51
|
Epigenetic aspects of rheumatoid arthritis: contribution of non-coding RNAs. Semin Arthritis Rheum 2017; 46:724-731. [DOI: 10.1016/j.semarthrit.2017.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/20/2016] [Accepted: 01/13/2017] [Indexed: 01/07/2023]
|
52
|
Zhan L, Pan Y, Chen L, Chen Z, Zhang H, Sun C. MicroRNA-526a targets p21-activated kinase 7 to inhibit tumorigenesis in hepatocellular carcinoma. Mol Med Rep 2017; 16:837-844. [PMID: 28560394 DOI: 10.3892/mmr.2017.6658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 01/19/2017] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs belong to a series of noncoding RNAs and have diverse roles in several biological processes. The association between aberrant microRNA expression and tumorigenesis is complex and remains to be fully elucidated. The present study investigated whether microRNA (miR) ‑526a can suppress the progression of hepatocellular carcinoma (HCC) in vitro and in vivo. Reverse transcription‑quantitative polymerase chain reaction, luciferase reporter assay, invasion assay, western blotting and in vivo implantation were used to investigate the potential function of miR‑526a. The present study observed that the level of miR‑526a was downregulated in HCC tissues and well‑established cell lines. In addition, the ectopic introduction of miR‑526a into Huh7 and HepG2 cells significantly attenuated HCC tumorigenesis, including proliferation, migration and invasion. The growth of tumor xenografts was also inhibited following transfection with miR‑526a. Using overlapping strategies, p21‑activated kinase 7 (PAK7) was predicted to be a target for miR‑526a, and this was verified experimentally. An inverse correlation was found between miR‑526a and PAK7 in HCC tissues. The results of the present study revealed a novel function of miR‑526a and may provide crucial insight into therapeutic interventions targeting microRNAs.
Collapse
Affiliation(s)
- Lei Zhan
- Department of Biliary‑Hepatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Yaozhen Pan
- Department of Biliary‑Hepatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Ling Chen
- Department of Biliary‑Hepatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Zili Chen
- Department of Biliary‑Hepatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Hong Zhang
- Department of Biliary‑Hepatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Chengyi Sun
- Department of Biliary‑Hepatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| |
Collapse
|
53
|
Transdifferentiation and reprogramming: Overview of the processes, their similarities and differences. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1359-1369. [PMID: 28460880 DOI: 10.1016/j.bbamcr.2017.04.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/24/2022]
Abstract
Reprogramming, or generation of induced pluripotent stem (iPS) cells (functionally similar to embryonic stem cells or ES cells) by the use of transcription factors (typically: Oct3/4, Sox2, c-Myc, Klf4) called "Yamanaka factors" (OSKM), has revolutionized regenerative medicine. However, factors used to induce stemness are also overexpressed in cancer. Both, ES cells and iPS cells cause teratoma formation when injected to tissues. This raises a safety concern for therapies based on iPS derivates. Transdifferentiation (lineage reprogramming, or -conversion), is a process in which one mature, specialized cell type changes into another without entering a pluripotent state. This process involves an ectopic expression of transcription factors and/or other stimuli. Unlike in the case of reprogramming, tissues obtained by this method do not carry the risk of subsequent teratomagenesis.
Collapse
|
54
|
Pfaff N, Liebhaber S, Möbus S, Beh-Pajooh A, Fiedler J, Pfanne A, Schambach A, Thum T, Cantz T, Moritz T. Inhibition of miRNA-212/132 improves the reprogramming of fibroblasts into induced pluripotent stem cells by de-repressing important epigenetic remodelling factors. Stem Cell Res 2017; 20:70-75. [PMID: 28314201 DOI: 10.1016/j.scr.2017.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 02/26/2017] [Accepted: 03/03/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) repeatedly have been demonstrated to play important roles in the generation of induced pluripotent stem cells (iPSCs). To further elucidate the molecular mechanisms underlying transcription factor-mediated reprogramming we have established a model, which allows for the efficient screening of whole libraries of miRNAs modulating the generation of iPSCs from murine embryonic fibroblasts. Applying this model, we identified 14 miRNAs effectively inhibiting iPSC generation, including miR-132 and miR-212. Intriguingly, repression of these miRNAs during iPSC generation also resulted in significantly increased reprogramming efficacy. MiRNA target evaluation by qRT-PCR, Western blot, and luciferase assays revealed two crucial epigenetic regulators, the histone acetyl transferase p300 as well as the H3K4 demethylase Jarid1a (KDM5a) to be directly targeted by both miRNAs. Moreover, we demonstrated that siRNA-mediated knockdown of either p300 or Jarid1a recapitulated the miRNA effects and led to a significant decrease in reprogramming efficiency. Thus, conducting a full library miRNA screen we here describe a miRNA family, which markedly reduces generation of iPSC and upon inhibition in turn enhances reprogramming. These miRNAs, at least in part, exert their functions through repression of the epigenetic modulators p300 and Jarid1a, highlighting these two molecules as an endogenous epigenetic roadblock during iPSC generation.
Collapse
Affiliation(s)
- Nils Pfaff
- Research-Group Reprogramming and Gene Therapy, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany; REBIRTH-Group Regenerative Gene Therapy, Hannover Medical School, Hannover, Germany
| | - Steffi Liebhaber
- Research-Group Reprogramming and Gene Therapy, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany; REBIRTH-Group Regenerative Gene Therapy, Hannover Medical School, Hannover, Germany
| | - Selina Möbus
- REBIRTH-Group Translational Hepatology and Stem Cell Biology, Dept. of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Abbas Beh-Pajooh
- REBIRTH-Group Translational Hepatology and Stem Cell Biology, Dept. of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies, IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Angelika Pfanne
- Institute of Molecular and Translational Therapeutic Strategies, IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- REBIRTH-Group Regenerative Gene Therapy, Hannover Medical School, Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, IFB-Tx, Hannover Medical School, Hannover, Germany; National Heart and Lung Institute, Imperial College London, London, UK; REBIRTH-Group Translational Strategies, Hannover Medical School, Hannover, Germany
| | - Tobias Cantz
- REBIRTH-Group Translational Hepatology and Stem Cell Biology, Dept. of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.
| | - Thomas Moritz
- Research-Group Reprogramming and Gene Therapy, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany; REBIRTH-Group Regenerative Gene Therapy, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
55
|
Sebastiani G, Valentini M, Grieco GE, Ventriglia G, Nigi L, Mancarella F, Pellegrini S, Martino G, Sordi V, Piemonti L, Dotta F. MicroRNA expression profiles of human iPSCs differentiation into insulin-producing cells. Acta Diabetol 2017; 54:265-281. [PMID: 28039581 DOI: 10.1007/s00592-016-0955-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023]
Abstract
AIMS MicroRNAs are a class of small noncoding RNAs, which control gene expression by inhibition of mRNA translation. MicroRNAs are involved in the control of biological processes including cell differentiation. Here, we aim at characterizing microRNA expression profiles during differentiation of human induced pluripotent stem cells (hiPSCs) into insulin-producing cells. METHODS We differentiated hiPSCs toward endocrine pancreatic lineage following a 18-day protocol. We analyzed genes and microRNA expression levels using RT real-time PCR and TaqMan microRNA arrays followed by bioinformatic functional analysis. RESULTS MicroRNA expression profiles analysis of undifferentiated hiPSCs during pancreatic differentiation revealed that 347/768 microRNAs were expressed at least in one time point of all samples. We observed 18 microRNAs differentially expressed: 11 were upregulated (miR-9-5p, miR-9-3p, miR-10a, miR-99a-3p, miR-124a, miR-135a, miR-138, miR-149, miR-211, miR-342-3p and miR-375) and 7 downregulated (miR-31, miR-127, miR-143, miR-302c-3p, miR-373, miR-518b and miR-520c-3p) during differentiation into insulin-producing cells. Selected microRNAs were further evaluated during differentiation of Sendai-virus-reprogrammed hiPSCs using an improved endocrine pancreatic beta cell derivation protocol and, moreover, in differentiated NKX6.1+ sorted cells. Following Targetscan7.0 analysis of target genes of differentially expressed microRNAs and gene ontology classification, we found that such target genes belong to categories of major significance in pancreas organogenesis and development or exocytosis. CONCLUSIONS We detected a specific hiPSCs microRNAs signature during differentiation into insulin-producing cells and demonstrated that differentially expressed microRNAs target several genes involved in pancreas organogenesis.
Collapse
Affiliation(s)
- Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Marco Valentini
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Giuliana Ventriglia
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Francesca Mancarella
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Silvia Pellegrini
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianvito Martino
- Division of Neuroscience, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Hospital, Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy.
| |
Collapse
|
56
|
Cai HK, Chen X, Tang YH, Deng YC. MicroRNA-194 modulates epithelial-mesenchymal transition in human colorectal cancer metastasis. Onco Targets Ther 2017; 10:1269-1278. [PMID: 28280361 PMCID: PMC5338959 DOI: 10.2147/ott.s125172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs), as key regulators of gene expression, are closely related to tumor occurrence and progression. MiR-194 has been proved as a tumor regulatory factor in various cancers; however, the biological function and mechanism of action in colorectal cancer (CRC) have not been well explored. In the present study, we found that miR-194 expression is upregulated in CRC clinical specimens, while overexpression of miR-194 promotes cell migration and invasion in CRC cell lines. Besides, miR-194 significantly influenced the epithelial–mesenchymal transition (EMT) markers by downregulating E-cadherin expression (P<0.01) and upregulating vimentin and MMP-2 expression (P<0.001, P<0.05). Cell migration is the cell movement related to actin cytoskeleton. In this study, we found miR-194 increased cell polarization in SW480 cells. Moreover, zymography assay showed that miR-194 significantly upregulated the gelatin-degrading activity of MMP-2 (P<0.01). Collectively, our findings suggest that miR-194 functions as a tumor promoter in CRC, which may provide new insights for the study of CRC development and metastasis.
Collapse
Affiliation(s)
- Hong-Ke Cai
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xi Chen
- Center of Molecular Medicine and Cancer Research, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yun-Hao Tang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yong-Chuan Deng
- Department of Surgical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
57
|
Rasko JEJ, Wong JJL. Nuclear microRNAs in normal hemopoiesis and cancer. J Hematol Oncol 2017; 10:8. [PMID: 28057040 PMCID: PMC5217201 DOI: 10.1186/s13045-016-0375-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of microRNAs (miRNAs) in the early 1990s, these small molecules have been increasingly recognized as key players in the regulation of critical biological processes. They have also been implicated in many diverse human diseases. The canonical function of miRNAs is to target the 3′ untranslated region (3′ UTR) of cytoplasmic messenger RNA to post-transcriptionally regulate mRNA and protein levels. It has now been shown that miRNAs can also bind to the promoter regions of genes or primary miRNA transcripts to regulate gene expression. Such observations have indicated the presence of miRNAs in the nucleus and implied additional non-canonical functions. Nevertheless, the role(s) of nuclear miRNAs in normal hemopoiesis and cancer remains elusive despite a burgeoning literature. Herein, we review current knowledge concerning the abundance and/or functions of nuclear miRNAs during blood cell development and cancer biology. We also discuss ongoing challenges in order to provoke further studies into identifying key roles for nuclear miRNAs in the development of other cell lineages and human cancers.
Collapse
Affiliation(s)
- John E J Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, 2050, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, 2050, Australia
| | - Justin J-L Wong
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia. .,Sydney Medical School, University of Sydney, Camperdown, NSW, 2050, Australia. .,Gene Regulation in Cancer Laboratory, Centenary Institute, University of Sydney, Camperdown, 2050, Australia. .,, Locked Bag 6, Newtown, NSW, 2042, Australia.
| |
Collapse
|
58
|
Hayashi T, Lombaert IMA, Hauser BR, Patel VN, Hoffman MP. Exosomal MicroRNA Transport from Salivary Mesenchyme Regulates Epithelial Progenitor Expansion during Organogenesis. Dev Cell 2016; 40:95-103. [PMID: 28041903 DOI: 10.1016/j.devcel.2016.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/23/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022]
Abstract
Epithelial-mesenchymal interactions involve fundamental communication between tissues during organogenesis and are primarily regulated by growth factors and extracellular matrix. It is unclear whether RNA-containing exosomes are mobile genetic signals regulating epithelial-mesenchymal interactions. Here we identify that exosomes loaded with mesenchyme-specific mature microRNA contribute mobile genetic signals from mesenchyme to epithelium. The mature mesenchymal miR-133b-3p, loaded into exosomes, was transported from mesenchyme to the salivary epithelium, which did not express primary miR-133b-3p. Knockdown of miR-133b-3p in culture decreased endbud morphogenesis, reduced proliferation of epithelial KIT+ progenitors, and increased expression of a target gene, Disco-interacting protein 2 homolog B (Dip2b). DIP2B, which is involved in DNA methylation, was localized with 5-methylcytosine in the prophase nucleus of a subset of KIT+ progenitors during mitosis. In summary, exosomal transport of miR-133b-3p from mesenchyme to epithelium decreases DIP2B, which may function as an epigenetic regulator of genes responsible for KIT+ progenitor expansion during organogenesis.
Collapse
Affiliation(s)
- Toru Hayashi
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Isabelle M A Lombaert
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Belinda R Hauser
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
59
|
Le Rolle AF, Chiu TK, Zeng Z, Shia J, Weiser MR, Paty PB, Chiu VK. Oncogenic KRAS activates an embryonic stem cell-like program in human colon cancer initiation. Oncotarget 2016; 7:2159-74. [PMID: 26744320 PMCID: PMC4823026 DOI: 10.18632/oncotarget.6818] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 12/30/2015] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer is the third most frequently diagnosed cancer worldwide. Prevention of colorectal cancer initiation represents the most effective overall strategy to reduce its associated morbidity and mortality. Activating KRAS mutation (KRASmut) is the most prevalent oncogenic driver in colorectal cancer development, and KRASmut inhibition represents an unmet clinical need. We apply a systems-level approach to study the impact of KRASmut on stem cell signaling during human colon cancer initiation by performing gene set enrichment analysis on gene expression from human colon tissues. We find that KRASmut imposes the embryonic stem cell-like program during human colon cancer initiation from colon adenoma to stage I carcinoma. Expression of miR145, an embryonic SC program inhibitor, promotes cell lineage differentiation marker expression in KRASmut colon cancer cells and significantly suppresses their tumorigenicity. Our data support an in vivo plasticity model of human colon cancer initiation that merges the intrinsic stem cell properties of aberrant colon stem cells with the embryonic stem cell-like program induced by KRASmut to optimize malignant transformation. Inhibition of the embryonic SC-like program in KRASmut colon cancer cells reveals a novel therapeutic strategy to programmatically inhibit KRASmut tumors and prevent colon cancer.
Collapse
Affiliation(s)
- Anne-France Le Rolle
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, CA, USA
| | - Thang K Chiu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Zhaoshi Zeng
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jinru Shia
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Martin R Weiser
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Philip B Paty
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Vi K Chiu
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, CA, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA
| |
Collapse
|
60
|
Adlakha YK, Seth P. The expanding horizon of MicroRNAs in cellular reprogramming. Prog Neurobiol 2016; 148:21-39. [PMID: 27979736 DOI: 10.1016/j.pneurobio.2016.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/07/2016] [Accepted: 11/27/2016] [Indexed: 12/21/2022]
Abstract
Research over the last few years in cellular reprogramming has enlightened the magical potential of microRNAs (miRNAs) in changing the cell fate from somatic to pluripotent. Recent investigations on exploring the role(s) of miRNAs in somatic cell reprogramming revealed that they target a wide range of molecules and refine their protein output. This leads to fine tuning of distinct cellular processes including cell cycle, signalling pathways, transcriptional activation/silencing and epigenetic modelling. The concerted actions of miRNA on different pathways simultaneously strengthen the transition from a differentiated to de-differentiated state. Despite the well characterized transcriptional and epigenetic machinery underlying somatic cell reprogramming, the molecular circuitry for miRNA mediated cellular reprogramming is rather fragmented. This review summarizes recent findings addressing the role of miRNAs in inducing or suppressing reprogramming thus uncovering novel potentials of miRNAs as regulators of induced pluripotency maintenance, establishment and associated signalling pathways. Our bioinformatic analysis sheds light on various unexplored biological processes and pathways associated with reprogramming inducing miRNAs, thus helps in identifying roadblocks to full reprogramming. Specifically, the biological significance of highly conserved and most studied miRNA cluster, i.e. miR-302-367, in reprogramming is also highlighted. Further, roles of miRNAs in the differentiation of neurons from iPSCs are discussed. A recent approach of direct conversion or transdifferentiation of differentiated cells into neurons by miRNAs is also elaborated. This approach is now widely gaining impetus for the generation of neurological patient's brain cells directly from his/her somatic cells in an efficient and safe manner. Thus, decoding the intricate circuitry between miRNAs and other gene regulatory networks will not only uncover novel pathways in the direct reprogramming of somatic cells but will also open new avenues in stem cell biology.
Collapse
Affiliation(s)
- Yogita K Adlakha
- Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, 122051, India.
| | - Pankaj Seth
- Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, 122051, India
| |
Collapse
|
61
|
Osteogenic Differentiation of Human Amniotic Fluid Mesenchymal Stem Cells Is Determined by Epigenetic Changes. Stem Cells Int 2016; 2016:6465307. [PMID: 27818691 PMCID: PMC5080506 DOI: 10.1155/2016/6465307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/19/2016] [Indexed: 12/30/2022] Open
Abstract
Osteogenic differentiation of human amniotic fluid derived mesenchymal stem cells (AF-MSCs) has been widely studied in vitro and in vivo as a potential tool for regenerative medicine and tissue engineering. While most of the studies analyze changes in transcriptional profile during differentiation to date there is not much information regarding epigenetic changes in AF-MSCs during differentiation. The aim of our study was to evaluate epigenetic changes during osteogenic differentiation of AF-MS cells. Isolated AF-MSCs were characterized morphologically and osteogenic differentiation was confirmed by cell staining and determining expression of alkaline phosphatase and osteopontin by RT-qPCR. Variation in gene expression levels of pluripotency markers and specific microRNAs were also evaluated. Analysis of epigenetic changes revealed that levels of chromatin modifying enzymes such as Polycomb repressive complex 2 (PRC2) proteins (EZH2 and SUZ12), DNMT1, HDAC1, and HDAC2 were reduced after osteogenic differentiation of AF-MSCs. We demonstrated that the level of specific histone markers keeping active state of chromatin (H3K4me3, H3K9Ac, and others) increased and markers of repressed state of chromatin (H3K27me3) decreased. Our results show that osteogenic differentiation of AF-MSCs is conducted by various epigenetic alterations resulting in global chromatin remodeling and provide insights for further epigenetic investigations in human AF-MSCs.
Collapse
|
62
|
Tian XJ, Zhang H, Zhang J, Xing J. Reciprocal regulation between mRNA and microRNA enables a bistable switch that directs cell fate decisions. FEBS Lett 2016; 590:3443-3455. [PMID: 27578189 DOI: 10.1002/1873-3468.12379] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 12/14/2022]
Abstract
Micro RNAs (miRNAs) serve as crucial post-transcriptional regulators in a variety of essential cell fate decisions. However, the contribution of mRNA-miRNA mutual regulation to bistability is not fully understood. In the present study, we built a set of mathematical models of mRNA-miRNA interactions and systematically analyzed the sensitivity of the response curves under various conditions. Our findings indicate that mRNA-miRNA reciprocal regulation could manifest ultrasensitivity to subserve the generation of bistability when equipped with a positive feedback loop. We also find that the region of bistability is expanded by a stronger competing endogenous mRNA. Interestingly, bistability can be generated without a feedback loop if multiple miRNA binding sites exist on a target mRNA. Thus, we demonstrate the importance of simple mRNA-miRNA reciprocal regulation in cell fate decisions.
Collapse
Affiliation(s)
- Xiao-Jun Tian
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA, USA.
| | - Hang Zhang
- Genetics, Bioinformatics and Computational Biology Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jingyu Zhang
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA, USA
| | - Jianhua Xing
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA, USA. .,Computational Science Research Center, Beijing, China.
| |
Collapse
|
63
|
Stumpf PS, Ewing R, MacArthur BD. Single-cell pluripotency regulatory networks. Proteomics 2016; 16:2303-12. [PMID: 27357612 DOI: 10.1002/pmic.201500528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 11/09/2022]
Abstract
Pluripotent stem cells (PSCs) are a popular model system for investigating development, tissue regeneration, and repair. Although much is known about the molecular mechanisms that regulate the balance between self-renewal and lineage commitment in PSCs, the spatiotemporal integration of responsive signaling pathways with core transcriptional regulatory networks are complex and only partially understood. Moreover, measurements made on populations of cells reveal only average properties of the underlying regulatory networks, obscuring their fine detail. Here, we discuss the reconstruction of regulatory networks in individual cells using novel single-cell transcriptomics and proteomics, in order to expand our understanding of the molecular basis of pluripotency, including the role of cell-cell variability within PSC populations, and ways in which networks may be controlled in order to reliably manipulate cell behavior.
Collapse
Affiliation(s)
- Patrick S Stumpf
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Rob Ewing
- Institute for Life Sciences, University of Southampton, Southampton, UK.,Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Ben D MacArthur
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, UK. .,Institute for Life Sciences, University of Southampton, Southampton, UK. .,Department of Mathematics, University of Southampton, Southampton, UK.
| |
Collapse
|
64
|
Zhang X, Peng Y, Jin Z, Huang W, Cheng Y, Liu Y, Feng X, Yang M, Huang Y, Zhao Z, Wang L, Wei Y, Fan X, Zheng D, Meltzer SJ. Integrated miRNA profiling and bioinformatics analyses reveal potential causative miRNAs in gastric adenocarcinoma. Oncotarget 2016; 6:32878-89. [PMID: 26460735 PMCID: PMC4741736 DOI: 10.18632/oncotarget.5419] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related deaths throughout China and worldwide. The discovery of microRNAs (miRNAs) has provided a new opportunity for developing diagnostic biomarkers and effective therapeutic targets in GC. By performing microarray analyses of benign and malignant gastric epithelial cell lines (HFE145, NCI-N87, MKN28, RF1, KATO III and RF48), 16 significantly dysregulated miRNAs were found. 11 of these were validated by real-time qRT-PCR. Based on miRWalk online database scans, 703 potential mRNA targets of the 16 miRNAs were identified. Bioinformatic analyses suggested that these dysregulated miRNAs and their predicted targets were principally involved in tumor pathogenesis, MAPK signaling, and apoptosis. Finally, miRNA-gene network analyses identified miRNA-125b as a crucial miRNA in GC development. Taken together, these results develop a comprehensive expression and functional profile of differentially expressed miRNAs related to gastric oncogenesis. This profile may serve as a potential tool for biomarker and therapeutic target identification in GC patients.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine of Tumor, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Yin Peng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Department of Pathology, Wuhan University School of Basic Medical Sciences, Hubei, People's Republic of China
| | - Zhe Jin
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Micromolecule Innovatal Drugs, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine of Tumor, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, People's Republic of China
| | - Weiling Huang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Yulan Cheng
- Department of Medicine/GI Division, Johns Hopkins University and Sidney Kimmel Cancer Center, Baltimore, MD, USA
| | - Yudan Liu
- School of Pharmacy, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xianling Feng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Mengting Yang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Yong Huang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Zhenfu Zhao
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Liang Wang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine of Tumor, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Yanjie Wei
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong, People's Republic of China
| | - Xinmin Fan
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Duo Zheng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine of Tumor, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Stephen J Meltzer
- Department of Medicine/GI Division, Johns Hopkins University and Sidney Kimmel Cancer Center, Baltimore, MD, USA
| |
Collapse
|
65
|
Li YJ, Kukita A, Kyumoto-Nakamura Y, Kukita T. Extremely High Expression of Antisense RNA for Wilms' Tumor 1 in Active Osteoclasts: Suppression of Wilms' Tumor 1 Protein Expression during Osteoclastogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2317-25. [PMID: 27393793 DOI: 10.1016/j.ajpath.2016.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/21/2016] [Accepted: 05/09/2016] [Indexed: 01/08/2023]
Abstract
Wilms' tumor 1 (WT1), a zinc-finger transcription regulator of the early growth response family, identified as the product of a tumor suppressor gene of Wilms' tumors, bears potential ability to induce macrophage differentiation in blood cell differentiation. Herein, we examined the involvement of WT1 in the regulation of osteoclastogenesis. We detected a high level of WT1 protein expression in osteoclast precursors; however, WT1 expression was markedly suppressed during osteoclastogenesis. We examined expression of WT1 transcripts in bone tissue by RNA in situ hybridization. We found a high level of antisense transcripts in osteoclasts actively resorbing bone in mandible of newborn rats. Expression of antisense WT1 RNA in mandible was also confirmed by Northern blot analysis and strand-specific RT-PCR. Overexpression of antisense WT1 RNA in RAW-D cells, an osteoclast precursor cell line, resulted in a marked enhancement of osteoclastogenesis, suggesting that antisense WT1 RNA functions to suppress expression of WT1 protein in osteoclastogenesis. High level expression of antisense WT1 RNA may contribute to commitment to osteoclastogenesis, and may allow osteoclasts to maintain or stabilize their differentiation state.
Collapse
Affiliation(s)
- Yin-Ji Li
- Division of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akiko Kukita
- Department of Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Yukari Kyumoto-Nakamura
- Division of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Toshio Kukita
- Division of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
66
|
Cellular Reprogramming Using Defined Factors and MicroRNAs. Stem Cells Int 2016; 2016:7530942. [PMID: 27382371 PMCID: PMC4921148 DOI: 10.1155/2016/7530942] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/08/2016] [Accepted: 04/10/2016] [Indexed: 01/07/2023] Open
Abstract
Development of human bodies, organs, and tissues contains numerous steps of cellular differentiation including an initial zygote, embryonic stem (ES) cells, three germ layers, and multiple expertized lineages of cells. Induced pluripotent stem (iPS) cells have been recently developed using defined reprogramming factors such as Nanog, Klf5, Oct3/4 (Pou5f1), Sox2, and Myc. This outstanding innovation is largely changing life science and medicine. Methods of direct reprogramming of cells into myocytes, neurons, chondrocytes, and osteoblasts have been further developed using modified combination of factors such as N-myc, L-myc, Sox9, and microRNAs in defined cell/tissue culture conditions. Mesenchymal stem cells (MSCs) and dental pulp stem cells (DPSCs) are also emerging multipotent stem cells with particular microRNA expression signatures. It was shown that miRNA-720 had a role in cellular reprogramming through targeting the pluripotency factor Nanog and induction of DNA methyltransferases (DNMTs). This review reports histories, topics, and idea of cellular reprogramming.
Collapse
|
67
|
Hao Y, Wu W, Li H, Yuan J, Luo J, Zhao Y, Chen R. NPInter v3.0: an upgraded database of noncoding RNA-associated interactions. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw057. [PMID: 27087310 PMCID: PMC4834207 DOI: 10.1093/database/baw057] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/20/2016] [Indexed: 02/01/2023]
Abstract
Despite the fact that a large quantity of noncoding RNAs (ncRNAs) have been identified, their functions remain unclear. To enable researchers to have a better understanding of ncRNAs’ functions, we updated the NPInter database to version 3.0, which contains experimentally verified interactions between ncRNAs (excluding tRNAs and rRNAs), especially long noncoding RNAs (lncRNAs) and other biomolecules (proteins, mRNAs, miRNAs and genomic DNAs). In NPInter v3.0, interactions pertaining to ncRNAs are not only manually curated from scientific literature but also curated from high-throughput technologies. In addition, we also curated lncRNA–miRNA interactions from in silico predictions supported by AGO CLIP-seq data. When compared with NPInter v2.0, the interactions are more informative (with additional information on tissues or cell lines, binding sites, conservation, co-expression values and other features) and more organized (with divisions on data sets by data sources, tissues or cell lines, experiments and other criteria). NPInter v3.0 expands the data set to 491,416 interactions in 188 tissues (or cell lines) from 68 kinds of experimental technologies. NPInter v3.0 also improves the user interface and adds new web services, including a local UCSC Genome Browser to visualize binding sites. Additionally, NPInter v3.0 defined a high-confidence set of interactions and predicted the functions of lncRNAs in human and mouse based on the interactions curated in the database. NPInter v3.0 is available at http://www.bioinfo.org/NPInter/. Database URL: http://www.bioinfo.org/NPInter/
Collapse
Affiliation(s)
- Yajing Hao
- Key Laboratory of RNA Biology Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wu
- Key Laboratory of RNA Biology Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- University of Chinese Academy of Sciences, Beijing, 100049, China Bioinformatics Research Group, Key Laboratory of Intelligent Information Processing, Advanced Computing Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiao Yuan
- Key Laboratory of RNA Biology Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianjun Luo
- Key Laboratory of RNA Biology Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Zhao
- Bioinformatics Research Group, Key Laboratory of Intelligent Information Processing, Advanced Computing Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
68
|
Lee YJ, Ramakrishna S, Chauhan H, Park WS, Hong SH, Kim KS. Dissecting microRNA-mediated regulation of stemness, reprogramming, and pluripotency. ACTA ACUST UNITED AC 2016; 5:2. [PMID: 27006752 PMCID: PMC4802578 DOI: 10.1186/s13619-016-0028-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/20/2016] [Indexed: 02/06/2023]
Abstract
Increasing evidence indicates that microRNAs (miRNAs), endogenous short non-coding RNAs 19–24 nucleotides in length, play key regulatory roles in various biological events at the post-transcriptional level. Embryonic stem cells (ESCs) represent a valuable tool for disease modeling, drug discovery, developmental studies, and potential cell-based therapies in regenerative medicine due to their unlimited self-renewal and pluripotency. Therefore, remarkable progress has been made in recent decades toward understanding the expression and functions of specific miRNAs in the establishment and maintenance of pluripotency. Here, we summarize the recent knowledge regarding the regulatory roles of miRNAs in self-renewal of pluripotent ESCs and during cellular reprogramming, as well as the potential role of miRNAs in two distinct pluripotent states (naïve and primed).
Collapse
Affiliation(s)
- Young Jin Lee
- iDream Research Center, MizMedi Women's Hospital, Seoul, 07639 South Korea
| | - Suresh Ramakrishna
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 South Korea.,College of Medicine, Hanyang University, Seoul, South Korea
| | | | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, 24341 South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do 24341 South Korea.,Stem Cell Institute, Kangwon National University, Chuncheon, 24341 South Korea
| | - Kye-Seong Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 South Korea.,College of Medicine, Hanyang University, Seoul, South Korea
| |
Collapse
|
69
|
Espinosa-Diez C, Fierro-Fernández M, Sánchez-Gómez F, Rodríguez-Pascual F, Alique M, Ruiz-Ortega M, Beraza N, Martínez-Chantar ML, Fernández-Hernando C, Lamas S. Targeting of Gamma-Glutamyl-Cysteine Ligase by miR-433 Reduces Glutathione Biosynthesis and Promotes TGF-β-Dependent Fibrogenesis. Antioxid Redox Signal 2015; 23:1092-105. [PMID: 25353619 PMCID: PMC4657521 DOI: 10.1089/ars.2014.6025] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIMS Glutathione (GSH) is the main antioxidant against cell damage. Several pathological states course with reduced nucleophilic tone and perturbation of redox homeostasis due to changes in the 2GSH/GSSG ratio. Here, we investigated the regulation of the rate-limiting GSH biosynthetic heterodimeric enzyme γ-glutamyl-cysteine ligase (GCL) by microRNAs (miRNAs). RESULTS "In silico" analysis of the 3'- untranslated regions (UTRs) of both catalytic (GCLc) and regulatory (GCLm) subunits of GCL enabled an identification of miR-433 as a strong candidate for the targeting of GCL. Transitory overexpression of miR-433 in human umbilical vein endothelial cells (HUVEC) showed a downregulation of both GCLc and GCLm in a nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-independent manner. Increases in pro-oxidant stimuli such as exposure to hydrogen peroxide or GSH depletion in endothelial and hepatic cells caused an expected increase in GCLc and GCLm protein expression and abrogation of miR-433 levels, thus supporting a cross-regulation of these pathways. Treatment of HUVEC with miR-433 resulted in reduced antioxidant and redox potentials, increased S-glutathionylation, and reduced endothelial nitric oxide synthase activation. In vivo models of renal and hepatic fibrosis were associated with transforming growth factor β1 (TGF-β1)-related reduction of GCLc and GCLm levels that were miR-433 dependent. INNOVATION AND CONCLUSION We describe for the first time an miRNA, miR-433, capable of directly targeting GCL and promoting functional consequences in endothelial physiology and fibrotic processes by decreasing GSH levels.
Collapse
Affiliation(s)
- Cristina Espinosa-Diez
- 1 Departamento de Biología Celular e Inmunología, Centro de Biología Molecular "Severo Ochoa, " Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid , Madrid, Spain
| | - Marta Fierro-Fernández
- 1 Departamento de Biología Celular e Inmunología, Centro de Biología Molecular "Severo Ochoa, " Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid , Madrid, Spain
| | - Francisco Sánchez-Gómez
- 1 Departamento de Biología Celular e Inmunología, Centro de Biología Molecular "Severo Ochoa, " Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid , Madrid, Spain
| | - Fernando Rodríguez-Pascual
- 1 Departamento de Biología Celular e Inmunología, Centro de Biología Molecular "Severo Ochoa, " Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid , Madrid, Spain
| | - Matilde Alique
- 2 Cellular Biology in Renal Diseases Laboratory, Universidad Autonoma de Madrid , Madrid, Spain
| | - Marta Ruiz-Ortega
- 2 Cellular Biology in Renal Diseases Laboratory, Universidad Autonoma de Madrid , Madrid, Spain
| | - Naiara Beraza
- 3 Department of Metabolomics, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd) , Bizkaia, Spain
| | - Maria L Martínez-Chantar
- 3 Department of Metabolomics, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd) , Bizkaia, Spain
| | - Carlos Fernández-Hernando
- 4 Vascular Biology and Therapeutics Program, Department of Comparative Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Santiago Lamas
- 1 Departamento de Biología Celular e Inmunología, Centro de Biología Molecular "Severo Ochoa, " Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid , Madrid, Spain
| |
Collapse
|
70
|
Barta T, Peskova L, Collin J, Montaner D, Neganova I, Armstrong L, Lako M. Brief Report: Inhibition of miR-145 Enhances Reprogramming of Human Dermal Fibroblasts to Induced Pluripotent Stem Cells. Stem Cells 2015; 34:246-51. [PMID: 26418476 PMCID: PMC4982107 DOI: 10.1002/stem.2220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 08/24/2015] [Indexed: 11/11/2022]
Abstract
MicroRNA (miRNAs) are short noncoding RNA molecules involved in many cellular processes and shown to play a key role in somatic cell induced reprogramming. We performed an array based screening to identify candidates that are differentially expressed between dermal skin fibroblasts (DFs) and induced pluripotent stem cells (iPSCs). We focused our investigations on miR‐145 and showed that this candidate is highly expressed in DFs relative to iPSCs and significantly downregulated during reprogramming process. Inhibition of miR‐145 in DFs led to the induction of “cellular plasticity” demonstrated by: (a) alteration of cell morphology associated with downregulation of mesenchymal and upregulation of epithelial markers; (b) upregulation of pluripotency‐associated genes including SOX2, KLF4, C‐MYC; (c) downregulation of miRNA let‐7b known to inhibit reprogramming; and (iv) increased efficiency of reprogramming to iPSCs in the presence of reprogramming factors. Together, our results indicate a direct functional link between miR‐145 and molecular pathways underlying reprogramming of somatic cells to iPSCs. Stem Cells2016;34:246–251
Collapse
Affiliation(s)
- Tomas Barta
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lucie Peskova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Joseph Collin
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - David Montaner
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Irina Neganova
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
71
|
Cell Pluripotency Levels Associated with Imprinted Genes in Human. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:471076. [PMID: 26504487 PMCID: PMC4609408 DOI: 10.1155/2015/471076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/31/2022]
Abstract
Pluripotent stem cells are exhibited similarly in the morphology, gene expression, growth properties, and epigenetic modification with embryonic stem cells (ESCs). However, it is still controversial that the pluripotency of induced pluripotent stem cell (iPSC) is much inferior to ESC, and the differentiation capacity of iPSC and ESC can also be separated by transcriptome and epigenetics. miRNAs, which act in posttranscriptional regulation of gene expression and are involved in many basic cellular processes, may reveal the answer. In this paper, we focused on identifying the hidden relationship between miRNAs and imprinted genes in cell pluripotency. Total miRNA expression patterns in iPSC and ES cells were comprehensively analysed and linked with human imprinted genes, which show a global picture of their potential function in pluripotent level. A new CPA4-KLF14 region which locates in chromosomal homologous segments (CHSs) within mammals and include both imprinted genes and significantly expressed miRNAs was first identified. Molecular network analysis showed genes interacted with imprinted genes closely and enriched in modules such as cancer, cell death and survival, and tumor morphology. This imprinted region may provide a new look for those who are interested in cell pluripotency of hiPSCs and hESCs.
Collapse
|
72
|
Butler AA, Webb WM, Lubin FD. Regulatory RNAs and control of epigenetic mechanisms: expectations for cognition and cognitive dysfunction. Epigenomics 2015; 8:135-51. [PMID: 26366811 DOI: 10.2217/epi.15.79] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The diverse functions of noncoding RNAs (ncRNAs) can influence virtually every aspect of the transcriptional process including epigenetic regulation of genes. In the CNS, regulatory RNA networks and epigenetic mechanisms have broad relevance to gene transcription changes involved in long-term memory formation and cognition. Thus, it is becoming increasingly clear that multiple classes of ncRNAs impact neuronal development, neuroplasticity, and cognition. Currently, a large gap exists in our knowledge of how ncRNAs facilitate epigenetic processes, and how this phenomenon affects cognitive function. In this review, we discuss recent findings highlighting a provocative role for ncRNAs including lncRNAs and piRNAs in the control of epigenetic mechanisms involved in cognitive function. Furthermore, we discuss the putative roles for these ncRNAs in cognitive disorders such as schizophrenia and Alzheimer's disease.
Collapse
Affiliation(s)
- Anderson A Butler
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - William M Webb
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
73
|
Alexandrova E, Miglino N, Hashim A, Nassa G, Stellato C, Tamm M, Baty F, Brutsche M, Weisz A, Borger P. Small RNA profiling reveals deregulated phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/Akt pathway in bronchial smooth muscle cells from asthmatic patients. J Allergy Clin Immunol 2015; 137:58-67. [PMID: 26148798 DOI: 10.1016/j.jaci.2015.05.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Aberrant expression of small noncoding RNAs (sncRNAs), microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs) in particular, define several pathologic processes. Asthma is characterized by airway hyperreactivity, chronic inflammation, and airway wall remodeling. Asthma-specific miRNA profiles were reported for bronchial epithelial cells, whereas sncRNA expression in asthmatic bronchial smooth muscle (BSM) cells is almost completely unexplored. OBJECTIVE We sought to determine whether the primary BSM sncRNA expression profile is altered in asthmatic patients and identify targets of differentially expressed sncRNAs. METHODS Small RNA sequencing was used for sncRNA profiling in BSM cells (from 8 asthmatic and 6 nonasthmatic subjects). sncRNA identification and differential expression analysis was performed with iMir software. Experimentally validated miRNA targets were identified by using Ingenuity Pathway Analysis, and putative piRNA targets were identified by using miRanda software. RESULTS BSM cells from asthmatic patients showed abnormal expression of 32 sncRNAs (26 miRNAs, 5 piRNAs, and 1 small nucleolar RNA). Target prediction for deregulated miRNAs and piRNAs revealed experimentally validated and predicted mRNA targets expressed in the BSM cells. Thirty-eight of these mRNAs represent major targets for deregulated miRNAs and might play important roles in the pathophysiology of asthma. Interestingly, 6 of these mRNAs were previously associated with asthma, considered as novel therapeutic targets for treatment of this disease, or both. Signaling pathway analysis revealed involvement of 38 miRNA-targeted mRNAs in increased cell proliferation through phosphatase and tensin homolog and phosphoinositide 3-kinase/Akt signaling pathways. CONCLUSIONS BSM cells of asthmatic patients are characterized by aberrant sncRNA expression that recapitulates multiple pathologic phenotypes of these cells.
Collapse
Affiliation(s)
- Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy; Genomix4Life Srl, Campus of Medicine, University of Salerno, Baronissi, Italy
| | - Nicola Miglino
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Adnan Hashim
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Claudia Stellato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Michael Tamm
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Florent Baty
- Division of Molecular Pathology and Medical Genomics, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Martin Brutsche
- Division of Molecular Pathology and Medical Genomics, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy; Molecular Pathology and Medical Genomics Unit, "SS. Giovanni di Dio e Ruggi d'Aragona-Schuola Medica Salernitana" University Hospital, Salerno, Italy.
| | - Pieter Borger
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
74
|
MicroRNA 665 Regulates Dentinogenesis through MicroRNA-Mediated Silencing and Epigenetic Mechanisms. Mol Cell Biol 2015; 35:3116-30. [PMID: 26124283 DOI: 10.1128/mcb.00093-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/18/2015] [Indexed: 12/26/2022] Open
Abstract
Studies of proteins involved in microRNA (miRNA) processing, maturation, and silencing have indicated the importance of miRNAs in skeletogenesis, but the specific miRNAs involved in this process are incompletely defined. Here, we identified miRNA 665 (miR-665) as a potential repressor of odontoblast maturation. Studies with cultured cell lines and primary embryonic cells showed that miR-665 represses the expression of early and late odontoblast marker genes and stage-specific proteases involved in dentin maturation. Notably, miR-665 directly targeted Dlx3 mRNA and decreased Dlx3 expression. Furthermore, RNA-induced silencing complex (RISC) immunoprecipitation and biotin-labeled miR-665 pulldown studies identified Kat6a as another potential target of miR-665. KAT6A interacted physically and functionally with RUNX2, activating tissue-specific promoter activity and prompting odontoblast differentiation. Overexpression of miR-665 reduced the recruitment of KAT6A to Dspp and Dmp1 promoters and prevented KAT6A-induced chromatin remodeling, repressing gene transcription. Taken together, our results provide novel molecular evidence that miR-665 functions in an miRNA-epigenetic regulatory network to control dentinogenesis.
Collapse
|
75
|
García-López J, Alonso L, Cárdenas DB, Artaza-Alvarez H, Hourcade JDD, Martínez S, Brieño-Enríquez MA, Del Mazo J. Diversity and functional convergence of small noncoding RNAs in male germ cell differentiation and fertilization. RNA (NEW YORK, N.Y.) 2015; 21:946-962. [PMID: 25805854 PMCID: PMC4408801 DOI: 10.1261/rna.048215.114] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
The small noncoding RNAs (sncRNAs) are considered as post-transcriptional key regulators of male germ cell development. In addition to microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), other sncRNAs generated from small nucleolar RNAs (snoRNAs), tRNAs, or rRNAs processing may also play important regulatory roles in spermatogenesis. By next-generation sequencing (NGS), we characterized the sncRNA populations detected at three milestone stages in male germ differentiation: primordial germ cells (PGCs), pubertal spermatogonia cells, and mature spermatozoa. To assess their potential transmission through the spermatozoa during fertilization, the sncRNAs of mouse oocytes and zygotes were also analyzed. Both, microRNAs and snoRNA-derived small RNAs are abundantly expressed in PGCs but transiently replaced by piRNAs in spermatozoa and endo-siRNAs in oocytes and zygotes. Exhaustive analysis of miRNA sequence variants also shows an increment of noncanonical microRNA forms along male germ cell differentiation. RNAs-derived from tRNAs and rRNAs interacting with PIWI proteins are not generated by the ping-pong pathway and could be a source of primary piRNAs. Moreover, our results strongly suggest that the small RNAs-derived from tRNAs and rRNAs are interacting with PIWI proteins, and specifically with MILI. Finally, computational analysis revealed their potential involvement in post-transcriptional regulation of mRNA transcripts suggesting functional convergence among different small RNA classes in germ cells and zygotes.
Collapse
Affiliation(s)
- Jesús García-López
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | - Lola Alonso
- Department of Bioinformatics Service, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | - David B Cárdenas
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | - Haydeé Artaza-Alvarez
- Department of Bioinformatics Service, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | - Juan de Dios Hourcade
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | - Sergio Martínez
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | - Miguel A Brieño-Enríquez
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | - Jesús Del Mazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
76
|
MicroRNA-27a Contributes to Rhabdomyosarcoma Cell Proliferation by Suppressing RARA and RXRA. PLoS One 2015; 10:e0125171. [PMID: 25915942 PMCID: PMC4410939 DOI: 10.1371/journal.pone.0125171] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/21/2015] [Indexed: 12/21/2022] Open
Abstract
Background Rhabdomyosarcomas (RMS) are rare but very aggressive childhood tumors that arise as a consequence of a regulatory disruption in the growth and differentiation pathways of myogenic precursor cells. According to morphological criteria, there are two major RMS subtypes: embryonal RMS (ERMS) and alveolar RMS (ARMS) with the latter showing greater aggressiveness and metastatic potential with respect to the former. Efforts to unravel the complex molecular mechanisms underlying RMS pathogenesis and progression have revealed that microRNAs (miRNAs) play a key role in tumorigenesis. Methodology/Principal Findings The expression profiles of 8 different RMS cell lines were analyzed to investigate the involvement of miRNAs in RMS. The miRNA population from each cell line was compared to a reference sample consisting of a balanced pool of total RNA extracted from those 8 cell lines. Sixteen miRNAs whose expression discriminates between translocation-positive ARMS and negative RMS were identified. Attention was focused on the role of miR-27a that is up-regulated in the more aggressive RMS cell lines (translocation-positive ARMS) in which it probably acts as an oncogene. MiR-27a overexpressing cells showed a significant increase in their proliferation rate that was paralleled by a decrease in the number of cells in the G1 phase of the cell cycle. It was possible to demonstrate that miR-27a is implicated in cell cycle control by targeting the retinoic acid alpha receptor (RARA) and retinoic X receptor alpha (RXRA). Conclusions Study results have demonstrated that miRNA expression signature profiling can be used to classify different RMS subtypes and suggest that miR-27a may have a therapeutic potential in RMS by modulating the expression of retinoic acid receptors.
Collapse
|
77
|
García AN, Sanz-Ruiz R, Santos MEF, Fernández-Avilés F. “Second-generation” stem cells for cardiac repair. World J Stem Cells 2015; 7:352-367. [PMID: 25815120 PMCID: PMC4369492 DOI: 10.4252/wjsc.v7.i2.352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/26/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023] Open
Abstract
Over the last years, stem cell therapy has emerged as an inspiring alternative to restore cardiac function after myocardial infarction. A large body of evidence has been obtained in this field but there is no conclusive data on the efficacy of these treatments. Preclinical studies and early reports in humans have been encouraging and have fostered a rapid clinical translation, but positive results have not been uniformly observed and when present, they have been modest. Several types of stem cells, manufacturing methods and delivery routes have been tested in different clinical settings but direct comparison between them is challenging and hinders further research. Despite enormous achievements, major barriers have been found and many fundamental issues remain to be resolved. A better knowledge of the molecular mechanisms implicated in cardiac development and myocardial regeneration is critically needed to overcome some of these hurdles. Genetic and pharmacological priming together with the discovery of new sources of cells have led to a “second generation” of cell products that holds an encouraging promise in cardiovascular regenerative medicine. In this report, we review recent advances in this field focusing on the new types of stem cells that are currently being tested in human beings and on the novel strategies employed to boost cell performance in order to improve cardiac function and outcomes after myocardial infarction.
Collapse
|
78
|
Abstract
Growing knowledge concerning transcriptional control of cellular pluripotency has led to the discovery that the fate of differentiated cells can be reversed, which has resulted in the generation, by means of genetic manipulation, of induced pluripotent stem cells. Overexpression of just four pluripotency-related transcription factors, namely Oct3/4, Sox2, Klf4, and c-Myc (Yamanaka factors, OKSM), in fibroblasts appears sufficient to produce this new cell type. Currently, we know that these factors induce several changes in genetic program of differentiated cells that can be divided in two general phases: the initial one is stochastic, and the subsequent one is highly hierarchical and organised. This review briefly discusses the molecular events leading to induction of pluripotency in response to forced presence of OKSM factors in somatic cells. We also discuss other reprogramming strategies used thus far as well as the advantages and disadvantages of laboratory approaches towards pluripotency induction in different cell types.
Collapse
|
79
|
Ti D, Li M, Fu X, Han W. Causes and consequences of epigenetic regulation in wound healing. Wound Repair Regen 2015; 22:305-12. [PMID: 24844330 DOI: 10.1111/wrr.12160] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/12/2014] [Indexed: 12/19/2022]
Abstract
Wound healing is a complex and systematic tissue level response to mechanical and chemical injuries that may cause the release of growth factors, cytokines, and chemokines by damaged tissues. For the complex features of these restorative processes, it is a crucial challenge to identify the relevant cell types and biochemical pathways that are involved in wound healing. Epigenetic mechanisms, such as DNA methylation, histone modification, and noncoding regulatory RNA editing, play important roles in many biological processes, including cell proliferation, migration and differentiation, signal pathway activation or inhibition, and cell senescence. Epigenetic regulations can coordinately control a considerable subset of known repair genes and thus serve as master regulators of wound healing. An abundance of evidence has also shown that epigenetic modifications participate in the short- and long-term control of crucial gene expression and cell signal transduction that are involved in the healing process. These data provide a foundation for probable epigenetic-based therapeutic strategies that are aimed at stimulating tissue regeneration. This review describes the epigenetic alterations in different cellular types at injury sites, induced signals, and resulting tissue repair. With the increased interest in the epigenetics of wound and repair processes, this field will soon begin to flourish.
Collapse
Affiliation(s)
- Dongdong Ti
- Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, China
| | | | | | | |
Collapse
|
80
|
Ezh2 mediated H3K27me3 activity facilitates somatic transition during human pluripotent reprogramming. Sci Rep 2015; 5:8229. [PMID: 25648270 PMCID: PMC4316165 DOI: 10.1038/srep08229] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/12/2015] [Indexed: 11/09/2022] Open
Abstract
Factor induced reprogramming of fibroblasts is an orchestrated but inefficient process. At the epigenetic level, it results in drastic chromatin changes to erase the existing somatic “memory” and to establish the pluripotent state. Accordingly, alterations of chromatin regulators including Ezh2 influence iPSC generation. While the role of individual transcription factors in resetting the chromatin landscape during iPSC generation is increasingly evident, their engagement with chromatin modulators remains to be elucidated. In the current study, we demonstrate that histone methyl transferase activity of Ezh2 is required for mesenchymal to epithelial transition (MET) during human iPSC generation. We show that the H3K27me3 activity favors induction of pluripotency by transcriptionally targeting the TGF-β signaling pathway. We also demonstrate that the Ezh2 negatively regulates the expression of pro-EMT miRNA's such as miR-23a locus during MET. Unique association of Ezh2 with c-Myc was required to silence the aforementioned circuitry. Collectively, our findings provide a mechanistic understanding by which Ezh2 restricts the somatic programme during early phase of cellular reprogramming and establish the importance of Ezh2 dependent H3K27me3 activity in transcriptional and miRNA modulation during human iPSC generation.
Collapse
|
81
|
miR-126 inhibits cell proliferation and induces cell apoptosis of hepatocellular carcinoma cells partially by targeting Sox2. Hum Cell 2015; 28:91-9. [PMID: 25585946 DOI: 10.1007/s13577-014-0105-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/19/2014] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the third leading cause of cancer-related death globally. MicroRNAs (miRNAs) represent a new cohort of gene regulators. Currently, a large number of miRNAs have been reported to be associated with the initiation and maintenance of HCC. Through evaluating the relative concentrations of HCC-associated circulating miRNAs, underexpression of miR-126 has been identified in the blood of HCC patients. However, the exact function of miR-126 on HCC cellular biology progression and relative mechanisms were unclear. In this paper, we explored the function of miR-126 on HCC cells through exogenously transfecting HCC cells with miR-126 mimic. Restored miR-126 expression inhibited cell proliferation, arrest cell cycle progression, and induced cell apoptosis of HepG2 HCC cells. Moreover, to explore the mechanism of miR-126-mediated tumor suppression, we searched the putative targets of miR-126 using prediction program. Surprisingly, we found that sex-determining region Y-box 2 (Sox2) was a putative target gene of miR-126. Further luciferase assays, mRNA and protein assays consistently validated the target role of Sox2. Through restoring the expression of Sox2 in miR-126-transfected HepG2 cells, we found that overexpression of Sox2 could partially abrogate the miR-126-mediated suppression of cell growth. Thus, our data identified miR-126 as a tumor suppressor in HCC through, at least partially by targeting Sox2. This may provide novel diagnostic and therapeutic options for human HCC in future.
Collapse
|
82
|
Zhang Y, Xie S, Xu H, Qu L. CLIP: viewing the RNA world from an RNA-protein interactome perspective. SCIENCE CHINA-LIFE SCIENCES 2015; 58:75-88. [DOI: 10.1007/s11427-014-4764-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/13/2014] [Indexed: 12/20/2022]
|
83
|
Clancy JL, Patel HR, Hussein SMI, Tonge PD, Cloonan N, Corso AJ, Li M, Lee DS, Shin JY, Wong JJL, Bailey CG, Benevento M, Munoz J, Chuah A, Wood D, Rasko JEJ, Heck AJR, Grimmond SM, Rogers IM, Seo JS, Wells CA, Puri MC, Nagy A, Preiss T. Small RNA changes en route to distinct cellular states of induced pluripotency. Nat Commun 2014; 5:5522. [DOI: 10.1038/ncomms6522] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/08/2014] [Indexed: 12/16/2022] Open
|
84
|
Can the ‘neuron theory’ be complemented by a universal mechanism for generic neuronal differentiation. Cell Tissue Res 2014; 359:343-84. [DOI: 10.1007/s00441-014-2049-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022]
|
85
|
Gingold JA, Fidalgo M, Guallar D, Lau Z, Sun Z, Zhou H, Faiola F, Huang X, Lee DF, Waghray A, Schaniel C, Felsenfeld DP, Lemischka IR, Wang J. A genome-wide RNAi screen identifies opposing functions of Snai1 and Snai2 on the Nanog dependency in reprogramming. Mol Cell 2014; 56:140-52. [PMID: 25240402 PMCID: PMC4184964 DOI: 10.1016/j.molcel.2014.08.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/21/2014] [Accepted: 08/08/2014] [Indexed: 12/30/2022]
Abstract
Nanog facilitates embryonic stem cell self-renewal and induced pluripotent stem cell generation during the final stage of reprogramming. From a genome-wide small interfering RNA screen using a Nanog-GFP reporter line, we discovered opposing effects of Snai1 and Snai2 depletion on Nanog promoter activity. We further discovered mutually repressive expression profiles and opposing functions of Snai1 and Snai2 during Nanog-driven reprogramming. We found that Snai1, but not Snai2, is both a transcriptional target and protein partner of Nanog in reprogramming. Ectopic expression of Snai1 or depletion of Snai2 greatly facilitates Nanog-driven reprogramming. Snai1 (but not Snai2) and Nanog cobind to and transcriptionally activate pluripotency-associated genes including Lin28 and miR-290-295. Ectopic expression of miR-290-295 cluster genes partially rescues reprogramming inefficiency caused by Snai1 depletion. Our study thus uncovers the interplay between Nanog and mesenchymal factors Snai1 and Snai2 in the transcriptional regulation of pluripotency-associated genes and miRNAs during the Nanog-driven reprogramming process.
Collapse
Affiliation(s)
- Julian A Gingold
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miguel Fidalgo
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diana Guallar
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zerlina Lau
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhen Sun
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hongwei Zhou
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesco Faiola
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Huang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dung-Fang Lee
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Avinash Waghray
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christoph Schaniel
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan P Felsenfeld
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ihor R Lemischka
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Jianlong Wang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
86
|
MicroRNA expression profile of primary prostate cancer stem cells as a source of biomarkers and therapeutic targets. Eur Urol 2014; 67:7-10. [PMID: 25234358 DOI: 10.1016/j.eururo.2014.09.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/02/2014] [Indexed: 12/27/2022]
Abstract
UNLABELLED MicroRNA (miRNA) expression profiles were generated from prostate epithelial subpopulations enriched from patient-derived benign prostatic hyperplasia (n=5), Gleason 7 treatment-naive prostate cancer (PCa) (n=5), and castration-resistant PCa (CRPC) (n=3). Microarray expression was validated in an independent patient cohort (n=10). Principal component analysis showed that miRNA expression is clustered by epithelial cell phenotype, regardless of pathologic status. We also discovered concordance between the miRNA expression profiles of unfractionated epithelial cells from CRPCs, human embryonic stem cells (SCs), and prostate epithelial SCs (both benign and malignant). MiR-548c-3p was chosen as a candidate miRNA from this group to explore its usefulness as a CRPC biomarker and/or therapeutic target. Overexpression of miR-548c-3p was confirmed in SCs (fivefold, p<0.05) and in unfractionated CRPCs (1.8-fold, p<0.05). Enforced overexpression of miR-548c-3p in differentiated cells induced stemlike properties (p<0.01) and radioresistance (p<0.01). Reanalyses of published studies further revealed that miR-548c-3p is significantly overexpressed in CRPC (p<0.05) and is associated with poor recurrence-free survival (p<0.05), suggesting that miR-548c-3p is a functional biomarker for PCa aggressiveness. Our results validate the prognostic and therapeutic relevance of miRNAs for PCa management while demonstrating that resolving cell-type and differentiation-specific differences is essential to obtain clinically relevant miRNA expression profiles. PATIENT SUMMARY We report microRNA (miRNA) expression profiles of epithelial cell fractions from the human prostate, including stem cells. miR-548c-3p was revealed as a functional biomarker for prostate cancer progression. The evaluation of miR-548c-3p in a larger patient cohort should yield information on its clinical usefulness.
Collapse
|
87
|
Functional Role of the microRNA-200 Family in Breast Morphogenesis and Neoplasia. Genes (Basel) 2014; 5:804-20. [PMID: 25216122 PMCID: PMC4198932 DOI: 10.3390/genes5030804] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 12/21/2022] Open
Abstract
Branching epithelial morphogenesis is closely linked to epithelial-to-mesenchymal transition (EMT), a process important in normal development and cancer progression. The miR-200 family regulates epithelial morphogenesis and EMT through a negative feedback loop with the ZEB1 and ZEB2 transcription factors. miR-200 inhibits expression of ZEB1/2 mRNA, which in turn can down-regulate the miR-200 family that further results in down-regulation of E-cadherin and induction of a mesenchymal phenotype. Recent studies show that the expression of miR-200 genes is high during late pregnancy and lactation, thereby indicating that these miRs are important for breast epithelial morphogenesis and differentiation. miR-200 genes have been studied intensively in relation to breast cancer progression and metastasis, where it has been shown that miR-200 members are down-regulated in basal-like breast cancer where the EMT phenotype is prominent. There is growing evidence that the miR-200 family is up-regulated in distal breast metastasis indicating that these miRs are important for colonization of metastatic breast cancer cells through induction of mesenchymal to epithelial transition. The dual role of miR-200 in primary and metastatic breast cancer is of interest for future therapeutic interventions, making it important to understand its role and interacting partners in more detail.
Collapse
|
88
|
Zhao G, Zhou X, Chen S, Miao H, Fan H, Wang Z, Hu Y, Hou Y. Differential expression of microRNAs in decidua-derived mesenchymal stem cells from patients with pre-eclampsia. J Biomed Sci 2014; 21:81. [PMID: 25135655 PMCID: PMC4237795 DOI: 10.1186/s12929-014-0081-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 08/12/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) at maternal-fetal interface are considered to play an important role in the pathogenesis of pre-eclampsia (PE). microRNAs (miRNAs) also have an important influence on differentiation, maturation, and functions of MSCs. Our aim in this study was to determine the differential expression of miRNAs in decidua-derived MSCs (dMSCs) from severe PE and normal pregnancies. RESULTS miRNA expression profiles in dMSCs from five patients with severe PE and five healthy pregnant women were screened using microarray. Then, bioinformatic analysis of the microarray results was performed. Out of 179 differentially expressed miRNAs, 49 miRNAs had significant (p < 0.05) differential expression of ≥ 2.0-fold changes, including 21 up-regulated and 28 down-regulated. miRNA-Gene-network and miRNA-Gene ontology (GO) -network analyses were performed. Overall, 21 up-regulated and 15 down-regulated miRNAs showed high degrees in these analyses. Moreover, the significantly enriched signaling pathways and GOs were identified. The analyses revealed that pathways associated with cell proliferation, angiogenesis, and immune functions were highly regulated by the differentially expressed miRNAs, including Wnt signaling pathway, mitogen-activated protein kinase signaling pathway, transforming growth factor beta signaling pathway, T-cell receptor signaling pathway, and B cell receptor signaling pathway. Four miRNA predicted target genes, vascular endothelial growth factor A (VEGFA), indoleamine 2,3-dioxygenase, suppression of cytokine signaling 3, and serine/threonine protein phosphatase 2A 55 kDa regulatory subunit B α isoform (PPP2R2A) were all decreased in dMSCs from patients with PE. Furthermore, the physiological roles of miR-16 and miR-136 in the down-regulation of VEGFA and PPP2R2A, respectively, were confirmed through reporter assays. CONCLUSIONS These findings suggest that miRNAs in dMSCs may be important regulatory molecules in the development of PE.
Collapse
Affiliation(s)
- Guangfeng Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Xue Zhou
- Immunology and Reproductive Biology Laboratory, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Shiwen Chen
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Huishuang Miao
- Immunology and Reproductive Biology Laboratory, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Hongye Fan
- Immunology and Reproductive Biology Laboratory, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Zhiqun Wang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Yayi Hou
- Immunology and Reproductive Biology Laboratory, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| |
Collapse
|
89
|
Involvement of parental imprinting in the antisense regulation of onco-miR-372-373. Nat Commun 2014; 4:2724. [PMID: 24201333 DOI: 10.1038/ncomms3724] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/08/2013] [Indexed: 01/07/2023] Open
Abstract
The monoallelic nature of imprinted genes renders them highly susceptible to genetic and epigenetic perturbations, potentially resulting in transformation and disease. Here we show, using parthenogenetic induced pluripotent stem cells, an imprinted transcript that serves as an antisense regulator of onco-miR-372-3 (named anti-miR-371-3). As miR-372-3 have been shown to have an oncogenic role in testicular germ cell tumours, we study the involvement of their antisense transcript in these cells. Our results suggest that hypermethylation, leading to loss-of-expression of the imprinted antisense transcript, contributes to tumorigenic transformation by affecting the downstream target LATS2. Finally, we provide evidence for a tumour suppressive role of anti-miR-371-3, as its overexpression in tumour cells results in cell growth arrest and apoptosis, and prevents tumour formation on injection into immunodeficient mice.
Collapse
|
90
|
Fei B, Wu H. MiR-378 inhibits progression of human gastric cancer MGC-803 cells by targeting MAPK1 in vitro. Oncol Res 2014; 20:557-64. [PMID: 24139413 DOI: 10.3727/096504013x13775486749254] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer (GC) is one of the most common cancers and the leading cause of cancer-related deaths globally. The discovery of microRNAs (miRNAs) provides a new avenue for GC diagnostic and treatment regiments. Currently, a large number of miRNAs have been reported to be associated with the progression of GC, among which miR-378 has been examined to be downregulated in GC tissues and several cell lines. However, the function of miR-378 on GC cells and the mechanisms were less known. Here we found that ectopic expression of miR-378 could inhibit cell proliferation, cell cycle progression, cell migration as well as invasion, and induced cell apoptosis in GC cell line MGC-803. Moreover, we found that oncogene mitogen-activated protein kinase 1 (MAPK1) was a target gene of miR-378 in GC cells, and the tumor-suppressive role of miR-378 might be achieved by the direct interaction with MAPK1. Taken together, our results showed that miR-378 might act as tumor suppressors in GC, and it may provide novel diagnostic and therapeutic options for human GC clinical operation in the future.
Collapse
Affiliation(s)
- Bojian Fei
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, SooChow, Jiangsu, PR China
| | | |
Collapse
|
91
|
Greene WA, Muñiz A, Plamper ML, Kaini RR, Wang HC. MicroRNA expression profiles of human iPS cells, retinal pigment epithelium derived from iPS, and fetal retinal pigment epithelium. J Vis Exp 2014:e51589. [PMID: 24999033 DOI: 10.3791/51589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The objective of this report is to describe the protocols for comparing the microRNA (miRNA) profiles of human induced-pluripotent stem (iPS) cells, retinal pigment epithelium (RPE) derived from human iPS cells (iPS-RPE), and fetal RPE. The protocols include collection of RNA for analysis by microarray, and the analysis of microarray data to identify miRNAs that are differentially expressed among three cell types. The methods for culture of iPS cells and fetal RPE are explained. The protocol used for differentiation of RPE from human iPS is also described. The RNA extraction technique we describe was selected to allow maximal recovery of very small RNA for use in a miRNA microarray. Finally, cellular pathway and network analysis of microarray data is explained. These techniques will facilitate the comparison of the miRNA profiles of three different cell types.
Collapse
Affiliation(s)
- Whitney A Greene
- Ocular Trauma, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston
| | - Alberto Muñiz
- Ocular Trauma, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston
| | - Mark L Plamper
- Ocular Trauma, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston
| | - Ramesh R Kaini
- Ocular Trauma, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston
| | - Heuy-Ching Wang
- Ocular Trauma, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston;
| |
Collapse
|
92
|
Hu K. All roads lead to induced pluripotent stem cells: the technologies of iPSC generation. Stem Cells Dev 2014; 23:1285-300. [PMID: 24524728 PMCID: PMC4046204 DOI: 10.1089/scd.2013.0620] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/12/2014] [Indexed: 12/26/2022] Open
Abstract
Generation of induced pluripotent stem cells (iPSCs) via the ectopic expression of reprogramming factors is a simple, advanced, yet often perplexing technology due to low efficiency, slow kinetics, and the use of numerous distinct systems for factor delivery. Scientists have used almost all available approaches for the delivery of reprogramming factors. Even the well-established retroviral vectors confuse some scientists due to different tropisms in use. The canonical virus-based reprogramming poses many problems, including insertional mutagenesis, residual expression and re-activation of reprogramming factors, uncontrolled silencing of transgenes, apoptosis, cell senescence, and strong immunogenicity. To eliminate or alleviate these problems, scientists have tried various other approaches for factor delivery and transgene removal. These include transient transfection, nonintegrating viral vectors, Cre-loxP excision of transgenes, excisable transposon, protein transduction, RNA transfection, microRNA transfection, RNA virion, RNA replicon, nonintegrating replicating episomal plasmids, minicircles, polycistron, and preintegration of inducible reprogramming factors. These alternative approaches have their own limitations. Even iPSCs generated with RNA approaches should be screened for possible transgene insertions mediated by active endogenous retroviruses in the human genome. Even experienced researchers may encounter difficulty in selecting and using these different technologies. This survey presents overviews of iPSC technologies with the intention to provide a quick yet comprehensive reference for both new and experienced reprogrammers.
Collapse
Affiliation(s)
- Kejin Hu
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Insitute, School of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
93
|
Jiping Z, Ming F, Lixiang W, Xiuming L, Yuqun S, Han Y, Zhifang L, Yundong S, Shili L, Chunyan C, Jihui J. MicroRNA-212 inhibits proliferation of gastric cancer by directly repressing retinoblastoma binding protein 2. J Cell Biochem 2014; 114:2666-72. [PMID: 23794145 DOI: 10.1002/jcb.24613] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/11/2013] [Indexed: 01/02/2023]
Abstract
Retinoblastoma binding protein 2 (RBP2), a newly found histone demethylase, is overexpressed in gastric cancer. We examined the upstream regulatory mechanism of RBP2 at the microRNA (miRNA) level and the role in gastric carcinogenesis. We used bioinformatics to predict that microRNA-212 (miR-212) might be a direct upstream regulator of RBP2 and verified the regulation in gastric epithelial-derived cell lines. Overexpression of miR-212 significantly inhibited the expression levels of RBP2, whereas knockdown of miR-212 promoted RBP2 expression. Furthermore, we identified the putative miR-212 targeting sequence in the RBP2 3' UTR by luciferase assay. MiR-212 inhibited the colony formation ability of cells by repressing RBP2 expression and increasing that of P21(CIP1) and P27(kip1), both critical in cell cycle arrest. In addition, the expression of RBP2 and miR-212 in tumor tissue and matched normal tissue from 18 patients further supported the results in vivo. MiR-212 directly regulates the expression of RBP2 and inhibits cell growth in gastric cancer, which may provide new clues to treatment.
Collapse
Affiliation(s)
- Zeng Jiping
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, Shandong University School of Medicine, Jinan, China; Department of Biochemistry, Shandong University School of Medicine, Jinan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Discoveries over the past decade portend a paradigm shift in molecular biology. Evidence suggests that RNA is not only functional as a messenger between DNA and protein but also involved in the regulation of genome organization and gene expression, which is increasingly elaborate in complex organisms. Regulatory RNA seems to operate at many levels; in particular, it plays an important part in the epigenetic processes that control differentiation and development. These discoveries suggest a central role for RNA in human evolution and ontogeny. Here, we review the emergence of the previously unsuspected world of regulatory RNA from a historical perspective.
Collapse
Affiliation(s)
- Kevin V Morris
- School of Biotechnology and Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; and Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John S Mattick
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; the School of Biotechnology and Biomedical Sciences, and St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
95
|
Salas-Huetos A, Blanco J, Vidal F, Mercader JM, Garrido N, Anton E. New insights into the expression profile and function of micro-ribonucleic acid in human spermatozoa. Fertil Steril 2014; 102:213-222.e4. [PMID: 24794309 DOI: 10.1016/j.fertnstert.2014.03.040] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/28/2014] [Accepted: 03/18/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To characterize the microRNA (miRNA) expression profile in spermatozoa from human fertile individuals and their implications in human fertility. DESIGN The expression levels of 736 miRNAs were evaluated using TaqMan arrays. Ontologic analyses were performed to determine the presence of enriched biological processes among their targets. SETTING University research and clinical institutes. PATIENT(S) Ten individuals with normal seminogram, standard karyotype, and proven fertility. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Expression levels of 736 miRNAs, presence of enriched metabolic routes among their targets, homogeneity of the population, influence of demographic features in the results, presence of miRNA stable pairs, and best miRNA normalizing candidates. RESULT(S) A total of 221 miRNAs were consistently present in all individuals, 452 were only detected in some individuals, and 63 did not appear in any sample. The ontologic analysis of the 2,356 potential targets of the ubiquitous miRNAs showed an enrichment of processes related to cell differentiation, development, morphogenesis, and embryogenesis. None of the miRNAs were significantly correlated with age, semen volume, sperm concentration, motility, or morphology. Correlations between samples were statistically significant, indicating a high homogeneity of the population. A set of 48 miRNA pairs displayed a stable expression, a particular behavior that is discussed in relationship to their usefulness as fertility biomarkers. Hsa-miR-532-5p, hsa-miR-374b-5p, and hsa-miR-564 seemed to be the best normalizing miRNA candidates. CONCLUSION(S) Human sperm contain a stable population of miRNAs potentially related to embryogenesis and spermatogenesis.
Collapse
Affiliation(s)
- Albert Salas-Huetos
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Joan Blanco
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Francesca Vidal
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Josep M Mercader
- Joint Institution for Research in Biomedicine-Barcelona Supercomputing Center Program on Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain
| | - Nicolás Garrido
- Laboratorio de Andrología y Banco de Semen, Instituto Valenciano de Infertilidad Valencia, Valencia, Spain
| | - Ester Anton
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.
| |
Collapse
|
96
|
Moldovan L, Batte KE, Trgovcich J, Wisler J, Marsh CB, Piper M. Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med 2014; 18:371-90. [PMID: 24533657 PMCID: PMC3943687 DOI: 10.1111/jcmm.12236] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/18/2013] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) have emerged as important regulators in the post-transcriptional control of gene expression. The discovery of their presence not only in tissues but also in extratissular fluids, including blood, urine and cerebro-spinal fluid, together with their changes in expression in various pathological conditions, has implicated these extracellular miRNAs as informative biomarkers of disease. However, exploiting miRNAs in this capacity requires methodological rigour. Here, we report several key procedural aspects of miRNA isolation from plasma and serum, as exemplified by research in cardiovascular and pulmonary diseases. We also highlight the advantages and disadvantages of various profiling methods to determine the expression levels of plasma- and serum-derived miRNAs. Attention to such methodological details is critical, as circulating miRNAs become diagnostic tools for various human diseases.
Collapse
Affiliation(s)
- Leni Moldovan
- Division of Pulmonary, Allergy, Critical Care, Sleep Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
97
|
Li J, You T, Jing J. MiR-125b inhibits cell biological progression of Ewing's sarcoma by suppressing the PI3K/Akt signalling pathway. Cell Prolif 2014; 47:152-60. [PMID: 24517182 DOI: 10.1111/cpr.12093] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/24/2013] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Increasing evidence has suggested the close relationship between microRNAs (miRNAs) dysregulation and the carcinogenesis of Ewing's sarcoma (ES), among of which miR-125b has been reported to be decreased in ES tissues recently. Strikingly, ectopic expression of miR-125b could suppress cell proliferation of ES cell line A673, suggesting the tumor suppressor role of miR-125b in ES. However, the other accurate mechanistic functions and relative molecule mechanisms are largely unknown. MATERIALS AND METHODS Herein, we completed a series of experiments to investigate the role of miR-125b in Ewing's sarcoma. We restored the expression of miR-125b in ES cell line A673 through transfection with miR-125b mimics. To further understand the role of miR-125b in ES, we detected the effects of miR-125b on the cell proliferation, migration and invasion, cell cycle as well as cell apoptosis. RESULTS We found that restored expression of miR-125b in ES cell line A673 inhibited cell proliferation, migration and invasion, arrested cell cycle progression, and induced cell apoptosis. Moreover, bioinformatic prediction suggested the oncogene, phosphoinositide-3-kinase catalytic subunit delta (PIK3CD), was a target gene of miR-125b in ES cells. Further quantitative RT-PCR and western blot assays identified over-expression of miR-125b suppressed the expression of PIK3CD mRNA and protein. PIK3CD participates in regulating the PI3K signaling pathway, which has been reported to play an important role in the development of ES. Suppression of PIK3CD down-regulated the expression of phospho-AKT and phospho-mTOR proteins and inhibited the biologic progression of A673 cells. CONCLUSIONS Collectively, these data suggest that miR-125b functions as a tumor suppressor by targeting the PI3K/Akt/mTOR signaling pathway, and may provide potential therapy strategy for ES patients by targeting miRNA expression.
Collapse
Affiliation(s)
- J Li
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | | | | |
Collapse
|
98
|
Thiagarajan RD, Morey R, Laurent LC. The epigenome in pluripotency and differentiation. Epigenomics 2014; 6:121-37. [DOI: 10.2217/epi.13.80] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ability to culture pluripotent stem cells and direct their differentiation into specific cell types in vitro provides a valuable experimental system for modeling pluripotency, development and cellular differentiation. High-throughput profiling of the transcriptomes and epigenomes of pluripotent stem cells and their differentiated derivatives has led to identification of patterns characteristic of each cell type, discovery of new regulatory features in the epigenome and early insights into the complexity of dynamic interactions among regulatory elements. This work has also revealed potential limitations of the use of pluripotent stem cells as in vitro models of developmental events, due to epigenetic variability among different pluripotent stem cell lines and epigenetic instability during derivation and culture, particularly at imprinted and X-inactivated loci. This review focuses on the two most well-studied epigenetic mechanisms, DNA methylation and histone modifications, within the context of pluripotency and differentiation.
Collapse
Affiliation(s)
- Rathi D Thiagarajan
- Department of Reproductive Medicine, The University of California, San Diego, La Jolla, CA, USA
| | - Robert Morey
- Department of Reproductive Medicine, The University of California, San Diego, La Jolla, CA, USA
| | - Louise C Laurent
- Department of Reproductive Medicine, The University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
99
|
Karlsen TA, Jakobsen RB, Mikkelsen TS, Brinchmann JE. microRNA-140 targets RALA and regulates chondrogenic differentiation of human mesenchymal stem cells by translational enhancement of SOX9 and ACAN. Stem Cells Dev 2014; 23:290-304. [PMID: 24063364 DOI: 10.1089/scd.2013.0209] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lesions of articular cartilage do not heal spontaneously. One treatment strategy would be to make cartilage in the laboratory by directed chondrogenic differentiation of mesenchymal stem cells (MSCs). To promote our understanding of the molecular control of chondrogenesis, we have compared the changes in microRNAs (miRNAs) during in vitro chondrogenesis of MSCs with those observed in uncultured and dedifferentiated articular chondrocytes (ACs). Several miRNAs showed a reciprocal relationship during the differentiation of MSCs and dedifferentiation of ACs. miR-140-5p and miR-140-3p changed the most during in vitro chondrogenesis, they were the miRNAs most highly expressed in tissue-engineered chondrocytes, and they were also among the miRNAs most highly expressed in uncultured ACs. There was a 57% overlap for the 100 most highly expressed miRNAs in differentiated MSCs and uncultured ACs, but for other miRNAs, the expression pattern was quite different. We transiently and stably inhibited and overexpressed miR-140-5p and miR-140-3p in differentiating MSCs and dedifferentiating ACs, respectively, to describe global effects and identify and validate new targets. Surprisingly, SOX9 and aggrecan proteins were found to be downregulated in anti-miR-140 transduced differentiating MSCs despite unchanged mRNA levels. This suggests that miR-140 stimulates in vitro chondrogenesis by the upregulation of these molecules at the protein level. RALA, a small GTPase, was identified as a miR-140 target and knockdown experiments showed that RALA regulated SOX9 at the protein level. These observations shed new light on the effect of miR-140 for chondrogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Tommy A Karlsen
- 1 Norwegian Center for Stem Cell Research, Oslo University Hospital , Rikshospitalet, Oslo, Norway
| | | | | | | |
Collapse
|
100
|
Benetatos L, Vartholomatos G, Hatzimichael E. Polycomb group proteins and MYC: the cancer connection. Cell Mol Life Sci 2014; 71:257-69. [PMID: 23897499 PMCID: PMC11113285 DOI: 10.1007/s00018-013-1426-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 01/07/2023]
Abstract
Polycomb group proteins (PcGs) are transcriptional repressors involved in physiological processes whereas PcG deregulation might result in oncogenesis. MYC oncogene is able to regulate gene transcription, proliferation, apoptosis, and malignant transformation. MYC deregulation might result in tumorigenesis with tumor maintenance properties in both solid and blood cancers. Although the interaction of PcG and MYC in cancer was described years ago, new findings are reported every day to explain the exact mechanisms and results of such interactions. In this review, we summarize recent data on the PcG and MYC interactions in cancer, and the putative involvement of microRNAs in the equation.
Collapse
Affiliation(s)
- Leonidas Benetatos
- Blood Bank, General Hospital of Preveza, Selefkias 2, 48100, Preveza, Greece,
| | | | | |
Collapse
|