce potent killing of target cells. All antibodies were expressed at a high yield in Expi293F cells, were detected as single sharp symmetrical peaks in size exclusion chromatography and retained high thermostability. Mass spectrometric analysis revealed specific heavy-to-light chain pairing for the bispecific SEED antibodies as well as for one-armed SEED antibodies co-expressed with two different competing light chains. CONCLUSION Incorporation of a constant domain-exchanged Fab fragment into a SEED antibody yields functional molecules with favorable biophysical properties. GENERAL SIGNIFICANCE Our results show that the novel engineered bispecific SEED antibody scaffold with an incorporated Fab fragment with CH3-exchanged constant domains is a promising tool for the generation of complete heterodimeric bispecific antibodies with correct light chain pairing.
Collapse
Affiliation(s)
- Sylvia Dietrich
- Christian Doppler Laboratory for Antibody Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Alec W Gross
- Protein Engineering and Antibody Technologies, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Stefan Becker
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Björn Hock
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Gerhard Stadlmayr
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Florian Rüker
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Gordana Wozniak-Knopp
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
55
|
Strohl WR, Naso M. Bispecific T-Cell Redirection versus Chimeric Antigen Receptor (CAR)-T Cells as Approaches to Kill Cancer Cells. Antibodies (Basel) 2019; 8:E41. [PMID: 31544847 PMCID: PMC6784091 DOI: 10.3390/antib8030041] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
The concepts for T-cell redirecting bispecific antibodies (TRBAs) and chimeric antigen receptor (CAR)-T cells are both at least 30 years old but both platforms are just now coming into age. Two TRBAs and two CAR-T cell products have been approved by major regulatory agencies within the last ten years for the treatment of hematological cancers and an additional 53 TRBAs and 246 CAR cell constructs are in clinical trials today. Two major groups of TRBAs include small, short-half-life bispecific antibodies that include bispecific T-cell engagers (BiTE®s) which require continuous dosing and larger, mostly IgG-like bispecific antibodies with extended pharmacokinetics that can be dosed infrequently. Most CAR-T cells today are autologous, although significant strides are being made to develop off-the-shelf, allogeneic CAR-based products. CAR-Ts form a cytolytic synapse with target cells that is very different from the classical immune synapse both physically and mechanistically, whereas the TRBA-induced synapse is similar to the classic immune synapse. Both TRBAs and CAR-T cells are highly efficacious in clinical trials but both also present safety concerns, particularly with cytokine release syndrome and neurotoxicity. New formats and dosing paradigms for TRBAs and CAR-T cells are being developed in efforts to maximize efficacy and minimize toxicity, as well as to optimize use with both solid and hematologic tumors, both of which present significant challenges such as target heterogeneity and the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- William R Strohl
- BiStro Biotech Consulting, LLC, 1086 Tullo Farm Rd., Bridgewater, NJ 08807, USA.
| | - Michael Naso
- Century Therapeutics, 3675 Market St., Philadelphia, PA 19104, USA
| |
Collapse
|
56
|
Yang Y, Yeh SH, Madireddi S, Matochko WL, Gu C, Pacheco Sanchez P, Ultsch M, De Leon Boenig G, Harris SF, Leonard B, Scales SJ, Zhu JW, Christensen E, Hang JQ, Brezski RJ, Marsters S, Ashkenazi A, Sukumaran S, Chiu H, Cubas R, Kim JM, Lazar GA. Tetravalent biepitopic targeting enables intrinsic antibody agonism of tumor necrosis factor receptor superfamily members. MAbs 2019; 11:996-1011. [PMID: 31156033 PMCID: PMC6748612 DOI: 10.1080/19420862.2019.1625662] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Agonism of members of the tumor necrosis factor receptor superfamily (TNFRSF) with monoclonal antibodies is of high therapeutic interest due to their role in immune regulation and cell proliferation. A major hurdle for pharmacologic activation of this receptor class is the requirement for high-order clustering, a mechanism that imposes a reliance in vivo on Fc receptor-mediated crosslinking. This extrinsic dependence represents a potential limitation of virtually the entire pipeline of agonist TNFRSF antibody drugs, of which none have thus far been approved or reached late-stage clinical trials. We show that tetravalent biepitopic targeting enables robust intrinsic antibody agonism for two members of this family, OX40 and DR5, that is superior to extrinsically crosslinked native parental antibodies. Tetravalent biepitopic anti-OX40 engagement co-stimulated OX40low cells, obviated the requirement for CD28 co-signal for T cell activation, and enabled superior pharmacodynamic activity relative to native IgG in a murine vaccination model. This work establishes a proof of concept for an engineering approach that addresses a major gap for the therapeutic activation of this important receptor class.
Collapse
Affiliation(s)
- Yanli Yang
- a Departments of Antibody Engineering, Genentech Inc ., South San Francisco , CA , USA
| | - Sherry H Yeh
- b Biochemical and Cellular Pharmacology, Genentech Inc ., South San Francisco , CA , USA
| | - Shravan Madireddi
- c Cancer Immunology, Genentech Inc ., South San Francisco , CA , USA
| | - Wadim L Matochko
- a Departments of Antibody Engineering, Genentech Inc ., South San Francisco , CA , USA
| | - Chen Gu
- d Protein Chemistry, Genentech Inc ., South San Francisco , CA , USA
| | | | - Mark Ultsch
- f Structural Biology, Genentech Inc ., South San Francisco , CA , USA
| | | | - Seth F Harris
- f Structural Biology, Genentech Inc ., South San Francisco , CA , USA
| | - Brandon Leonard
- a Departments of Antibody Engineering, Genentech Inc ., South San Francisco , CA , USA
| | - Suzie J Scales
- g Molecular Biology, Genentech Inc ., South San Francisco , CA , USA
| | - Jing W Zhu
- c Cancer Immunology, Genentech Inc ., South San Francisco , CA , USA
| | - Erin Christensen
- d Protein Chemistry, Genentech Inc ., South San Francisco , CA , USA
| | - Julie Q Hang
- d Protein Chemistry, Genentech Inc ., South San Francisco , CA , USA
| | - Randall J Brezski
- a Departments of Antibody Engineering, Genentech Inc ., South San Francisco , CA , USA
| | - Scot Marsters
- c Cancer Immunology, Genentech Inc ., South San Francisco , CA , USA
| | - Avi Ashkenazi
- c Cancer Immunology, Genentech Inc ., South San Francisco , CA , USA
| | - Siddharth Sukumaran
- h Pre-Clinical and Translational Pharmacokinetics, Genentech Inc ., South San Francisco , CA , USA
| | - Henry Chiu
- b Biochemical and Cellular Pharmacology, Genentech Inc ., South San Francisco , CA , USA
| | - Rafael Cubas
- e Translational Oncology, Genentech Inc ., South San Francisco , CA , USA
| | - Jeong M Kim
- c Cancer Immunology, Genentech Inc ., South San Francisco , CA , USA
| | - Greg A Lazar
- a Departments of Antibody Engineering, Genentech Inc ., South San Francisco , CA , USA
| |
Collapse
|
57
|
Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov 2019; 18:585-608. [DOI: 10.1038/s41573-019-0028-1] [Citation(s) in RCA: 493] [Impact Index Per Article: 82.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
58
|
Kholodenko RV, Kalinovsky DV, Doronin II, Ponomarev ED, Kholodenko IV. Antibody Fragments as Potential Biopharmaceuticals for Cancer Therapy: Success and Limitations. Curr Med Chem 2019; 26:396-426. [DOI: 10.2174/0929867324666170817152554] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
Monoclonal antibodies (mAbs) are an important class of therapeutic agents approved for the therapy of many types of malignancies. However, in certain cases applications of conventional mAbs have several limitations in anticancer immunotherapy. These limitations include insufficient efficacy and adverse effects. The antigen-binding fragments of antibodies have a considerable potential to overcome the disadvantages of conventional mAbs, such as poor penetration into solid tumors and Fc-mediated bystander activation of the immune system. Fragments of antibodies retain antigen specificity and part of functional properties of conventional mAbs and at the same time have much better penetration into the tumors and a greatly reduced level of adverse effects. Recent advantages in antibody engineering allowed to produce different types of antibody fragments with improved structure and properties for efficient elimination of tumor cells. These molecules opened up new perspectives for anticancer therapy. Here, we will overview the structural features of the various types of antibody fragments and their applications for anticancer therapy as separate molecules and as part of complex conjugates or structures. Mechanisms of antitumor action of antibody fragments as well as their advantages and disadvantages for clinical application will be discussed in this review.
Collapse
Affiliation(s)
- Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| | - Daniel V. Kalinovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| | - Igor I. Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| | - Eugene D. Ponomarev
- School of Biomedical Sciences, Faculty of Medicine and Brain, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Irina V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| |
Collapse
|
59
|
Lee HY, Contreras E, Register AC, Wu Q, Abadie K, Garcia K, Wong PY, Jiang G. Development of a bioassay to detect T-cell-activating impurities for T-cell-dependent bispecific antibodies. Sci Rep 2019; 9:3900. [PMID: 30846832 PMCID: PMC6405939 DOI: 10.1038/s41598-019-40689-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
T-cell-dependent bispecific antibodies (TDBs) are promising cancer immunotherapies that recruit a patient's T cells to kill cancer cells. There are increasing numbers of TBDs in clinical trials, demonstrating their widely recognized therapeutic potential. Due to the fact that TDBs engage and activate T cells via an anti-CD3 (aCD3) arm, aCD3 homodimer (aCD3 HD) and high-molecular-weight species (HMWS) are product-related impurities that pose a potential safety risk by triggering off-target T-cell activation through bivalent engagement and dimerization of T-cell receptors (TCRs). To monitor and control the level of unspecific T-cell activation, we developed a sensitive and quantitative T-cell-activation assay, which can detect aCD3 HD in TDB drug product by exploiting its ability to activate T cells in the absence of target cells. This assay provides in-vivo-relevant off-target T-cell-activation readout. Furthermore, we have demonstrated that this assay can serve as a platform assay for detecting T-cell-activating impurities across a broad spectrum of aCD3 bispecific molecules. It therefore has the potential to significantly benefit many T-cell-recruiting bispecific programs.
Collapse
Affiliation(s)
- Ho Young Lee
- Biological Technologies, Department of Analytical Development and Quality Control, Genentech-a Member of the Roche Group, South San Francisco, California, 94080, USA.
| | - Edward Contreras
- Biological Technologies, Department of Analytical Development and Quality Control, Genentech-a Member of the Roche Group, South San Francisco, California, 94080, USA
| | - Ames C Register
- Biological Technologies, Department of Analytical Development and Quality Control, Genentech-a Member of the Roche Group, South San Francisco, California, 94080, USA
| | - Qiang Wu
- Biological Technologies, Department of Analytical Development and Quality Control, Genentech-a Member of the Roche Group, South San Francisco, California, 94080, USA
| | - Kathleen Abadie
- Biological Technologies, Department of Analytical Development and Quality Control, Genentech-a Member of the Roche Group, South San Francisco, California, 94080, USA
| | - Khristofer Garcia
- Biological Technologies, Department of Analytical Development and Quality Control, Genentech-a Member of the Roche Group, South San Francisco, California, 94080, USA
| | - Pin Yee Wong
- Biological Technologies, Department of Analytical Development and Quality Control, Genentech-a Member of the Roche Group, South San Francisco, California, 94080, USA
| | - Guoying Jiang
- Biological Technologies, Department of Analytical Development and Quality Control, Genentech-a Member of the Roche Group, South San Francisco, California, 94080, USA.
| |
Collapse
|
60
|
Gupta J, Hoque M, Ahmad MF, Khan RH, Saleemuddin M. Acid pH promotes bispecific antibody formation by the redox procedure. Int J Biol Macromol 2019; 125:469-477. [DOI: 10.1016/j.ijbiomac.2018.12.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 11/25/2022]
|
61
|
Li Y. A brief introduction of IgG-like bispecific antibody purification: Methods for removing product-related impurities. Protein Expr Purif 2019; 155:112-119. [DOI: 10.1016/j.pep.2018.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/30/2018] [Indexed: 01/04/2023]
|
62
|
Intact Mass Spectrometry Analysis of Immuno-Isolated Human Therapeutic Antibodies from Serum. Methods Mol Biol 2019; 2024:153-166. [PMID: 31364048 DOI: 10.1007/978-1-4939-9597-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Antibody-based therapeutics have emerged as novel class of biopharmaceuticals over the last couple of decades with the advancements made in production and downstream processing technologies. The structural diversity of therapeutic antibodies has also evolved with the development of bispecific (and multispecific) antibodies and antibody-drug conjugates. With increased structural complexities and multi-modularity, there is a need to demonstrate that the entire structure is stable in vivo and arriving at its target site in an intact form. Proving that antibodies reach their target site unscathed is a challenging but essential step for showing effective delivery as well as showing whether failure in efficacy (if any) was related to its in vivo instability. This chapter describes a method for highly specific immuno-isolation followed by intact mass spectrometry of human Fc-containing antibody from serum of rats dosed with the antibody. The method provides an opportunity for evaluating antibody stability in the physiological environment by providing accurate validation of its molecular mass in vivo, as well as the potential to identify breakdown products.
Collapse
|
63
|
Zhou B, Xu L, Zhu R, Tang J, Wu Y, Su R, Yin Z, Liu D, Jiang Y, Wen C, You M, Dai L, Lin Y, Chen Y, Yang H, An Z, Fan C, Cheng T, Luo W, Xia N. A bispecific broadly neutralizing antibody against enterovirus 71 and coxsackievirus A16 with therapeutic potential. Antiviral Res 2019; 161:28-35. [PMID: 30419253 DOI: 10.1016/j.antiviral.2018.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/27/2018] [Accepted: 11/06/2018] [Indexed: 01/03/2023]
Abstract
Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the major pathogens of hand, foot and mouth disease (HFMD), which affects children worldwide and is often associated with neurological complications. At present, there is no vaccine or cure available for simultaneous EV71 and CA16 infection, posing a great need to develop novel strategies for the treatment of this disease. Here, we engineered four bispecific antibodies using variable fragments of monoclonal antibodies (mAbs) from EV71- and CA16-specific neutralizing antibodies. The engineered bispecific antibody Bs(scFv)4-IgG-1 exhibits remarkable cross-reactivity against EV71 and CA16 and has a more potent cross-neutralization than its parental antibodies. Furthermore, we showed that Bs(scFv)4-IgG-1 conferred 100% therapeutic efficacy against single or mixed EV71 and CA16 infections in mice. Our study provides important insights into bispecific antibody engineering against enterovirus and will inform new curative treatment options for HFMD.
Collapse
Affiliation(s)
- Bing Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Rui Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Jixian Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Yangtao Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Ruopeng Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Zhichao Yin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Dongxiao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Yichao Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Can Wen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Min You
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Linlin Dai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Yu Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Yuanzhi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Haijie Yang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Zhiqiang An
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, PR China.
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| |
Collapse
|
64
|
Ovacik AM, Li J, Lemper M, Danilenko D, Stagg N, Mathieu M, Ellerman D, Gupta V, Kalia N, Nguy T, Plaks V, David Johnson C, Wang W, Brumm J, Fine B, Junttila T, Lin K, Carter PJ, Prabhu S, Spiess C, Kamath AV. Single cell-produced and in vitro-assembled anti-FcRH5/CD3 T-cell dependent bispecific antibodies have similar in vitro and in vivo properties. MAbs 2018; 11:422-433. [PMID: 30550367 PMCID: PMC6380433 DOI: 10.1080/19420862.2018.1551676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Bispecific antibody production using single host cells has been a new advancement in the antibody engineering field. We previously showed comparable in vitro biological activity and in vivo mouse pharmacokinetics (PK) for two novel single cell variants (v10 and v11) and one traditional dual cell in vitro-assembled anti-human epidermal growth factor receptor 2/CD3 T-cell dependent bispecific (TDB) antibodies. Here, we extended our previous work to assess single cell-produced bispecific variants of a novel TDB against FcRH5, a B-cell lineage marker expressed on multiple myeloma (MM) tumor cells. An in vitro-assembled anti- FcRH5/CD3 TDB antibody was previously developed as a potential treatment option for MM. Two bispecific antibody variants (designs v10 and v11) for manufacturing anti-FcRH5/CD3 TDB in single cells were compared to in vitro-assembled TDB in a dual-cell process to understand whether differences in antibody design and production led to any major differences in their in vitro biological activity, in vivo mouse PK, and PK/pharmacodynamics (PD) or immunogenicity in cynomolgus monkeys (cynos). The binding, in vitro potencies, in vitro pharmacological activities and in vivo PK in mice and cynos of these single cell TDBs were comparable to those of the in vitro-assembled TDB. In addition, the single cell and in vitro-assembled TDBs exhibited robust PD activity and comparable immunogenicity in cynos. Overall, these studies demonstrate that single cell-produced and in vitro-assembled anti-FcRH5/CD3 T-cell dependent bispecific antibodies have similar in vitro and in vivo properties, and support further development of single-cell production method for anti-FcRH5/CD3 TDBs and other single-cell bispecifics.
Collapse
Affiliation(s)
- Ayse Meric Ovacik
- a Genentech Research and Early Development, Genentech, Inc ., South San Francisco , CA , USA
| | - Ji Li
- a Genentech Research and Early Development, Genentech, Inc ., South San Francisco , CA , USA
| | - Marie Lemper
- a Genentech Research and Early Development, Genentech, Inc ., South San Francisco , CA , USA
| | - Dimitry Danilenko
- a Genentech Research and Early Development, Genentech, Inc ., South San Francisco , CA , USA
| | - Nicola Stagg
- a Genentech Research and Early Development, Genentech, Inc ., South San Francisco , CA , USA
| | - Mary Mathieu
- a Genentech Research and Early Development, Genentech, Inc ., South San Francisco , CA , USA
| | - Diego Ellerman
- a Genentech Research and Early Development, Genentech, Inc ., South San Francisco , CA , USA
| | - Vinita Gupta
- a Genentech Research and Early Development, Genentech, Inc ., South San Francisco , CA , USA
| | - Navdeep Kalia
- a Genentech Research and Early Development, Genentech, Inc ., South San Francisco , CA , USA
| | - Trung Nguy
- a Genentech Research and Early Development, Genentech, Inc ., South San Francisco , CA , USA
| | - Vicki Plaks
- a Genentech Research and Early Development, Genentech, Inc ., South San Francisco , CA , USA
| | - Clarissa David Johnson
- a Genentech Research and Early Development, Genentech, Inc ., South San Francisco , CA , USA
| | - Weiru Wang
- a Genentech Research and Early Development, Genentech, Inc ., South San Francisco , CA , USA
| | - Jochen Brumm
- a Genentech Research and Early Development, Genentech, Inc ., South San Francisco , CA , USA
| | - Bernard Fine
- a Genentech Research and Early Development, Genentech, Inc ., South San Francisco , CA , USA
| | - Teemu Junttila
- a Genentech Research and Early Development, Genentech, Inc ., South San Francisco , CA , USA
| | - Kedan Lin
- a Genentech Research and Early Development, Genentech, Inc ., South San Francisco , CA , USA
| | - Paul J Carter
- a Genentech Research and Early Development, Genentech, Inc ., South San Francisco , CA , USA
| | - Saileta Prabhu
- a Genentech Research and Early Development, Genentech, Inc ., South San Francisco , CA , USA
| | - Christoph Spiess
- a Genentech Research and Early Development, Genentech, Inc ., South San Francisco , CA , USA
| | - Amrita V Kamath
- a Genentech Research and Early Development, Genentech, Inc ., South San Francisco , CA , USA
| |
Collapse
|
65
|
Lombana TN, Matsumoto ML, Berkley AM, Toy E, Cook R, Gan Y, Du C, Schnier P, Sandoval W, Ye Z, Schartner JM, Kim J, Spiess C. High-resolution glycosylation site-engineering method identifies MICA epitope critical for shedding inhibition activity of anti-MICA antibodies. MAbs 2018; 11:75-93. [PMID: 30307368 PMCID: PMC6343778 DOI: 10.1080/19420862.2018.1532767] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
As an immune evasion strategy, MICA and MICB, the major histocompatibility complex class I homologs, are proteolytically cleaved from the surface of cancer cells leading to impairment of CD8 + T cell- and natural killer cell-mediated immune responses. Antibodies that inhibit MICA/B shedding from tumors have therapeutic potential, but the optimal epitopes are unknown. Therefore, we developed a high-resolution, high-throughput glycosylation-engineered epitope mapping (GEM) method, which utilizes site-specific insertion of N-linked glycans onto the antigen surface to mask local regions. We apply GEM to the discovery of epitopes important for shedding inhibition of MICA/B and validate the epitopes at the residue level by alanine scanning and X-ray crystallography (Protein Data Bank accession numbers 6DDM (1D5 Fab-MICA*008), 6DDR (13A9 Fab-MICA*008), 6DDV (6E1 Fab-MICA*008). Furthermore, we show that potent inhibition of MICA shedding can be achieved by antibodies that bind GEM epitopes adjacent to previously reported cleavage sites, and that these anti-MICA/B antibodies can prevent tumor growth in vivo.
Collapse
Affiliation(s)
- T Noelle Lombana
- a Department of Antibody Engineering , Genentech Inc ., South San Francisco , USA
| | | | - Amy M Berkley
- c Translational Oncology , Genentech Inc ., South San Francisco , USA
| | - Evangeline Toy
- c Translational Oncology , Genentech Inc ., South San Francisco , USA
| | - Ryan Cook
- d Biochemical and Cellular Pharmacology , Genentech Inc ., South San Francisco , USA
| | - Yutian Gan
- e Microchemistry, Proteomics and Lipidomics , Genentech Inc ., South San Francisco , USA
| | - Changchun Du
- d Biochemical and Cellular Pharmacology , Genentech Inc ., South San Francisco , USA
| | - Paul Schnier
- e Microchemistry, Proteomics and Lipidomics , Genentech Inc ., South San Francisco , USA
| | - Wendy Sandoval
- e Microchemistry, Proteomics and Lipidomics , Genentech Inc ., South San Francisco , USA
| | - Zhengmao Ye
- d Biochemical and Cellular Pharmacology , Genentech Inc ., South San Francisco , USA
| | - Jill M Schartner
- c Translational Oncology , Genentech Inc ., South San Francisco , USA
| | - Jeong Kim
- f Cancer Immunology , Genentech Inc ., South San Francisco , USA
| | - Christoph Spiess
- a Department of Antibody Engineering , Genentech Inc ., South San Francisco , USA
| |
Collapse
|
66
|
Naturally split intein Npu DnaE mediated rapid generation of bispecific IgG antibodies. Methods 2018; 154:32-37. [PMID: 30308314 DOI: 10.1016/j.ymeth.2018.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 11/22/2022] Open
Abstract
High product purity, preserving natural IgG architecture, and excellent production efficiency are highly desirable in bispecific antibody manufacturing. We have reported a platform called Bispecific Antibody by Protein Trans-Splicing (BAPTS) to synthesize BsAbs with natural human IgG structure and no chain mispairing. In the method, two antibody fragments carrying different target-specificities are separately expressed in mammalian cells and subsequently fused to form BsAbs by utilizing the trans-splicing property of the split intein Npu DnaE. The hinge region of antibody, a region with less functional impact, is selected for conjugating the two fragments. The method involves the following steps: (i) constructing five plasmids coding antibody components; (ii) separately expressing and purifying two antibody fragments A and B. Fragment A contains one Fab, "Knobs-into-Holes" mutations in the CH3 domain and NPU DnaEC. Fragment B contains another Fab and NPU DnaEN; (iii) mixing of fragments A and B under permissive reducing conditions in vitro to enable trans-splicing reaction; (iv) removing the reductant to allow re-oxidation of disulfide bonds; (v) isolating BsAb product from unreacted precursors by affinity chromatography. The method allows correct assembly of two heavy and two light chains to form bispecific IgG antibodies in natural structure with no synthetic linkers. No chain mispairing was observed in the product by UPLC-MASS. In addition, the observed kinetics and low reaction activation energy confirmed that the trans-splicing is thermodynamically favored reaction. The BAPTS technology is feasible for industrial applications.
Collapse
|
67
|
Woldeyes MA, Josephson LL, Leiske DL, Galush WJ, Roberts CJ, Furst EM. Viscosities and Protein Interactions of Bispecific Antibodies and Their Monospecific Mixtures. Mol Pharm 2018; 15:4745-4755. [DOI: 10.1021/acs.molpharmaceut.8b00706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mahlet A. Woldeyes
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Lilian L. Josephson
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Danielle L. Leiske
- Early Stage Pharmaceutical Development, Genentech Inc., A Member of the Roche Group, South San Francisco, California 94080, United States
| | - William J. Galush
- Early Stage Pharmaceutical Development, Genentech Inc., A Member of the Roche Group, South San Francisco, California 94080, United States
| | - Christopher J. Roberts
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Eric M. Furst
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
68
|
Vaks L, Litvak-Greenfeld D, Dror S, Shefet-Carasso L, Matatov G, Nahary L, Shapira S, Hakim R, Alroy I, Benhar I. Design Principles for Bispecific IgGs, Opportunities and Pitfalls of Artificial Disulfide Bonds. Antibodies (Basel) 2018; 7:E27. [PMID: 31544879 PMCID: PMC6640675 DOI: 10.3390/antib7030027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
Bispecific antibodies (bsAbs) are antibodies with two binding sites directed at different antigens, enabling therapeutic strategies not achievable with conventional monoclonal antibodies (mAbs). Since bispecific antibodies are regarded as promising therapeutic agents, many different bispecific design modalities have been evaluated, but as many of them are small recombinant fragments, their utility could be limited. For some therapeutic applications, full-size IgGs may be the optimal format. Two challenges should be met to make bispecific IgGs; one is that each heavy chain will only pair with the heavy chain of the second specificity and that homodimerization be prevented. The second is that each heavy chain will only pair with the light chain of its own specificity and not with the light chain of the second specificity. The first solution to the first criterion (knobs into holes, KIH) was presented in 1996 by Paul Carter's group from Genentech. Additional solutions were presented later on. However, until recently, out of >120 published bsAb formats, only a handful of solutions for the second criterion that make it possible to produce a bispecific IgG by a single expressing cell were suggested. We present a solution for the second challenge-correct pairing of heavy and light chains of bispecific IgGs; an engineered (artificial) disulfide bond between the antibodies' variable domains that asymmetrically replaces the natural disulfide bond between CH1 and CL. We name antibodies produced according to this design "BIClonals". Bispecific IgGs where the artificial disulfide bond is placed in the CH1-CL interface are also presented. Briefly, we found that an artificial disulfide bond between VH position 44 to VL position 100 provides for effective and correct H-L chain pairing while also preventing the formation of wrong H-L chain pairs. When the artificial disulfide bond links the CH1 with the CL domain, effective H-L chain pairing also occurs, but in some cases, wrong H-L pairing is not totally prevented. We conclude that H-L chain pairing seems to be driven by VH-VL interfacial interactions that differ between different antibodies, hence, there is no single optimal solution for effective and precise assembly of bispecific IgGs, making it necessary to carefully evaluate the optimal solution for each new antibody.
Collapse
Affiliation(s)
- Lilach Vaks
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Dana Litvak-Greenfeld
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Stav Dror
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - LeeRon Shefet-Carasso
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Galia Matatov
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Limor Nahary
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Shiran Shapira
- Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel.
| | - Rahely Hakim
- FusiMab, Ltd., 14 Shenkar St. POB 4093 Herzelia, Israel.
| | - Iris Alroy
- FusiMab, Ltd., 14 Shenkar St. POB 4093 Herzelia, Israel.
| | - Itai Benhar
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
69
|
Wang Y, Liu J, Pan H, Xing J, Wu X, Li Q, Wang Z. A GPC3-targeting Bispecific Antibody, GPC3-S-Fab, with Potent Cytotoxicity. J Vis Exp 2018. [PMID: 30059039 DOI: 10.3791/57588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This protocol describes the construction and functional studies of a bispecific antibody (bsAb), GPC3-S-Fab. bsAbs can recognize two different epitopes through their two different arms. bsAbs have been actively studied for their ability to directly recruit immune cells to kill tumor cells. Currently, the majority of bsAbs are produced in the form of recombinant proteins, either as Fc-containing bsAbs or as smaller bsAb derivatives without the Fc region. In this study, GPC3-S-Fab, an antibody fragment (Fab) based bispecific antibody, was designed by linking the Fab of anti-GPC3 antibody GC33 with an anti-CD16 single domain antibody. The GPC3-S-Fab can be expressed in Escherichia coli and purified by two affinity chromatographies. The purified GPC3-S-Fab can specifically bind to and kill GPC3 positive liver cancer cells by recruiting natural killer cells, suggesting a potential application of GPC3-S-Fab in liver cancer therapy.
Collapse
Affiliation(s)
- Yanlan Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University; Center for Cellular & Structural Biology, Sun Yat-Sen University
| | - Jiayu Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University; Center for Cellular & Structural Biology, Sun Yat-Sen University
| | - Haitao Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University; Center for Cellular & Structural Biology, Sun Yat-Sen University
| | - Jieyu Xing
- School of Pharmaceutical Sciences, Sun Yat-Sen University; Center for Cellular & Structural Biology, Sun Yat-Sen University
| | - Xiaoqiong Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University; Center for Cellular & Structural Biology, Sun Yat-Sen University
| | - Qing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University; Center for Cellular & Structural Biology, Sun Yat-Sen University;
| | - Zhong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University; Center for Cellular & Structural Biology, Sun Yat-Sen University;
| |
Collapse
|
70
|
|
71
|
Li J, Ybarra R, Mak J, Herault A, De Almeida P, Arrazate A, Ziai J, Totpal K, Junttila MR, Walsh KB, Junttila TT. IFNγ-induced Chemokines Are Required for CXCR3-mediated T-Cell Recruitment and Antitumor Efficacy of Anti-HER2/CD3 Bispecific Antibody. Clin Cancer Res 2018; 24:6447-6458. [PMID: 29950350 DOI: 10.1158/1078-0432.ccr-18-1139] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/31/2018] [Accepted: 06/22/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE The response to cancer immune therapy is dependent on endogenous tumor-reactive T cells. To bypass this requirement, CD3-bispecific antibodies have been developed to induce a polyclonal T-cell response against the tumor. Anti-HER2/CD3 T-cell-dependent bispecific (TDB) antibody is highly efficacious in the treatment of HER2-overexpressing tumors in mice. Efficacy and immunologic effects of anti-HER2/CD3 TDB were investigated in mammary tumor model with very few T cells prior treatment. We further describe the mechanism for TDB-induced T-cell recruitment to tumors. EXPERIMENTAL DESIGN The immunologic effects and the mechanism of CD3-bispecific antibody-induced T-cell recruitment into spontaneous HER2-overexpressing mammary tumors was studied using human HER2 transgenic, immunocompetent mouse models. RESULTS Anti-HER2/CD3 TDB treatment induced an inflammatory response in tumors converting them from poorly infiltrated to an inflamed, T-cell abundant, phenotype. Multiple mechanisms accounted for the TDB-induced increase in T cells within tumors. TDB treatment induced CD8+ T-cell proliferation. T cells were also actively recruited post-TDB treatment by IFNγ-dependent T-cell chemokines mediated via CXCR3. This active T-cell recruitment by TDB-induced chemokine signaling was the dominant mechanism and necessary for the therapeutic activity of anti-HER2/CD3 TDB. CONCLUSIONS In summary, we demonstrate that the activity of anti-HER2/CD3 TDB was not dependent on high-level baseline T-cell infiltration. Our results suggest that anti-HER2/CD3 TDB may be efficacious in patients and indications that respond poorly to checkpoint inhibitors. An active T-cell recruitment mediated by TDB-induced chemokine signaling was the major mechanism for T-cell recruitment.
Collapse
Affiliation(s)
- Ji Li
- Genentech, Inc. 1, South San Francisco, California 94080
| | - Ryan Ybarra
- Genentech, Inc. 1, South San Francisco, California 94080
| | - Judy Mak
- Genentech, Inc. 1, South San Francisco, California 94080
| | | | | | | | - James Ziai
- Genentech, Inc. 1, South San Francisco, California 94080
| | - Klara Totpal
- Genentech, Inc. 1, South San Francisco, California 94080
| | | | - Kevin B Walsh
- Genentech, Inc. 1, South San Francisco, California 94080.
| | | |
Collapse
|
72
|
Wang S, Qin Y, Wang Z, Xiang J, Zhang Y, Xu M, Li B, Xia Y, Zhang P, Wang H. Construction of a human monoclonal antibody against bFGF for suppression of NSCLC. J Cancer 2018; 9:2003-2011. [PMID: 29896285 PMCID: PMC5995934 DOI: 10.7150/jca.24255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/13/2018] [Indexed: 01/01/2023] Open
Abstract
Compelling evidence implicates that overexpression of basic fibroblast growth factor (bFGF) and fibroblast growth factor receptor 1 (FGFR1) in non-small cell lung cancer (NSCLC) drives tumor progression, can serve as prognostic biomarkers or therapeutic targets for NSCLC patients. But at present, we still lack of effective drugs for bFGF. The preparation of monoclonal antibodies against bFGF or to understand its mechanism of action is urgently need. Previously, we used hybridoma technology to produce a murine anti-bFGF monoclonal antibody (E12). However, E12 carries risks of heterogeneity and immunogenicity. In the present work, we produced three humanized variants (H1L1, H2L2 and H3L3) based on E12 by substituting residues in or near the complementarity-determining region (CDR). In addition, we thoroughly explored VH/VL domain combinations to simulate full-length IgG1 antibodies using computational protein design. H3L3 was selected for further study, as it demonstrated the best humanization and strongest affinity for bFGF. Specially, humanization of H3L3's light chain and heavy chain were 100% and 98.89%, respectively. The FGF2 neutralizing effect of H3L3 were confirmed by ELISA. We also found that H3L3 can effectively suppress the growth and angiogenesis of cancer through reduce the phosphorylation of AKT and MAPK. Moreover, H3L3 dramatically reduced tumor size and micro-vessel density in nude mice. Altogether, our study demonstrates that H3L3 exerts anti-tumor effects by impeding NSCLC development.
Collapse
Affiliation(s)
- Sheng Wang
- Guangdong Province Engineering Research Center for antibody drug and immunoassay, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Yiyang Qin
- Guangdong Province Engineering Research Center for antibody drug and immunoassay, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Zhongmin Wang
- Akeso Biopharma, Inc., Zhongshan, 528400, Guangdong Province, China
| | - Junjian Xiang
- Guangdong Province Engineering Research Center for antibody drug and immunoassay, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Yu Zhang
- Guangdong Province Engineering Research Center for antibody drug and immunoassay, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Meng Xu
- Department of Oncology, the First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Baiyong Li
- Akeso Biopharma, Inc., Zhongshan, 528400, Guangdong Province, China
| | - Yu Xia
- Akeso Biopharma, Inc., Zhongshan, 528400, Guangdong Province, China
| | - Peng Zhang
- Akeso Biopharma, Inc., Zhongshan, 528400, Guangdong Province, China
| | - Hong Wang
- Guangdong Province Engineering Research Center for antibody drug and immunoassay, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
73
|
Verdino P, Atwell S, Demarest SJ. Emerging trends in bispecific antibody and scaffold protein therapeutics. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
74
|
|
75
|
Targeting Human-Cytomegalovirus-Infected Cells by Redirecting T Cells Using an Anti-CD3/Anti-Glycoprotein B Bispecific Antibody. Antimicrob Agents Chemother 2017; 62:AAC.01719-17. [PMID: 29038280 PMCID: PMC5740302 DOI: 10.1128/aac.01719-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
The host immune response to human cytomegalovirus (HCMV) is effective against HCMV reactivation from latency, though not sufficient to clear the virus. T cells are primarily responsible for the control of viral reactivation. When the host immune system is compromised, as in transplant recipients with immunosuppression, HCMV reactivation and progressive infection can cause serious morbidity and mortality. Adoptive T cell therapy is effective for the control of HCMV infection in transplant recipients. However, it is a highly personalized therapeutic regimen and is difficult to implement in routine clinical practice. In this study, we explored a bispecific-antibody strategy to direct non-HCMV-specific T cells to recognize and exert effector functions against HCMV-infected cells. Using a knobs-into-holes strategy, we constructed a bispecific antibody in which one arm is specific for CD3 and can trigger T cell activation, while the other arm, specific for HCMV glycoprotein B (gB), recognizes and marks HCMV-infected cells based on the expression of viral gB on their surfaces. We showed that this bispecific antibody was able to redirect T cells with specificity for HCMV-infected cells in vitro In the presence of HCMV infection, the engineered antibody was able to activate T cells with no HCMV specificity for cytokine production, proliferation, and the expression of phenotype markers unique to T cell activation. These results suggested the potential of engineered bispecific antibodies, such as the construct described here, as prophylactic or therapeutic agents against HCMV reactivation and infection.
Collapse
|
76
|
Zhang HM, Li C, Lei M, Lundin V, Lee HY, Ninonuevo M, Lin K, Han G, Sandoval W, Lei D, Ren G, Zhang J, Liu H. Structural and Functional Characterization of a Hole-Hole Homodimer Variant in a "Knob-Into-Hole" Bispecific Antibody. Anal Chem 2017; 89:13494-13501. [PMID: 29129068 DOI: 10.1021/acs.analchem.7b03830] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bispecific antibodies have great potential to be the next-generation biotherapeutics due to their ability to simultaneously recognize two different targets. Compared to conventional monoclonal antibodies, knob-into-hole bispecific antibodies face unique challenges in production and characterization due to the increase in variant possibilities, such as homodimerization in covalent and noncovalent forms. In this study, a storage- and pH-sensitive hydrophobic interaction chromatography (HIC) profile change was observed for the hole-hole homodimer, and the multiple HIC peaks were explored and shown to be conformational isomers. We combined traditional analytical methods with hydrogen/deuterium exchange mass spectrometry (HDX MS), native mass spectrometry, and negative-staining electron microscopy to comprehensively characterize the hole-hole homodimer. HDX MS revealed conformational changes at the resolution of a few amino acids overlapping the CH2-CH3 domain interface. Conformational heterogeneity was also assessed by HDX MS isotopic distribution. The hole-hole homodimer was demonstrated to adopt a more homogeneous conformational distribution during storage. This conformational change is likely caused by a lack of CH3 domain dimerization (due to the three "hole" point mutations), resulting in a unique storage- and pH-dependent conformational destabilization and refolding of the hole-hole homodimer Fc. Compared with the hole-hole homodimer under different storage conditions, the bispecific heterodimer, guided by the knob-into-hole assembly, proved to be a stable conformation with homogeneous distribution, confirming its high quality as a desired therapeutic. Functional studies by antigen binding and neonatal Fc receptor (FcRn) binding correlated very well with the structural characterization. Comprehensive interpretation of the results has provided a better understanding of both the homodimer variant and the bispecific molecule.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dongsheng Lei
- The Molecular Foundry, Lawrence Berkeley National Laboratory , One Cyclotron Road, Berkeley, California 94720, United States
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory , One Cyclotron Road, Berkeley, California 94720, United States
| | | | | |
Collapse
|
77
|
Van Blarcom T, Lindquist K, Melton Z, Cheung WL, Wagstrom C, McDonough D, Valle Oseguera C, Ding S, Rossi A, Potluri S, Sundar P, Pitts S, Sirota M, Galindo Casas M, Yan Y, Jones J, Roe-Zurz Z, Srivatsa Srinivasan S, Zhai W, Pons J, Rajpal A, Chaparro-Riggers J. Productive common light chain libraries yield diverse panels of high affinity bispecific antibodies. MAbs 2017; 10:256-268. [PMID: 29227213 PMCID: PMC5825193 DOI: 10.1080/19420862.2017.1406570] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The commercial success of bispecific antibodies generally has been hindered by the complexities associated with generating appropriate molecules for both research scale and large scale manufacturing purposes. Bispecific IgG (BsIgG) based on two antibodies that use an identical common light chain can be combined with a minimal set of Fc mutations to drive heavy chain heterodimerization in order to address these challenges. However, the facile generation of common light chain antibodies with properties similar to traditional monoclonal antibodies has not been demonstrated and they have only been used sparingly. Here, we describe the design of a synthetic human antibody library based on common light chains to generate antibodies with biochemical and biophysical properties that are indistinguishable to traditional therapeutic monoclonal antibodies. We used this library to generate diverse panels of well-behaved, high affinity antibodies toward a variety of epitopes across multiple antigens, including mouse 4-1BB, a therapeutically important T cell costimulatory receptor. Over 200 BsIgG toward 4-1BB were generated using an automated purification method we developed that enables milligram-scale production of BsIgG. This approach allowed us to identify antibodies with a wide range of agonistic activity that are being used to further investigate the therapeutic potential of antibodies targeting one or more epitopes of 4-1BB.
Collapse
Affiliation(s)
- Thomas Van Blarcom
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Kevin Lindquist
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Zea Melton
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Wai Ling Cheung
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Chris Wagstrom
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Dan McDonough
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Cendy Valle Oseguera
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Sheng Ding
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Andrea Rossi
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Shobha Potluri
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Purnima Sundar
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Steven Pitts
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Marina Sirota
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Meri Galindo Casas
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Yu Yan
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Jeffrey Jones
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Zygy Roe-Zurz
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | | | - Wenwu Zhai
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Jaume Pons
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | - Arvind Rajpal
- a Oncology Research and Development , Pfizer Inc. , South San Francisco , CA , USA
| | | |
Collapse
|
78
|
Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs 2017; 9:182-212. [PMID: 28071970 PMCID: PMC5297537 DOI: 10.1080/19420862.2016.1268307] [Citation(s) in RCA: 667] [Impact Index Per Article: 83.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022] Open
Abstract
During the past two decades we have seen a phenomenal evolution of bispecific antibodies for therapeutic applications. The 'zoo' of bispecific antibodies is populated by many different species, comprising around 100 different formats, including small molecules composed solely of the antigen-binding sites of two antibodies, molecules with an IgG structure, and large complex molecules composed of different antigen-binding moieties often combined with dimerization modules. The application of sophisticated molecular design and genetic engineering has solved many of the technical problems associated with the formation of bispecific antibodies such as stability, solubility and other parameters that confer drug properties. These parameters may be summarized under the term 'developability'. In addition, different 'target product profiles', i.e., desired features of the bispecific antibody to be generated, mandates the need for access to a diverse panel of formats. These may vary in size, arrangement, valencies, flexibility and geometry of their binding modules, as well as in their distribution and pharmacokinetic properties. There is not 'one best format' for generating bispecific antibodies, and no single format is suitable for all, or even most of, the desired applications. Instead, the bispecific formats collectively serve as a valuable source of diversity that can be applied to the development of therapeutics for various indications. Here, a comprehensive overview of the different bispecific antibody formats is provided.
Collapse
Affiliation(s)
- Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Im Nonnenwald, Penzberg, Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Nobelstraße, Stuttgart, Germany
| |
Collapse
|
79
|
Bezabeh B, Fleming R, Fazenbaker C, Zhong H, Coffman K, Yu XQ, Leow CC, Gibson N, Wilson S, Stover CK, Wu H, Gao C, Dimasi N. Insertion of scFv into the hinge domain of full-length IgG1 monoclonal antibody results in tetravalent bispecific molecule with robust properties. MAbs 2017; 9:240-256. [PMID: 27981887 DOI: 10.1080/19420862.2016.1270492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
By simultaneous binding two disease mediators, bispecific antibodies offer the opportunity to broaden the utility of antibody-based therapies. Herein, we describe the design and characterization of Bs4Ab, an innovative and generic bispecific tetravalent antibody platform. The Bs4Ab format comprises a full-length IgG1 monoclonal antibody with a scFv inserted into the hinge domain. The Bs4Ab design demonstrates robust manufacturability as evidenced by MEDI3902, which is currently in clinical development. To further demonstrate the applicability of the Bs4Ab technology, we describe the molecular engineering, biochemical, biophysical, and in vivo characterization of a bispecific tetravalent Bs4Ab that, by simultaneously binding vascular endothelial growth factor and angiopoietin-2, inhibits their function. We also demonstrate that the Bs4Ab platform allows Fc-engineering similar to that achieved with IgG1 antibodies, such as mutations to extend half-life or modulate effector functions.
Collapse
Affiliation(s)
- Binyam Bezabeh
- a Antibody Discovery and Protein Engineering , Gaithersburg , MA , USA
| | - Ryan Fleming
- a Antibody Discovery and Protein Engineering , Gaithersburg , MA , USA
| | | | | | - Karen Coffman
- c Clinical Pharmacology and DMPK , Gaithersburg , MA , USA
| | - Xiang-Qing Yu
- c Clinical Pharmacology and DMPK , Gaithersburg , MA , USA
| | | | - Nerea Gibson
- a Antibody Discovery and Protein Engineering , Gaithersburg , MA , USA
| | - Susan Wilson
- a Antibody Discovery and Protein Engineering , Gaithersburg , MA , USA
| | | | - Herren Wu
- a Antibody Discovery and Protein Engineering , Gaithersburg , MA , USA
| | - Changshou Gao
- a Antibody Discovery and Protein Engineering , Gaithersburg , MA , USA
| | - Nazzareno Dimasi
- a Antibody Discovery and Protein Engineering , Gaithersburg , MA , USA
| |
Collapse
|
80
|
Kim HS, Dunshee DR, Yee A, Tong RK, Kim I, Farahi F, Hongo JA, Ernst JA, Sonoda J, Spiess C. Tethered-variable CL bispecific IgG: an antibody platform for rapid bispecific antibody screening. Protein Eng Des Sel 2017; 30:627-637. [PMID: 28985411 PMCID: PMC5914367 DOI: 10.1093/protein/gzx034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022] Open
Abstract
Bispecific antibodies offer a clinically validated platform for drug discovery. In generating functionally active bispecific antibodies, it is necessary to identify a unique parental antibody pair to merge into a single molecule. However, technologies that allow high-throughput production of bispecific immunoglobulin Gs (BsIgGs) for screening purposes are limited. Here, we describe a novel bispecific antibody format termed tethered-variable CLBsIgG (tcBsIgG) that allows robust production of intact BsIgG in a single cell line, concurrently ensuring cognate light chain pairing and preserving key antibody structural and functional properties. This technology is broadly applicable in the generation of BsIgG from a variety of antibody isotypes, including human BsIgG1, BsIgG2 and BsIgG4. The practicality of the tcBsIgG platform is demonstrated by screening BsIgGs generated from FGF21-mimetic anti-Klotho-β agonistic antibodies in a combinatorial manner. This screen identified multiple biepitopic combinations with enhanced agonistic activity relative to the parental monoclonal antibodies, thereby demonstrating that biepitopic antibodies can acquire enhanced functionality compared to monospecific parental antibodies. By design, the tcBsIgG format is amenable to high-throughput production of large panels of bispecific antibodies and thus can facilitate the identification of rare BsIgG combinations to enable the discovery of molecules with improved biological function.
Collapse
Affiliation(s)
- Hok Seon Kim
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Diana Ronai Dunshee
- Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Angie Yee
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Raymond K Tong
- Department of Protein Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ingrid Kim
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Farzam Farahi
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jo-Anne Hongo
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - James A Ernst
- Department of Protein Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Junichiro Sonoda
- Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christoph Spiess
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
81
|
Shatz W, Ng D, Dutina G, Wong AW, Dunshee DR, Sonoda J, Shen A, Scheer JM. An efficient route to bispecific antibody production using single-reactor mammalian co-culture. MAbs 2017; 8:1487-1497. [PMID: 27680183 DOI: 10.1080/19420862.2016.1234569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bispecific antibodies have shown promise in the clinic as medicines with novel mechanisms of action. Lack of efficient production of bispecific IgGs, however, has limited their rapid advancement. Here, we describe a single-reactor process using mammalian cell co-culture production to efficiently produce a bispecific IgG with 4 distinct polypeptide chains without the need for parallel processing of each half-antibody or additional framework mutations. This method resembles a conventional process, and the quality and yield of the monoclonal antibodies are equal to those produced using parallel processing methods. We demonstrate the application of the approach to diverse bispecific antibodies, and its suitability for production of a tissue specific molecule targeting fibroblast growth factor receptor 1 and klotho β that is being developed for type 2 diabetes and other obesity-linked disorders.
Collapse
Affiliation(s)
- Whitney Shatz
- a Department of Protein Chemistry , Genentech Inc. , South San Francisco , CA , USA
| | - Domingos Ng
- b Department of Early Stage Cell Culture , Genentech Inc. , South San Francisco , CA , USA
| | - George Dutina
- b Department of Early Stage Cell Culture , Genentech Inc. , South San Francisco , CA , USA
| | - Athena W Wong
- b Department of Early Stage Cell Culture , Genentech Inc. , South San Francisco , CA , USA
| | - Diana Ronai Dunshee
- c Department of Molecular Biology , Genentech Inc. , South San Francisco , CA , USA
| | - Junichiro Sonoda
- c Department of Molecular Biology , Genentech Inc. , South San Francisco , CA , USA
| | - Amy Shen
- b Department of Early Stage Cell Culture , Genentech Inc. , South San Francisco , CA , USA
| | - Justin M Scheer
- a Department of Protein Chemistry , Genentech Inc. , South San Francisco , CA , USA
| |
Collapse
|
82
|
Bönisch M, Sellmann C, Maresch D, Halbig C, Becker S, Toleikis L, Hock B, Rüker F. Novel CH1:CL interfaces that enhance correct light chain pairing in heterodimeric bispecific antibodies. Protein Eng Des Sel 2017; 30:685-696. [PMID: 28981885 PMCID: PMC5914326 DOI: 10.1093/protein/gzx044] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 11/14/2022] Open
Abstract
Targeting two unique antigens with a single bispecific antibody is an attractive approach with potential broad therapeutic applicability. However, the production of heterodimeric bispecific antibodies (bsAbs) presents a challenge, requiring the co-expression and accurate pairing of two distinct heavy and light chain units. Several undesirable by-products can be formed in the production process, including heavy chain homodimers and non-cognate light chain pairings. Although additional downstream purification methods exist, they are often time consuming and restrict practical large-scale production. In this study, we identify and validate novel Fab interface mutations that increase cognate light chain pairing efficiencies within heterodimeric bsAbs. Importantly, the variable domains remain unaltered as interface mutations were restricted to the CH1 and CL domains. We performed several biochemical assays to demonstrate that the novel engineered interfaces do not adversely impact bispecific antibody expression, stability, affinity and biological function. The designs reported here can easily be applied in a generic manner to use existing antibodies as building blocks for bsAbs which will help to accelerate the identification and production of next generation bispecific antibody therapeutics.
Collapse
Affiliation(s)
- Maximilian Bönisch
- Christian Doppler Laboratory for Antibody Engineering at Department of Chemistry and Department of Biotechnology, BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Carolin Sellmann
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Daniel Maresch
- Department of Chemistry, BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Claudia Halbig
- Christian Doppler Laboratory for Antibody Engineering at Department of Chemistry and Department of Biotechnology, BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Stefan Becker
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Björn Hock
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Florian Rüker
- Christian Doppler Laboratory for Antibody Engineering at Department of Chemistry and Department of Biotechnology, BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
83
|
Weizman T, Levin I, Zaretsky M, Sagi I, Aharoni A. Increased Potency of a Bi-specific TL1A-ADAM17 (TACE) Inhibitor by Cell Surface Targeting. Front Mol Biosci 2017; 4:61. [PMID: 28879185 PMCID: PMC5572276 DOI: 10.3389/fmolb.2017.00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial disease characterized by the dysregulated activity of many pro-inflammatory factors. Thus, bi-specific inhibitors for the simultaneous inhibition of two pro-inflammatory factors can exhibit high therapeutic potential. Here, we developed a novel bi-specific inhibitor targeting the TL1A cytokine and ADAM17/TACE metalloprotease. Biochemical analysis of the bi-specific inhibitor revealed high TL1A binding and TACE inhibition that is similar to the two respective mono-specific inhibitors. Interestingly, cell based assays for TL1A inhibition revealed strong synergism between the inhibitory domains showing an up to 80-fold increase in potency of the bi-specific inhibitor. The dramatic increase in potency is associated with binding to cell membranes through the TACE inhibitory domain leading to increased concentration of the inhibitor on the cell surface. Our study highlights the high potential of the simultaneous targeting of cell surface metalloprotease (TACE) and soluble pro-inflammatory cytokine (TL1A) as a potential therapeutic approach in IBD.
Collapse
Affiliation(s)
- Tomer Weizman
- Department of Life Sciences, Ben-Gurion University of the Negev, BeershebaBeersheba, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, BeershebaBeersheba, Israel
| | - Itay Levin
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, BeershebaBeersheba, Israel
| | - Marianna Zaretsky
- Department of Life Sciences, Ben-Gurion University of the Negev, BeershebaBeersheba, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, BeershebaBeersheba, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of ScienceRehovot, Israel
| | - Amir Aharoni
- Department of Life Sciences, Ben-Gurion University of the Negev, BeershebaBeersheba, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, BeershebaBeersheba, Israel
| |
Collapse
|
84
|
Efficient generation of bispecific IgG antibodies by split intein mediated protein trans-splicing system. Sci Rep 2017; 7:8360. [PMID: 28827777 PMCID: PMC5567192 DOI: 10.1038/s41598-017-08641-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022] Open
Abstract
Many methods have been developed to produce bispecific antibodies (BsAbs) for industrial application. However, huge challenges still remain in synthesizing whole length BsAbs, including their assembly, stability, immunogenicity, and pharmacodynamics. Here we present for first time a generic technology platform of generating bispecific IgG antibodies, “Bispecific Antibody by Protein Trans-splicing (BAPTS)”. Different from published methods, we assembled two parental antibody fragments in the hinge region by the protein trans-splicing reaction of a split intein to generate BsAbs without heavy/heavy and light/heavy chain mispairing. Utilizing this simple and efficient approach, there have been several BsAbs (CD3×HER2, CD3×EGFR, EGFR×HER2) synthesized to demonstrate its broad applicability. Correctly paired mAb arms were assembled to form BsAbs that were purified through protein A affinity chromatography to demonstrate industrial applicability at large scale. Further, the products were characterized through physical-biochemistry properties and biological activities to confirm expected quality of the products from “BAPTS”. More importantly, correct pairing was confirmed by mass spectrum. Proof-of-concept studies with CD3×HER2 BsAb (T-cell recruitment) demonstrated superior bioactivity compared with trastuzumab. The results of undetectable mispairing and high biological activity have indicated that this method has the potential to be utilized to manufacture BsAbs with high efficiency at industrial scale.
Collapse
|
85
|
Chang CH, Wang Y, Li R, Rossi DL, Liu D, Rossi EA, Cardillo TM, Goldenberg DM. Combination Therapy with Bispecific Antibodies and PD-1 Blockade Enhances the Antitumor Potency of T Cells. Cancer Res 2017; 77:5384-5394. [PMID: 28819027 DOI: 10.1158/0008-5472.can-16-3431] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/24/2017] [Accepted: 08/04/2017] [Indexed: 11/16/2022]
Abstract
The DOCK-AND-LOCK (DNL) method is a platform technology that combines recombinant engineering and site-specific conjugation to create multispecific, multivalent antibodies of defined composition with retained bioactivity. We have applied DNL to generate a novel class of trivalent bispecific antibodies (bsAb), each comprising an anti-CD3 scFv covalently conjugated to a stabilized dimer of different antitumor Fabs. Here, we report the further characterization of two such constructs, (E1)-3s and (14)-3s, which activate T cells and target Trop-2- and CEACAM5-expressing cancer cells, respectively. (E1)-3s and (14)-3s, in the presence of human T cells, killed target cells grown as monolayers at subnanomolar concentrations, with a similar potency observed for drug-resistant cells. Antitumor efficacy was demonstrated for (E1)-3s coadministered with human peripheral blood mononuclear cells (PBMC) in NOD/SCID mice harboring xenografts of MDA-MB-231, a triple-negative breast cancer line constitutively expressing Trop-2 and PD-L1. Growth inhibition was observed following treatment with (E1)-3s or (14)-3s combined with human PBMC in 3D spheroids generated from target cell lines to mimic the in vivo behavior and microenvironment of these tumors. Moreover, addition of an antagonistic anti-PD-1 antibody increased cell death in 3D spheroids and extended survival of MDA-MB-231-bearing mice. These preclinical results emphasize the potential of combining T-cell-redirecting bsAbs with antagonists or agonists that mitigate T-cell inhibition within the tumor microenvironment to improve immunotherapy of solid cancers in patients. They also support the use of 3D spheroids as a predictive alternative to in vivo models for evaluating T-cell functions. Cancer Res; 77(19); 5384-94. ©2017 AACR.
Collapse
Affiliation(s)
- Chien-Hsing Chang
- Immunomedics, Inc., Morris Plains, New Jersey. .,IBC Pharmaceuticals, Inc., Morris Plains, New Jersey
| | - Yang Wang
- Immunomedics, Inc., Morris Plains, New Jersey
| | - Rongxiu Li
- Immunomedics, Inc., Morris Plains, New Jersey
| | | | - Donglin Liu
- Immunomedics, Inc., Morris Plains, New Jersey.,IBC Pharmaceuticals, Inc., Morris Plains, New Jersey
| | | | | | - David M Goldenberg
- Immunomedics, Inc., Morris Plains, New Jersey.,IBC Pharmaceuticals, Inc., Morris Plains, New Jersey
| |
Collapse
|
86
|
Froning KJ, Leaver-Fay A, Wu X, Phan S, Gao L, Huang F, Pustilnik A, Bacica M, Houlihan K, Chai Q, Fitchett JR, Hendle J, Kuhlman B, Demarest SJ. Computational design of a specific heavy chain/κ light chain interface for expressing fully IgG bispecific antibodies. Protein Sci 2017; 26:2021-2038. [PMID: 28726352 DOI: 10.1002/pro.3240] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022]
Abstract
The use of bispecific antibodies (BsAbs) to treat human diseases is on the rise. Increasingly complex and powerful therapeutic mechanisms made possible by BsAbs are spurring innovation of novel BsAb formats and methods for their production. The long-lived in vivo pharmacokinetics, optimal biophysical properties and potential effector functions of natural IgG monoclonal (and monospecific) antibodies has resulted in a push to generate fully IgG BsAb formats with the same quaternary structure as monoclonal IgGs. The production of fully IgG BsAbs is challenging because of the highly heterogeneous pairing of heavy chains (HCs) and light chains (LCs) when produced in mammalian cells with two IgG HCs and two LCs. A solution to the HC heterodimerization aspect of IgG BsAb production was first discovered two decades ago; however, addressing the LC mispairing issue has remained intractable until recently. Here, we use computational and rational engineering to develop novel designs to the HC/LC pairing issue, and particularly for κ LCs. Crystal structures of these designs highlight the interactions that provide HC/LC specificity. We produce and characterize multiple fully IgG BsAbs using these novel designs. We demonstrate the importance of specificity engineering in both the variable and constant domains to achieve robust HC/LC specificity within all the BsAbs. These solutions facilitate the production of fully IgG BsAbs for clinical use.
Collapse
Affiliation(s)
- K J Froning
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| | - A Leaver-Fay
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - X Wu
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| | - S Phan
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| | - L Gao
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| | - F Huang
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| | - A Pustilnik
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| | - M Bacica
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| | - K Houlihan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Q Chai
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| | - J R Fitchett
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| | - J Hendle
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| | - B Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - S J Demarest
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| |
Collapse
|
87
|
Gong S, Ren F, Wu D, Wu X, Wu C. Fabs-in-tandem immunoglobulin is a novel and versatile bispecific design for engaging multiple therapeutic targets. MAbs 2017; 9:1118-1128. [PMID: 28692328 DOI: 10.1080/19420862.2017.1345401] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In recent years, the development of bispecific antibody (bsAb) has become a major trend in the biopharmaceutical industry. By simultaneously engaging 2 molcular targets, bsAbs show unique mechanisms of action that could lead to clinical benefits unattainable by conventional monoclonal antibodies. Various bsAb generation formats have been described, and several are being investigated in clinical development. However, some bsAb constructs have proven to be problematic due to their unfavorable physicochemical and pharmacokinetic properties, as well as poor manufacturing efficiencies. We describe here a new bispecific design, Fabs-in-tandem immunoglobulin (FIT-Ig), in which 2 antigen-binding fragments are fused directly in a crisscross orientation without any mutations or use of peptide linkers. This unique design provides a symmetric IgG-like bispecific molecule with correct association of 2 sets of VH/VL pairs. We show that FIT-Ig molecules exhibit favorable drug-like properties, in vitro and in vivo functions, as well as manufacturing efficiency for commercial development.
Collapse
Affiliation(s)
| | - Fang Ren
- a EpimAb Biotherapeutics , Shanghai , China
| | - Danqing Wu
- a EpimAb Biotherapeutics , Shanghai , China
| | - Xuan Wu
- a EpimAb Biotherapeutics , Shanghai , China
| | | |
Collapse
|
88
|
De Nardis C, Hendriks LJA, Poirier E, Arvinte T, Gros P, Bakker ABH, de Kruif J. A new approach for generating bispecific antibodies based on a common light chain format and the stable architecture of human immunoglobulin G 1. J Biol Chem 2017; 292:14706-14717. [PMID: 28655766 DOI: 10.1074/jbc.m117.793497] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/14/2017] [Indexed: 11/06/2022] Open
Abstract
Bispecific antibodies combine two different antigen-binding sites in a single molecule, enabling more specific targeting, novel mechanisms of action, and higher clinical efficacies. Although they have the potential to outperform conventional monoclonal antibodies, many bispecific antibodies have issues regarding production, stability, and pharmacokinetic properties. Here, we describe a new approach for generating bispecific antibodies using a common light chain format and exploiting the stable architecture of human immunoglobulin G1 We used iterative experimental validation and computational modeling to identify multiple Fc variant pairs that drive efficient heterodimerization of the antibody heavy chains. Accelerated stability studies enabled selection of one Fc variant pair dubbed "DEKK" consisting of substitutions L351D and L368E in one heavy chain combined with L351K and T366K in the other. Solving the crystal structure of the DEKK Fc region at a resolution of 2.3 Å enabled detailed analysis of the interactions inducing CH3 interface heterodimerization. Local shifts in the IgG backbone accommodate the introduction of lysine side chains that form stabilizing salt-bridge interactions with substituted and native residues in the opposite chain. Overall, the CH3 domain adapted to these shifts at the interface, yielding a stable Fc conformation very similar to that in wild-type IgG. Using the DEKK format, we generated the bispecific antibody MCLA-128, targeting human EGF receptors 2 and 3. MCLA-128 could be readily produced and purified at industrial scale with a standard mammalian cell culture platform and a routine purification protocol. Long-term accelerated stability assays confirmed that MCLA-128 is highly stable and has excellent biophysical characteristics.
Collapse
Affiliation(s)
- Camilla De Nardis
- From the Crystal and Structural Chemistry Group, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | | | | - Tudor Arvinte
- Therapeomic Inc., CH-4002 Basel, Switzerland, and.,the University of Geneva, CH-1211 Geneva, Switzerland
| | - Piet Gros
- From the Crystal and Structural Chemistry Group, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
89
|
Yumura K, Akiba H, Nagatoishi S, Kusano-Arai O, Iwanari H, Hamakubo T, Tsumoto K. Use of SpyTag/SpyCatcher to construct bispecific antibodies that target two epitopes of a single antigen. J Biochem 2017. [DOI: 10.1093/jb/mvx023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Kyohei Yumura
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Hiroki Akiba
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoru Nagatoishi
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Osamu Kusano-Arai
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Tokyo 153-8904, Japan
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Tokyo 153-8904, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Tokyo 153-8904, Japan
| | - Kouhei Tsumoto
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
90
|
Fagète S, Botas-Perez L, Rossito-Borlat I, Adea K, Gueneau F, Ravn U, Rousseau F, Kosco-Vilbois M, Fischer N, Hartley O. Dual display: phage selection driven by co-engagement of two targets by two different antibody fragments. Protein Eng Des Sel 2017; 30:575-582. [DOI: 10.1093/protein/gzx021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/13/2017] [Indexed: 01/03/2023] Open
|
91
|
Schoellhorn M, Fischer S, Wagner A, Handrick R, Otte K. miR-143 targets MAPK7 in CHO cells and induces a hyperproductive phenotype to enhance production of difficult-to-express proteins. Biotechnol Prog 2017; 33:1046-1058. [DOI: 10.1002/btpr.2475] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/24/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Melanie Schoellhorn
- Inst. of Applied Biotechnology, University of Applied Sciences Biberach; Hubertus-Liebrecht-Strasse 35 Biberach 88400 Germany
| | - Simon Fischer
- Inst. of Applied Biotechnology, University of Applied Sciences Biberach; Hubertus-Liebrecht-Strasse 35 Biberach 88400 Germany
| | - Andreas Wagner
- Inst. of Applied Biotechnology, University of Applied Sciences Biberach; Hubertus-Liebrecht-Strasse 35 Biberach 88400 Germany
| | - René Handrick
- Inst. of Applied Biotechnology, University of Applied Sciences Biberach; Hubertus-Liebrecht-Strasse 35 Biberach 88400 Germany
| | - Kerstin Otte
- Inst. of Applied Biotechnology, University of Applied Sciences Biberach; Hubertus-Liebrecht-Strasse 35 Biberach 88400 Germany
| |
Collapse
|
92
|
Huang X, Wang X, Zhang J, Xia N, Zhao Q. Escherichia coli-derived virus-like particles in vaccine development. NPJ Vaccines 2017; 2:3. [PMID: 29263864 PMCID: PMC5627247 DOI: 10.1038/s41541-017-0006-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022] Open
Abstract
Recombinant virus-like particle-based vaccines are composed of viral structural proteins and mimic authentic native viruses but are devoid of viral genetic materials. They are the active components in highly safe and effective vaccines for the prevention of infectious diseases. Several expression systems have been used for virus-like particle production, ranging from Escherichia coli to mammalian cell lines. The prokaryotic expression system, especially Escherichia coli, is the preferred expression host for producing vaccines for global use. Hecolin, the first licensed virus-like particle vaccine derived from Escherichia coli, has been demonstrated to possess good safety and high efficacy. In this review, we focus on Escherichia coli-derived virus-like particle based vaccines and vaccine candidates that are used for prevention (immunization against microbial pathogens) or disease treatment (directed against cancer or non-infectious diseases). The native-like spatial or higher-order structure is essential for the function of virus-like particles. Thus, the tool box for analyzing the key physicochemical, biochemical and functional attributes of purified virus-like particles will also be discussed. In summary, the Escherichia coli expression system has great potentials for producing a range of proteins with self-assembling properties to be used as vaccine antigens given the proper epitopes were preserved when compared to those in the native pathogens or disease-related target molecules.
Collapse
Affiliation(s)
- Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Life Science, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| |
Collapse
|
93
|
Krah S, Sellmann C, Rhiel L, Schröter C, Dickgiesser S, Beck J, Zielonka S, Toleikis L, Hock B, Kolmar H, Becker S. Engineering bispecific antibodies with defined chain pairing. N Biotechnol 2017; 39:167-173. [PMID: 28137467 DOI: 10.1016/j.nbt.2016.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 01/07/2023]
Abstract
Bispecific IgG-like antibodies can simultaneously interact with two epitopes on the same or on different antigens. Therefore, these molecules facilitate novel modes of action, which cannot be addressed by conventional monospecific IgGs. However, the generation of such antibodies still appears to be demanding due to their specific architecture comprising four different polypeptide chains that need to assemble correctly. This review focusses on different strategies to circumvent this issue or to enforce a correct chain association with a focus on common-chain bispecific antibodies.
Collapse
Affiliation(s)
- Simon Krah
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany; Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Carolin Sellmann
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany; Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Laura Rhiel
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Christian Schröter
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany; Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Stephan Dickgiesser
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany; Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Jan Beck
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany; Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Björn Hock
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.
| | - Stefan Becker
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany.
| |
Collapse
|
94
|
Liu H, Saxena A, Sidhu SS, Wu D. Fc Engineering for Developing Therapeutic Bispecific Antibodies and Novel Scaffolds. Front Immunol 2017; 8:38. [PMID: 28184223 PMCID: PMC5266686 DOI: 10.3389/fimmu.2017.00038] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/10/2017] [Indexed: 12/20/2022] Open
Abstract
Therapeutic monoclonal antibodies have become molecules of choice to treat autoimmune disorders, inflammatory diseases, and cancer. Moreover, bispecific/multispecific antibodies that target more than one antigen or epitope on a target cell or recruit effector cells (T cell, natural killer cell, or macrophage cell) toward target cells have shown great potential to maximize the benefits of antibody therapy. In the past decade, many novel concepts to generate bispecific and multispecific antibodies have evolved successfully into a range of formats from full bispecific immunoglobulin gammas to antibody fragments. Impressively, antibody fragments such as bispecific T-cell engager, bispecific killer cell engager, trispecific killer cell engager, tandem diabody, and dual-affinity-retargeting are showing exciting results in terms of recruiting and activating self-immune effector cells to target and lyse tumor cells. Promisingly, crystallizable fragment (Fc) antigen-binding fragment and monomeric antibody or half antibody may be particularly advantageous to target solid tumors owing to their small size and thus good tissue penetration potential while, on the other hand, keeping Fc-related effector functions such as antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, antibody-dependent cell-mediated phagocytosis, and extended serum half-life via interaction with neonatal Fc receptor. This review, therefore, focuses on the progress of Fc engineering in generating bispecific molecules and on the use of small antibody fragment as scaffolds for therapeutic development.
Collapse
Affiliation(s)
- Hongyan Liu
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University , Shanghai , China
| | - Abhishek Saxena
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University , Shanghai , China
| | - Sachdev S Sidhu
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China; Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Donghui Wu
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University , Shanghai , China
| |
Collapse
|
95
|
Patke S, Li J, Wang P, Slaga D, Johnston J, Bhakta S, Panowski S, Sun LL, Junttila T, Scheer JM, Ellerman DA. bisFabs: Tools for rapidly screening hybridoma IgGs for their activities as bispecific antibodies. MAbs 2017; 9:430-437. [PMID: 28125314 DOI: 10.1080/19420862.2017.1281504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bispecific antibodies are a growing class of therapeutic molecules. Many of the current bispecific formats require DNA engineering to convert the parental monoclonal antibodies into the final bispecific molecules. We describe here a method to generate bispecific molecules from hybridoma IgGs in 3-4 d using chemical conjugation of antigen-binding fragments (Fabs) (bisFabs). Proteolytic digestion conditions for each IgG isotype were analyzed to optimize the yield and quality of the final conjugates. The resulting bisFabs showed no significant amounts of homodimers or aggregates. The predictive value of murine bisFabs was tested by comparing the T-cell redirected cytotoxic activity of a panel of antibodies in either the bisFab or full-length IgG formats. A variety of antigens with different structures and expression levels was used to extend the comparison to a wide range of binding geometries and antigen densities. The activity observed for different murine bisFabs correlated with those observed for the full-length IgG format across multiple different antigen targets, supporting the use of bisFabs as a screening tool. Our method may also be used for the screening of bispecific antibodies with other mechanisms of action, allowing for a more rapid selection of lead therapeutic candidates.
Collapse
Affiliation(s)
- Sanket Patke
- a Department of Protein Chemistry , Genentech , South San Francisco , CA , USA
| | - Ji Li
- b Department of Translational Oncology , Genentech , South San Francisco , CA , USA
| | - Peiyin Wang
- b Department of Translational Oncology , Genentech , South San Francisco , CA , USA
| | - Dion Slaga
- b Department of Translational Oncology , Genentech , South San Francisco , CA , USA
| | - Jennifer Johnston
- b Department of Translational Oncology , Genentech , South San Francisco , CA , USA
| | - Sunil Bhakta
- b Department of Translational Oncology , Genentech , South San Francisco , CA , USA
| | - Siler Panowski
- b Department of Translational Oncology , Genentech , South San Francisco , CA , USA
| | - Liping L Sun
- b Department of Translational Oncology , Genentech , South San Francisco , CA , USA
| | - Teemu Junttila
- b Department of Translational Oncology , Genentech , South San Francisco , CA , USA
| | - Justin M Scheer
- a Department of Protein Chemistry , Genentech , South San Francisco , CA , USA
| | - Diego A Ellerman
- a Department of Protein Chemistry , Genentech , South San Francisco , CA , USA
| |
Collapse
|
96
|
Lo M, Kim HS, Tong RK, Bainbridge TW, Vernes JM, Zhang Y, Lin YL, Chung S, Dennis MS, Zuchero YJY, Watts RJ, Couch JA, Meng YG, Atwal JK, Brezski RJ, Spiess C, Ernst JA. Effector-attenuating Substitutions That Maintain Antibody Stability and Reduce Toxicity in Mice. J Biol Chem 2017; 292:3900-3908. [PMID: 28077575 DOI: 10.1074/jbc.m116.767749] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Indexed: 01/07/2023] Open
Abstract
The antibody Fc region regulates antibody cytotoxic activities and serum half-life. In a therapeutic context, however, the cytotoxic effector function of an antibody is often not desirable and can create safety liabilities by activating native host immune defenses against cells expressing the receptor antigens. Several amino acid changes in the Fc region have been reported to silence or reduce the effector function of antibodies. These earlier studies focused primarily on the interaction of human antibodies with human Fc-γ receptors, and it remains largely unknown how such changes to Fc might translate to the context of a murine antibody. We demonstrate that the commonly used N297G (NG) and D265A, N297G (DANG) variants that are efficacious in attenuating effector function in primates retain potent complement activation capacity in mice, leading to safety liabilities in murine studies. In contrast, we found an L234A, L235A, P329G (LALA-PG) variant that eliminates complement binding and fixation as well as Fc-γ-dependent, antibody-dependent, cell-mediated cytotoxity in both murine IgG2a and human IgG1. These LALA-PG substitutions allow a more accurate translation of results generated with an "effectorless" antibody between mice and primates. Further, we show that both human and murine antibodies containing the LALA-PG variant have typical pharmacokinetics in rodents and retain thermostability, enabling efficient knobs-into-holes bispecific antibody production and a robust path to generating highly effector-attenuated bispecific antibodies for preclinical studies.
Collapse
Affiliation(s)
- Megan Lo
- From the Departments of Protein Chemistry
| | | | | | | | | | | | | | | | | | | | | | - Jessica A Couch
- Neuroscience, and.,Safety Assessment, Genentech Inc., South San Francisco, California 94080
| | | | | | | | | | - James A Ernst
- From the Departments of Protein Chemistry, .,Neuroscience, and
| |
Collapse
|
97
|
Dimasi N, Fleming R, Sachsenmeier KF, Bezabeh B, Hay C, Wu J, Sult E, Rajan S, Zhuang L, Cariuk P, Buchanan A, Bowen MA, Wu H, Gao C. Guiding bispecific monovalent antibody formation through proteolysis of IgG1 single-chain. MAbs 2017; 9:438-454. [PMID: 28055299 DOI: 10.1080/19420862.2016.1277301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We developed an IgG1 domain-tethering approach to guide the correct assembly of 2 light and 2 heavy chains, derived from 2 different antibodies, to form bispecific monovalent antibodies in IgG1 format. We show here that assembling 2 different light and heavy chains by sequentially connecting them with protease-cleavable polypeptide linkers results in the generation of monovalent bispecific antibodies that have IgG1 sequence, structure and functional properties. This approach was used to generate a bispecific monovalent antibody targeting the epidermal growth factor receptor and the type I insulin-like growth factor receptor that: 1) can be produced and purified using standard IgG1 techniques; 2) exhibits stability and structural features comparable to IgG1; 3) binds both targets simultaneously; and 4) has potent anti-tumor activity. Our strategy provides new engineering opportunities for bispecific antibody applications, and, most importantly, overcomes some of the limitations (e.g., half-antibody and homodimer formation, light chains mispairing, multi-step purification), inherent with some of the previously described IgG1-based bispecific monovalent antibodies.
Collapse
Affiliation(s)
- Nazzareno Dimasi
- a Antibody Discovery and Protein Engineering, MedImmune , Gaithersburg , MD , USA
| | - Ryan Fleming
- a Antibody Discovery and Protein Engineering, MedImmune , Gaithersburg , MD , USA
| | | | - Binyam Bezabeh
- a Antibody Discovery and Protein Engineering, MedImmune , Gaithersburg , MD , USA
| | - Carl Hay
- c Oncology Research, MedImmune , Gaithersburg , MD , USA
| | - Jincheng Wu
- d Research Bioinformatics, MedImmune , Gaithersburg , MD , USA
| | - Erin Sult
- c Oncology Research, MedImmune , Gaithersburg , MD , USA
| | - Saravanan Rajan
- a Antibody Discovery and Protein Engineering, MedImmune , Gaithersburg , MD , USA
| | - Li Zhuang
- a Antibody Discovery and Protein Engineering, MedImmune , Gaithersburg , MD , USA
| | - Peter Cariuk
- e Antibody Discovery and Protein Engineering, MedImmune , Cambridge , UK
| | - Andrew Buchanan
- e Antibody Discovery and Protein Engineering, MedImmune , Cambridge , UK
| | - Michael A Bowen
- a Antibody Discovery and Protein Engineering, MedImmune , Gaithersburg , MD , USA
| | - Herren Wu
- a Antibody Discovery and Protein Engineering, MedImmune , Gaithersburg , MD , USA
| | - Changshou Gao
- a Antibody Discovery and Protein Engineering, MedImmune , Gaithersburg , MD , USA
| |
Collapse
|
98
|
Bispecific Antibodies as a Development Platform for New Concepts and Treatment Strategies. Int J Mol Sci 2016; 18:ijms18010048. [PMID: 28036020 PMCID: PMC5297683 DOI: 10.3390/ijms18010048] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022] Open
Abstract
With the development of molecular cloning technology and the deep understanding of antibody engineering, there are diverse bispecific antibody formats from which to choose to pursue the optimal biological activity and clinical purpose. The single-chain-based bispecific antibodies usually bridge tumor cells with immune cells and form an immunological synapse because of their relatively small size. Bispecific antibodies in the IgG format include asymmetric bispecific antibodies and homodimerized bispecific antibodies, all of which have an extended blood half-life and their own crystalline fragment (Fc)-mediated functions. Besides retargeting effector cells to the site of cancer, new applications were established for bispecific antibodies. Bispecific antibodies that can simultaneously bind to cell surface antigens and payloads are a very ideal delivery system for therapeutic use. Bispecific antibodies that can inhibit two correlated signaling molecules at the same time can be developed to overcome inherent or acquired resistance and to be more efficient angiogenesis inhibitors. Bispecific antibodies can also be used to treat hemophilia A by mimicking the function of factor VIII. Bispecific antibodies also have broad application prospects in bone disorders and infections and diseases of the central nervous system. The latest developments of the formats and application of bispecific antibodies will be reviewed. Furthermore, the challenges and perspectives are summarized in this review.
Collapse
|
99
|
Gupta J, Hoque M, Zaman M, Khan RH, Saleemuddin M. A detergent-based procedure for the preparation of IgG-like bispecific antibodies in high yield. Sci Rep 2016; 6:39198. [PMID: 27982091 PMCID: PMC5159798 DOI: 10.1038/srep39198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/14/2016] [Indexed: 01/07/2023] Open
Abstract
Bispecific antibodies (BsAbs), with the ability to recognize two different epitopes simultaneously, offer remarkable advantages in bioassays, cancer therapy, biosensors, and enzyme electrodes. Preparation and purification of BsAbs in adequate quantities remains a major hurdle in their use in various applications. Poor yield is also the principal limitation in the preparation of BsAbs by the redox procedure. IgG with reduced inter-heavy chain disulfides do not dissociate into half molecules at neutral pH. In this study, we report that the dissociation occurs in presence of sodium dodecyl sulphate (SDS) and inclusion of the detergent during the redox procedure results in remarkable increase in the formation of the BsAbs. Exposure of antibodies to 0.1% (w/v) SDS causes only minor loss in secondary/tertiary structure and the ability to bind the antigen. The BsAbs prepared using the modified redox procedure that recognize the antigens HRP and α-LA were prepared and successfully employed for detecting α-LA in milk/dairy products by ELISA and dot blot techniques. BsAbs were also prepared from partially purified immunoglobulin gamma (IgG). This work shows for the first time that SDS, by dissociating IgG with reduced inter-heavy chain disulfides into half molecules, markedly enhances the formation of BsAbs by the redox procedure.
Collapse
Affiliation(s)
- Jyoti Gupta
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mehboob Hoque
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Masihuz Zaman
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - M Saleemuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
100
|
Dillon M, Yin Y, Zhou J, McCarty L, Ellerman D, Slaga D, Junttila TT, Han G, Sandoval W, Ovacik MA, Lin K, Hu Z, Shen A, Corn JE, Spiess C, Carter PJ. Efficient production of bispecific IgG of different isotypes and species of origin in single mammalian cells. MAbs 2016; 9:213-230. [PMID: 27929752 PMCID: PMC5297516 DOI: 10.1080/19420862.2016.1267089] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bispecific IgG production in single host cells has been a much sought-after goal to support the clinical development of these complex molecules. Current routes to single cell production of bispecific IgG include engineering heavy chains for heterodimerization and redesign of Fab arms for selective pairing of cognate heavy and light chains. Here, we describe novel designs to facilitate selective Fab arm assembly in conjunction with previously described knobs-into-holes mutations for preferential heavy chain heterodimerization. The top Fab designs for selective pairing, namely variants v10 and v11, support near quantitative assembly of bispecific IgG in single cells for multiple different antibody pairs as judged by high-resolution mass spectrometry. Single-cell and in vitro-assembled bispecific IgG have comparable physical, in vitro biological and in vivo pharmacokinetics properties. Efficient single-cell production of bispecific IgG was demonstrated for human IgG1, IgG2 and IgG4 thereby allowing the heavy chain isotype to be tailored for specific therapeutic applications. Additionally, a reverse chimeric bispecific IgG2a with humanized variable domains and mouse constant domains was generated for preclinical proof-of-concept studies in mice. Efficient production of a bispecific IgG in stably transfected mammalian (CHO) cells was shown. Individual clones with stable titer and bispecific IgG composition for >120 days were readily identified. Such long-term cell line stability is needed for commercial manufacture of bispecific IgG. The single-cell bispecific IgG designs developed here may be broadly applicable to biotechnology research, including screening bispecific IgG panels, and to support clinical development.
Collapse
Affiliation(s)
- Michael Dillon
- a Department of Antibody Engineering , Genentech, Inc. , South San Francisco , CA , USA
| | - Yiyuan Yin
- a Department of Antibody Engineering , Genentech, Inc. , South San Francisco , CA , USA
| | - Jianhui Zhou
- a Department of Antibody Engineering , Genentech, Inc. , South San Francisco , CA , USA
| | - Luke McCarty
- b Department of Protein Chemistry , Genentech, Inc. , South San Francisco , CA , USA
| | - Diego Ellerman
- b Department of Protein Chemistry , Genentech, Inc. , South San Francisco , CA , USA
| | - Dionysos Slaga
- c Department of Translational Oncology , Genentech, Inc. , South San Francisco , CA , USA
| | - Teemu T Junttila
- c Department of Translational Oncology , Genentech, Inc. , South San Francisco , CA , USA
| | - Guanghui Han
- d Department of Microchemistry, Proteomics and Lipidomics , Genentech, Inc. , South San Francisco , CA , USA
| | - Wendy Sandoval
- d Department of Microchemistry, Proteomics and Lipidomics , Genentech, Inc. , South San Francisco , CA , USA
| | - Meric A Ovacik
- e Department of Preclinical and Translational Pharmacokinetics , Genentech, Inc. , South San Francisco , CA , USA
| | - Kedan Lin
- e Department of Preclinical and Translational Pharmacokinetics , Genentech, Inc. , South San Francisco , CA , USA
| | - Zhilan Hu
- f Department of Early Stage Cell Culture , Genentech, Inc. , South San Francisco , CA , USA
| | - Amy Shen
- f Department of Early Stage Cell Culture , Genentech, Inc. , South San Francisco , CA , USA
| | - Jacob E Corn
- g Department of Early Discovery Biochemistry, Genentech, Inc. , South San Francisco , CA , USA
| | - Christoph Spiess
- a Department of Antibody Engineering , Genentech, Inc. , South San Francisco , CA , USA
| | - Paul J Carter
- a Department of Antibody Engineering , Genentech, Inc. , South San Francisco , CA , USA
| |
Collapse
|