51
|
Fairley LH, Sahara N, Aoki I, Ji B, Suhara T, Higuchi M, Barron AM. Neuroprotective effect of mitochondrial translocator protein ligand in a mouse model of tauopathy. J Neuroinflammation 2021; 18:76. [PMID: 33740987 PMCID: PMC7980620 DOI: 10.1186/s12974-021-02122-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background The translocator protein (TSPO) has been identified as a positron emission tomography (PET)-visible biomarker of inflammation and promising immunotherapeutic target for the treatment of Alzheimer’s disease (AD). While TSPO ligands have been shown to reduce the accumulation of the toxic Alzheimer’s beta-amyloid peptide, their effect on tau pathology has not yet been investigated. To address this, we analyzed the effects of TSPO ligand, Ro5-4864, on the progression of neuropathology in rTg4510 tau transgenic mice (TauTg). Methods Brain atrophy, tau accumulation, and neuroinflammation were assessed longitudinally using volumetric magnetic resonance imaging, tau-PET, and TSPO-PET, respectively. In vivo neuroimaging results were confirmed by immunohistochemistry for markers of neuronal survival (NeuN), tauopathy (AT8), and inflammation (TSPO, ionized calcium-binding adaptor molecule 1 or IBA-1, and complement component 1q or C1q) in brain sections from scanned mice. Results TSPO ligand treatment attenuated brain atrophy and hippocampal neuronal loss in the absence of any detected effect on tau depositions. Atrophy and neuronal loss were strongly associated with in vivo inflammatory signals measured by TSPO-PET, IBA-1, and levels of C1q, a regulator of the complement cascade. In vitro studies confirmed that the TSPO ligand Ro5-4864 reduces C1q expression in a microglial cell line in response to inflammation, reduction of which has been shown in previous studies to protect synapses and neurons in models of tauopathy. Conclusions These findings support a protective role for TSPO ligands in tauopathy, reducing neuroinflammation, neurodegeneration, and brain atrophy. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02122-1.
Collapse
Affiliation(s)
- Lauren H Fairley
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232, Singapore
| | - Naruhiko Sahara
- National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan
| | - Ichio Aoki
- National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan
| | - Bin Ji
- National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan
| | - Tetsuya Suhara
- National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan
| | - Makoto Higuchi
- National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan
| | - Anna M Barron
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232, Singapore. .,National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan.
| |
Collapse
|
52
|
Meikle SR, Sossi V, Roncali E, Cherry SR, Banati R, Mankoff D, Jones T, James M, Sutcliffe J, Ouyang J, Petibon Y, Ma C, El Fakhri G, Surti S, Karp JS, Badawi RD, Yamaya T, Akamatsu G, Schramm G, Rezaei A, Nuyts J, Fulton R, Kyme A, Lois C, Sari H, Price J, Boellaard R, Jeraj R, Bailey DL, Eslick E, Willowson KP, Dutta J. Quantitative PET in the 2020s: a roadmap. Phys Med Biol 2021; 66:06RM01. [PMID: 33339012 PMCID: PMC9358699 DOI: 10.1088/1361-6560/abd4f7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Positron emission tomography (PET) plays an increasingly important role in research and clinical applications, catalysed by remarkable technical advances and a growing appreciation of the need for reliable, sensitive biomarkers of human function in health and disease. Over the last 30 years, a large amount of the physics and engineering effort in PET has been motivated by the dominant clinical application during that period, oncology. This has led to important developments such as PET/CT, whole-body PET, 3D PET, accelerated statistical image reconstruction, and time-of-flight PET. Despite impressive improvements in image quality as a result of these advances, the emphasis on static, semi-quantitative 'hot spot' imaging for oncologic applications has meant that the capability of PET to quantify biologically relevant parameters based on tracer kinetics has not been fully exploited. More recent advances, such as PET/MR and total-body PET, have opened up the ability to address a vast range of new research questions, from which a future expansion of applications and radiotracers appears highly likely. Many of these new applications and tracers will, at least initially, require quantitative analyses that more fully exploit the exquisite sensitivity of PET and the tracer principle on which it is based. It is also expected that they will require more sophisticated quantitative analysis methods than those that are currently available. At the same time, artificial intelligence is revolutionizing data analysis and impacting the relationship between the statistical quality of the acquired data and the information we can extract from the data. In this roadmap, leaders of the key sub-disciplines of the field identify the challenges and opportunities to be addressed over the next ten years that will enable PET to realise its full quantitative potential, initially in research laboratories and, ultimately, in clinical practice.
Collapse
Affiliation(s)
- Steven R Meikle
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Australia
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Canada
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, United States of America
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Radiology, University of California, Davis, United States of America
| | - Richard Banati
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Australia
- Australian Nuclear Science and Technology Organisation, Sydney, Australia
| | - David Mankoff
- Department of Radiology, University of Pennsylvania, United States of America
| | - Terry Jones
- Department of Radiology, University of California, Davis, United States of America
| | - Michelle James
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), CA, United States of America
- Department of Neurology and Neurological Sciences, Stanford University, CA, United States of America
| | - Julie Sutcliffe
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Internal Medicine, University of California, Davis, CA, United States of America
| | - Jinsong Ouyang
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Yoann Petibon
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Suleman Surti
- Department of Radiology, University of Pennsylvania, United States of America
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, United States of America
| | - Ramsey D Badawi
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Radiology, University of California, Davis, United States of America
| | - Taiga Yamaya
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Go Akamatsu
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Georg Schramm
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Ahmadreza Rezaei
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Johan Nuyts
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Roger Fulton
- Brain and Mind Centre, The University of Sydney, Australia
- Department of Medical Physics, Westmead Hospital, Sydney, Australia
| | - André Kyme
- Brain and Mind Centre, The University of Sydney, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, The University of Sydney, Australia
| | - Cristina Lois
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Hasan Sari
- Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Julie Price
- Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Ronald Boellaard
- Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, location VUMC, Netherlands
| | - Robert Jeraj
- Departments of Medical Physics, Human Oncology and Radiology, University of Wisconsin, United States of America
- Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
| | - Dale L Bailey
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Science, The University of Sydney, Australia
| | - Enid Eslick
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
| | - Kathy P Willowson
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Science, The University of Sydney, Australia
| | - Joyita Dutta
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, United States of America
| |
Collapse
|
53
|
Rivière G, Jaipuria G, Andreas LB, Leonov A, Giller K, Becker S, Zweckstetter M. Membrane-embedded TSPO: an NMR view. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:173-180. [PMID: 33354729 PMCID: PMC8071791 DOI: 10.1007/s00249-020-01487-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/19/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022]
Abstract
Translocator Protein (18 kDa) (TSPO) is a mitochondrial transmembrane protein commonly used as a biomarker for neuroinflammation and is also a potential therapeutic target in neurodegenerative diseases. Despite intensive research efforts, the function of TSPO is still largely enigmatic. Deciphering TSPO structure in the native lipid environment is essential to gain insight into its cellular activities and to design improved diagnostic and therapeutic ligands. Here, we discuss the influence of lipid composition on the structure of mammalian TSPO embedded into lipid bilayers on the basis of solid-state NMR experiments. We further highlight that cholesterol can influence both the tertiary and quaternary TSPO structure and also influence TSPO localization in mitochondria-associated endoplasmic reticulum membranes.
Collapse
Affiliation(s)
- Gwladys Rivière
- Senior Research Group of Translational Structural Biology in Dementia, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Garima Jaipuria
- Senior Research Group of Translational Structural Biology in Dementia, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Andrei Leonov
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Karin Giller
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Markus Zweckstetter
- Senior Research Group of Translational Structural Biology in Dementia, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany.
- Department of Neurology, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073, Göttingen, Germany.
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
54
|
Biosynthesis and signalling functions of central and peripheral nervous system neurosteroids in health and disease. Essays Biochem 2021; 64:591-606. [PMID: 32756865 PMCID: PMC7517341 DOI: 10.1042/ebc20200043] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Neurosteroids are steroid hormones synthesised de novo in the brain and peripheral nervous tissues. In contrast to adrenal steroid hormones that act on intracellular nuclear receptors, neurosteroids directly modulate plasma membrane ion channels and regulate intracellular signalling. This review provides an overview of the work that led to the discovery of neurosteroids, our current understanding of their intracellular biosynthetic machinery, and their roles in regulating the development and function of nervous tissue. Neurosteroids mediate signalling in the brain via multiple mechanisms. Here, we describe in detail their effects on GABA (inhibitory) and NMDA (excitatory) receptors, two signalling pathways of opposing function. Furthermore, emerging evidence points to altered neurosteroid function and signalling in neurological disease. This review focuses on neurodegenerative diseases associated with altered neurosteroid metabolism, mainly Niemann-Pick type C, multiple sclerosis and Alzheimer disease. Finally, we summarise the use of natural and synthetic neurosteroids as current and emerging therapeutics alongside their potential use as disease biomarkers.
Collapse
|
55
|
Barron AM, Higuchi M, Hattori S, Kito S, Suhara T, Ji B. Regulation of Anxiety and Depression by Mitochondrial Translocator Protein-Mediated Steroidogenesis: the Role of Neurons. Mol Neurobiol 2021; 58:550-563. [PMID: 32989676 DOI: 10.1007/s12035-020-02136-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022]
Abstract
Pharmacological studies have implicated the translocator protein (TSPO) in the regulation of complex behaviors including anxiety and depression, effects thought to be mediated by increased synthesis of neuroactive steroid hormones. However, TSPO function in the brain remains to be corroborated in vivo via genetic studies. To address this, we developed global TSPO knockout (TSPO-KO) and neuronal TSPO transgenic (TSPO-Tg) mouse models to investigate TSPO function in the regulation of anxiety- and depression-related behaviors using elevated plus maze and forced swim test paradigms. Neuroactive steroid hormones were measured in the brain by mass spectrometry. In vivo TSPO ligand pharmacokinetics was investigated using competitive PET with 18F-FE-DAA1106. Genetic TSPO deficiency increased anxiety-related behavior and impaired brain steroidogenesis but did not affect depressive behaviors. Using the TSPO-KO model, we then demonstrated the specificity of Ac-5216, also known as XBD-173 or Emapunil, as an anxiolytic targeting TSPO at doses optimized by competitive PET for high cortical occupancy. Neuronal TSPO overexpression decreased depressive behaviors, an effect that was dependent on steroidogenesis, and partially reversed anxiogenic behavior in TSPO-KO mice. These findings demonstrate that TSPO is critical for brain steroidogenesis and modulates anxiety- and depression-related behaviors. However, we demonstrate that key differences in the contribution of neuronal TSPO to the modulation of these complex behaviors, illustrating the tissue- and cell-specific importance of TSPO. The TSPO-KO and TSPO-Tg mice provide the tools and rationale for the development of therapeutic approaches targeting TSPO in the brain for treatment of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Anna M Barron
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232, Singapore
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Satoko Hattori
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Seiji Kito
- Research, Development and Support Center, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-0024, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Bin Ji
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| |
Collapse
|
56
|
Ge RS, Li X, Wang Y. Leydig Cell and Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:111-129. [PMID: 34453734 DOI: 10.1007/978-3-030-77779-1_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leydig cells of the testis have the capacity to synthesize androgen (mainly testosterone) from cholesterol. Adult Leydig cells are the cell type for the synthesis of testosterone, which is critical for spermatogenesis. At least four steroidogenic enzymes take part in testosterone synthesis: cytochrome P450 cholesterol side chain cleavage enzyme, 3β-hydroxysteroid dehydrogenase, cytochrome P450 17α-hydroxylase/17,20-lyase and 17β-hydroxysteroid dehydrogenase isoform 3. Testosterone metabolic enzyme steroid 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase are expressed in some precursor Leydig cells. Androgen is transported by androgen-binding protein to Sertoli cells, where it binds to androgen receptor to regulate spermatogenesis.
Collapse
Affiliation(s)
- Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Xiaoheng Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
57
|
Neuronal activity increases translocator protein (TSPO) levels. Mol Psychiatry 2021; 26:2025-2037. [PMID: 32398717 PMCID: PMC8440208 DOI: 10.1038/s41380-020-0745-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022]
Abstract
The mitochondrial protein, translocator protein (TSPO), is a widely used biomarker of neuroinflammation, but its non-selective cellular expression pattern implies roles beyond inflammatory processes. In the present study, we investigated whether neuronal activity modifies TSPO levels in the adult central nervous system. First, we used single-cell RNA sequencing to generate a cellular landscape of basal TSPO gene expression in the hippocampus of adult (12 weeks old) C57BL6/N mice, followed by confocal laser scanning microscopy to verify TSPO protein in neuronal and non-neuronal cell populations. We then quantified TSPO mRNA and protein levels after stimulating neuronal activity with distinct stimuli, including designer receptors exclusively activated by designer drugs (DREADDs), exposure to a novel environment and acute treatment with the psychostimulant drug, amphetamine. Single-cell RNA sequencing demonstrated a non-selective and multi-cellular gene expression pattern of TSPO at basal conditions in the adult mouse hippocampus. Confocal laser scanning microscopy confirmed that TSPO protein is present in neuronal and non-neuronal (astrocytes, microglia, vascular endothelial cells) cells of cortical (medial prefrontal cortex) and subcortical (hippocampus) brain regions. Stimulating neuronal activity through chemogenetic (DREADDs), physiological (novel environment exposure) or psychopharmacological (amphetamine treatment) approaches led to consistent increases in TSPO gene and protein levels in neurons, but not in microglia or astrocytes. Taken together, our findings show that neuronal activity has the potential to modify TSPO levels in the adult central nervous system. These findings challenge the general assumption that altered TSPO expression or binding unequivocally mirrors ongoing neuroinflammation and emphasize the need to consider non-inflammatory interpretations in some physiological or pathological contexts.
Collapse
|
58
|
Personality traits in psychosis and psychosis risk linked to TSPO expression: a neuroimmune marker. PERSONALITY NEUROSCIENCE 2020; 3:e14. [PMID: 33354652 PMCID: PMC7737185 DOI: 10.1017/pen.2020.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022]
Abstract
Personality has been correlated with differences in cytokine expression, an indicator of peripheral inflammation; however, the associations between personality and central markers of inflammation have never been investigated in vivo in humans. Microglia are the resident macrophages of the central nervous system, and the first responders to tissue damage and brain insult. Microglial activation is associated with elevated expression of translocator protein 18kDa (TSPO), which can be imaged with positron emission tomography (PET) to quantify immune activation in the human brain. This study aimed to investigate the association between personality and TSPO expression across the psychosis spectrum. A total of 61 high-resolution [18F]FEPPA PET scans were conducted in 28 individuals at clinical high risk (CHR) for psychosis, 19 First-Episode Psychosis (FEP), and 14 healthy volunteers (HVs), and analyzed using a two-tissue compartment model and plasma input function to obtain a total volume of distribution (VT) as an index of brain TSPO expression (controlling for the rs6971 TSPO polymorphism). Personality was assessed using the Revised NEO Personality Inventory (NEO-PI-R). We found TSPO expression to be specifically associated with neuroticism. A positive association between TSPO expression and neuroticism was found in HVs, in contrast to a nonsignificant, negative association in CHR and significant negative association in FEP. The TSPO-associated neuroticism trait indicates an unexplored connection between neuroimmune activation and personality that varies across the psychosis spectrum.
Collapse
|
59
|
Tuominen S, Keller T, Petruk N, López-Picón F, Eichin D, Löyttyniemi E, Verhassel A, Rajander J, Sandholm J, Tuomela J, Grönroos TJ. Evaluation of [ 18F]F-DPA as a target for TSPO in head and neck cancer under normal conditions and after radiotherapy. Eur J Nucl Med Mol Imaging 2020; 48:1312-1326. [PMID: 33340054 PMCID: PMC8113193 DOI: 10.1007/s00259-020-05115-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/09/2020] [Indexed: 11/05/2022]
Abstract
Background Many malignant tumours have increased TSPO expression, which has been related to a poor prognosis. TSPO-PET tracers have not comprehensively been evaluated in peripherally located tumours. This study aimed to evaluate whether N,N-diethyl-2-(2-(4-([18F]fluoro)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide ([18F]F-DPA) can reflect radiotherapy (RT)-induced changes in TSPO activity in head and neck squamous cell carcinoma (HNSCC). Methods RT was used to induce inflammatory responses in HNSCC xenografts and cells. [18F]F-DPA uptake was measured in vivo in non-irradiated and irradiated tumours, followed by ex vivo biodistribution, autoradiography, and radiometabolite analysis. In vitro studies were performed in parental and TSPO-silenced (TSPO siRNA) cells. TSPO protein and mRNA expression, as well as tumour-associated macrophages (TAMs), were also assessed. Results In vivo imaging and ex vivo measurement revealed significantly higher [18F]F-DPA uptake in irradiated, compared to non-irradiated tumours. In vitro labelling studies with cells confirmed this finding, whereas no effect of RT on [18F]F-DPA uptake was detected in TSPO siRNA cells. Radiometabolite analysis showed that the amount of unchanged [18F]F-DPA in tumours was 95%, also after irradiation. PK11195 pre-treatment reduced the tumour-to-blood ratio of [18F]F-DPA by 73% in xenografts and by 88% in cells. TSPO protein and mRNA levels increased after RT, but were highly variable. The proportion of M1/M2 TAMs decreased after RT, whereas the proportion of monocytes and migratory monocytes/macrophages increased. Conclusions [18F]F-DPA can detect changes in TSPO expression levels after RT in HNSCC, which does not seem to reflect inflammation. Further studies are however needed to clarify the physiological mechanisms regulated by TSPO after RT. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-020-05115-z.
Collapse
Affiliation(s)
- Sanni Tuominen
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland.,Institute of Biomedicine and FICAN West Cancer Research Laboratory, University of Turku, Kiinamyllynkatu 10, FI-20520, Turku, Finland.,MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Thomas Keller
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Nataliia Petruk
- Institute of Biomedicine and FICAN West Cancer Research Laboratory, University of Turku, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Francisco López-Picón
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland.,MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Dominik Eichin
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, University of Turku, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Alejandra Verhassel
- Institute of Biomedicine and FICAN West Cancer Research Laboratory, University of Turku, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Johan Rajander
- Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Jouko Sandholm
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Johanna Tuomela
- Institute of Biomedicine and FICAN West Cancer Research Laboratory, University of Turku, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Tove J Grönroos
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland. .,MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland. .,Department of Oncology and Radiotherapy, Turku University Hospital, Hämeenkatu 11, FI-20520, Turku, Finland.
| |
Collapse
|
60
|
Liu P, Wang T, Yang R, Dong W, Wang Q, Guo Z, Ma C, Wang W, Li H, Su X. Preclinical Evaluation of a Novel 99mTc-Labeled CB86 for Rheumatoid Arthritis Imaging. ACS OMEGA 2020; 5:31657-31664. [PMID: 33344817 PMCID: PMC7745438 DOI: 10.1021/acsomega.0c04066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Early diagnosis and therapy are crucial to control disease progression optimally and achieve a good prognosis in rheumatoid arthritis (RA). Previous study showed that a technetium-99m (99mTc)-labeled TSPO ligand (99mTc-CB256 [2-(8-(2-(bis(pyridin-2-yl)methyl)amino)acetamido)-2-(4-chlorophenyl)H-imidazo[1,2-a]pyridin-3-yl)-N,N-dipropylacetamide] composed of a translocator protein (TSPO) ligand CB86 [[2-(4-chlorophenyl)-8-amino-imidazo[1,2-a]-pyridin-3-yl]-N,N-di-n-propylacetamide] and di-(2-picolyl)amine, a bifunctional chelate agent, was used to image a TSPO-rich cancer cell in vitro; however, few 99mTc-CB256 in vivo evaluation has been reported so far probably due to the cytotoxicity of CB256 (ca. 75 times more than analogous CB86). Herein, we describe a novel TSPO targeting radiopharmaceutical consisting of CB86 and diethylenetriaminepentaacetic acid (DTPA), a conventional bifunctional chelating ligand in clinical trials used to prepare 99mTc-labeled CB86, and its evaluation as a 99mTc-single-photon emission computed tomography (SPECT) probe. The radiosynthesis and characterization of 99mTc-DPTA-CB86 including hydrophilicity and stability tests were determined. Additionally, the binding affinity and specificity of 99mTc-DTPA-CB86 to TSPO were evaluated using RAW264.7 macrophage cells. Biodistribution and 99mTc-SPECT studies were conducted on rheumatoid arthritis (RA) rat models after the injection of 99mTc-DTPA-CB86 with or without co-injection of unlabeled DTPA-CB86. The radiosynthesis of 99mTc-DTPA-CB86 was completed successfully with the labeling yields and radiochemical purity of 95.86 ± 2.45 and 97.45 ± 0.69%, respectively. The probe displayed good stability in vitro and binding specificity to RAW264.7 macrophage cells. In the biodistribution studies, 99mTc-DTPA-CB86 exhibited rapid inflammatory ankle accumulation. At 180 min after administration, 99mTc-DTPA-CB86 uptakes of the left inflammatory ankle were 2.35 ± 0.10 percentage of the injected radioactivity per gram of tissue (% ID/g), significantly higher than those of the normal tissues. 99mTc-SPECT imaging studies revealed that 99mTc-DTPA-CB86 could clearly identify the left inflammatory ankle with good contrast at 30-180 min after injection. Therefore, 99mTc-DTPA-CB86 may be a promising probe for arthritis 99mTc-SPECT imaging.
Collapse
Affiliation(s)
- Peng Liu
- Department of Nuclear
Medicine, Zhongshan Hospital Xiamen University, Xiamen 361004, China
| | - Tingting Wang
- Department of Nuclear
Medicine, Zhongshan Hospital Xiamen University, Xiamen 361004, China
| | - Rongshui Yang
- Department of Nuclear
Medicine, Zhongshan Hospital Xiamen University, Xiamen 361004, China
| | - Wentao Dong
- Department of Nuclear
Medicine, Zhongshan Hospital Xiamen University, Xiamen 361004, China
| | - Qiang Wang
- Department of Nuclear
Medicine, Zhongshan Hospital Xiamen University, Xiamen 361004, China
| | - Zhide Guo
- Center for Molecular Imaging and Translational
Medicine, Xiamen University, Xiamen 361102, China
| | - Chao Ma
- Department of Nuclear
Medicine, Zhongshan Hospital Xiamen University, Xiamen 361004, China
| | - Weixing Wang
- Department of Nuclear
Medicine, Zhongshan Hospital Xiamen University, Xiamen 361004, China
| | - Huaibo Li
- Department of Health Medicine, Zhongshan Hospital Xiamen University, Xiamen 361004, China
| | - Xinhui Su
- Department of Nuclear
Medicine, Zhongshan Hospital Xiamen University, Xiamen 361004, China
| |
Collapse
|
61
|
Dinesh AA, Islam J, Khan J, Turkheimer F, Vernon AC. Effects of Antipsychotic Drugs: Cross Talk Between the Nervous and Innate Immune System. CNS Drugs 2020; 34:1229-1251. [PMID: 32975758 DOI: 10.1007/s40263-020-00765-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
Converging lines of evidence suggest that activation of microglia (innate immune cells in the central nervous system [CNS]) is present in a subset of patients with schizophrenia. The extent to which antipsychotic drug treatment contributes to or combats this effect remains unclear. To address this question, we reviewed the literature for evidence that antipsychotic exposure influences brain microglia as indexed by in vivo neuroimaging and post-mortem studies in patients with schizophrenia and experimental animal models. We found no clear evidence from clinical studies for an effect of antipsychotics on either translocator protein (TSPO) radioligand binding (an in vivo neuroimaging measure of putative gliosis) or markers of brain microglia in post-mortem studies. In experimental animals, where drug and illness effects may be differentiated, we also found no clear evidence for consistent effects of antipsychotic drugs on TSPO radioligand binding. By contrast, we found evidence that chronic antipsychotic exposure may influence central microglia density and morphology. However, these effects were dependent on the dose and duration of drug exposure and whether an immune stimulus was present or not. In the latter case, antipsychotics were generally reported to suppress expression of inflammatory cytokines and inducible inflammatory enzymes such as cyclooxygenase and microglia activation. No clear conclusions could be drawn with regard to any effect of antipsychotics on brain microglia from current clinical data. There is evidence to suggest that antipsychotic drugs influence brain microglia in experimental animals, including possible anti-inflammatory actions. However, we lack detailed information on how these drugs influence brain microglia function at the molecular level. The clinical relevance of the animal data with regard to beneficial treatment effects and detrimental side effects of antipsychotic drugs also remains unknown, and further studies are warranted.
Collapse
Affiliation(s)
- Ayushi Anna Dinesh
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Juned Islam
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Javad Khan
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Centre for Neuroimaging Sciences, De Crespigny Park, London, SE5 8AF, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London, SE5 9RT, United Kingdom.
| |
Collapse
|
62
|
Oh C, Song IH, Lee W, Jeon M, Choi J, Baek S, Lee BC, Kim SE, Im HJ. Brown adipose tissue imaging using the TSPO tracer [ 18F]fluoromethyl-PBR28-d 2: A comparison with [ 18F]FDG. Nucl Med Biol 2020; 90-91:98-103. [PMID: 33189950 DOI: 10.1016/j.nucmedbio.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/02/2020] [Accepted: 10/17/2020] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Currently, the reference method of brown adipose tissue (BAT) imaging is 18F-fluorodeoxyglucose positron emission tomography ([18F]FDG PET). BAT imaging by [18F]FDG PET requires additional stimulation process, which is inconvenient and hard to be standardized. The translocator protein 18 kDa (TSPO) PET has been found to be effective for visualization of BAT. Herein, we evaluated the feasibility of [18F]fluoromethyl-PBR28-d2 ([18F]fmPBR28-d2), a TSPO PET tracer, for interscapular BAT imaging in comparison with [18F]FDG PET. METHODS C57BL/6 mice were used for the [18F]fmPBR28-d2 and [18F]FDG PET imaging. [18F]fmPBR28-d2 PET was performed in the thermoneutral condition (n = 5) and after cold exposure (4 °C for 4 h) on the next day using the same mice. [18F]FDG PET was performed in the thermoneutral and cold exposure conditions with the same method with [18F]fmPBR28-d2 PET. Ex vivo biodistribution study of [18F]fmPBR28-d2 was performed in ten C57BL/6 mice (5: thermoneutral, 5: cold exposure). TSPO immunohistochemistry was done in interscapular BAT. RESULTS The [18F]fmPBR28-d2 PET images showed prominent interscapular BAT uptakes under both thermoneutral and cold exposure conditions. While, the BAT uptake was significantly higher under the cold exposure condition than the thermoneutral condition (12.83 ± 5.06 vs. 22.50 ± 6.03, P = 0.007). Also, [18F]FDG PET imaging showed higher BAT uptake under the cold exposure condition than thermoneutral condition (8.40 ± 0.63 vs. 21.41 ± 4.03, P = 0.001). The interscapular BAT to background (thigh muscle) ratio was higher in [18F]fmPBR28-d2 PET than [18F]FDG PET under both thermoneutral and cold exposure conditions. Ex vivo biodistribution study using [18F]fmPBR28-d2 also showed higher BAT uptake under cold exposure than the thermoneutral condition (8.86 ± 1.74 vs.16.93 ± 4.74, P = 0.036). Also, IHC demonstrated that TSPO expression was significantly increased in the cold exposure group. CONCLUSIONS [18F]FmPBR28-d2 PET demonstrated prominent interscapular BAT uptakes regardless of additional stimulation, and showed a higher BAT to background ratio than [18F]FDG PET. Also, we found that [18F]fmPBR28-d2 PET uptake and TSPO expression of BAT increased under cold exposure condition. Further works are warranted to assess the clinical significance of TSPO PET uptake in BAT.
Collapse
Affiliation(s)
- Chiwoo Oh
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - In Ho Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Wooseung Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Miyeon Jeon
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinyeong Choi
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungki Baek
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea; Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea. http://tmtl.snu.ac.kr
| | - Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea; Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
63
|
An update into the medicinal chemistry of translocator protein (TSPO) ligands. Eur J Med Chem 2020; 209:112924. [PMID: 33081988 DOI: 10.1016/j.ejmech.2020.112924] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 01/16/2023]
Abstract
The Translocator Protein 18 kDa (TSPO) has been discovered in 1977 as an alternative binding site for the benzodiazepine diazepam. It is an evolutionary well-conserved and tryptophan-rich 169-amino acids protein with five alpha helical transmembrane domains stretching the outer mitochondrial membrane, with the carboxyl-terminus in the cytosol and a short amino-terminus in the intermembrane space of mitochondrion. At this level, together with the voltage-dependent anion channel (VDAC) and the adenine nucleotide translocase (ANT), it forms the mitochondrial permeability transition pore (MPTP). TSPO expression is ubiquitary, with higher levels in steroid producing tissues; in the central nervous system, it is mainly expressed in glial cells and in neurons. TSPO is implicated in a variety of fundamental cellular processes including steroidogenesis, heme biosynthesis, mitochondrial respiration, mitochondrial membrane potential, cell proliferation and differentiation, cell life/death balance, oxidative stress. Altered TSPO expression has been found in some pathological conditions. In particular, high TSPO expression levels have been documented in cancer, neuroinflammation, and brain injury. Conversely, low TSPO expression levels have been evidenced in anxiety disorders. Therefore, TSPO is not only an interesting drug target for therapeutic purpose (anticonvulsant, anxiolytic, etc.), but also a valid diagnostic marker of related-diseases detectable by fluorescent or radiolabeled ligands. The aim of this report is to present an update of previous reviews dealing with the medicinal chemistry of TSPO and to highlight the most outstanding advances in the development of TSPO ligands as potential therapeutic or diagnostic tools, especially referring to the last five years.
Collapse
|
64
|
Ammer LM, Vollmann-Zwerenz A, Ruf V, Wetzel CH, Riemenschneider MJ, Albert NL, Beckhove P, Hau P. The Role of Translocator Protein TSPO in Hallmarks of Glioblastoma. Cancers (Basel) 2020; 12:cancers12102973. [PMID: 33066460 PMCID: PMC7602186 DOI: 10.3390/cancers12102973] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The translocator protein (TSPO) has been under extensive investigation as a specific marker in positron emission tomography (PET) to visualize brain lesions following injury or disease. In recent years, TSPO is increasingly appreciated as a potential novel therapeutic target in cancer. In Glioblastoma (GBM), the most malignant primary brain tumor, TSPO expression levels are strongly elevated and scientific evidence accumulates, hinting at a pivotal role of TSPO in tumorigenesis and glioma progression. The aim of this review is to summarize the current literature on TSPO with respect to its role both in diagnostics and especially with regard to the critical hallmarks of cancer postulated by Hanahan and Weinberg. Overall, our review contributes to a better understanding of the functional significance of TSPO in Glioblastoma and draws attention to TSPO as a potential modulator of treatment response and thus an important factor that may influence the clinical outcome of GBM. Abstract Glioblastoma (GBM) is the most fatal primary brain cancer in adults. Despite extensive treatment, tumors inevitably recur, leading to an average survival time shorter than 1.5 years. The 18 kDa translocator protein (TSPO) is abundantly expressed throughout the body including the central nervous system. The expression of TSPO increases in states of inflammation and brain injury due to microglia activation. Not least due to its location in the outer mitochondrial membrane, TSPO has been implicated with a broad spectrum of functions. These include the regulation of proliferation, apoptosis, migration, as well as mitochondrial functions such as mitochondrial respiration and oxidative stress regulation. TSPO is frequently overexpressed in GBM. Its expression level has been positively correlated to WHO grade, glioma cell proliferation, and poor prognosis of patients. Several lines of evidence indicate that TSPO plays a functional part in glioma hallmark features such as resistance to apoptosis, invasiveness, and proliferation. This review provides a critical overview of how TSPO could regulate several aspects of tumorigenesis in GBM, particularly in the context of the hallmarks of cancer proposed by Hanahan and Weinberg in 2011.
Collapse
Affiliation(s)
- Laura-Marie Ammer
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
| | - Arabel Vollmann-Zwerenz
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig Maximilians University of Munich, 81377 Munich, Germany;
| | - Christian H. Wetzel
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany;
| | | | - Nathalie L. Albert
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, 81377 Munich, Germany;
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology (RCI) and Department Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
- Correspondence:
| |
Collapse
|
65
|
Koganti PP, Selvaraj V. Lack of adrenal TSPO/PBR expression in hamsters reinforces correlation to triglyceride metabolism. J Endocrinol 2020; 247:1-10. [PMID: 32698131 PMCID: PMC8011561 DOI: 10.1530/joe-20-0189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 11/08/2022]
Abstract
Despite being a highly conserved protein, the precise role of the mitochondrial translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), remains elusive. The void created by studies that overturned a presumptive model that described TSPO/PBR as a mitochondrial cholesterol transporter for steroidogenesis has been filled with evidence that it can affect mitochondrial metabolic functions across different model systems. We previously reported that TSPO/PBR deficient steroidogenic cells upregulate mitochondrial fatty acid oxidation and presented a strong positive correlation between TSPO/PBR expression and tissues active in triglyceride metabolism or lipid storage. Nevertheless, the highlighting of inconsistencies in prior work has provoked reprisals that threaten to stifle progress. One frequent factoid presented as being supportive of a cholesterol import function is that there are no steroid-synthesizing cell types without high TSPO/PBR expression. In this study, we examine the hamster adrenal gland that is devoid of lipid droplets in the cortex and largely relies on de novo cholesterol biosynthesis and uptake for steroidogenesis. We find that Tspo expression in the hamster adrenal is imperceptible compared to the mouse. This observation is consistent with a substantially low expression of Cpt1a in the hamster adrenal, indicating minimal mitochondrial fatty acid oxidation capacity compared to the mouse. These findings provide further reinforcement that the much sought-after mechanism of TSPO/PBR function remains correlated with the extent of cellular triglyceride metabolism. Thus, TSPO/PBR could have a homeostatic function relevant only to steroidogenic systems that manage triglycerides associated with lipid droplets.
Collapse
Affiliation(s)
- Prasanthi P. Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853
| |
Collapse
|
66
|
Kikutani K, Giga H, Hosokawa K, Shime N, Aizawa H. Microglial translocator protein and stressor-related disorder. Neurochem Int 2020; 140:104855. [PMID: 32980493 DOI: 10.1016/j.neuint.2020.104855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
Despite the prevalence of neuroinflammation in psychiatric disorders, molecular mechanism underlying it remains elusive. Translocator protein 18 kDa (TSPO), also known as peripheral benzodiazepine receptor, is a mitochondrial protein implicated in the synthesis of steroids in a variety of tissues. Multiple reports have shown increased expression of TSPO in the activated microglia in the CNS. Radioactive probes targeting TSPO have been developed and used for imaging assessment in neurological and psychiatric disorders to examine neuroinflammation. Recent studies revealed that the wide range of stressors ranging from psychological to physical insults induced TSPO in human, suggesting that this protein could be an important tool to explore the contribution of microglia in stressor-related disorders. In this review, we first overview the microglial activation with TSPO in a wide range of stressors in human and animal models to discuss prevalent roles of TSPO in response of CNS to stressors. With recent update of the signaling pathway revealing link connecting TSPO with neuroinflammatory effectors such as reactive oxygen species, we discuss TSPO as a therapeutic targeting tool for suppression of adverse effect of stressors on long-lasting changes in animal behaviors and activities. Targeting TSPO which mediates neuroinflammation under the stress might pave the way to develop therapeutic intervention and prophylaxis of stressor-related disorder.
Collapse
Affiliation(s)
- Kazuya Kikutani
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, Japan
| | - Hiroshi Giga
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, Japan
| | - Koji Hosokawa
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, Japan
| | - Hidenori Aizawa
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan.
| |
Collapse
|
67
|
Mahmud FJ, Du Y, Greif E, Boucher T, Dannals RF, Mathews WB, Pomper MG, Sysa-Shah P, Metcalf Pate KA, Lyons C, Carlson B, Chacona M, Brown AM. Osteopontin/secreted phosphoprotein-1 behaves as a molecular brake regulating the neuroinflammatory response to chronic viral infection. J Neuroinflammation 2020; 17:273. [PMID: 32943056 PMCID: PMC7499959 DOI: 10.1186/s12974-020-01949-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Osteopontin (OPN) as a secreted signaling protein is dramatically induced in response to cellular injury and neurodegeneration. Microglial inflammatory responses in the brain are tightly associated with the neuropathologic hallmarks of neurodegenerative disease, but understanding of the molecular mechanisms remains in several contexts poorly understood. METHODS Micro-positron emission tomography (PET) neuroimaging using radioligands to detect increased expression of the translocator protein (TSPO) receptor in the brain is a non-invasive tool used to track neuroinflammation in living mammals. RESULTS In humanized, chronically HIV-infected female mice in which OPN expression was knocked down with functional aptamers, uptake of TSPO radioligand DPA-713 was markedly upregulated in the cortex, olfactory bulb, basal forebrain, hypothalamus, and central grey matter compared to controls. Microglia immunoreactive for Iba-1 were more abundant in some HIV-infected mice, but overall, the differences were not significant between groups. TSPO+ microglia were readily detected by immunolabeling of post-mortem brain tissue and unexpectedly, two types of neurons also selectively stained positive for TSPO. The reactive cells were the specialized neurons of the cerebellum, Purkinje cells, and a subset of tyrosine hydroxylase-positive neurons of the substantia nigra. CONCLUSIONS In female mice with wild-type levels of osteopontin, increased levels of TSPO ligand uptake in the brain was seen in animals with the highest levels of persistent HIV replication. In contrast, in mice with lower levels of osteopontin, the highest levels of TSPO uptake was seen, in mice with relatively low levels of persistent infection. These findings suggest that osteopontin may act as a molecular brake regulating in the brain, the inflammatory response to HIV infection.
Collapse
Affiliation(s)
- Farina J Mahmud
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Yong Du
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Elizabeth Greif
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Thomas Boucher
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Robert F Dannals
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - William B Mathews
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Martin G Pomper
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Polina Sysa-Shah
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kelly A Metcalf Pate
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Claire Lyons
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Bess Carlson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Maria Chacona
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Amanda M Brown
- Department of Neurology and Neuroscience, Baltimore, USA.
| |
Collapse
|
68
|
Banati RB, Wilcox P, Xu R, Yin G, Si E, Son ET, Shimizu M, Holsinger RMD, Parmar A, Zahra D, Arthur A, Middleton RJ, Liu GJ, Charil A, Graeber MB. Selective, high-contrast detection of syngeneic glioblastoma in vivo. Sci Rep 2020; 10:9968. [PMID: 32561881 PMCID: PMC7305160 DOI: 10.1038/s41598-020-67036-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/19/2020] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma is a highly malignant, largely therapy-resistant brain tumour. Deep infiltration of brain tissue by neoplastic cells represents the key problem of diffuse glioma. Much current research focuses on the molecular makeup of the visible tumour mass rather than the cellular interactions in the surrounding brain tissue infiltrated by the invasive glioma cells that cause the tumour’s ultimately lethal outcome. Diagnostic neuroimaging that enables the direct in vivo observation of the tumour infiltration zone and the local host tissue responses at a preclinical stage are important for the development of more effective glioma treatments. Here, we report an animal model that allows high-contrast imaging of wild-type glioma cells by positron emission tomography (PET) using [18 F]PBR111, a selective radioligand for the mitochondrial 18 kDa Translocator Protein (TSPO), in the Tspo−/− mouse strain (C57BL/6-Tspotm1GuMu(GuwiyangWurra)). The high selectivity of [18 F]PBR111 for the TSPO combined with the exclusive expression of TSPO in glioma cells infiltrating into null-background host tissue free of any TSPO expression, makes it possible, for the first time, to unequivocally and with uniquely high biological contrast identify peri-tumoral glioma cell invasion at preclinical stages in vivo. Comparison of the in vivo imaging signal from wild-type glioma cells in a null background with the signal in a wild-type host tissue, where the tumour induces the expected TSPO expression in the host’s glial cells, illustrates the substantial extent of the peritumoral host response to the growing tumour. The syngeneic tumour (TSPO+/+) in null background (TSPO−/−) model is thus well suited to study the interaction of the tumour front with the peri-tumoral tissue, and the experimental evaluation of new therapeutic approaches targeting the invasive behaviour of glioblastoma.
Collapse
Affiliation(s)
- Richard B Banati
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia. .,Medical Imaging, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.
| | - Paul Wilcox
- Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Ran Xu
- Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Grace Yin
- Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Emily Si
- Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Eric Taeyoung Son
- Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Mauricio Shimizu
- Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - R M Damian Holsinger
- Molecular Neuroscience, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Arvind Parmar
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - David Zahra
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Andrew Arthur
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Ryan J Middleton
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia.,Medical Imaging, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Arnaud Charil
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Manuel B Graeber
- Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
69
|
Abstract
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease and has become a major socioeconomic issue in many developed countries. Currently available therapeutic agents for AD provide only symptomatic treatments, mainly because the complete mechanism of the AD pathogenesis is still unclear. Although several different hypotheses have been proposed, mitochondrial dysfunction has gathered interest because of its profound effect on brain bioenergetics and neuronal survival in the pathophysiology of AD. Various therapeutic agents targeting the mitochondrial pathways associated with AD have been developed over the past decade. Although most of these agents are still early in the clinical development process, they are used to restore mitochondrial function, which provides an alternative therapeutic strategy that is likely to slow the progression of the disease. In this mini review, we will survey the AD-related mitochondrial pathways and their small-molecule modulators that have therapeutic potential. We will focus on recently reported examples, and also overview the current challenges and future perspectives of ongoing research.
Collapse
Affiliation(s)
- Ji Woong Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul 01133, Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
70
|
18-kDa translocator protein association complexes in the brain: From structure to function. Biochem Pharmacol 2020; 177:114015. [PMID: 32387458 DOI: 10.1016/j.bcp.2020.114015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
The outer mitochondrial membrane 18-kDa translocator protein (TSPO) is highly conserved in organisms of different species and ubiquitously expressed throughout tissues, including the nervous system. In the healthy adult brain, TSPO expression levels are low and promptly modulated under different pathological conditions, such as cancer, inflammatory states, and neurological and psychiatric disorders. Not surprisingly, several endogenous and synthetic molecules capable of binding TSPO have been proposed as drugs or diagnostic tools for brain diseases. The most studied biochemical function of TSPO is cholesterol translocation into mitochondria, which in turn affects the synthesis of steroids in the periphery and neurosteroids in the brain. In the last 30 years, roles for TSPO have also been suggested in other cellular processes, such as heme synthesis, apoptosis, autophagy, calcium signalling and reactive oxygen species production. Herein, we provide an overview of TSPO associations with different proteins, focusing particular attention on their related functions. Furthermore, recent TSPO-targeted therapeutic interventions are explored and discussed as prospect for innovative treatments in mental and brain diseases.
Collapse
|
71
|
Zhou J, Zhang X, Peng J, Xie Y, Du F, Guo K, Feng Y, Zhang L, Chen L, Jiang Y. TSPO ligand Ro5-4864 modulates microglia/macrophages polarization after subarachnoid hemorrhage in mice. Neurosci Lett 2020; 729:134977. [PMID: 32387718 DOI: 10.1016/j.neulet.2020.134977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/24/2020] [Accepted: 04/07/2020] [Indexed: 11/30/2022]
Abstract
Brain injury after subarachnoid hemorrhage (SAH) is closely related to microglia/macrophages-induced neuroinflammation. Translocator protein (TSPO) is a hall marker of activated microglia/macrophages, and the TSPO ligands have been proved to be beneficial for controlling neuroinflammation. Ro5-4864, one of the TSPO ligands, has been reported to be able to regulate inflammation in neurological diseases. Here, we investigated the effects of Ro5-4864 on microglia/macrophages polarization in a SAH mice model, which was induced by endovascular perforation. Ro5-4864 was administered intraperitoneally dissolved in DMSO-saline. Post-SAH assessments included neurological tests, SAH grade, western blotting, ELISA assay and immunohistochemistry. The results showed that brain injury was accompanied by the accumulation of TNF-α and IL-1β, as well as the increase of iNOS protein levels. Finally, we found that Ro5-4864 improved neurological function, increased the expression of anti-inflammatory factors, and influenced phenotypes of M2 microglia/macrophages after SAH. Together, these data reveal a protective role of TSPO ligand Ro5-4864 in inflammatory processes of SAH as well as a potential alternative for SAH treatment.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xianhui Zhang
- Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, Sichuan, 64600, China
| | - Jianhua Peng
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China; (Academician (Expert) Workstation of Sichuan Province), Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yuke Xie
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Fengling Du
- Department of Newborn Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Kecheng Guo
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yue Feng
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Lifang Zhang
- Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, Sichuan, 64600, China
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China; Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, Sichuan, 64600, China
| | - Yong Jiang
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China; Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, Sichuan, 64600, China; Department of Newborn Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China; Laboratory of Nervous System Diseases and Brain Functions, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
72
|
Dubé JJ, Collyer ML, Trant S, Toledo FGS, Goodpaster BH, Kershaw EE, DeLany JP. Decreased Mitochondrial Dynamics Is Associated with Insulin Resistance, Metabolic Rate, and Fitness in African Americans. J Clin Endocrinol Metab 2020; 105:dgz272. [PMID: 31833547 PMCID: PMC7067552 DOI: 10.1210/clinem/dgz272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/11/2019] [Indexed: 12/27/2022]
Abstract
CONTEXT African American women (AAW) have a higher incidence of insulin resistance and are at a greater risk for the development of obesity and type 2 diabetes than Caucasian women (CW). Although several factors have been proposed to mediate these racial disparities, the mechanisms remain poorly defined. We previously demonstrated that sedentary lean AAW have lower peripheral insulin sensitivity, reduced maximal aerobic fitness (VO2max), and lower resting metabolic rate (RMR) than CW. We have also demonstrated that skeletal muscle mitochondrial respiration is lower in AAW and appears to play a role in these racial differences. OBJECTIVE The goal of this study was to assess mitochondrial pathways and dynamics to examine the potential mechanisms of lower insulin sensitivity, RMR, VO2max, and mitochondrial capacity in AAW. DESIGN To achieve this goal, we assessed several mitochondrial pathways in skeletal muscle using gene array technology and semiquantitative protein analysis. RESULTS We report alterations in mitochondrial pathways associated with inner membrane small molecule transport genes, fusion-fission, and autophagy in lean AAW. These differences were associated with lower insulin sensitivity, RMR, and VO2max. CONCLUSIONS Together these data suggest that the metabolic racial disparity of insulin resistance, RMR, VO2max, and mitochondrial capacity may be mediated by perturbations in mitochondrial pathways associated with membrane transport, fission-fusion, and autophagy. The mechanisms contributing to these differences remain unknown.
Collapse
Affiliation(s)
- John J Dubé
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- School of Arts, Business, and Science, Department of Biology, Chatham University, Pittsburgh, Pennsylvania
| | - Michael L Collyer
- School of Arts, Business, and Science, Department of Biology, Chatham University, Pittsburgh, Pennsylvania
| | - Sara Trant
- School of Arts, Business, and Science, Department of Biology, Chatham University, Pittsburgh, Pennsylvania
| | - Frederico G S Toledo
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bret H Goodpaster
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Erin E Kershaw
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James P DeLany
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
73
|
Tonon MC, Vaudry H, Chuquet J, Guillebaud F, Fan J, Masmoudi-Kouki O, Vaudry D, Lanfray D, Morin F, Prevot V, Papadopoulos V, Troadec JD, Leprince J. Endozepines and their receptors: Structure, functions and pathophysiological significance. Pharmacol Ther 2020; 208:107386. [DOI: 10.1016/j.pharmthera.2019.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
|
74
|
Shang C, Yao RM, Guo Y, Ding ZC, Sun LJ, Ran YH, Xue R, Wang HS, Zhang JM, Zhang YZ, Zhang LM, Li YF. Translocator protein-mediated fast-onset antidepressant-like and memory-enhancing effects in chronically stressed mice. J Psychopharmacol 2020; 34:441-451. [PMID: 31913078 DOI: 10.1177/0269881119896304] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Fast-acting and cognitive-enhancing antidepressants are desperately needed. Activation of translocator protein (18 kDa, TSPO) is a novel strategy for developing potential antidepressants, but there are no data available on the onset time of TSPO ligands. This study aimed to investigate the fast-onset antidepressant actions of AC-5216, a selective TSPO ligand, in TSPO knock-out (KO) mice. METHODS TSPO wild-type (WT) and KO mice were subjected to a six-week chronic unpredicted stress (CUS) paradigm. Then, the mice were treated with AC-5216 and tested with depressive and cognitive behaviours. RESULTS A single dose of AC-5216 (0.3 mg/kg) exerted anxiolytic- and antidepressant-like actions in TSPO WT mice. Moreover, in chronically stressed WT mice, two to four days of AC-5216 treatment (0.3 mg/kg, once per day) produced fast-onset antidepressant-like effects in the novelty-suppressed feeding and sucrose preference tests, as well as memory-enhancing effects in the novel object recognition test. In addition, a rapid (with five days of treatment) restoration of serum corticosterone levels and prefrontal cortex (PFC) allopregnanolone levels was found. Further studies showed that in these stress-exposed WT mice, AC-5216 significantly increased the levels of mTOR signalling-related proteins (mBDNF, p-mTOR, PSD-95, synapsin-1, GluR1), as well as the total dendritic length and branching points of pyramidal neurons in the PFC. CONCLUSIONS These results suggest that TSPO mediates the fast-onset antidepressant-like and memory-enhancing effects of AC-5216, possibly through the rapid activation of mTOR signalling and restoration of dendritic complexity in the PFC.
Collapse
Affiliation(s)
- Chao Shang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Ru-Meng Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Ying Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Zhen-Chun Ding
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Li-Jun Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Yu-Hua Ran
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Rui Xue
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Huai-Shan Wang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, PR China
| | - Jian-Min Zhang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, PR China
| | - You-Zhi Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Li-Ming Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Yun-Feng Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| |
Collapse
|
75
|
Extra-adrenal glucocorticoid biosynthesis: implications for autoimmune and inflammatory disorders. Genes Immun 2020; 21:150-168. [PMID: 32203088 PMCID: PMC7276297 DOI: 10.1038/s41435-020-0096-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Glucocorticoid synthesis is a complex, multistep process that starts with cholesterol being delivered to the inner membrane of mitochondria by StAR and StAR-related proteins. Here its side chain is cleaved by CYP11A1 producing pregnenolone. Pregnenolone is converted to cortisol by the enzymes 3-βHSD, CYP17A1, CYP21A2 and CYP11B1. Glucocorticoids play a critical role in the regulation of the immune system and exert their action through the glucocorticoid receptor (GR). Although corticosteroids are primarily produced in the adrenal gland, they can also be produced in a number of extra-adrenal tissue including the immune system, skin, brain, and intestine. Glucocorticoid production is regulated by ACTH, CRH, and cytokines such as IL-1, IL-6 and TNFα. The bioavailability of cortisol is also dependent on its interconversion to cortisone which is inactive, by 11βHSD1/2. Local and systemic glucocorticoid biosynthesis can be stimulated by ultraviolet B, explaining its immunosuppressive activity. In this review, we want to emphasize that dysregulation of extra-adrenal glucocorticoid production can play a key role in a variety of autoimmune diseases including multiple sclerosis (MS), lupus erythematosus (LE), rheumatoid arthritis (RA), and skin inflammatory disorders such as psoriasis and atopic dermatitis (AD). Further research on local glucocorticoid production and its bioavailability may open doors into new therapies for autoimmune diseases.
Collapse
|
76
|
Betlazar C, Middleton RJ, Banati R, Liu GJ. The Translocator Protein (TSPO) in Mitochondrial Bioenergetics and Immune Processes. Cells 2020; 9:cells9020512. [PMID: 32102369 PMCID: PMC7072813 DOI: 10.3390/cells9020512] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
The translocator protein (TSPO) is an outer mitochondrial membrane protein that is widely used as a biomarker of neuroinflammation, being markedly upregulated in activated microglia in a range of brain pathologies. Despite its extensive use as a target in molecular imaging studies, the exact cellular functions of this protein remain in question. The long-held view that TSPO plays a fundamental role in the translocation of cholesterol through the mitochondrial membranes, and thus, steroidogenesis, has been disputed by several groups with the advent of TSPO knockout mouse models. Instead, much evidence is emerging that TSPO plays a fundamental role in cellular bioenergetics and associated mitochondrial functions, also part of a greater role in the innate immune processes of microglia. In this review, we examine the more direct experimental literature surrounding the immunomodulatory effects of TSPO. We also review studies which highlight a more central role for TSPO in mitochondrial processes, from energy metabolism, to the propagation of inflammatory responses through reactive oxygen species (ROS) modulation. In this way, we highlight a paradigm shift in approaches to TSPO functioning.
Collapse
Affiliation(s)
- Calina Betlazar
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
- Correspondence: (C.B.); (G-J.L.)
| | - Ryan J. Middleton
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
| | - Richard Banati
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
| | - Guo-Jun Liu
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
- Correspondence: (C.B.); (G-J.L.)
| |
Collapse
|
77
|
Fu Y, Wang D, Wang H, Cai M, Li C, Zhang X, Chen H, Hu Y, Zhang X, Ying M, He W, Zhang J. TSPO deficiency induces mitochondrial dysfunction, leading to hypoxia, angiogenesis, and a growth-promoting metabolic shift toward glycolysis in glioblastoma. Neuro Oncol 2020; 22:240-252. [PMID: 31563962 PMCID: PMC7442372 DOI: 10.1093/neuonc/noz183] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The ligands of mitochondrial translocator protein (TSPO) have been widely used as diagnostic biomarkers for glioma. However, the true biological actions of TSPO in vivo and its role in glioma tumorigenesis remain elusive. METHODS TSPO knockout xenograft and spontaneous mouse glioma models were employed to assess the roles of TSPO in the pathogenesis of glioma. A Seahorse Extracellular Flux Analyzer was used to evaluate mitochondrial oxidative phosphorylation and glycolysis in TSPO knockout and wild-type glioma cells. RESULTS TSPO deficiency promoted glioma cell proliferation in vitro in mouse GL261 cells and patient-derived stem cell-like GBM1B cells. TSPO knockout increased glioma growth and angiogenesis in intracranial xenografts and a mouse spontaneous glioma model. Loss of TSPO resulted in a greater number of fragmented mitochondria, increased glucose uptake and lactic acid conversion, decreased oxidative phosphorylation, and increased glycolysis. CONCLUSION TSPO serves as a key regulator of glioma growth and malignancy by controlling the metabolic balance between mitochondrial oxidative phosphorylation and glycolysis.1. TSPO deficiency promotes glioma growth and angiogenesis.2. TSPO regulates the balance between mitochondrial oxidative phosphorylation and glycolysis.
Collapse
Affiliation(s)
- Yi Fu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Dongdong Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Huaishan Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Menghua Cai
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Chao Li
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Xue Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Hui Chen
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yu Hu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingyao Ying
- Hugo W. Moser Research Institute at Kennedy Krieger, and Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Wei He
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| |
Collapse
|
78
|
Jurkiewicz P, Senicourt L, Ayeb H, Lequin O, Lacapere JJ, Batoko H. A Plant-Specific N-terminal Extension Reveals Evolutionary Functional Divergence within Translocator Proteins. iScience 2020; 23:100889. [PMID: 32087576 PMCID: PMC7033594 DOI: 10.1016/j.isci.2020.100889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/30/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Conserved translocator proteins (TSPOs) mediate cell stress responses possibly in a cell-type-specific manner. This work reports on the molecular function of plant TSPO and their possible evolutionary divergence. Arabidopsis thaliana TSPO (AtTSPO) is stress induced and has a conserved polybasic, plant-specific N-terminal extension. AtTSPO reduces water loss by depleting aquaporin PIP2;7 in the plasma membrane. Herein, AtTSPO was found to bind phosphoinositides in vitro, but only full-length AtTSPO or chimeric mouse TSPO with an AtTSPO N-terminus bound PI(4,5)P2in vitro and modified PIP2;7 levels in vivo. Expression of AtTSPO but not its N-terminally truncated variant enhanced phospholipase C activity and depleted PI(4,5)P2 from the plasma membrane and its enrichment in Golgi membranes. Deletion or point mutations within the AtTSPO N-terminus affected PI(4,5)P2 binding and almost prevented AtTSPO-PIP2;7 interaction in vivo. The findings imply functional divergence of plant TSPOs from bacterial and animal counterparts via evolutionary acquisition of the phospholipid-interacting N-terminus.
Collapse
Affiliation(s)
- Pawel Jurkiewicz
- Louvain Institute of Biomolecular Science and Technology (LIBST), University of Louvain (UCLouvain), Croix du Sud 4-5, L7.07.14, 1348 Louvain-la-Neuve, Belgium
| | - Lucile Senicourt
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 4 Place Jussieu, 75005 Paris, France
| | - Haitham Ayeb
- Louvain Institute of Biomolecular Science and Technology (LIBST), University of Louvain (UCLouvain), Croix du Sud 4-5, L7.07.14, 1348 Louvain-la-Neuve, Belgium
| | - Olivier Lequin
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 4 Place Jussieu, 75005 Paris, France
| | - Jean-Jacques Lacapere
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 4 Place Jussieu, 75005 Paris, France
| | - Henri Batoko
- Louvain Institute of Biomolecular Science and Technology (LIBST), University of Louvain (UCLouvain), Croix du Sud 4-5, L7.07.14, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
79
|
Pannell M, Economopoulos V, Wilson TC, Kersemans V, Isenegger PG, Larkin JR, Smart S, Gilchrist S, Gouverneur V, Sibson NR. Imaging of translocator protein upregulation is selective for pro-inflammatory polarized astrocytes and microglia. Glia 2020; 68:280-297. [PMID: 31479168 PMCID: PMC6916298 DOI: 10.1002/glia.23716] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 01/06/2023]
Abstract
Translocator protein (TSPO) expression is increased in activated glia, and has been used as a marker of neuroinflammation in PET imaging. However, the extent to which TSPO upregulation reflects a pro- or anti-inflammatory phenotype remains unclear. Our aim was to determine whether TSPO upregulation in astrocytes and microglia/macrophages is limited to a specific inflammatory phenotype. TSPO upregulation was assessed by flow cytometry in cultured astrocytes, microglia, and macrophages stimulated with lipopolysaccharide (LPS), tumor necrosis factor (TNF), or interleukin-4 (Il-4). Subsequently, mice were injected intracerebrally with either a TNF-inducing adenovirus (AdTNF) or IL-4. Glial expression of TSPO and pro-/anti-inflammatory markers was assessed by immunohistochemistry/fluorescence and flow cytometry. Finally, AdTNF or IL-4 injected mice underwent PET imaging with injection of the TSPO radioligand 18 F-DPA-713, followed by ex vivo autoradiography. TSPO expression was significantly increased in pro-inflammatory microglia/macrophages and astrocytes both in vitro, and in vivo after AdTNF injection (p < .001 vs. control hemisphere), determined both histologically and by FACS. Both PET imaging and autoradiography revealed a significant (p < .001) increase in 18 F-DPA-713 binding in the ipsilateral hemisphere of AdTNF-injected mice. In contrast, no increase in either TSPO expression assessed histologically and by FACS, or ligand binding by PET/autoradiography was observed after IL-4 injection. Taken together, these results suggest that TSPO imaging specifically reveals the pro-inflammatory population of activated glial cells in the brain in response to inflammatory stimuli. Since the inflammatory phenotype of glial cells is critical to their role in neurological disease, these findings may enhance the utility and application of TSPO imaging.
Collapse
Affiliation(s)
- Maria Pannell
- Department of OncologyCancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of OxfordOxfordUK
| | - Vasiliki Economopoulos
- Department of OncologyCancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of OxfordOxfordUK
| | | | - Veerle Kersemans
- Department of OncologyCancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of OxfordOxfordUK
| | | | - James R. Larkin
- Department of OncologyCancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of OxfordOxfordUK
| | - Sean Smart
- Department of OncologyCancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of OxfordOxfordUK
| | - Stuart Gilchrist
- Department of OncologyCancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of OxfordOxfordUK
| | | | - Nicola R. Sibson
- Department of OncologyCancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of OxfordOxfordUK
| |
Collapse
|
80
|
Fan J, Campioli E, Sottas C, Zirkin B, Papadopoulos V. Amhr2-Cre-Mediated Global Tspo Knockout. J Endocr Soc 2020; 4:bvaa001. [PMID: 32099945 PMCID: PMC7031085 DOI: 10.1210/jendso/bvaa001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/09/2020] [Indexed: 12/27/2022] Open
Abstract
Although the role of translocator protein (TSPO) in cholesterol transport in steroid-synthesizing cells has been studied extensively, recent studies of TSPO genetic depletion have questioned its role. Amhr2-Cre mice have been used to generate Leydig cell-specific Tspo conditional knockout (cKO) mice. Using the same Cre line, we were unable to generate Tspo cKO mice possibly because of genetic linkage between Tspo and Amhr2 and coexpression of Amhr2-Cre and Tspo in early embryonic development. We found that Amhr2-Cre is expressed during preimplantation stages, resulting in global heterozygous mice (gHE; Amhr2-Cre+/-,Tspo -/+). Two gHE mice were crossed, generating Amhr2-Cre-mediated Tspo global knockout (gKO; Tspo -/-) mice. We found that 33.3% of blastocysts at E3.5 to E4.5 showed normal morphology, whereas 66.7% showed delayed development, which correlates with the expected Mendelian proportions of Tspo +/+ (25%), Tspo -/- (25%), and Tspo +/- (50%) genotypes from crossing 2 Tspo -/+ mice. Adult Tspo gKO mice exhibited disturbances in neutral lipid homeostasis and reduced intratesticular and circulating testosterone levels, but no change in circulating basal corticosterone levels. RNA-sequencing data from mouse adrenal glands and lungs revealed transcriptome changes in response to the loss of TSPO, including changes in several cholesterol-binding and transfer proteins. This study demonstrates that Amhr2-Cre can be used to produce Tspo gKO mice instead of cKO, and can serve as a new global "Cre deleter." Moreover, our results show that Tspo deletion causes delayed preimplantation embryonic development, alters neutral lipid storage and steroidogenesis, and leads to transcriptome changes that may reflect compensatory mechanisms in response to the loss of function of TSPO.
Collapse
Affiliation(s)
- Jinjiang Fan
- The Research Institute of the McGill University Health Centre
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Enrico Campioli
- The Research Institute of the McGill University Health Centre
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Chantal Sottas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, US
| | - Barry Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, US
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, US
| |
Collapse
|
81
|
Lim JW, Lee J, Pae AN. Mitochondrial dysfunction and Alzheimer's disease: prospects for therapeutic intervention. BMB Rep 2020; 53:47-55. [PMID: 31818365 PMCID: PMC6999825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Indexed: 03/29/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease and has become a major socioeconomic issue in many developed countries. Currently available therapeutic agents for AD provide only symptomatic treatments, mainly because the complete mechanism of the AD pathogenesis is still unclear. Although several different hypotheses have been proposed, mitochondrial dysfunction has gathered interest because of its profound effect on brain bioenergetics and neuronal survival in the pathophysiology of AD. Various therapeutic agents targeting the mitochondrial pathways associated with AD have been developed over the past decade. Although most of these agents are still early in the clinical development process, they are used to restore mitochondrial function, which provides an alternative therapeutic strategy that is likely to slow the progression of the disease. In this mini review, we will survey the AD-related mitochondrial pathways and their small-molecule modulators that have therapeutic potential. We will focus on recently reported examples, and also overview the current challenges and future perspectives of ongoing research. [BMB Reports 2020; 53(1): 47-55].
Collapse
Affiliation(s)
- Ji Woong Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792,
Korea
| | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul 01133,
Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792,
Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792,
Korea
| |
Collapse
|
82
|
TSPO ligands prevent the proliferation of vascular smooth muscle cells and attenuate neointima formation through AMPK activation. Acta Pharmacol Sin 2020; 41:34-46. [PMID: 31515530 PMCID: PMC7471478 DOI: 10.1038/s41401-019-0293-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023]
Abstract
Abnormal growth of the intimal layer of blood vessels (neointima formation) contributes to the progression of atherosclerosis and in-stent restenosis. Recent evidence shows that the 18-kDa translocator protein (TSPO), a mitochondrial membrane protein, is involved in diverse cardiovascular diseases. In this study we investigated the role of endogenous TSPO in neointima formation after angioplasty in vitro and in vivo. We established a vascular injury model in vitro by using platelet-derived growth factor-BB (PDGF-BB) to stimulate rat thoracic aortic smooth muscle cells (A10 cells). We found that treatment with PDGF-BB (1–20 ng/mL) dose-dependently increased TSPO expression in A10 cells, which was blocked in the presence of PKC inhibitor or MAPK inhibitor. Overexpression of TSPO significantly promoted the proliferation and migration in A10 cells, whereas downregulation of TSPO expression by siRNA or treatment with TSPO ligands PK11195 or Ro5-4864 (104 nM) produced the opposite effects. Furthermore, we found that PK11195 (10−104 nM) dose-dependently activated AMPK in A10 cells. PK11195-induced inhibition on the proliferation and migration of PDGF-BB-treated A10 cells were abolished by compound C (an AMPK-specific inhibitor, 103 nM). In rats with balloon-injured carotid arteries, TSPO expression was markedly upregulated in the carotid arteries. Administration of PK11195 (3 mg/kg every 3 days, ip), starting from the initial balloon injury and lasting for 2 weeks, greatly attenuated carotid neointima formation by suppressing balloon injury-induced phenotype switching of VSMCs (increased α-SMA expression). These results suggest that TSPO is a vascular injury-response molecule that promotes VSMC proliferation and migration and is responsible for the neointima formation after vascular injury, which provides a novel therapeutic target for various cardiovascular diseases including atherosclerosis and restenosis.
Collapse
|
83
|
Selvaraj V, Morohaku K, Koganti PP, Zhang J, He W, Quirk SM, Stocco DM. Commentary: Amhr2-Cre-Mediated Global Tspo Knockout. Front Endocrinol (Lausanne) 2020; 11:472. [PMID: 32793121 PMCID: PMC7393387 DOI: 10.3389/fendo.2020.00472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/16/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
- Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
- *Correspondence: Vimal Selvaraj
| | - Kanako Morohaku
- Division of Animal Science, School of Science and Technology, Institute of Agriculture, Shinshu University, Nagano, Japan
| | - Prasanthi P. Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Jianmin Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Research Center on Pediatric Development Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei He
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Research Center on Pediatric Development Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Susan M. Quirk
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Douglas M. Stocco
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
84
|
Pinson JA. Who? What? Where? A snapshot of Nuclear Medicine Research Presentations from recent ANZSNM conferences in Australia and New Zealand. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2020; 8:123-131. [PMID: 32715000 PMCID: PMC7354245 DOI: 10.22038/aojnmb.2020.44525.1300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/13/2020] [Accepted: 02/28/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The aims of this study were to: 1) discover location (by city) of contributors to poster and oral presentations at recent ANZSNM conferences; 2) determine the nuclear medicine themes most commonly explored; 3) establish institutions producing the highest number of oral and poster abstracts and 4) determine publication rates of conference abstracts to full papers from recent ANZSNM conferences. METHODS Retrospective analysis of abstracts published in the Internal Medicine Journal Special Issues 2014-2019 identified 614 abstracts. Invited plenary speaker abstracts were excluded. Descriptive statistics were used in data analysis. Conference abstracts were analysed using the following criteria: poster or oral presentation, author/s, city location, hospital and subject matter. Themes defined by the ANZSNM conference committee for abstract submission were: cardiology, oncology, neurology, therapy, renal/urology, gastrointestinal, paediatrics, musculoskeletal, infection/inflammation, technology, physics, radiation safety, radiopharmacy/radiochemistry, education, or general. Retrospective analysis of 555 conference abstracts (excluding New Zealand and International, 59 abstracts) using Google Scholar, Pubmed and Google databases was undertaken. Abstract titles, key words, institutions and/or authors' names were used to find peer-reviewed papers. Identified papers were authenticated through either open access, publicly available author information or Monash University's library access. Published paper citations were also recorded (up to 1st July 2019). RESULTS Analysis of 614 abstracts 2014 - 2019 was performed. Over five years, the average number of poster abstracts was 67.8 and oral 55.0. Sydney submitted the highest number of poster abstracts, while Melbourne the highest number of oral abstracts. Most popular abstract theme was oncology for both poster and oral abstracts. Publications found had in excess of 1250 citations.One hundred and one publications from one hundred and seven conference presentations were identified, distributed across sixty journals. Conference presentation to full publication rate was 18.2%; excluding 2019 conference abstracts the rate was 21.5%. CONCLUSION Publishing research findings is a challenging process. A retrospective analysis of research presented at recent ANZSNM conferences by abstract content was undertaken, with conference presentation to full publication rate found to be at the lower end of reported literature findings.
Collapse
Affiliation(s)
- Jo-Anne Pinson
- Radiology Department, Monash Health, Clayton, Victoria, Australia; Radiology Department, Peninsula Health, Frankston, Victoria, Australia; Monash University, Clayton, Victoria, Australia; Department of Health and Human Services, Melbourne, Victoria, Australia
| |
Collapse
|
85
|
Yang H, Xing R, Liu S, Yu H, Li P. Analysis of the protective effects of γ-aminobutyric acid during fluoride-induced hypothyroidism in male Kunming mice. PHARMACEUTICAL BIOLOGY 2019; 57:29-37. [PMID: 30676163 PMCID: PMC6346718 DOI: 10.1080/13880209.2018.1563621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
CONTEXT Compounds to treat hypothyroidism in the absence of cardiac side effects are urgently required. In this regard, γ-aminobutyric acid (GABA) has gained interest due to its anti-anxiolytic, antihypertensive and antioxidant properties, and reported benefits to the thyroid system. OBJECTIVE We investigated the ability of GABA to ameliorate fluoride-induced thyroid injury in mice, and investigated the mechanism(s) associated with GABA-induced protection. MATERIALS AND METHODS Adult male Kumning mice (N = 90) were exposed to NaF (50 mg/kg) for 30 days as a model of hypothyroidism. To evaluate the effects of GABA administration, fluoride-exposed mice received either thyroid tablets, or low (25 mg/kg), medium (50 mg/kg) or high (75 mg/kg) concentrations of pure GABA orally for 14 days groups (N = 10 each). The effects of low (50 mg/kg); medium (75 mg/kg) and high (100 mg/kg) concentrations of laboratory-separated GABA were assessed for comparison. Effects on thyroid hormone production, oxidative stress, thyroid function-associated genes, and side-effects during therapy were measured. RESULTS GABA supplementation in fluoride-exposed mice significantly increased the expression of thyroid TG, TPO, and NIS (P < 0.05), significantly improved the thyroid redox state (P < 0.05), modulated the expression of thyroid function-associated genes, conferred liver metabolic protection, and prevented changes to myocardial morphology, thus reducing side effects. Both pure and laboratory-separated GABA displayed comparative protective effects. DISCUSSION AND CONCLUSION Our findings support the assertion that GABA exerts therapeutic potential in hypothyroidism. The design and use of human GABA trials to improve therapeutic outcomes in hypothyroidism are now warranted.
Collapse
Affiliation(s)
- Haoyue Yang
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ronge Xing
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Song Liu
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Huahua Yu
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Pengcheng Li
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
86
|
Rewiring of Cancer Cell Metabolism by Mitochondrial VDAC1 Depletion Results in Time-Dependent Tumor Reprogramming: Glioblastoma as a Proof of Concept. Cells 2019; 8:cells8111330. [PMID: 31661894 PMCID: PMC6912264 DOI: 10.3390/cells8111330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Reprograming of the metabolism of cancer cells is an event recognized as a hallmark of the disease. The mitochondrial gatekeeper, voltage-dependent anion channel 1 (VDAC1), mediates transport of metabolites and ions in and out of mitochondria, and is involved in mitochondria-mediated apoptosis. Here, we compared the effects of reducing hVDAC1 expression in a glioblastoma xenograft using human-specific si-RNA (si-hVDAC1) for a short (19 days) and a long term (40 days). Tumors underwent reprograming, reflected in rewired metabolism, eradication of cancer stem cells (CSCs) and differentiation. Short- and long-term treatments of the tumors with si-hVDAC1 similarly reduced the expression of metabolism-related enzymes, and translocator protein (TSPO) and CSCs markers. In contrast, differentiation into cells expressing astrocyte or neuronal markers was noted only after a long period during which the tumor cells were hVDAC1-depleted. This suggests that tumor cell differentiation is a prolonged process that precedes metabolic reprograming and the “disappearance” of CSCs. Tumor proteomics analysis revealing global changes in the expression levels of proteins associated with signaling, synthesis and degradation of proteins, DNA structure and replication and epigenetic changes, all of which were highly altered after a long period of si-hVDAC1 tumor treatment. The depletion of hVDAC1 greatly reduced the levels of the multifunctional translocator protein TSPO, which is overexpressed in both the mitochondria and the nucleus of the tumor. The results thus show that VDAC1 depletion-mediated cancer cell metabolic reprograming involves a chain of events occurring in a sequential manner leading to a reversal of the unique properties of the tumor, indicative of the interplay between metabolism and oncogenic signaling networks.
Collapse
|
87
|
Klee K, Storti F, Barben M, Samardzija M, Langmann T, Dunaief J, Grimm C. Systemic knockout of Tspo in mice does not affect retinal morphology, function and susceptibility to degeneration. Exp Eye Res 2019; 188:107816. [PMID: 31562844 DOI: 10.1016/j.exer.2019.107816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022]
Abstract
Translocator protein (18 kDa) (TSPO) is a mitochondrial protein expressed by reactive microglia and astrocytes at the site of neuronal injury. Although TSPO function has not been fully determined, synthetic TSPO ligands have beneficial effects on different pathologies of the central nervous system, including the retina. Here, we studied the pattern of Tspo expression in the aging human retina and in two mouse models of retinal degeneration. Using a newly generated Tspo-KO mouse, we investigated the impact of the lack of TSPO on retinal morphology, function and susceptibility to degeneration. We show that TSPO was expressed in both human and mouse retina and retinal pigment epithelium (RPE). Tspo was induced in the mouse retina upon degeneration, but constitutively expressed in the RPE. Similarly, TSPO expression levels in healthy human retina and RPE were not differentially regulated during aging. Tspo-KO mice had normal retinal morphology and function up to 48 weeks of age. Photoreceptor loss caused either by exposure to excessive light levels or by a mutation in the phosphodiesterase 6b gene was not affected by the absence of Tspo. The reactivity states of retinal mononuclear phagocytes following light-damage were comparable in Tspo-KO and control mice. Our data suggest that lack of endogenous TSPO does not directly influence the magnitude of photoreceptor degeneration or microglia activation in these two models of retinal degeneration. We therefore hypothesize that the interaction of TSPO with its ligands may be required to modulate disease progression.
Collapse
Affiliation(s)
- Katrin Klee
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland; Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Federica Storti
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
| | - Maya Barben
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
| | - Marijana Samardzija
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Joshua Dunaief
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Grimm
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland; Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; Neuroscience Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
88
|
Shimoyama S, Furukawa T, Ogata Y, Nikaido Y, Koga K, Sakamoto Y, Ueno S, Nakamura K. Lipopolysaccharide induces mouse translocator protein (18 kDa) expression via the AP-1 complex in the microglial cell line, BV-2. PLoS One 2019; 14:e0222861. [PMID: 31536603 PMCID: PMC6752844 DOI: 10.1371/journal.pone.0222861] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
It has been reported that neuroinflammation occurs in the central nervous system (CNS) in patients with neuropathic pain, Alzheimer’s disease and autism spectrum disorder. The 18-kDa translocator protein TSPO is used as an imaging target in positron emission tomography to detect neuroinflammation, and its expression is correlated with microglial activation. However, the mechanism underlying the transcriptional regulation of Tspo induced by inflammation is not clear. Here, we revealed that lipopolysaccharide (LPS) -induced Tspo expression was activated by the AP-1 complex in a mouse microglial cell line, BV-2. Knockdown of c-Fos and c-Jun, the components of AP-1, reduced LPS-induced Tspo expression. Furthermore, the enrichment of Sp1 in the proximal promoter region of Tspo was increased in the presence of LPS. In addition, the binding of histone deacetylase 1 (HDAC1) to the enhancer region, which contains the AP-1 site, was decreased by LPS treatment, but there were no significant differences in HDAC1 binding to the proximal promoter region with or without LPS. These results indicated that HDAC1 is involved not in the proximal promoter region but in the enhancer region. Our study revealed that inflammatory signals induce the recruitment of AP-1 to the enhancer region and Sp1 to the proximal promoter region of the Tspo gene and that Sp1 may regulate the basal expression of Tspo.
Collapse
Affiliation(s)
- Shuji Shimoyama
- Research Center for Child Mental Development, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Tomonori Furukawa
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yoshiki Ogata
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yoshikazu Nikaido
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Kohei Koga
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yui Sakamoto
- Department of Neuropsychiatry, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Shinya Ueno
- Research Center for Child Mental Development, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Kazuhiko Nakamura
- Research Center for Child Mental Development, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Department of Neuropsychiatry, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- * E-mail:
| |
Collapse
|
89
|
Arbo B, Ribeiro M, Garcia-Segura L. Development of new treatments for Alzheimer's disease based on the modulation of translocator protein (TSPO). Ageing Res Rev 2019; 54:100943. [PMID: 31430564 DOI: 10.1016/j.arr.2019.100943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 12/27/2022]
Abstract
The increase in life expectancy of the world population is associated with a higher prevalence of neurodegenerative diseases. Alzheimer's Disease (AD) is the most common neurodegenerative disease, affecting currently 43 million people over the world. To date, most of the pharmacological interventions in AD are intended for the alleviation of some of its symptoms, and there are no effective treatments to inhibit the progression of the disease. Translocator protein (TSPO) is present in contact points between the outer and the inner mitochondrial membranes and is involved in the control of steroidogenesis, inflammation and apoptosis. In the last decade, studies have shown that TSPO ligands present neuroprotective effects in different experimental models of AD, both in vitro and in vivo. The aim of this review is to analyze the data provided by these studies and to discuss if TSPO could be a viable therapeutic target for the development of new treatments for AD.
Collapse
|
90
|
Rashid K, Akhtar-Schaefer I, Langmann T. Microglia in Retinal Degeneration. Front Immunol 2019; 10:1975. [PMID: 31481963 PMCID: PMC6710350 DOI: 10.3389/fimmu.2019.01975] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022] Open
Abstract
The retina is a complex tissue with multiple cell layers that are highly ordered. Its sophisticated structure makes it especially sensitive to external or internal perturbations that exceed the homeostatic range. This necessitates the continuous surveillance of the retina for the detection of noxious stimuli. This task is mainly performed by microglia cells, the resident tissue macrophages which confer neuroprotection against transient pathophysiological insults. However, under sustained pathological stimuli, microglial inflammatory responses become dysregulated, often worsening disease pathology. In this review, we provide an overview of recent studies that depict microglial responses in diverse retinal pathologies that have degeneration and chronic immune reactions as key pathophysiological components. We also discuss innovative immunomodulatory therapy strategies that dampen the detrimental immunological responses to improve disease outcome.
Collapse
Affiliation(s)
- Khalid Rashid
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Isha Akhtar-Schaefer
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Cologne, Germany
| |
Collapse
|
91
|
Bader S, Wolf L, Milenkovic VM, Gruber M, Nothdurfter C, Rupprecht R, Wetzel CH. Differential effects of TSPO ligands on mitochondrial function in mouse microglia cells. Psychoneuroendocrinology 2019; 106:65-76. [PMID: 30954920 DOI: 10.1016/j.psyneuen.2019.03.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/07/2018] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
Abstract
The translocator protein 18 kDa (TSPO), initially characterized as peripheral benzodiazepine receptor, is a conserved outer mitochondrial membrane protein, implicated in cholesterol transport thereby affecting steroid hormone biosynthesis, as well as in general mitochondrial function related to bioenergetics, oxidative stress, and Ca2+ homeostasis. TSPO is highly expressed in steroidogenic tissues such as adrenal glands, but shows low expression in the central nervous system. During various disease states such as inflammation, neurodegeneration or cancer, the expression of mitochondrial TSPO in affected tissues is upregulated. The expression of TSPO can be traced for diagnostic purpose by high affinity radio-ligands. Moreover, the function of TSPO is modulated by synthetic as well as endogenous ligands with agonistic or antagonistic properties. Thus, TSPO ligands serve functions as both important biomarkers and putative therapeutic agents. In the present study, we aimed to characterize the effects of TSPO ligands on mouse BV-2 microglia cells, which express significant levels of TSPO, and analyzed the effect of XBD173, PK11195, and Ro5-4864, as well as the inflammatory reagent Lipopolysaccharides (LPS) on neurosteroid synthesis and on basic mitochondrial functions such as oxidative phosphorylation, mitochondrial membrane potential and Ca2+ homeostasis. Specific TSPO-dependent effects were separated from off-target effects by comparing lentiviral TSPO knockdown with shRNA scramble-controls and wild-type BV-2 cells. Our data demonstrate ligand-specific effects on different cellular functions in a TSPO-dependent or independent manner, providing evidence for both specific TSPO-mediated, as well as off-target effects.
Collapse
Affiliation(s)
- Stefanie Bader
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany
| | - Luisa Wolf
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany
| | - Michael Gruber
- Department of Anesthesiology, University of Regensburg, 93953 Regensburg, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany.
| |
Collapse
|
92
|
Milenkovic VM, Slim D, Bader S, Koch V, Heinl ES, Alvarez-Carbonell D, Nothdurfter C, Rupprecht R, Wetzel CH. CRISPR-Cas9 Mediated TSPO Gene Knockout alters Respiration and Cellular Metabolism in Human Primary Microglia Cells. Int J Mol Sci 2019; 20:ijms20133359. [PMID: 31323920 PMCID: PMC6651328 DOI: 10.3390/ijms20133359] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 02/06/2023] Open
Abstract
The 18 kDa translocator protein (TSPO) is an evolutionary conserved cholesterol binding protein localized in the outer mitochondrial membrane. It has been implicated in the regulation of various cellular processes including oxidative stress, proliferation, apoptosis, and steroid hormone biosynthesis. Since the expression of TSPO in activated microglia is upregulated in various neuroinflammatory and neurodegenerative disorders, we set out to examine the role of TSPO in an immortalized human microglia C20 cell line. To this end, we performed a dual approach and used (i) lentiviral shRNA silencing to reduce TSPO expression, and (ii) the CRISPR/Cas9 technology to generate complete TSPO knockout microglia cell lines. Functional characterization of control and TSPO knockdown as well as knockout cells, revealed only low de novo steroidogenesis in C20 cells, which was not dependent on the level of TSPO expression or influenced by the treatment with TSPO-specific ligands. In contrast to TSPO knockdown C20 cells, which did not show altered mitochondrial function, the TSPO deficient knockout cells displayed a significantly decreased mitochondrial membrane potential and cytosolic Ca2+ levels, as well as reduced respiratory function. Performing the rescue experiment by lentiviral overexpression of TSPO in knockout cells, increased oxygen consumption and restored respiratory function. Our study provides further evidence for a significant role of TSPO in cellular and mitochondrial metabolism and demonstrates that different phenotypes of mitochondrial function are dependent on the level of TSPO expression.
Collapse
Affiliation(s)
- Vladimir M Milenkovic
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Dounia Slim
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Stefanie Bader
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Victoria Koch
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Elena-Sofia Heinl
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Christian H Wetzel
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
93
|
Xia Y, Ledwitch K, Kuenze G, Duran A, Li J, Sanders CR, Manning C, Meiler J. A unified structural model of the mammalian translocator protein (TSPO). JOURNAL OF BIOMOLECULAR NMR 2019; 73:347-364. [PMID: 31243635 PMCID: PMC8006375 DOI: 10.1007/s10858-019-00257-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/10/2019] [Indexed: 05/10/2023]
Abstract
The translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is a membrane protein located on the outer mitochondrial membrane. Experimentally-derived structures of mouse TSPO (mTSPO) and its homologs from bacterial species have been determined by NMR spectroscopy and X-ray crystallography, respectively. These structures and ligand interactions within the TSPO binding pocket display distinct differences. Here, we leverage experimental and computational studies to derive a unified structural model of mTSPO in the presence and absence of the TSPO ligand, PK11195, and study the effects of DPC detergent micelles on the TSPO structure and ligand binding. From this work, we conclude that that the lipid-mimetic system used to solubilize mTSPO for NMR studies thermodynamically destabilizes the protein, introduces structural perturbations, and alters the characteristics of ligand binding. Furthermore, we used Rosetta to construct a unified mTSPO model that reconciles deviating features of the mammalian and bacterial TSPO. These deviating features are likely a consequence of the detergent system used for structure determination of mTSPO by NMR. The unified mTSPO model agrees with available experimental NMR data, appears to be physically realistic (i.e. thermodynamically not frustrated as judged by the Rosetta energy function), and simultaneously shares the structural features observed in sequence-conserved regions of the bacterial proteins. Finally, we identified the binding site for an imaging ligand VUIIS8310 that is currently positioned for clinical translation using NMR spectroscopy and propose a computational model of the VUIIS8310-mTSPO complex.
Collapse
Affiliation(s)
- Yan Xia
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Kaitlyn Ledwitch
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Amanda Duran
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jun Li
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37240, USA
| | - Charles Manning
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, MRBIII 5144B, Nashville, TN, 37232, USA.
| |
Collapse
|
94
|
Recent Developments in TSPO PET Imaging as A Biomarker of Neuroinflammation in Neurodegenerative Disorders. Int J Mol Sci 2019; 20:ijms20133161. [PMID: 31261683 PMCID: PMC6650818 DOI: 10.3390/ijms20133161] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation is an inflammatory response in the brain and spinal cord, which can involve the activation of microglia and astrocytes. It is a common feature of many central nervous system disorders, including a range of neurodegenerative disorders. An overlap between activated microglia, pro-inflammatory cytokines and translocator protein (TSPO) ligand binding was shown in early animal studies of neurodegeneration. These findings have been translated in clinical studies, where increases in TSPO positron emission tomography (PET) signal occur in disease-relevant areas across a broad spectrum of neurodegenerative diseases. While this supports the use of TSPO PET as a biomarker to monitor response in clinical trials of novel neurodegenerative therapeutics, the clinical utility of current TSPO PET radioligands has been hampered by the lack of high affinity binding to a prevalent form of polymorphic TSPO (A147T) compared to wild type TSPO. This review details recent developments in exploration of ligand-sensitivity to A147T TSPO that have yielded ligands with improved clinical utility. In addition to developing a non-discriminating TSPO ligand, the final frontier of TSPO biomarker research requires developing an understanding of the cellular and functional interpretation of the TSPO PET signal. Recent insights resulting from single cell analysis of microglial phenotypes are reviewed.
Collapse
|
95
|
Kinetic modelling and quantification bias in small animal PET studies with [18F]AB5186, a novel 18 kDa translocator protein radiotracer. PLoS One 2019; 14:e0217515. [PMID: 31150436 PMCID: PMC6544349 DOI: 10.1371/journal.pone.0217515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/13/2019] [Indexed: 11/19/2022] Open
Abstract
Introduction Positron Emission Tomography (PET) imaging with selective 18 kDa translocator protein (TSPO) radiotracers has contributed to our understanding on the role of inflammation in disease development and progression. With an increasing number of rodent models of human disease and expansion of the preclinical PET imaging base worldwide, accurate quantification of longitudinal rodent TSPO PET datasets is necessary. This is particularly relevant as TSPO PET quantification relies on invasive blood sampling due to lack of a suitable tissue reference region. Here we investigate the kinetics and quantification bias of a novel TSPO radiotracer [18F]AB5186 in rats using automatic, manual and image derived input functions. Methods [18F]AB5186 was administered intravenously and dynamic PET imaging was acquired over 2 hours. Arterial blood was collected manually to derive a population based input function or using an automatic blood sampler to derive a plasma input function. Manually sampled blood was also used to analyze the [18F]AB5186 radiometabolite profile in plasma and applied to all groups as a population based dataset. Kinetic models were used to estimate distribution volumes (VT) and [18F]AB5186 outcome measure bias was determined. Results [18F]AB5186 distribution in rats was consistent with TSPO expression and at 2 h post-injection 50% of parent compound was still present in plasma. Population based manual sampling methods and image derived input function (IDIF) underestimated VT by ~50% and 88% compared with automatic blood sampling, respectively. The VT variability was lower when using IDIF versus arterial blood sampling methods and analysis of the Bland-Altman plots showed a good agreement between methods of analysis. Conclusion Quantification of TSPO PET rodent data using image-derived methods, which are more amenable for longitudinal scanning of small animals, yields outcome measures with reduced variability and good agreement, albeit biased, compared with invasive blood sampling methods.
Collapse
|
96
|
Translocator Protein Ligand Protects against Neurodegeneration in the MPTP Mouse Model of Parkinsonism. J Neurosci 2019; 39:3752-3769. [PMID: 30796158 DOI: 10.1523/jneurosci.2070-18.2019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disease, after Alzheimer's disease. Parkinson's disease is a movement disorder with characteristic motor features that arise due to the loss of dopaminergic neurons from the substantia nigra. Although symptomatic treatment by the dopamine precursor levodopa and dopamine agonists can improve motor symptoms, no disease-modifying therapy exists yet. Here, we show that Emapunil (AC-5216, XBD-173), a synthetic ligand of the translocator protein 18, ameliorates degeneration of dopaminergic neurons, preserves striatal dopamine metabolism, and prevents motor dysfunction in female mice treated with the MPTP, as a model of parkinsonism. We found that Emapunil modulates the inositol requiring kinase 1α (IRE α)/X-box binding protein 1 (XBP1) unfolded protein response pathway and induces a shift from pro-inflammatory toward anti-inflammatory microglia activation. Previously, Emapunil was shown to cross the blood-brain barrier and to be safe and well tolerated in a Phase II clinical trial. Therefore, our data suggest that Emapunil may be a promising approach in the treatment of Parkinson's disease.SIGNIFICANCE STATEMENT Our study reveals a beneficial effect of Emapunil on dopaminergic neuron survival, dopamine metabolism, and motor phenotype in the MPTP mouse model of parkinsonism. In addition, our work uncovers molecular networks which mediate neuroprotective effects of Emapunil, including microglial activation state and unfolded protein response pathways. These findings not only contribute to our understanding of biological mechanisms of translocator protein 18 (TSPO) function but also indicate that translocator protein 18 may be a promising therapeutic target. We thus propose to further validate Emapunil in other Parkinson's disease mouse models and subsequently in clinical trials to treat Parkinson's disease.
Collapse
|
97
|
Mages K, Grassmann F, Jägle H, Rupprecht R, Weber BHF, Hauck SM, Grosche A. The agonistic TSPO ligand XBD173 attenuates the glial response thereby protecting inner retinal neurons in a murine model of retinal ischemia. J Neuroinflammation 2019; 16:43. [PMID: 30777091 PMCID: PMC6378755 DOI: 10.1186/s12974-019-1424-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ligand-driven modulation of the mitochondrial translocator protein 18 kDa (TSPO) was recently described to dampen the neuroinflammatory response of microglia in a retinal light damage model resulting in protective effects on photoreceptors. We characterized the effects of the TSPO ligand XBD173 in the postischemic retina focusing on changes in the response pattern of the major glial cell types of the retina-microglia and Müller cells. METHODS Retinal ischemia was induced by increasing the intraocular pressure for 60 min followed by reperfusion of the tissue in mice. On retinal cell types enriched via immunomagnetic separation expression analysis of TSPO, its ligand diazepam-binding inhibitor (DBI) and markers of glial activation were performed at transcript and protein level using RNA sequencing, qRT-PCR, lipid chromatography-mass spectrometry, and immunofluorescent labeling. Data on cell morphology and numbers were assessed in retinal slice and flatmount preparations. The retinal functional integrity was determined by electroretinogram recordings. RESULTS We demonstrate that TSPO is expressed by Müller cells, microglia, vascular cells, retinal pigment epithelium (RPE) of the healthy and postischemic retina, but only at low levels in retinal neurons. While an alleviated neurodegeneration upon XBD173 treatment was found in postischemic retinae as compared to vehicle controls, this neuroprotective effect of XBD173 is mediated putatively by its action on retinal glia. After transient ischemia, TSPO as a marker of activation was upregulated to similar levels in microglia as compared to their counterparts in healthy retinae irrespective of the treatment regimen. However, less microglia were found in XBD173-treated postischemic retinae at 3 days post-surgery (dps) which displayed a more ramified morphology than in retinae of vehicle-treated mice indicating a dampened microglia activation. Müller cells, the major retinal macroglia, show upregulation of the typical gliosis marker GFAP. Importantly, glutamine synthetase was more stably expressed in Müller glia of XBD173-treated postischemic retinae and homeostatic functions such as cellular volume regulation typically diminished in gliotic Müller cells remained functional. CONCLUSIONS In sum, our data imply that beneficial effects of XBD173 treatment on the postischemic survival of inner retinal neurons were primarily mediated by stabilizing neurosupportive functions of glial cells.
Collapse
Affiliation(s)
- Kristin Mages
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, Stockholm, Sweden
| | - Herbert Jägle
- Department of Ophthalmology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstraße 84, 93053, Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Heidemannstraße 1, 80939, Munich, Germany
| | - Antje Grosche
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany. .,Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
98
|
Kapanadze T, Bankstahl JP, Wittneben A, Koestner W, Ballmaier M, Gamrekelashvili J, Krishnasamy K, Limbourg A, Ross TL, Meyer GJ, Haller H, Bengel FM, Limbourg FP. Multimodal and Multiscale Analysis Reveals Distinct Vascular, Metabolic and Inflammatory Components of the Tissue Response to Limb Ischemia. Am J Cancer Res 2019; 9:152-166. [PMID: 30662559 PMCID: PMC6332799 DOI: 10.7150/thno.27175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
Ischemia triggers a complex tissue response involving vascular, metabolic and inflammatory changes. Methods: We combined hybrid SPECT/CT or PET/CT nuclear imaging studies of perfusion, metabolism and inflammation with multicolor flow cytometry-based cell population analysis to comprehensively analyze the ischemic tissue response and to elucidate the cellular substrate of noninvasive molecular imaging techniques in a mouse model of hind limb ischemia. Results: Comparative analysis of tissue perfusion with [99mTc]-Sestamibi and arterial influx with [99mTc]-labeled albumin microspheres by SPECT/CT revealed a distinct pattern of response to vascular occlusion: an early ischemic period of matched suppression of tissue perfusion and arterial influx, a subacute ischemic period of normalized arterial influx but impaired tissue perfusion, and a protracted post-ischemic period of hyperdynamic arterial and normalized tissue perfusion, indicating coordination of macrovascular and microvascular responses. In addition, the subacute period showed increased glucose uptake by [18F]-FDG PET/CT scanning as the metabolic response of viable tissue to hypoperfusion. This was associated with robust macrophage infiltration by flow cytometry, and glucose uptake studies identified macrophages as major contributors to glucose utilization in ischemic tissue. Furthermore, imaging with the TSPO ligand [18F]-GE180 showed a peaked response during the subacute phase due to preferential labeling of monocytes and macrophages, while imaging with [68Ga]-RGD, an integrin ligand, showed prolonged post-ischemic upregulation, which was attributed to labeling of macrophages and endothelial cells by flow cytometry. Conclusion: Combined nuclear imaging and cell population analysis reveals distinct components of the ischemic tissue response and associated cell subsets, which could be targeted for therapeutic interventions.
Collapse
|
99
|
TSPO Ligands Promote Cholesterol Efflux and Suppress Oxidative Stress and Inflammation in Choroidal Endothelial Cells. Int J Mol Sci 2018; 19:ijms19123740. [PMID: 30477223 PMCID: PMC6321017 DOI: 10.3390/ijms19123740] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
Choroidal endothelial cells supply oxygen and nutrients to retinal pigment epithelial (RPE) cells and photoreceptors, recycle metabolites, and dispose of metabolic waste through the choroidal blood circulation. Death of the endothelial cells of the choroid may cause abnormal deposits including unesterified and esterified cholesterol beneath RPE cells and within Bruch’s membrane that contribute to the progression of age-related macular degeneration (AMD), the most prevalent cause of blindness in older people. Translocator protein (TSPO) is a cholesterol-binding protein that is involved in mitochondrial cholesterol transport and other cellular functions. We have investigated the role of TSPO in choroidal endothelial cells. Immunocytochemistry showed that TSPO was localized to the mitochondria of choroidal endothelial cells. Choroidal endothelial cells exposed to TSPO ligands (Etifoxine or XBD-173) had significantly increased cholesterol efflux, higher expression of cholesterol homeostasis genes (LXRα, CYP27A1, CYP46A1, ABCA1 and ABCG1), and reduced biosynthesis of cholesterol and phospholipids from [14C]acetate, when compared to untreated controls. Treatment with TSPO ligands also resulted in reduced production of reactive oxygen species (ROS), increased antioxidant capacity, and reduced release of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and VEGF) induced by oxidized LDL. These data suggest TSPO ligands may offer promise for the treatment of AMD.
Collapse
|
100
|
Transcriptional regulation of Translocator protein (18 kDa) (TSPO) in microglia requires Pu.1, Ap1 and Sp factors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:1119-1133. [PMID: 30412797 DOI: 10.1016/j.bbagrm.2018.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/12/2018] [Accepted: 10/31/2018] [Indexed: 11/21/2022]
Abstract
Mitochondrial Translocator protein (18 kDa) (TSPO) is strongly expressed in reactive microglia and serves as a therapeutic target for alleviation of neuronal degeneration. However, little is known about TSPO's transcriptional regulation in microglia. The aim of this study was to identify genetic elements and transcription factors required for basal and inducible TSPO expression in microglia. Murine Tspo promoter was cloned into the pGL4.10 luciferase vector and functionally characterized in BV-2 cells. Deletion mutagenesis indicated that -845 bases upstream were sufficient to reconstitute near maximal promoter activity in BV-2. Deletion of -593 to -520 sequences, which harbour an Ap1, Ets.2 and Nkx3.1 site which also serves as a non-canonical binding site for Sp1-family transcription factors, led to a dramatic decrease in both basal and LPS induced promoter activity. Further deletion of -168 to -39 sequences, which contains four GC boxes, also led to a significant decrease in promoter activity. Targeted mutations of Ap1, Ets.2, Nkx3.1/Sp1/3/4 and the GC boxes led to significant decreases in promoter activity. ChIP-qPCR revealed that Pu.1, Ap1, Stat3, Sp1, Sp3 and Sp4 bind to the endogenous Tspo promoter. Notably, binding of these factors, with the exception of Stat3, was significantly enhanced upon LPS treatment. RNAi silencing of Pu.1, cJun, cFos, Sp1, Sp3, Sp4 and Stat3 strongly lowered Tspo promoter activity while Ap1 silencing inhibited LPS induced increase in Tspo protein levels. These findings demonstrate that consensus binding sequences for Ap1, Ets.2, distal as well as proximal Sp1/3/4 sites regulate basal and LPS induced Tspo promoter activity in microglia.
Collapse
|