51
|
Erickson RP, Grossman LI, Aras S. An explanation for the decreased severity of liver malfunction in Niemann-Pick C1 disease with age. J Appl Genet 2022; 63:469-474. [PMID: 35508755 DOI: 10.1007/s13353-022-00695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022]
Abstract
Niemann-Pick C disease frequently presents as severe cholestatic disease in infants. However, it progressively becomes less of a problem as children age. We have found that, in an appropriate mouse model, liver cholesterol levels, which are initially very high, decrease while mitochondrial function, initially quite compromised, increases with age. The key mitochondrial regulator, MNRR1, increases in parallel with the increase in mitochondrial function. These changes appear to explain the amelioration of the liver disease that occurs with time in this disorder.
Collapse
Affiliation(s)
- Robert P Erickson
- Dept of Pediatrics, University of Arizona, Tucson, AZ, 85724-5073, USA.
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
52
|
Nguyen MK, McAvoy K, Liao SC, Doric Z, Lo I, Li H, Manfredi G, Nakamura K. Mouse midbrain dopaminergic neurons survive loss of the PD-associated mitochondrial protein CHCHD2. Hum Mol Genet 2022; 31:1500-1518. [PMID: 34791217 PMCID: PMC9071413 DOI: 10.1093/hmg/ddab329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 11/14/2022] Open
Abstract
Mutations in the mitochondrial protein CHCHD2 cause autosomal dominant Parkinson's disease characterized by the preferential loss of substantia nigra dopamine (DA) neurons. Therefore, understanding the function of CHCHD2 in neurons may provide vital insights into how mitochondrial dysfunction contributes to neurodegeneration in PD. To investigate the normal requirement and function of CHCHD2 in neurons, we first examined CHCHD2 levels and showed that DA neurons have higher CHCHD2 levels than other neuron types, both in vivo and in co-culture. We then generated mice with either a targeted deletion of CHCHD2 in DA neurons or a deletion in the brain or total body. All three models were viable, and loss of CHCHD2 in the brain did not cause degeneration of DA neurons. Mice lacking CHCHD2 in DA neurons did display sex-specific changes to locomotor activity, but we did not observe differences in assays of muscle strength, exercise endurance or motor coordination. Furthermore, mitochondria derived from mice lacking CHCHD2 did not display abnormalities in OXPHOS function. Lastly, resilience to CHCHD2 deletion could not be explained by functional complementation by its paralog CHCHD10, as deletion of both CHCHD10 and CHCHD2 did not cause degeneration of DA neurons in the midbrain. These findings support the hypothesis that pathogenic CHCHD2 mutations cause PD through a toxic gain-of-function, rather than loss-of-function mechanism.
Collapse
Affiliation(s)
- Mai K Nguyen
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kevin McAvoy
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Szu-Chi Liao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA 94720, USA
- Endocrinology Graduate Program, University of California Berkeley, Berkeley, CA 94720, USA
| | - Zak Doric
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Huihui Li
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA
- Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
53
|
Ali MZ, Dholaniya PS. Oxidative phosphorylation mediated pathogenesis of Parkinson's disease and its implication via Akt signaling. Neurochem Int 2022; 157:105344. [PMID: 35483538 DOI: 10.1016/j.neuint.2022.105344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022]
Abstract
Substantia Nigra Pars-compacta (SNpc), in the basal ganglion region, is a primary source of dopamine release. These dopaminergic neurons require more energy than other neurons, as they are highly arborized and redundant. Neurons meet most of their energy demand (∼90%) from mitochondria. Oxidative phosphorylation (OxPhos) is the primary pathway for energy production. Many genes involved in Parkinson's disease (PD) have been associated with OxPhos, especially complex I. Abrogation in complex I leads to reduced ATP formation in these neurons, succumbing to death by inducing apoptosis. This review discusses the interconnection between complex I-associated PD genes and specific mitochondrial metabolic factors (MMFs) of OxPhos. Interestingly, all the complex I-associated PD genes discussed here have been linked to the Akt signaling pathway; thus, neuron survival is promoted and smooth mitochondrial function is ensured. Any changes in these genes disrupt the Akt pathway, which hampers the opening of the permeability transition pore (PTP) via GSK3β dephosphorylation; promotes destabilization of OxPhos; and triggers the release of pro-apoptotic factors.
Collapse
Affiliation(s)
- Md Zainul Ali
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
54
|
Li K, Ning P, Liu B, Yang H, Zhu Y, Yin W, Zhou C, Ren H, Yang X. Downregulation of CHCHD2 may Contribute to Parkinson's Disease by Reducing Expression of NFE2L2 and RQCD1. Curr Neurovasc Res 2022; 19:19-29. [PMID: 35388756 DOI: 10.2174/1567202619666220406082221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is associated with coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) downregulation, which has been linked to reduced cyclocytase activity and increased levels of oxygen free radicals, leading to mitochondrial fragmentation and apoptosis. Little is known about how CHCHD2 normally functions in the cell and, therefore, how its downregulation may contribute to PD. OBJECTIVE This study aimed to identify such target genes using chromatin immunoprecipitation sequencing from SH-SY5Y human neuroblastoma cells treated with neurotoxin 1-methyl-4-phenylpyridinium (MPP+) as a PD model. METHODS In this study, we established a MPP+ -reated SH-SY5Y cell model and evaluated the effects of CHCHD2 overexpression on cell proliferation and apoptosis. At the same time, we used high-throughput chromatin immunoprecipitation sequencing to identify its downstream target gene in SH-SY5Y cells. In addition, we verified the possible downstream target genes and discussed their mechanisms. RESULTS The expression level of α-synuclein increased in SH-SY5Y cells treated with MPP+, while the protein expression level of CHCHD2 decreased significantly, especially after 24 h of treatment. Chip-IP results showed that CHCHD2 may regulate potential target genes such as HDX, ACP1, RAVER2, C1orf229, RN7SL130, GNPTG, erythroid 2 Like 2 (NFE2L2), required for cell differentiation 1 homologue (RQCD1), solute carrier family 5 member 7 (SLA5A7), and N-Acetyltransferase 8 Like (NAT8L). NFE2L2 and RQCD1 were validated as targets using PCR and western blotting of immunoprecipitates, and these two genes together with SLA5A7 and NAT8L were upregulated in SH-SY5Y cells overexpressing CHCHD2. Downregulation of CHCHD2 may contribute to PD by leading to inadequate expression of NFE2L2 and RQCD1 as well as, potentially, SLA5A7 and NAT8L. CONCLUSION Our results suggest that CHCHD2 plays a protective role by maintaining mitochondrial homeostasis and promoting proliferation in neurons. In this study, the changes of CHCHD2 and downstream target genes such as NFE2L2/RQCD1 may have potential application prospects in the future. These findings provide leads to explore PD pathogenesis and potential treatments.
Collapse
Affiliation(s)
- Kelu Li
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR China
| | - Pingping Ning
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Bin Liu
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR China.,Yunnan Province Clinical Research Center for Gerontology, Kunming, Yunnan Province, PR China
| | - Hongju Yang
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR China.,Yunnan Province Clinical Research Center for Gerontology, Kunming, Yunnan Province, PR China
| | - Yongyun Zhu
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR China
| | - WeiFang Yin
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR China
| | - Chuanbin Zhou
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR China
| | - Hui Ren
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR China.,Yunnan Province Clinical Research Center for Gerontology, Kunming, Yunnan Province, PR China
| | - Xinglong Yang
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR China.,Yunnan Province Clinical Research Center for Gerontology, Kunming, Yunnan Province, PR China
| |
Collapse
|
55
|
Monogenic Parkinson’s Disease: Genotype, Phenotype, Pathophysiology, and Genetic Testing. Genes (Basel) 2022; 13:genes13030471. [PMID: 35328025 PMCID: PMC8950888 DOI: 10.3390/genes13030471] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease may be caused by a single pathogenic variant (monogenic) in 5–10% of cases, but investigation of these disorders provides valuable pathophysiological insights. In this review, we discuss each genetic form with a focus on genotype, phenotype, pathophysiology, and the geographic and ethnic distribution. Well-established Parkinson’s disease genes include autosomal dominant forms (SNCA, LRRK2, and VPS35) and autosomal recessive forms (PRKN, PINK1 and DJ1). Furthermore, mutations in the GBA gene are a key risk factor for Parkinson’s disease, and there have been major developments for X-linked dystonia parkinsonism. Moreover, atypical or complex parkinsonism may be due to mutations in genes such as ATP13A2, DCTN1, DNAJC6, FBXO7, PLA2G6, and SYNJ1. Furthermore, numerous genes have recently been implicated in Parkinson’s disease, such as CHCHD2, LRP10, TMEM230, UQCRC1, and VPS13C. Additionally, we discuss the role of heterozygous mutations in autosomal recessive genes, the effect of having mutations in two Parkinson’s disease genes, the outcome of deep brain stimulation, and the role of genetic testing. We highlight that monogenic Parkinson’s disease is influenced by ethnicity and geographical differences, reinforcing the need for global efforts to pool large numbers of patients and identify novel candidate genes.
Collapse
|
56
|
Ecovoiu AA, Ratiu AC, Micheu MM, Chifiriuc MC. Inter-Species Rescue of Mutant Phenotype-The Standard for Genetic Analysis of Human Genetic Disorders in Drosophila melanogaster Model. Int J Mol Sci 2022; 23:2613. [PMID: 35269756 PMCID: PMC8909942 DOI: 10.3390/ijms23052613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Drosophila melanogaster (the fruit fly) is arguably a superstar of genetics, an astonishing versatile experimental model which fueled no less than six Nobel prizes in medicine. Nowadays, an evolving research endeavor is to simulate and investigate human genetic diseases in the powerful D. melanogaster platform. Such a translational experimental strategy is expected to allow scientists not only to understand the molecular mechanisms of the respective disorders but also to alleviate or even cure them. In this regard, functional gene orthology should be initially confirmed in vivo by transferring human or vertebrate orthologous transgenes in specific mutant backgrounds of D. melanogaster. If such a transgene rescues, at least partially, the mutant phenotype, then it qualifies as a strong candidate for modeling the respective genetic disorder in the fruit fly. Herein, we review various examples of inter-species rescue of relevant mutant phenotypes of the fruit fly and discuss how these results recommend several human genes as candidates to study and validate genetic variants associated with human diseases. We also consider that a wider implementation of this evolutionist exploratory approach as a standard for the medicine of genetic disorders would allow this particular field of human health to advance at a faster pace.
Collapse
Affiliation(s)
- Alexandru Al. Ecovoiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Attila Cristian Ratiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest and Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| |
Collapse
|
57
|
Vodičková A, Koren SA, Wojtovich AP. Site-specific mitochondrial dysfunction in neurodegeneration. Mitochondrion 2022; 64:1-18. [PMID: 35182728 PMCID: PMC9035127 DOI: 10.1016/j.mito.2022.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
Mitochondria are essential for neuronal survival and mitochondrial dysfunction is a hallmark of neurodegeneration. The loss in mitochondrial energy production, oxidative stress, and changes in calcium handling are associated with neurodegenerative diseases; however, different sites and types of mitochondrial dysfunction are linked to distinct neuropathologies. Understanding the causal or correlative relationship between changes in mitochondria and neuropathology will lead to new therapeutic strategies. Here, we summarize the evidence of site-specific mitochondrial dysfunction and mitochondrial-related clinical trials for neurodegenerative diseases. We further discuss potential therapeutic approaches, such as mitochondrial transplantation, restoration of mitochondrial function, and pharmacological alleviation of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anežka Vodičková
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Shon A Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
58
|
Suzuki M, Sango K, Nagai Y. Roles of α-Synuclein and Disease-Associated Factors in Drosophila Models of Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23031519. [PMID: 35163450 PMCID: PMC8835920 DOI: 10.3390/ijms23031519] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
α-Synuclein (αSyn) plays a major role in the pathogenesis of Parkinson’s disease (PD), which is the second most common neurodegenerative disease after Alzheimer’s disease. The accumulation of αSyn is a pathological hallmark of PD, and mutations in the SNCA gene encoding αSyn cause familial forms of PD. Moreover, the ectopic expression of αSyn has been demonstrated to mimic several key aspects of PD in experimental model systems. Among the various model systems, Drosophila melanogaster has several advantages for modeling human neurodegenerative diseases. Drosophila has a well-defined nervous system, and numerous tools have been established for its genetic analyses. The rapid generation cycle and short lifespan of Drosophila renders them suitable for high-throughput analyses. PD model flies expressing αSyn have contributed to our understanding of the roles of various disease-associated factors, including genetic and nongenetic factors, in the pathogenesis of PD. In this review, we summarize the molecular pathomechanisms revealed to date using αSyn-expressing Drosophila models of PD, and discuss the possibilities of using these models to demonstrate the biological significance of disease-associated factors.
Collapse
Affiliation(s)
- Mari Suzuki
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan;
- Department of Neurotherapeutics, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- Correspondence: (M.S.); (Y.N.); Tel.: +81-5316-3100 (M.S.); +81-72-366-0221 (Y.N.)
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan;
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- Department of Neurology, Faculty of Medicine, Kindai University, Osaka-Sayama 589-8511, Japan
- Correspondence: (M.S.); (Y.N.); Tel.: +81-5316-3100 (M.S.); +81-72-366-0221 (Y.N.)
| |
Collapse
|
59
|
Calycosin Alleviates Paraquat-Induced Neurodegeneration by Improving Mitochondrial Functions and Regulating Autophagy in a Drosophila Model of Parkinson's Disease. Antioxidants (Basel) 2022; 11:antiox11020222. [PMID: 35204105 PMCID: PMC8868496 DOI: 10.3390/antiox11020222] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder with limited clinical treatments. The occurrence of PD includes both genetic and environmental toxins, such as the pesticides paraquat (PQ), as major contributors to PD pathology in both invertebrate and mammalian models. Calycosin, an isoflavone phytoestrogen, has multiple pharmacological properties, including neuroprotective activity. However, the paucity of information regarding the neuroprotective potential of calycosin on PQ-induced neurodegeneration led us to explore whether calycosin can mitigate PD-like phenotypes and the underlying molecular mechanisms. We used a PQ-induced PD model in Drosophila as a cost-effective in vivo screening platform to investigate the neuroprotective efficacy of natural compounds on PD. We reported that calycosin shows a protective role in preventing dopaminergic (DA) neuronal cell death in PQ-exposed Canton S flies. Calycosin-fed PQ-exposed flies exhibit significant resistance against PQ-induced mortality and locomotor deficits in terms of reduced oxidative stress, loss of DA neurons, the depletion of dopamine content, and phosphorylated JNK-caspase-3 levels. Additionally, mechanistic studies show that calycosin administration improves PQ-induced mitochondrial dysfunction and stimulates mitophagy and general autophagy with reduced pS6K and p4EBP1 levels, suggestive of a maintained energy balance between anabolic and catabolic processes, resulting in the inhibition of neuronal cell death. Collectively, this study substantiates the protective effect of calycosin against PQ-induced neurodegeneration by improving DA neurons' survival and reducing apoptosis, likely via autophagy induction, and it is implicated as a novel therapeutic application against toxin-induced PD pathogenesis.
Collapse
|
60
|
Jiang Y, Gong Q, Gong Y, Zhuo C, Huang J, Tang Q. Vitexin attenuates non-alcoholic fatty liver disease (NAFLD) lipid accumulation in high fat-diet fed mice by activating autophagy and reducing endoplasmic reticulum (ER) stress in liver. Biol Pharm Bull 2022; 45:260-267. [PMID: 35034930 DOI: 10.1248/bpb.b21-00716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become prevalent worldwide, but sufficient pharmaceutical treatments for this condition are lacking. Previous literature suggests that vitexin offers beneficial effects in the treatment of NAFLD, but the underlying mechanisms are not well understood. In this study, the in vivo effects of vitexin were investigated in high-fat-diet (HFD)-induced NAFLD mice. Liver pathology, biochemical parameters, lipid levels, hepatocyte ultrastructure, and related regulatory proteins were measured at the end of treatment. Treatment consisted of four weeks of daily administration of vitexin at a dose of 6 mg/kg of body weight. This treatment markedly improved hepatic architecture, attenuated lipid accumulation, and regulated lipid abnormalities. In addition, the treatment reduced endoplasmic reticulum (ER) stress, restored mitochondrial biological proteins, and increased autophagy. Furthermore, the treatment increased PPAR-r protein, which was inhibited by HFD. Thus, it was speculated that vitexin degraded lipids in HFD-induced NAFLD mice liver by inducing autophagy and restoring both ER and mitochondrial biological proteins.
Collapse
Affiliation(s)
- Yan Jiang
- Medical College, Guangxi University.,Guixi Key Laboratory for High Incidence Diseases, Youjiang Medical University for Nationalities
| | - Qiming Gong
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities
| | - Yuanxun Gong
- Guixi Key Laboratory for High Incidence Diseases, Youjiang Medical University for Nationalities
| | - Chenyi Zhuo
- Department of Hepatobiliary surgery, Affiliated hospital of Youjiang Medical University for Nationalities
| | - Jinmei Huang
- Graduate School, Guangxi University of Chinese Medicine
| | - Qianli Tang
- Medical College, Guangxi University.,Guixi Key Laboratory for High Incidence Diseases, Youjiang Medical University for Nationalities
| |
Collapse
|
61
|
Li JL, Lin TY, Chen PL, Guo TN, Huang SY, Chen CH, Lin CH, Chan CC. Mitochondrial Function and Parkinson's Disease: From the Perspective of the Electron Transport Chain. Front Mol Neurosci 2021; 14:797833. [PMID: 34955747 PMCID: PMC8695848 DOI: 10.3389/fnmol.2021.797833] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is known as a mitochondrial disease. Some even regarded it specifically as a disorder of the complex I of the electron transport chain (ETC). The ETC is fundamental for mitochondrial energy production which is essential for neuronal health. In the past two decades, more than 20 PD-associated genes have been identified. Some are directly involved in mitochondrial functions, such as PRKN, PINK1, and DJ-1. While other PD-associate genes, such as LRRK2, SNCA, and GBA1, regulate lysosomal functions, lipid metabolism, or protein aggregation, some have been shown to indirectly affect the electron transport chain. The recent identification of CHCHD2 and UQCRC1 that are critical for functions of complex IV and complex III, respectively, provide direct evidence that PD is more than just a complex I disorder. Like UQCRC1 in preventing cytochrome c from release, functions of ETC proteins beyond oxidative phosphorylation might also contribute to the pathogenesis of PD.
Collapse
Affiliation(s)
- Jeng-Lin Li
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Division of Neurology, Department of Internal Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan County, Taiwan
| | - Tai-Yi Lin
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Lin Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Ting-Ni Guo
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
62
|
Inactivity of Peptidase ClpP Causes Primary Accumulation of Mitochondrial Disaggregase ClpX with Its Interacting Nucleoid Proteins, and of mtDNA. Cells 2021; 10:cells10123354. [PMID: 34943861 PMCID: PMC8699119 DOI: 10.3390/cells10123354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Biallelic pathogenic variants in CLPP, encoding mitochondrial matrix peptidase ClpP, cause a rare autosomal recessive condition, Perrault syndrome type 3 (PRLTS3). It is characterized by primary ovarian insufficiency and early sensorineural hearing loss, often associated with progressive neurological deficits. Mouse models showed that accumulations of (i) its main protein interactor, the substrate-selecting AAA+ ATPase ClpX, (ii) mitoribosomes, and (iii) mtDNA nucleoids are the main cellular consequences of ClpP absence. However, the sequence of these events and their validity in human remain unclear. Here, we studied global proteome profiles to define ClpP substrates among mitochondrial ClpX interactors, which accumulated consistently in ClpP-null mouse embryonal fibroblasts and brains. Validation work included novel ClpP-mutant patient fibroblast proteomics. ClpX co-accumulated in mitochondria with the nucleoid component POLDIP2, the mitochondrial poly(A) mRNA granule element LRPPRC, and tRNA processing factor GFM1 (in mouse, also GRSF1). Only in mouse did accumulated ClpX, GFM1, and GRSF1 appear in nuclear fractions. Mitoribosomal accumulation was minor. Consistent accumulations in murine and human fibroblasts also affected multimerizing factors not known as ClpX interactors, namely, OAT, ASS1, ACADVL, STOM, PRDX3, PC, MUT, ALDH2, PMPCB, UQCRC2, and ACADSB, but the impact on downstream metabolites was marginal. Our data demonstrate the primary impact of ClpXP on the assembly of proteins with nucleic acids and show nucleoid enlargement in human as a key consequence.
Collapse
|
63
|
Gene-corrected p.A30P SNCA patient-derived isogenic neurons rescue neuronal branching and function. Sci Rep 2021; 11:21946. [PMID: 34754035 PMCID: PMC8578337 DOI: 10.1038/s41598-021-01505-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/28/2021] [Indexed: 11/09/2022] Open
Abstract
Parkinson's disease (PD) is characterised by the degeneration of A9 dopaminergic neurons and the pathological accumulation of alpha-synuclein. The p.A30P SNCA mutation generates the pathogenic form of the alpha-synuclein protein causing an autosomal-dominant form of PD. There are limited studies assessing pathogenic SNCA mutations in patient-derived isogenic cell models. Here we provide a functional assessment of dopaminergic neurons derived from a patient harbouring the p.A30P SNCA mutation. Using two clonal gene-corrected isogenic cell lines we identified image-based phenotypes showing impaired neuritic processes. The pathological neurons displayed impaired neuronal activity, reduced mitochondrial respiration, an energy deficit, vulnerability to rotenone, and transcriptional alterations in lipid metabolism. Our data describes for the first time the mutation-only effect of the p.A30P SNCA mutation on neuronal function, supporting the use of isogenic cell lines in identifying image-based pathological phenotypes that can serve as an entry point for future disease-modifying compound screenings and drug discovery strategies.
Collapse
|
64
|
The Emerging Roles of Autophagy in Human Diseases. Biomedicines 2021; 9:biomedicines9111651. [PMID: 34829881 PMCID: PMC8615641 DOI: 10.3390/biomedicines9111651] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy, a process of cellular self-digestion, delivers intracellular components including superfluous and dysfunctional proteins and organelles to the lysosome for degradation and recycling and is important to maintain cellular homeostasis. In recent decades, autophagy has been found to help fight against a variety of human diseases, but, at the same time, autophagy can also promote the procession of certain pathologies, which makes the connection between autophagy and diseases complex but interesting. In this review, we summarize the advances in understanding the roles of autophagy in human diseases and the therapeutic methods targeting autophagy and discuss some of the remaining questions in this field, focusing on cancer, neurodegenerative diseases, infectious diseases and metabolic disorders.
Collapse
|
65
|
Smith AST, Chun C, Hesson J, Mathieu J, Valdmanis PN, Mack DL, Choi BO, Kim DH, Bothwell M. Human Induced Pluripotent Stem Cell-Derived TDP-43 Mutant Neurons Exhibit Consistent Functional Phenotypes Across Multiple Gene Edited Lines Despite Transcriptomic and Splicing Discrepancies. Front Cell Dev Biol 2021; 9:728707. [PMID: 34660586 PMCID: PMC8511491 DOI: 10.3389/fcell.2021.728707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022] Open
Abstract
Gene editing technologies hold great potential to enhance our ability to model inheritable neurodegenerative diseases. Specifically, engineering multiple amyotrophic lateral sclerosis (ALS) mutations into isogenic cell populations facilitates determination of whether different causal mutations cause pathology via shared mechanisms, and provides the capacity to separate these mechanisms from genotype-specific effects. As gene-edited, cell-based models of human disease become more commonplace, there is an urgent need to verify that these models constitute consistent and accurate representations of native biology. Here, commercially sourced, induced pluripotent stem cell-derived motor neurons from Cellular Dynamics International, edited to express the ALS-relevant mutations TDP-43M337V and TDP-43Q331K were compared with in-house derived lines engineered to express the TDP-43Q331K mutation within the WTC11 background. Our results highlight electrophysiological and mitochondrial deficits in these edited cells that correlate with patient-derived cells, suggesting a consistent cellular phenotype arising from TDP-43 mutation. However, significant differences in the transcriptomic profiles and splicing behavior of the edited cells underscores the need for careful comparison of multiple lines when attempting to use these cells as a means to better understand the onset and progression of ALS in humans.
Collapse
Affiliation(s)
- Alec S T Smith
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Changho Chun
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Jennifer Hesson
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Paul N Valdmanis
- Division of Medical Genetics, University of Washington, Seattle, WA, United States
| | - David L Mack
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Department of Bioengineering, University of Washington, Seattle, WA, United States.,Department of Rehabilitation Medicine, University of Washington, Seattle, WA, United States
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea.,Department of Health Sciences and Technology, The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark Bothwell
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
66
|
Picca A, Guerra F, Calvani R, Romano R, Coelho-Júnior HJ, Bucci C, Marzetti E. Mitochondrial Dysfunction, Protein Misfolding and Neuroinflammation in Parkinson's Disease: Roads to Biomarker Discovery. Biomolecules 2021; 11:biom11101508. [PMID: 34680141 PMCID: PMC8534011 DOI: 10.3390/biom11101508] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022] Open
Abstract
Parkinson’s Disease (PD) is a highly prevalent neurodegenerative disease among older adults. PD neuropathology is marked by the progressive loss of the dopaminergic neurons of the substantia nigra pars compacta and the widespread accumulation of misfolded intracellular α-synuclein (α-syn). Genetic mutations and post-translational modifications, such as α-syn phosphorylation, have been identified among the multiple factors supporting α-syn accrual during PD. A decline in the clearance capacity of the ubiquitin-proteasome and the autophagy-lysosomal systems, together with mitochondrial dysfunction, have been indicated as major pathophysiological mechanisms of PD neurodegeneration. The accrual of misfolded α-syn aggregates into soluble oligomers, and the generation of insoluble fibrils composing the core of intraneuronal Lewy bodies and Lewy neurites observed during PD neurodegeneration, are ignited by the overproduction of reactive oxygen species (ROS). The ROS activate the α-syn aggregation cascade and, together with the Lewy bodies, promote neurodegeneration. However, the molecular pathways underlying the dynamic evolution of PD remain undeciphered. These gaps in knowledge, together with the clinical heterogeneity of PD, have hampered the identification of the biomarkers that may be used to assist in diagnosis, treatment monitoring, and prognostication. Herein, we illustrate the main pathways involved in PD pathogenesis and discuss their possible exploitation for biomarker discovery.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (E.M.)
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, 17165 Stockholm, Sweden
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (E.M.)
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, 17165 Stockholm, Sweden
- Correspondence: ; Tel.: +39-(06)-3015-5559; Fax: +39-(06)-3051-911
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (E.M.)
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
67
|
Molecular Pathways Involved in Frontotemporal Lobar Degeneration with TDP-43 Proteinopathy: What Can We Learn from Proteomics? Int J Mol Sci 2021; 22:ijms221910298. [PMID: 34638637 PMCID: PMC8508653 DOI: 10.3390/ijms221910298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) is a neurodegenerative disorder clinically characterized by behavioral, language, and motor symptoms, with major impact on the lives of patients and their families. TDP-43 proteinopathy is the underlying neuropathological substrate in the majority of cases, referred to as FTLD-TDP. Several genetic causes have been identified, which have revealed some components of its pathophysiology. However, the exact mechanisms driving FTLD-TDP remain largely unknown, forestalling the development of therapies. Proteomic approaches, in particular high-throughput mass spectrometry, hold promise to help elucidate the pathogenic molecular and cellular alterations. In this review, we describe the main findings of the proteomic profiling studies performed on human FTLD-TDP brain tissue. Subsequently, we address the major biological pathways implicated in FTLD-TDP, by reviewing these data together with knowledge derived from genomic and transcriptomic literature. We illustrate that an integrated perspective, encompassing both proteomic, genetic, and transcriptomic discoveries, is vital to unravel core disease processes, and to enable the identification of disease biomarkers and therapeutic targets for this devastating disorder.
Collapse
|
68
|
UQCRC1 engages cytochrome c for neuronal apoptotic cell death. Cell Rep 2021; 36:109729. [PMID: 34551295 DOI: 10.1016/j.celrep.2021.109729] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 07/15/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Human ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) is an evolutionarily conserved core subunit of mitochondrial respiratory chain complex III. We recently identified the disease-associated variants of UQCRC1 from patients with familial parkinsonism, but its function remains unclear. Here we investigate the endogenous function of UQCRC1 in the human neuronal cell line and the Drosophila nervous system. Flies with neuronal knockdown of uqcrc1 exhibit age-dependent parkinsonism-resembling defects, including dopaminergic neuron reduction and locomotor decline, and are ameliorated by UQCRC1 expression. Lethality of uqcrc1-KO is also rescued by neuronally expressing UQCRC1, but not the disease-causing variant, providing a platform to discern the pathogenicity of this mutation. Furthermore, UQCRC1 associates with the apoptosis trigger cytochrome c (cyt-c), and uqcrc1 deficiency increases cyt-c in the cytoplasmic fraction and activates the caspase cascade. Depleting cyt-c or expression of the anti-apoptotic p35 ameliorates uqcrc1-mediated neurodegeneration. Our findings identify a role for UQCRC1 in regulating cyt-c-induced apoptosis.
Collapse
|
69
|
Li L, Conradson DM, Bharat V, Kim MJ, Hsieh CH, Minhas PS, Papakyrikos AM, Durairaj AS, Ludlam A, Andreasson KI, Partridge L, Cianfrocco MA, Wang X. A mitochondrial membrane-bridging machinery mediates signal transduction of intramitochondrial oxidation. Nat Metab 2021; 3:1242-1258. [PMID: 34504353 PMCID: PMC8460615 DOI: 10.1038/s42255-021-00443-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Mitochondria are the main site for generating reactive oxygen species, which are key players in diverse biological processes. However, the molecular pathways of redox signal transduction from the matrix to the cytosol are poorly defined. Here we report an inside-out redox signal of mitochondria. Cysteine oxidation of MIC60, an inner mitochondrial membrane protein, triggers the formation of disulfide bonds and the physical association of MIC60 with Miro, an outer mitochondrial membrane protein. The oxidative structural change of this membrane-crossing complex ultimately elicits cellular responses that delay mitophagy, impair cellular respiration and cause oxidative stress. Blocking the MIC60-Miro interaction or reducing either protein, genetically or pharmacologically, extends lifespan and health-span of healthy fruit flies, and benefits multiple models of Parkinson's disease and Friedreich's ataxia. Our discovery provides a molecular basis for common treatment strategies against oxidative stress.
Collapse
Affiliation(s)
- Li Li
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Devon M Conradson
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Vinita Bharat
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Min Joo Kim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Chung-Han Hsieh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Paras S Minhas
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Neurosciences Intradepartmental Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Amanda M Papakyrikos
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Graduate Program in Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Anthony Ludlam
- Life Sciences Institute & Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Katrin I Andreasson
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
- Program in Immunology, Stanford University, Stanford, CA, USA
| | - Linda Partridge
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, London, UK
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Michael A Cianfrocco
- Life Sciences Institute & Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Maternal & Child Health Research Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
70
|
Liu YT, Huang X, Nguyen D, Shammas MK, Wu BP, Dombi E, Springer DA, Poulton J, Sekine S, Narendra DP. Loss of CHCHD2 and CHCHD10 activates OMA1 peptidase to disrupt mitochondrial cristae phenocopying patient mutations. Hum Mol Genet 2021; 29:1547-1567. [PMID: 32338760 DOI: 10.1093/hmg/ddaa077] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/24/2020] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
Dominant mutations in the mitochondrial paralogs coiled-helix-coiled-helix (CHCHD) domain 2 (C2) and CHCHD10 (C10) were recently identified as causing Parkinson's disease and amyotrophic lateral sclerosis/frontotemporal dementia/myopathy, respectively. The mechanism by which they disrupt mitochondrial cristae, however, has been uncertain. Using the first C2/C10 double knockout (DKO) mice, we report that C10 pathogenesis and the normal function of C2/C10 are intimately linked. Similar to patients with C10 mutations, we found that C2/C10 DKO mice have disrupted mitochondrial cristae, because of cleavage of the mitochondrial-shaping protein long form of OPA1 (L-OPA1) by the stress-induced peptidase OMA1. OMA1 was found to be activated similarly in affected tissues of mutant C10 knock-in (KI) mice, demonstrating that L-OPA1 cleavage is a novel mechanism for cristae abnormalities because of both C10 mutation and C2/C10 loss. Using OMA1 activation as a functional assay, we found that C2 and C10 are partially functionally redundant, and some but not all disease-causing mutations have retained activity. Finally, C2/C10 DKO mice partially phenocopied mutant C10 KI mice with the development of cardiomyopathy and activation of the integrated mitochondrial integrated stress response in affected tissues, tying mutant C10 pathogenesis to C2/C10 function.
Collapse
Affiliation(s)
- Yi-Ting Liu
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoping Huang
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana Nguyen
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mario K Shammas
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beverly P Wu
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eszter Dombi
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Danielle A Springer
- Murine Phenotyping Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Shiori Sekine
- Aging Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Derek P Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
71
|
Cornelissen T, Spinazzi M, Martin S, Imberechts D, Vangheluwe P, Bird M, De Strooper B, Vandenberghe W. CHCHD2 harboring Parkinson's disease-linked T61I mutation precipitates inside mitochondria and induces precipitation of wild-type CHCHD2. Hum Mol Genet 2021; 29:1096-1106. [PMID: 32068847 DOI: 10.1093/hmg/ddaa028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/25/2022] Open
Abstract
The T61I mutation in coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2), a protein residing in the mitochondrial intermembrane space (IMS), causes an autosomal dominant form of Parkinson's disease (PD), but the underlying pathogenic mechanisms are not well understood. Here, we compared the subcellular localization and solubility of wild-type (WT) and T61I mutant CHCHD2 in human cells. We found that mitochondrial targeting of both WT and T61I CHCHD2 depended on the four cysteine residues in the C-terminal coiled-coil-helix-coiled-coil-helix (CHCH) domain but not on the N-terminal predicted mitochondrial targeting sequence. The T61I mutation did not interfere with mitochondrial targeting of the mutant protein but induced its precipitation in the IMS. Moreover, T61I CHCHD2 induced increased mitochondrial production of reactive oxygen species and apoptosis, which was prevented by treatment with anti-oxidants. Retention of T61I CHCHD2 in the cytosol through mutation of the cysteine residues in the CHCH domain prevented its precipitation as well as its apoptosis-inducing effect. Importantly, T61I CHCHD2 potently impaired the solubility of WT CHCHD2. In conclusion, our data show that the T61I mutation renders mutant CHCHD2 insoluble inside mitochondria, suggesting loss of function of the mutant protein. In addition, T61I CHCHD2 exerts a dominant-negative effect on the solubility of WT CHCHD2, explaining the dominant inheritance of this form of PD.
Collapse
Affiliation(s)
- Tom Cornelissen
- Laboratory for Parkinson Research, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Marco Spinazzi
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.,Department of Neurology, Neuromuscular Referral Center, University Hospital of Angers, 49933 Angers, France
| | - Shaun Martin
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Dorien Imberechts
- Laboratory for Parkinson Research, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Matthew Bird
- Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Wim Vandenberghe
- Laboratory for Parkinson Research, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
72
|
Li W, Fu Y, Halliday GM, Sue CM. PARK Genes Link Mitochondrial Dysfunction and Alpha-Synuclein Pathology in Sporadic Parkinson's Disease. Front Cell Dev Biol 2021; 9:612476. [PMID: 34295884 PMCID: PMC8291125 DOI: 10.3389/fcell.2021.612476] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/10/2021] [Indexed: 11/28/2022] Open
Abstract
Parkinson’s disease (PD) is an age-related neurodegenerative disorder affecting millions of people worldwide. The disease is characterized by the progressive loss of dopaminergic neurons and spread of Lewy pathology (α-synuclein aggregates) in the brain but the pathogenesis remains elusive. PD presents substantial clinical and genetic variability. Although its complex etiology and pathogenesis has hampered the breakthrough in targeting disease modification, recent genetic tools advanced our approaches. As such, mitochondrial dysfunction has been identified as a major pathogenic hub for both familial and sporadic PD. In this review, we summarize the effect of mutations in 11 PARK genes (SNCA, PRKN, PINK1, DJ-1, LRRK2, ATP13A2, PLA2G6, FBXO7, VPS35, CHCHD2, and VPS13C) on mitochondrial function as well as their relevance in the formation of Lewy pathology. Overall, these genes play key roles in mitochondrial homeostatic control (biogenesis and mitophagy) and functions (e.g., energy production and oxidative stress), which may crosstalk with the autophagy pathway, induce proinflammatory immune responses, and increase oxidative stress that facilitate the aggregation of α-synuclein. Thus, rectifying mitochondrial dysregulation represents a promising therapeutic approach for neuroprotection in PD.
Collapse
Affiliation(s)
- Wen Li
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - YuHong Fu
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Carolyn M Sue
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
73
|
Kaur I, Behl T, Sehgal A, Singh S, Sharma N, Aleya L, Bungau S. Connecting the dots between mitochondrial dysfunction and Parkinson's disorder: focus mitochondria-targeting therapeutic paradigm in mitigating the disease severity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37060-37081. [PMID: 34053042 DOI: 10.1007/s11356-021-14619-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Mitochondria are unique cell organelles, which exhibit multifactorial roles in numerous cell physiological processes, significantly preserving the integrity of neural synaptic interconnections, mediating ATP production, and regulating apoptotic signaling pathways and calcium homeostasis. Multiple neurological disorders occur as a consequence of impaired mitochondrial functioning, with greater sensitivity of dopaminergic (DA) neurons to mitochondrial dysfunction, due to oxidative nature and low mitochondrial mass, thus supporting the contribution of mitochondrial impairment in Parkinson's disorder (neuronal damage due to curbed dopamine levels). The pathophysiology of the second most common disorder, PD, is potentiated by various mitochondrial homeostasis regulating genes, as discussed in the review. The PD symptoms are known to be aggravated by multiple mitochondria-linked alterations, like reactive oxygen species (ROS) production, Ca2+ buffering, imbalanced mitochondrial dynamics (fission, fusion, mitophagy), biogenetic dysfunctions, disrupted mitochondrial membrane potential (MMP), protein aggregation, neurotoxins, and genetic mutations, which manifest the central involvement of unhealthy mitochondria in neurodegeneration, resulting in retarded DA neurons in region of substantia nigra pars compacta (SNpc), causing PD. Furthermore, the review tends to target altered mitochondrial components, like oxidative stress, inflammation, biogenetic alterations, impaired dynamics, uncontrolled homeostasis, and genetic mutations, to provide a sustainable and reliable alternative in PD therapeutics and to overcome the pitfalls of conventional therapeutic agents. Therefore, the authors elaborate the relationship between PD pathogenesis and mitochondrial dysfunctions, followed by a suitable mitochondria-targeting therapeutic portfolio, as well as future considerations, aiding the researchers to investigate novel strategies to mitigate the severity of the disease.
Collapse
Affiliation(s)
- Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
74
|
Kee TR, Espinoza Gonzalez P, Wehinger JL, Bukhari MZ, Ermekbaeva A, Sista A, Kotsiviras P, Liu T, Kang DE, Woo JAA. Mitochondrial CHCHD2: Disease-Associated Mutations, Physiological Functions, and Current Animal Models. Front Aging Neurosci 2021; 13:660843. [PMID: 33967741 PMCID: PMC8100248 DOI: 10.3389/fnagi.2021.660843] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
Rare mutations in the mitochondrial protein coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) are associated with Parkinson's disease (PD) and other Lewy body disorders. CHCHD2 is a bi-organellar mediator of oxidative phosphorylation, playing crucial roles in regulating electron flow in the mitochondrial electron transport chain and acting as a nuclear transcription factor for a cytochrome c oxidase subunit (COX4I2) and itself in response to hypoxic stress. CHCHD2 also regulates cell migration and differentiation, mitochondrial cristae structure, and apoptosis. In this review, we summarize the known disease-associated mutations of CHCHD2 in Asian and Caucasian populations, the physiological functions of CHCHD2, how CHCHD2 mutations contribute to α-synuclein pathology, and current animal models of CHCHD2. Further, we discuss the necessity of continued investigation into the divergent functions of CHCHD2 and CHCHD10 to determine how mutations in these similar mitochondrial proteins contribute to different neurodegenerative diseases.
Collapse
Affiliation(s)
- Teresa R Kee
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Pharmacology and Physiology, USF Health Morsani College of Medicine, Tampa, FL, United States
| | | | - Jessica L Wehinger
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Mohammed Zaheen Bukhari
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - Aizara Ermekbaeva
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Apoorva Sista
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Peter Kotsiviras
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Tian Liu
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - David E Kang
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States.,James A. Haley Veterans Administration Hospital, Tampa, FL, United States
| | - Jung-A A Woo
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Pharmacology and Physiology, USF Health Morsani College of Medicine, Tampa, FL, United States
| |
Collapse
|
75
|
Ciomborowska-Basheer J, Staszak K, Kubiak MR, Makałowska I. Not So Dead Genes-Retrocopies as Regulators of Their Disease-Related Progenitors and Hosts. Cells 2021; 10:cells10040912. [PMID: 33921034 PMCID: PMC8071448 DOI: 10.3390/cells10040912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Retroposition is RNA-based gene duplication leading to the creation of single exon nonfunctional copies. Nevertheless, over time, many of these duplicates acquire transcriptional capabilities. In human in most cases, these so-called retrogenes do not code for proteins but function as regulatory long noncoding RNAs (lncRNAs). The mechanisms by which they can regulate other genes include microRNA sponging, modulation of alternative splicing, epigenetic regulation and competition for stabilizing factors, among others. Here, we summarize recent findings related to lncRNAs originating from retrocopies that are involved in human diseases such as cancer and neurodegenerative, mental or cardiovascular disorders. Special attention is given to retrocopies that regulate their progenitors or host genes. Presented evidence from the literature and our bioinformatics analyses demonstrates that these retrocopies, often described as unimportant pseudogenes, are significant players in the cell’s molecular machinery.
Collapse
|
76
|
PGC-1s in the Spotlight with Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22073487. [PMID: 33800548 PMCID: PMC8036867 DOI: 10.3390/ijms22073487] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is one of the most common neurodegenerative disorders worldwide, characterized by a progressive loss of dopaminergic neurons mainly localized in the substantia nigra pars compacta. In recent years, the detailed analyses of both genetic and idiopathic forms of the disease have led to a better understanding of the molecular and cellular pathways involved in PD, pointing to the centrality of mitochondrial dysfunctions in the pathogenic process. Failure of mitochondrial quality control is now considered a hallmark of the disease. The peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) family acts as a master regulator of mitochondrial biogenesis. Therefore, keeping PGC-1 level in a proper range is fundamental to guarantee functional neurons. Here we review the major findings that tightly bond PD and PGC-1s, raising important points that might lead to future investigations.
Collapse
|
77
|
Baek M, Choe YJ, Bannwarth S, Kim J, Maitra S, Dorn GW, Taylor JP, Paquis-Flucklinger V, Kim NC. TDP-43 and PINK1 mediate CHCHD10 S59L mutation-induced defects in Drosophila and in vitro. Nat Commun 2021; 12:1924. [PMID: 33772006 PMCID: PMC7997989 DOI: 10.1038/s41467-021-22145-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/03/2021] [Indexed: 02/01/2023] Open
Abstract
Mutations in coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) can cause amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). However, the underlying mechanisms are unclear. Here, we generate CHCH10S59L-mutant Drosophila melanogaster and HeLa cell lines to model CHCHD10-associated ALS-FTD. The CHCHD10S59L mutation results in cell toxicity in several tissues and mitochondrial defects. CHCHD10S59L independently affects the TDP-43 and PINK1 pathways. CHCHD10S59L expression increases TDP-43 insolubility and mitochondrial translocation. Blocking TDP-43 mitochondrial translocation with a peptide inhibitor reduced CHCHD10S59L-mediated toxicity. While genetic and pharmacological modulation of PINK1 expression and activity of its substrates rescues and mitigates the CHCHD10S59L-induced phenotypes and mitochondrial defects, respectively, in both Drosophila and HeLa cells. Our findings suggest that CHCHD10S59L-induced TDP-43 mitochondrial translocation and chronic activation of PINK1-mediated pathways result in dominant toxicity, providing a mechanistic insight into the CHCHD10 mutations associated with ALS-FTD.
Collapse
Affiliation(s)
- Minwoo Baek
- grid.17635.360000000419368657Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN USA
| | - Yun-Jeong Choe
- grid.17635.360000000419368657Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN USA
| | - Sylvie Bannwarth
- grid.410528.a0000 0001 2322 4179Inserm U1081, CNRS UMR7284, IRCAN, Université Côte d’Azur, CHU de Nice, Nice, France
| | - JiHye Kim
- grid.17635.360000000419368657Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN USA
| | - Swati Maitra
- grid.17635.360000000419368657Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN USA
| | - Gerald W. Dorn
- grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO USA
| | - J. Paul Taylor
- grid.240871.80000 0001 0224 711XHoward Hughes Medical Institute and Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Veronique Paquis-Flucklinger
- grid.410528.a0000 0001 2322 4179Inserm U1081, CNRS UMR7284, IRCAN, Université Côte d’Azur, CHU de Nice, Nice, France
| | - Nam Chul Kim
- grid.17635.360000000419368657Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN USA
| |
Collapse
|
78
|
Liu X, Wang Q, Yang Y, Stewart T, Shi M, Soltys D, Liu G, Thorland E, Cilento EM, Hou Y, Liu Z, Feng T, Zhang J. Reduced erythrocytic CHCHD2 mRNA is associated with brain pathology of Parkinson's disease. Acta Neuropathol Commun 2021; 9:37. [PMID: 33685516 PMCID: PMC7941904 DOI: 10.1186/s40478-021-01133-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/21/2021] [Indexed: 11/24/2022] Open
Abstract
Peripheral biomarkers indicative of brain pathology are critically needed for early detection of Parkinson’s disease (PD). In this study, using NanoString and digital PCR technologies, we began by screening for alterations in genes associated with PD or atypical Parkinsonism in erythrocytes of PD patients, in which PD-related changes have been reported, and which contain ~ 99% of blood α-synuclein. Erythrocytic CHCHD2 mRNA was significantly reduced even at the early stages of the disease. A significant reduction in protein and/or mRNA expression of CHCHD2 was confirmed in PD brains collected at autopsy as well as in the brains of a PD animal model overexpressing α-synuclein, in addition to seeing a reduction of CHCHD2 in erythrocytes of the same animals. Overexpression of α-synuclein in cellular models of PD also resulted in reduced CHCHD2, via mechanisms likely involving altered subcellular localization of p300 histone acetyltransferase. Finally, the utility of reduced CHCHD2 mRNA as a biomarker for detecting PD, including early-stage PD, was validated in a larger cohort of 205 PD patients and 135 normal controls, with a receiver operating characteristic analysis demonstrating > 80% sensitivity and specificity.
Collapse
|
79
|
Sato S, Noda S, Torii S, Amo T, Ikeda A, Funayama M, Yamaguchi J, Fukuda T, Kondo H, Tada N, Arakawa S, Watanabe M, Uchiyama Y, Shimizu S, Hattori N. Homeostatic p62 levels and inclusion body formation in CHCHD2 knockout mice. Hum Mol Genet 2021; 30:443-453. [PMID: 33631794 DOI: 10.1093/hmg/ddab057] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 01/20/2023] Open
Abstract
Inactivation of constitutive autophagy results in the formation of cytoplasmic inclusions in neurones, but the relationship between impaired autophagy and Lewy bodies (LBs) remains unknown. α-Synuclein and p62, components of LBs, are the defining characteristic of Parkinson's disease (PD). Until now, we have analyzed mice models and demonstrated p62 aggregates derived from an autophagic defect might serve as 'seeds' and can potentially be a cause of LB formation. P62 may be the key molecule for aggregate formation. To understand the mechanisms of LBs, we analyzed p62 homeostasis and inclusion formation using PD model mice. In PARK22-linked PD, intrinsically disordered mutant CHCHD2 initiates Lewy pathology. To determine the function of CHCHD2 for inclusions formation, we generated Chchd2-knockout (KO) mice and characterized the age-related pathological and motor phenotypes. Chchd2 KO mice exhibited p62 inclusion formation and dopaminergic neuronal loss in an age-dependent manner. These changes were associated with a reduction in mitochondria complex activity and abrogation of inner mitochondria structure. In particular, the OPA1 proteins, which regulate fusion of mitochondrial inner membranes, were immature in the mitochondria of CHCHD2-deficient mice. CHCHD2 regulates mitochondrial morphology and p62 homeostasis by controlling the level of OPA1. Our findings highlight the unexpected role of the homeostatic level of p62, which is regulated by a non-autophagic system, in controlling intracellular inclusion body formation, and indicate that the pathologic processes associated with the mitochondrial proteolytic system are crucial for loss of DA neurones.
Collapse
Affiliation(s)
- Shigeto Sato
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Sachiko Noda
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Satoru Torii
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Taku Amo
- Department of Applied Chemistry, National Defense Academy, Yokosuka 239-8686, Japan
| | - Aya Ikeda
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Manabu Funayama
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Junji Yamaguchi
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, 113-8421, Japan
| | - Takahiro Fukuda
- Division of Neuropathology, Department of Neuropathology, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hiromi Kondo
- Histology Center, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Norihiro Tada
- Atopy Research Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Satoko Arakawa
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
80
|
Ryan ÉB, Yan J, Miller N, Dayanidhi S, Ma YC, Deng HX, Siddique T. Early death of ALS-linked CHCHD10-R15L transgenic mice with central nervous system, skeletal muscle, and cardiac pathology. iScience 2021; 24:102061. [PMID: 33659869 PMCID: PMC7890413 DOI: 10.1016/j.isci.2021.102061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 08/27/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Mutations in coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) have been identified in patients suffering from various degenerative diseases including mitochondrial myopathy, spinal muscular atrophy Jokela type, frontotemporal dementia, and/or amyotrophic lateral sclerosis (ALS). The pathogenic mechanism underlying CHCHD10-linked divergent disorders remains largely unknown. Here we show that transgenic mice overexpressing an ALS-linked CHCHD10 p.R15L mutation leads to an abbreviated lifespan compared with CHCHD10-WT transgenic mice. The occurrence and severity of the phenotype correlates to transgene copy number. Central nervous system (CNS), skeletal muscle, and cardiac pathology is apparent in CHCHD10-R15L transgenic mice. Despite the pathology, CHCHD10-R15L transgenic mice perform comparably to control mice in motor behavioral tasks until very close to death. Although paralysis is not observed, these models provide insight into the pleiotropic nature of CHCHD10 and suggest a contribution of CNS, skeletal muscle, and cardiac pathology to CHCHD10 p.R15L-ALS pathogenesis.
Collapse
Affiliation(s)
- Éanna B. Ryan
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
| | - Jianhua Yan
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Nimrod Miller
- Ann and Robert H. Lurie Children's Hospital of Chicago and Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sudarshan Dayanidhi
- Shirley Ryan AbilityLab and Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yongchao C. Ma
- Ann and Robert H. Lurie Children's Hospital of Chicago and Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Han-Xiang Deng
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Teepu Siddique
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
81
|
Gundamaraju R, Lu W, Manikam R. CHCHD2: The Power House's Potential Prognostic Factor for Cancer? Front Cell Dev Biol 2021; 8:620816. [PMID: 33537311 PMCID: PMC7849849 DOI: 10.3389/fcell.2020.620816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rohit Gundamaraju
- ER stress & Gut Mucosal Immunology Group, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Rishya Manikam
- Emergency and Acute Care Centre, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
82
|
Inoshita T, Takemoto D, Imai Y. Analysis of Dopaminergic Functions in Drosophila. Methods Mol Biol 2021; 2322:185-193. [PMID: 34043204 DOI: 10.1007/978-1-0716-1495-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dopaminergic (DA) neurons regulate various physiological functions, including motor function, emotion, learning, sleep, and arousal. Degeneration of DA neurons in the substantia nigra of the midbrain causes motor disturbance in Parkinson's disease (PD). Studies on familial PD have revealed that a subset of PD genes encode proteins that regulate mitochondrial function and synaptic dynamics. Drosophila is a powerful model of PD, whereby genetic interactions of PD genes with well-conserved cellular signaling can be evaluated. Morphological changes in mitochondria, along with dysfunction and degeneration of DA neurons, have been reported in many studies using Drosophila PD models. In this chapter, we will describe imaging methods to visualize mitochondria in DA neurons and to evaluate spontaneous neural activity of DA neurons in the Drosophila brain.
Collapse
Affiliation(s)
- Tsuyoshi Inoshita
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daisaku Takemoto
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
83
|
Mitochondrial Dysfunction and Mitophagy in Parkinson's Disease: From Mechanism to Therapy. Trends Biochem Sci 2020; 46:329-343. [PMID: 33323315 DOI: 10.1016/j.tibs.2020.11.007] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction has been associated with neurodegeneration in Parkinson's disease (PD) for over 30 years. Despite this, the role of mitochondrial dysfunction as an initiator, propagator, or bystander remains undetermined. The discovery of the role of the PD familial genes PTEN-induced putative kinase 1 (PINK1) and parkin (PRKN) in mediating mitochondrial degradation (mitophagy) reaffirmed the importance of this process in PD aetiology. Recently, progress has been made in understanding the upstream and downstream regulators of canonical PINK1/parkin-mediated mitophagy, alongside noncanonical PINK1/parkin mitophagy, in response to mitochondrial damage. Progress has also been made in understanding the role of PD-associated genes, such as SNCA, LRRK2, and CHCHD2, in mitochondrial dysfunction and their overlap with sporadic PD (sPD), opening opportunities for therapeutically targeting mitochondria in PD.
Collapse
|
84
|
Hall-Roberts H, Agarwal D, Obst J, Smith TB, Monzón-Sandoval J, Di Daniel E, Webber C, James WS, Mead E, Davis JB, Cowley SA. TREM2 Alzheimer's variant R47H causes similar transcriptional dysregulation to knockout, yet only subtle functional phenotypes in human iPSC-derived macrophages. Alzheimers Res Ther 2020; 12:151. [PMID: 33198789 PMCID: PMC7667762 DOI: 10.1186/s13195-020-00709-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/20/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND TREM2 is a microglial cell surface receptor, with risk mutations linked to Alzheimer's disease (AD), including R47H. TREM2 signalling via SYK aids phagocytosis, chemotaxis, survival, and changes to microglial activation state. In AD mouse models, knockout (KO) of TREM2 impairs microglial clustering around amyloid and prevents microglial activation. The R47H mutation is proposed to reduce TREM2 ligand binding. We investigated cell phenotypes of the R47H mutant and TREM2 KO in a model of human microglia, and compared their transcriptional signatures, to determine the mechanism by which R47H TREM2 disrupts function. METHODS We generated human microglia-like iPSC-macrophages (pMac) from isogenic induced pluripotent stem cell (iPSC) lines, with homozygous R47H mutation or TREM2 knockout (KO). We firstly validated the effect of the R47H mutant on TREM2 surface and subcellular localization in pMac. To assess microglial phenotypic function, we measured phagocytosis of dead neurons, cell morphology, directed migration, survival, and LPS-induced inflammation. We performed bulk RNA-seq, comparing significant differentially expressed genes (DEGs; p < 0.05) between the R47H and KO versus WT, and bioinformatically predicted potential upstream regulators of TREM2-mediated gene expression. RESULTS R47H modified surface expression and shedding of TREM2, but did not impair TREM2-mediated signalling, or gross phenotypes that were dysregulated in the TREM2 KO (phagocytosis, motility, survival). However, altered gene expression in the R47H TREM2 pMac overlapped by 90% with the TREM2 KO and was characterised by dysregulation of genes involved with immunity, proliferation, activation, chemotaxis, and adhesion. Downregulated mediators of ECM adhesion included the vitronectin receptor αVβ3, and consequently, R47H TREM2 pMac adhered weakly to vitronectin compared with WT pMac. To counteract these transcriptional defects, we investigated TGFβ1, as a candidate upstream regulator. TGFβ1 failed to rescue vitronectin adhesion of pMac, although it improved αVβ3 expression. CONCLUSIONS The R47H mutation is not sufficient to cause gross phenotypic defects of human pMac under standard culture conditions. However, overlapping transcriptional defects with TREM2 KO supports the hypothesised partial loss-of-function effects of the R47H mutation. Furthermore, transcriptomics can guide us to more subtle phenotypic defects in the R47H cells, such as reduced cell adhesion, and can be used to predict targets for therapeutic intervention.
Collapse
Affiliation(s)
- Hazel Hall-Roberts
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE UK
- Nuffield Department of Medicine Research Building, Alzheimer’s Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - Devika Agarwal
- Nuffield Department of Medicine Research Building, Alzheimer’s Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS UK
| | - Juliane Obst
- Nuffield Department of Medicine Research Building, Alzheimer’s Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - Thomas B. Smith
- Nuffield Department of Medicine Research Building, Alzheimer’s Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | | | - Elena Di Daniel
- Nuffield Department of Medicine Research Building, Alzheimer’s Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - Caleb Webber
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ UK
| | - William S. James
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE UK
| | - Emma Mead
- Nuffield Department of Medicine Research Building, Alzheimer’s Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - John B. Davis
- Nuffield Department of Medicine Research Building, Alzheimer’s Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - Sally A. Cowley
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE UK
| |
Collapse
|
85
|
Abstract
Parkinson’s Disease (PD) is a complex neurodegenerative disorder that mainly results due to the loss of dopaminergic neurons in the substantia nigra of the midbrain. It is well known that dopamine is synthesized in substantia nigra and is transported to the striatumvianigrostriatal tract. Besides the sporadic forms of PD, there are also familial cases of PD and number of genes (both autosomal dominant as well as recessive) are responsible for PD. There is no permanent cure for PD and to date, L-dopa therapy is considered to be the best option besides having dopamine agonists. In the present review, we have described the genes responsible for PD, the role of dopamine, and treatment strategies adopted for controlling the progression of PD in humans.
Collapse
|
86
|
Transmembrane BAX Inhibitor-1 Motif Containing Protein 5 (TMBIM5) Sustains Mitochondrial Structure, Shape, and Function by Impacting the Mitochondrial Protein Synthesis Machinery. Cells 2020; 9:cells9102147. [PMID: 32977469 PMCID: PMC7598220 DOI: 10.3390/cells9102147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
The Transmembrane Bax Inhibitor-1 motif (TMBIM)-containing protein family is evolutionarily conserved and has been implicated in cell death susceptibility. The only member with a mitochondrial localization is TMBIM5 (also known as GHITM or MICS1), which affects cristae organization and associates with the Parkinson's disease-associated protein CHCHD2 in the inner mitochondrial membrane. We here used CRISPR-Cas9-mediated knockout HAP1 cells to shed further light on the function of TMBIM5 in physiology and cell death susceptibility. We found that compared to wild type, TMBIM5-knockout cells were smaller and had a slower proliferation rate. In these cells, mitochondria were more fragmented with a vacuolar cristae structure. In addition, the mitochondrial membrane potential was reduced and respiration was attenuated, leading to a reduced mitochondrial ATP generation. TMBIM5 did not associate with Mic10 and Mic60, which are proteins of the mitochondrial contact site and cristae organizing system (MICOS), nor did TMBIM5 knockout affect their expression levels. TMBIM5-knockout cells were more sensitive to apoptosis elicited by staurosporine and BH3 mimetic inhibitors of Bcl-2 and Bcl-XL. An unbiased proteomic comparison identified a dramatic downregulation of proteins involved in the mitochondrial protein synthesis machinery in TMBIM5-knockout cells. We conclude that TMBIM5 is important to maintain the mitochondrial structure and function possibly through the control of mitochondrial biogenesis.
Collapse
|
87
|
Trinh D, Israwi AR, Arathoon LR, Gleave JA, Nash JE. The multi-faceted role of mitochondria in the pathology of Parkinson's disease. J Neurochem 2020; 156:715-752. [PMID: 33616931 DOI: 10.1111/jnc.15154] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
Mitochondria are essential for neuronal function. They produce ATP to meet energy demands, regulate homeostasis of ion levels such as calcium and regulate reactive oxygen species that cause oxidative cellular stress. Mitochondria have also been shown to regulate protein synthesis within themselves, as well as within the nucleus, and also influence synaptic plasticity. These roles are especially important for neurons, which have higher energy demands and greater susceptibility to stress. Dysfunction of mitochondria has been associated with several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Huntington's disease, Glaucoma and Amyotrophic Lateral Sclerosis. The focus of this review is on how and why mitochondrial function is linked to the pathology of Parkinson's disease (PD). Many of the PD-linked genetic mutations which have been identified result in dysfunctional mitochondria, through a wide-spread number of mechanisms. In this review, we describe how susceptible neurons are predisposed to be vulnerable to the toxic events that occur during the neurodegenerative process of PD, and how mitochondria are central to these pathways. We also discuss ways in which proteins linked with familial PD control mitochondrial function, both physiologically and pathologically, along with their implications in genome-wide association studies and risk assessment. Finally, we review potential strategies for disease modification through mitochondrial enhancement. Ultimately, agents capable of both improving and/or restoring mitochondrial function, either alone, or in conjunction with other disease-modifying agents may halt or slow the progression of neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Dennison Trinh
- Department of Biological Sciences, University of Toronto Scarborough, Centre for Neurobiology of Stress, Toronto, ON, Canada
| | - Ahmad R Israwi
- Department of Biological Sciences, University of Toronto Scarborough, Centre for Neurobiology of Stress, Toronto, ON, Canada
| | - Lindsay R Arathoon
- Department of Biological Sciences, University of Toronto Scarborough, Centre for Neurobiology of Stress, Toronto, ON, Canada
| | - Jacqueline A Gleave
- Department of Biological Sciences, University of Toronto Scarborough, Centre for Neurobiology of Stress, Toronto, ON, Canada
| | - Joanne E Nash
- Department of Biological Sciences, University of Toronto Scarborough, Centre for Neurobiology of Stress, Toronto, ON, Canada
| |
Collapse
|
88
|
PET Imaging for Oxidative Stress in Neurodegenerative Disorders Associated with Mitochondrial Dysfunction. Antioxidants (Basel) 2020; 9:antiox9090861. [PMID: 32937849 PMCID: PMC7554831 DOI: 10.3390/antiox9090861] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress based on mitochondrial dysfunction is assumed to be the principal molecular mechanism for the pathogenesis of many neurodegenerative disorders. However, the effects of oxidative stress on the neurodegeneration process in living patients remain to be elucidated. Molecular imaging with positron emission tomography (PET) can directly evaluate subtle biological changes, including the redox status. The present review focuses on recent advances in PET imaging for oxidative stress, in particular the use of the Cu-ATSM radioligand, in neurodegenerative disorders associated with mitochondrial dysfunction. Since reactive oxygen species are mostly generated by leakage of excess electrons from an over-reductive state due to mitochondrial respiratory chain impairment, PET with 62Cu-ATSM, the accumulation of which depends on an over-reductive state, is able to image oxidative stress. 62Cu-ATSM PET studies demonstrated enhanced oxidative stress in the disease-related brain regions of patients with mitochondrial disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Furthermore, the magnitude of oxidative stress increased with disease severity, indicating that oxidative stress based on mitochondrial dysfunction contributes to promoting neurodegeneration in these diseases. Oxidative stress imaging has improved our insights into the pathological mechanisms of neurodegenerative disorders, and is a promising tool for monitoring further antioxidant therapies.
Collapse
|
89
|
Correa-Vela M, Lupo V, Montpeyó M, Sancho P, Marcé-Grau A, Hernández-Vara J, Darling A, Jenkins A, Fernández-Rodríguez S, Tello C, Ramírez-Jiménez L, Pérez B, Sánchez-Montáñez Á, Macaya A, Sobrido MJ, Martinez-Vicente M, Pérez-Dueñas B, Espinós C. Impaired proteasome activity and neurodegeneration with brain iron accumulation in FBXO7 defect. Ann Clin Transl Neurol 2020; 7:1436-1442. [PMID: 32767480 PMCID: PMC7448169 DOI: 10.1002/acn3.51095] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022] Open
Abstract
FBXO7 is implicated in the ubiquitin-proteasome system and parkin-mediated mitophagy. FBXO7defects cause a levodopa-responsive parkinsonian-pyramidal syndrome(PPS). METHODS We investigated the disease molecular bases in a child with PPS and brain iron accumulation. RESULTS A novel homozygous c.368C>G (p.S123*) FBXO7 mutation was identified in a child with spastic paraplegia, epilepsy, cerebellar degeneration, levodopa nonresponsive parkinsonism, and brain iron deposition. Patient's fibroblasts assays demonstrated an absence of FBXO7 RNA expression leading to impaired proteasome degradation and accumulation of poly-ubiquitinated proteins. CONCLUSION This novel FBXO7 phenotype associated with impaired proteasome activity overlaps with neurodegeneration with brain iron accumulation disorders.
Collapse
Affiliation(s)
- Marta Correa-Vela
- Department of Pediatric Neurology, Hospital Universitari Vall d'Hebron, Vall d´Hebron Institut de Recerca, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vincenzo Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Joint Units INCLIVA & IIS La Fe Rare Diseases, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Marta Montpeyó
- Neurodegenerative diseases-CIBERNED, Vall d´Hebron, Institut de Recerca, Barcelona, Spain
| | - Paula Sancho
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Joint Units INCLIVA & IIS La Fe Rare Diseases, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Anna Marcé-Grau
- Department of Pediatric Neurology, Hospital Universitari Vall d'Hebron, Vall d´Hebron Institut de Recerca, Barcelona, Spain
| | | | - Alejandra Darling
- Department of Pediatric Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Alison Jenkins
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Sandra Fernández-Rodríguez
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Cristina Tello
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Laura Ramírez-Jiménez
- Unit of Genomics and Traslational Genetics, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Belén Pérez
- Department of Molecular Biology, Centro de Biología Molecular Severo-Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), CIBER on Rare Diseases (CIBERER), Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), Madrid, Spain
| | - Ángel Sánchez-Montáñez
- Department of Pediatric Radiology, Hospital Universitari Vall d'Hebrón, Barcelona, Spain
| | - Alfons Macaya
- Department of Pediatric Neurology, Hospital Universitari Vall d'Hebron, Vall d´Hebron Institut de Recerca, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María J Sobrido
- Neurogenetics Research Group, Instituto de Investigaciones Sanitarias (IDIS), Fundación Pública Galega de Medicina Xenómica, and CIBER on Rare Diseases (CIBERER), Santiago de Compostela, Spain
| | | | - Belén Pérez-Dueñas
- Department of Pediatric Neurology, Hospital Universitari Vall d'Hebron, Vall d´Hebron Institut de Recerca, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Joint Units INCLIVA & IIS La Fe Rare Diseases, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| |
Collapse
|
90
|
Hofsetz E, Demir F, Szczepanowska K, Kukat A, Kizhakkedathu JN, Trifunovic A, Huesgen PF. The Mouse Heart Mitochondria N Terminome Provides Insights into ClpXP-Mediated Proteolysis. Mol Cell Proteomics 2020; 19:1330-1345. [PMID: 32467259 PMCID: PMC8014998 DOI: 10.1074/mcp.ra120.002082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/24/2020] [Indexed: 12/29/2022] Open
Abstract
The mammalian mitochondrial proteome consists of more than 1100 annotated proteins and their proteostasis is regulated by only a few ATP-dependent protease complexes. Technical advances in protein mass spectrometry allowed for detailed description of the mitoproteome from different species and tissues and their changes under specific conditions. However, protease-substrate relations within mitochondria are still poorly understood. Here, we combined Terminal Amine Isotope Labeling of Substrates (TAILS) N termini profiling of heart mitochondria proteomes isolated from wild type and Clpp-/- mice with a classical substrate-trapping screen using FLAG-tagged proteolytically active and inactive CLPP variants to identify new ClpXP substrates in mammalian mitochondria. Using TAILS, we identified N termini of more than 200 mitochondrial proteins. Expected N termini confirmed sequence determinants for mitochondrial targeting signal (MTS) cleavage and subsequent N-terminal processing after import, but the majority were protease-generated neo-N termini mapping to positions within the proteins. Quantitative comparison revealed widespread changes in protein processing patterns, including both strong increases or decreases in the abundance of specific neo-N termini, as well as an overall increase in the abundance of protease-generated neo-N termini in CLPP-deficient mitochondria that indicated altered mitochondrial proteostasis. Based on the combination of altered processing patterns, protein accumulation and stabilization in CLPP-deficient mice and interaction with CLPP, we identified OAT, HSPA9 and POLDIP2 and as novel bona fide ClpXP substrates. Finally, we propose that ClpXP participates in the cooperative degradation of UQCRC1. Together, our data provide the first landscape of the heart mitochondria N terminome and give further insights into regulatory and assisted proteolysis mediated by ClpXP.
Collapse
Affiliation(s)
- Eduard Hofsetz
- Institute for Mitochondrial Diseases and Aging at CECAD Research Centre, and Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany
| | - Karolina Szczepanowska
- Institute for Mitochondrial Diseases and Aging at CECAD Research Centre, and Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Alexandra Kukat
- Institute for Mitochondrial Diseases and Aging at CECAD Research Centre, and Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, School of Biomedical Engineering, Department of Pathology & Laboratory Medicine, Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aleksandra Trifunovic
- Institute for Mitochondrial Diseases and Aging at CECAD Research Centre, and Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany.
| | - Pitter F Huesgen
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany; Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany; Institute for Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
91
|
Liu T, Woo JAA, Bukhari MZ, LePochat P, Chacko A, Selenica MLB, Yan Y, Kotsiviras P, Buosi SC, Zhao X, Kang DE. CHCHD10-regulated OPA1-mitofilin complex mediates TDP-43-induced mitochondrial phenotypes associated with frontotemporal dementia. FASEB J 2020; 34:8493-8509. [PMID: 32369233 PMCID: PMC7482311 DOI: 10.1096/fj.201903133rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/12/2020] [Accepted: 04/16/2020] [Indexed: 12/28/2022]
Abstract
Mutations in CHCHD10, a gene coding for a mitochondrial protein, are implicated in ALS-FTD spectrum disorders, which are pathologically characterized by transactive response DNA binding protein 43 kDa (TDP-43) accumulation. While both TDP-43 and CHCHD10 mutations drive mitochondrial pathogenesis, mechanisms underlying such phenotypes are unclear. Moreover, despite the disruption of the mitochondrial mitofilin protein complex at cristae junctions in patient fibroblasts bearing the CHCHD10S59L mutation, the role of CHCHD10 variants in mitofilin-associated protein complexes in brain has not been examined. Here, we utilized novel CHCHD10 transgenic mouse variants (WT, R15L, & S59L), TDP-43 transgenic mice, FTLD-TDP patient brains, and transfected cells to assess the interplay between CHCHD10 and TDP-43 on mitochondrial phenotypes. We show that CHCHD10 mutations disrupt mitochondrial OPA1-mitofilin complexes in brain, associated with impaired mitochondrial fusion and respiration. Likewise, CHCHD10 levels and OPA1-mitofilin complexes are significantly reduced in brains of FTLD-TDP patients and TDP-43 transgenic mice. In cultured cells, CHCHD10 knockdown results in OPA1-mitofilin complex disassembly, while TDP-43 overexpression also reduces CHCHD10, promotes OPA1-mitofilin complex disassembly via CHCHD10, and impairs mitochondrial fusion and respiration, phenotypes that are rescued by wild type (WT) CHCHD10. These results indicate that disruption of CHCHD10-regulated OPA1-mitofilin complex contributes to mitochondrial abnormalities in FTLD-TDP and suggest that CHCHD10 restoration could ameliorate mitochondrial dysfunction in FTLD-TDP.
Collapse
Affiliation(s)
- Tian Liu
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | - Jung-A A. Woo
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular Pharmacology and Physiology, USF
Health Morsani College of Medicine, Tampa, FL 33613, USA
| | - Mohammed Zaheen Bukhari
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | - Patrick LePochat
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | - Ann Chacko
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | | | - Yan Yan
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | - Peter Kotsiviras
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | - Sara Cazzaro Buosi
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | - Xingyu Zhao
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | - David E. Kang
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
- James A. Haley Veterans Administration Hospital, Tampa, FL
33612, USA
| |
Collapse
|
92
|
Harjuhaahto S, Rasila TS, Molchanova SM, Woldegebriel R, Kvist J, Konovalova S, Sainio MT, Pennonen J, Torregrosa-Muñumer R, Ibrahim H, Otonkoski T, Taira T, Ylikallio E, Tyynismaa H. ALS and Parkinson's disease genes CHCHD10 and CHCHD2 modify synaptic transcriptomes in human iPSC-derived motor neurons. Neurobiol Dis 2020; 141:104940. [PMID: 32437855 DOI: 10.1016/j.nbd.2020.104940] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/24/2020] [Accepted: 05/05/2020] [Indexed: 01/17/2023] Open
Abstract
Mitochondrial intermembrane space proteins CHCHD2 and CHCHD10 have roles in motor neuron diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy and axonal neuropathy and in Parkinson's disease. They form a complex of unknown function. Here we address the importance of these two proteins in human motor neurons. We show that gene edited human induced pluripotent stem cells (iPSC) lacking either CHCHD2 or CHCHD10 are viable and can be differentiated into functional motor neurons that fire spontaneous and evoked action potentials. Mitochondria in knockout iPSC and motor neurons sustain ultrastructure but show increased proton leakage and respiration, and reciprocal compensatory increases in CHCHD2 or CHCHD10. Knockout motor neurons have largely overlapping transcriptome profiles compared to isogenic control line, in particular for synaptic gene expression. Our results show that the absence of either CHCHD2 or CHCHD10 alters mitochondrial respiration in human motor neurons, inducing similar compensatory responses. Thus, pathogenic mechanisms may involve loss of synaptic function resulting from defective energy metabolism.
Collapse
Affiliation(s)
- Sandra Harjuhaahto
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina S Rasila
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Svetlana M Molchanova
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Rosa Woldegebriel
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Svetlana Konovalova
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Markus T Sainio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jana Pennonen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rubén Torregrosa-Muñumer
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tomi Taira
- Faculty of Veterinary Medicine, Department of Veterinary Biosciences for Electrophysiology, University of Helsinki, Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Emil Ylikallio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Clinical Neurosciences, Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
93
|
Zhang F, Pirooznia M, Xu H. Mitochondria regulate intestinal stem cell proliferation and epithelial homeostasis through FOXO. Mol Biol Cell 2020; 31:1538-1549. [PMID: 32374658 PMCID: PMC7359575 DOI: 10.1091/mbc.e19-10-0560] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A metabolic transition from glycolysis to oxidative phosphorylation is often associated with differentiation of many types of stem cells. However, the link between mitochondrial respiration and stem cells' behavior is not fully understood. We genetically disrupted electron transport chain (ETC) complexes in the intestinal stem cells (ISCs) of Drosophila. We found that ISCs carrying impaired ETC proliferated much more slowly than normal and produced very few enteroblasts, which failed to further differentiate into enterocytes. One of the main impediments to ISC proliferation and lineage specification appeared to be abnormally elevated forkhead box O (FOXO) signaling in the ETC-deficient ISCs, as genetically suppressing the signaling pathway partially restored the number of enterocytes. Contrary to common belief, reactive oxygen species (ROS) accumulation did not appear to mediate the ETC mutant phenotype. Our results demonstrate that mitochondrial respiration is essential for Drosophila ISC proliferation and lineage specification in vivo and acts at least partially by repressing endogenous FOXO signaling.
Collapse
Affiliation(s)
- Fan Zhang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mehdi Pirooznia
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Hong Xu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
94
|
Scorziello A, Borzacchiello D, Sisalli MJ, Di Martino R, Morelli M, Feliciello A. Mitochondrial Homeostasis and Signaling in Parkinson's Disease. Front Aging Neurosci 2020; 12:100. [PMID: 32372945 PMCID: PMC7186467 DOI: 10.3389/fnagi.2020.00100] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
The loss of dopaminergic (DA) neurons in the substantia nigra leads to a progressive, long-term decline of movement and other non-motor deficits. The symptoms of Parkinson's disease (PD) often appear later in the course of the disease, when most of the functional dopaminergic neurons have been lost. The late onset of the disease, the severity of the illness, and its impact on the global health system demand earlier diagnosis and better targeted therapy. PD etiology and pathogenesis are largely unknown. There are mutations in genes that have been linked to PD and, from these complex phenotypes, mitochondrial dysfunction emerged as central in the pathogenesis and evolution of PD. In fact, several PD-associated genes negatively impact on mitochondria physiology, supporting the notion that dysregulation of mitochondrial signaling and homeostasis is pathogenically relevant. Derangement of mitochondrial homeostatic controls can lead to oxidative stress and neuronal cell death. Restoring deranged signaling cascades to and from mitochondria in PD neurons may then represent a viable opportunity to reset energy metabolism and delay the death of dopaminergic neurons. Here, we will highlight the relevance of dysfunctional mitochondrial homeostasis and signaling in PD, the molecular mechanisms involved, and potential therapeutic approaches to restore mitochondrial activities in damaged neurons.
Collapse
Affiliation(s)
- Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, University of Naples Federico II, Naples, Italy
| | - Domenica Borzacchiello
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Maria Jose Sisalli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, University of Naples Federico II, Naples, Italy
| | - Rossana Di Martino
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, University of Naples Federico II, Naples, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Cagliari, Italy
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
95
|
Torii S, Kasai S, Yoshida T, Yasumoto KI, Shimizu S. Mitochondrial E3 Ubiquitin Ligase Parkin: Relationships with Other Causal Proteins in Familial Parkinson's Disease and Its Substrate-Involved Mouse Experimental Models. Int J Mol Sci 2020; 21:ijms21041202. [PMID: 32054064 PMCID: PMC7072767 DOI: 10.3390/ijms21041202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder. Recent identification of genes linked to familial forms of PD has revealed that post-translational modifications, such as phosphorylation and ubiquitination of proteins, are key factors in disease pathogenesis. In PD, E3 ubiquitin ligase Parkin and the serine/threonine-protein kinase PTEN-induced kinase 1 (PINK1) mediate the mitophagy pathway for mitochondrial quality control via phosphorylation and ubiquitination of their substrates. In this review, we first focus on well-characterized PINK1 phosphorylation motifs. Second, we describe our findings concerning relationships between Parkin and HtrA2/Omi, a protein involved in familial PD. Third, we describe our findings regarding inhibitory PAS (Per/Arnt/Sim) domain protein (IPAS), a member of PINK1 and Parkin substrates, involved in neurodegeneration during PD. IPAS is a dual-function protein involved in transcriptional repression of hypoxic responses and the pro-apoptotic activities.
Collapse
Affiliation(s)
- Satoru Torii
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Correspondence: ; Tel.: +81-3-5803-4797; Fax: +81-3-5803-4821
| | - Shuya Kasai
- Department of Stress Response Science, Center for Advanced Medical Research, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Tatsushi Yoshida
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Ken-ichi Yasumoto
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
96
|
Zilocchi M, Moutaoufik MT, Jessulat M, Phanse S, Aly KA, Babu M. Misconnecting the dots: altered mitochondrial protein-protein interactions and their role in neurodegenerative disorders. Expert Rev Proteomics 2020; 17:119-136. [PMID: 31986926 DOI: 10.1080/14789450.2020.1723419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Introduction: Mitochondria (mt) are protein-protein interaction (PPI) hubs in the cell where mt-localized and associated proteins interact in a fashion critical for cell fitness. Altered mtPPIs are linked to neurodegenerative disorders (NDs) and drivers of pathological associations to mediate ND progression. Mapping altered mtPPIs will reveal how mt dysfunction is linked to NDs.Areas covered: This review discusses how database sources reflect on the number of mt protein or interaction predictions, and serves as an update on mtPPIs in mt dynamics and homeostasis. Emphasis is given to mRNA expression profiles for mt proteins in human tissues, cellular models relevant to NDs, and altered mtPPIs in NDs such as Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD).Expert opinion: We highlight the scarcity of biomarkers to improve diagnostic accuracy and tracking of ND progression, obstacles in recapitulating NDs using human cellular models to underpin the pathophysiological mechanisms of disease, and the shortage of mt protein interactome reference database(s) of neuronal cells. These bottlenecks are addressed by improvements in induced pluripotent stem cell creation and culturing, patient-derived 3D brain organoids to recapitulate structural arrangements of the brain, and cell sorting to elucidate mt proteome disparities between cell types.
Collapse
Affiliation(s)
- Mara Zilocchi
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | | | - Matthew Jessulat
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
97
|
Imai Y. PINK1-Parkin signaling in Parkinson's disease: Lessons from Drosophila. Neurosci Res 2020; 159:40-46. [PMID: 32035987 DOI: 10.1016/j.neures.2020.01.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/30/2020] [Indexed: 12/30/2022]
Abstract
The mitochondrial protein kinase PINK1 activates Parkin ubiquitin ligase by phosphorylating Parkin and ubiquitin, which are required for mitochondrial maintenance in dopaminergic (DA) neurons whose degeneration leads to the development of Parkinson's disease (PD). Loss of PINK1 and Parkin leads to mitochondrial degeneration and abnormal wing posture in Drosophila. Modifier screening using the Drosophila wing phenotype showed that the inactivation of Miro, a mitochondrial adaptor protein, suppresses the phenotype caused by mitochondrial degeneration. When activated by PINK1, Parkin suppresses mitochondrial transport by reducing Miro levels in Drosophila DA neurons. In human DA neurons, PINK1-Parkin signaling also regulates axonal mitochondrial re-distribution in response to reduced mitochondrial membrane potential, which is impaired in the DA neurons of patients with PINK1 and Parkin mutations. Phospho-ubiquitin signals amplified by PINK1 and Parkin are stronger in DA neurons than other neurons, suggesting that PINK1-Parkin signaling is particularly important for DA neuron activity. Moreover, the recently identified PD-associated protein CHCHD2 may ensure proper electron transfer during mitochondrial respiration. The genetic interaction between PINK1/Parkin and CHCHD2 in Drosophila indicates that they are not directly associated and CHCHD2-linked PD exhibits a very different pathology to PINK1/Parkin PD. I suggest a complex pathogenesis for mitochondrial dysregulation in PD.
Collapse
Affiliation(s)
- Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| |
Collapse
|
98
|
Protasoni M, Pérez‐Pérez R, Lobo‐Jarne T, Harbour ME, Ding S, Peñas A, Diaz F, Moraes CT, Fearnley IM, Zeviani M, Ugalde C, Fernández‐Vizarra E. Respiratory supercomplexes act as a platform for complex III-mediated maturation of human mitochondrial complexes I and IV. EMBO J 2020; 39:e102817. [PMID: 31912925 PMCID: PMC6996572 DOI: 10.15252/embj.2019102817] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/02/2019] [Accepted: 11/26/2019] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial respiratory chain (MRC) enzymes associate in supercomplexes (SCs) that are structurally interdependent. This may explain why defects in a single component often produce combined enzyme deficiencies in patients. A case in point is the alleged destabilization of complex I in the absence of complex III. To clarify the structural and functional relationships between complexes, we have used comprehensive proteomic, functional, and biogenetical approaches to analyze a MT-CYB-deficient human cell line. We show that the absence of complex III blocks complex I biogenesis by preventing the incorporation of the NADH module rather than decreasing its stability. In addition, complex IV subunits appeared sequestered within complex III subassemblies, leading to defective complex IV assembly as well. Therefore, we propose that complex III is central for MRC maturation and SC formation. Our results challenge the notion that SC biogenesis requires the pre-formation of fully assembled individual complexes. In contrast, they support a cooperative-assembly model in which the main role of complex III in SCs is to provide a structural and functional platform for the completion of overall MRC biogenesis.
Collapse
Affiliation(s)
- Margherita Protasoni
- Medical Research Council‐Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | | | | | - Michael E Harbour
- Medical Research Council‐Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Shujing Ding
- Medical Research Council‐Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Ana Peñas
- Instituto de Investigación Hospital 12 de Octubre (i+12)MadridSpain
| | - Francisca Diaz
- Department of NeurologyMiller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Carlos T Moraes
- Department of NeurologyMiller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Ian M Fearnley
- Medical Research Council‐Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Massimo Zeviani
- Medical Research Council‐Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
- Department of NeurosciencesUniversity of PadovaPadovaItaly
| | - Cristina Ugalde
- Instituto de Investigación Hospital 12 de Octubre (i+12)MadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723MadridSpain
| | | |
Collapse
|
99
|
Liu W, Duan X, Xu L, Shang W, Zhao J, Wang L, Li JC, Chen CH, Liu JP, Tong C. Chchd2 regulates mitochondrial morphology by modulating the levels of Opa1. Cell Death Differ 2020; 27:2014-2029. [PMID: 31907391 DOI: 10.1038/s41418-019-0482-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022] Open
Abstract
The mitochondrion is a highly dynamic organelle that is critical for energy production and numerous metabolic processes. Drosophila Chchd2, a homolog of the human disease-related genes CHCHD2 and CHCHD10, encodes a mitochondrial protein. In this study, we found that loss of Chchd2 in flies resulted in progressive degeneration of photoreceptor cells and reduced muscle integrity. In the flight muscles of adult Chchd2 mutants, some mitochondria exhibited curling cristae and a reduced number of cristae compared to those of controls. Overexpression of Chchd2 carrying human disease-related point mutations failed to fully rescue the mitochondrial defects in Chchd2 mutants. In fat body cells, loss of Chchd2 resulted in fragmented mitochondria that could be partially rescued by Marf overexpression and enhanced by Opa1 RNAi. The expression level of Opa1 was reduced in Chchd2 mutants and increased when Chchd2 was overexpressed. The chaperone-like protein P32 co-immunoprecipitated with Chchd2 and YME1L, a protease known to processes human OPA1. Moreover, the interaction between P32 and YME1L enhanced YME1L activity and promoted Opa1 degradation. Finally, Chchd2 stabilized Opa1 by competing with P32 for YME1L binding. We propose a model whereby Chchd2 regulates mitochondrial morphology and tissue homeostasis by fine-tuning the levels of OPA1.
Collapse
Affiliation(s)
- Wei Liu
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China.,MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Xiuying Duan
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China.,MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Lingna Xu
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China.,MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Weina Shang
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Jiayao Zhao
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Liquan Wang
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Jian-Chiuan Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Jun-Ping Liu
- Institute of Aging Research, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chao Tong
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China. .,MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Zhejiang, 310058, Hangzhou, China. .,Institute of Aging Research, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
100
|
Wilson R, Gundamaraju R, Vemuri R, Angelucci C, Geraghty D, Gueven N, Eri RD. Identification of Key Pro-Survival Proteins in Isolated Colonic Goblet Cells of Winnie, a Murine Model of Spontaneous Colitis. Inflamm Bowel Dis 2020; 26:80-92. [PMID: 31504521 DOI: 10.1093/ibd/izz179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Accumulating evidence suggests that the goblet cell-derived mucin-2 (Muc2) is a major component of the immune system and that perturbations in Muc2 lead to an ulcerative colitis-like phenotype. The animal model Winnie carries a missense mutation in Muc2 that causes Muc2 misfolding, accumulation in goblet cells, and ER stress. Excessive ER stress is a hallmark of many diseases, including ulcerative colitis, cancer, diabetes and Parkinson's disease. However, rather than committing to cell death, which is the typical outcome of unresolved ER stress, Winnie goblet cells are characterized by hyperproliferation, suggesting additional regulation of this cellular stress response. METHODS To elucidate the molecular mechanisms underlying ulcerative colitis in the Winnie model, we isolated goblet cells from Winnie and wild-type mice and used label-free quantitative proteomics and bioinformatics to understand the functional consequences of Muc2 misfolding and accumulation. RESULTS A large number of changes were identified that highlight a dramatic reprogramming of energy production, including enhanced utilization of butyrate, a key energy source of colonic cells. A major finding was the marked upregulation of the coiled-coil-helix-coiled-coil-helix domain proteins Chchd2, Chchd3, and Chchd6. In particular, we identified and confirmed the upregulation and nuclear translocation of Chchd2, a protein known to inhibit oxidative stress induced apoptosis. CONCLUSIONS This study is the first to apply proteome-level analysis to the preclinical Winnie model of ulcerative colitis. Identification of proteins and pathways affected in isolated Winnie goblet cells provides evidence for novel adaptive mechanisms underlying cell survival under conditions of chronic ER stress.
Collapse
Affiliation(s)
- Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, TAS, Australia
| | - Rohit Gundamaraju
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Ravichandra Vemuri
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Constanza Angelucci
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Dominic Geraghty
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Nuri Gueven
- Pharmacy, School of Medicine, Faculty of Health, University of Tasmania, Hobart, TAS, Australia
| | - Rajaraman D Eri
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|