51
|
François-Moutal L, Perez-Miller S, Scott DD, Miranda VG, Mollasalehi N, Khanna M. Structural Insights Into TDP-43 and Effects of Post-translational Modifications. Front Mol Neurosci 2019; 12:301. [PMID: 31920533 PMCID: PMC6934062 DOI: 10.3389/fnmol.2019.00301] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Transactive response DNA binding protein (TDP-43) is a key player in neurodegenerative diseases. In this review, we have gathered and presented structural information on the different regions of TDP-43 with high resolution structures available. A thorough understanding of TDP-43 structure, effect of modifications, aggregation and sites of localization is necessary as we develop therapeutic strategies targeting TDP-43 for neurodegenerative diseases. We discuss how different domains as well as post-translational modification may influence TDP-43 overall structure, aggregation and droplet formation. The primary aim of the review is to utilize structural insights as we develop an understanding of the deleterious behavior of TDP-43 and highlight locations of established and proposed post-translation modifications. TDP-43 structure and effect on localization is paralleled by many RNA-binding proteins and this review serves as an example of how structure may be modulated by numerous compounding elements.
Collapse
Affiliation(s)
- Liberty François-Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - David D Scott
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - Victor G Miranda
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - Niloufar Mollasalehi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States.,Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| |
Collapse
|
52
|
C9-ALS/FTD-linked proline-arginine dipeptide repeat protein associates with paraspeckle components and increases paraspeckle formation. Cell Death Dis 2019; 10:746. [PMID: 31582731 PMCID: PMC6776546 DOI: 10.1038/s41419-019-1983-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/29/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
A GGGGCC hexanucleotide repeat expansion in the C9ORF72 gene has been identified as the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. The repeat expansion undergoes unconventional translation to produce five dipeptide repeat proteins (DPRs). Although DPRs are thought to be neurotoxic, the molecular mechanism underlying the DPR-caused neurotoxicity has not been fully elucidated. The current study shows that poly-proline-arginine (poly-PR), the most toxic DPR in vitro, binds to and up-regulates nuclear paraspeckle assembly transcript 1 (NEAT1) that plays an essential role as a scaffold non-coding RNA during the paraspeckle formation. The CRISPR-assisted up-regulation of endogenous NEAT1 causes neurotoxicity. We also show that the poly-PR modulates the function of several paraspeckle-localizing heterogeneous nuclear ribonucleoproteins. Furthermore, dysregulated expression of TAR DNA-binding protein 43 (TDP-43) up-regulates NEAT1 expression and induces neurotoxicity. These results suggest that the increase in the paraspeckle formation may be involved in the poly-PR- and TDP-43-mediated neurotoxicity.
Collapse
|
53
|
Gao J, Wang L, Yan T, Perry G, Wang X. TDP-43 proteinopathy and mitochondrial abnormalities in neurodegeneration. Mol Cell Neurosci 2019; 100:103396. [PMID: 31445085 DOI: 10.1016/j.mcn.2019.103396] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/03/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022] Open
Abstract
Genetic mutations in TAR DNA-binding protein 43 (TDP-43) cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Importantly, TDP-43 proteinopathy, characterized by aberrant phosphorylation, ubiquitination, cleavage or nuclear depletion of TDP-43 in neurons and glial cells, is a common prominent pathological feature of various major neurodegenerative diseases including ALS, FTD, and Alzheimer's disease (AD). Although the pathomechanisms underlying TDP-43 proteinopathy remain elusive, pathologically relevant TDP-43 has been repeatedly shown to be present in either the inside or outside of mitochondria, and functionally involved in the regulation of mitochondrial morphology, trafficking, and function, suggesting mitochondria as likely targets of TDP-43 proteinopathy. In this review, we first describe the current knowledge of the association of TDP-43 with mitochondria. We then review in detail multiple mitochondrial pathways perturbed by pathological TDP-43, including mitochondrial fission and fusion dynamics, mitochondrial trafficking, bioenergetics, and mitochondrial quality control. Lastly, we briefly discuss how the study of TDP-43 proteinopathy and mitochondrial abnormalities may provide new avenues for neurodegeneration therapeutics.
Collapse
Affiliation(s)
- Ju Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Luwen Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Tingxiang Yan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
54
|
Sugai A, Kato T, Koyama A, Koike Y, Konno T, Ishihara T, Onodera O. Non-genetically modified models exhibit TARDBP mRNA increase due to perturbed TDP-43 autoregulation. Neurobiol Dis 2019; 130:104534. [PMID: 31310801 DOI: 10.1016/j.nbd.2019.104534] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/22/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by accumulation of fragmented insoluble TDP-43 and loss of TDP-43 from the nucleus. Increased expression of exogenous TARDBP (encoding TDP-43) induces TDP-43 pathology and cytotoxicity, suggesting the involvement of aberrant expression of TDP-43 in the pathogenesis of ALS. In normal conditions, however, the amount of TDP-43 is tightly regulated by the autoregulatory mechanism involving alternative splicing of TARDBP mRNA. To investigate the influence of autoregulation dysfunction, we inhibited the splicing of cryptic intron 6 using antisense oligonucleotides in vivo. This inhibition doubled the Tardbp mRNA expression, increased the fragmented insoluble TDP-43, and reduced the number of motor neurons in the mouse spinal cord. In human induced pluripotent stem cell-derived neurons, the splicing inhibition of intron 6 increased TARDBP mRNA and decreased nuclear TDP-43. These non-genetically modified models exhibiting rise in the TARDBP mRNA levels suggest that TDP-43 autoregulation turbulence might be linked to the pathogenesis of ALS.
Collapse
Affiliation(s)
- Akihiro Sugai
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Taisuke Kato
- Department of System Pathology for Neurological Disorders, Brain Science Branch, Center for Bioresource-based Research, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Akihide Koyama
- Division of Legal Medicine, Graduate School of Medicine and Dental Science, Niigata University, Niigata 951-8585, Japan
| | - Yuka Koike
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Takuya Konno
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Tomohiko Ishihara
- Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-based Research, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Osamu Onodera
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata 951-8585, Japan.
| |
Collapse
|
55
|
Yin P, Guo X, Yang W, Yan S, Yang S, Zhao T, Sun Q, Liu Y, Li S, Li XJ. Caspase-4 mediates cytoplasmic accumulation of TDP-43 in the primate brains. Acta Neuropathol 2019; 137:919-937. [PMID: 30810811 PMCID: PMC6531422 DOI: 10.1007/s00401-019-01979-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
The cytoplasmic accumulation of the nuclear TAR DNA-binding protein 43 (TDP-43) is a pathologic hallmark in amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and other neurological disorders. However, most transgenic TDP-43 rodent models show predominant nuclear distribution of TDP-43 in the brain. By expressing mutant TDP-43 (M337V) in the brains of rhesus monkeys and mice, we verified that mutant TDP-43 is distributed in the cytoplasm of the monkey brain and that the majority of mutant TDP-43 remains in the nuclei of the mouse brain. The primate-specific caspase-4, but not mouse homologue caspase-11, could remove the NLS-containing N-terminal domain and generate fragmented TDP-43 that accumulates in the cytoplasm. Moreover, increased expression of caspase-4 in the monkey brain promotes the cytoplasmic accumulation of endogenous TDP-43, and suppressing caspase-4 reduces the cytoplasmic distribution of endogenous TDP-43 in cultured human neural cells. Our findings suggest that primate-specific caspase-4-mediated cleavage of TDP-43 accounts for its cytoplasmic mislocalization in the primate brains and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Peng Yin
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xiangyu Guo
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Weili Yang
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sen Yan
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Su Yang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ting Zhao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Qiang Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yunbo Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Shihua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Xiao-Jiang Li
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
56
|
TDP-43 induces mitochondrial damage and activates the mitochondrial unfolded protein response. PLoS Genet 2019; 15:e1007947. [PMID: 31100073 PMCID: PMC6524796 DOI: 10.1371/journal.pgen.1007947] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
Mutations in or dys-regulation of the TDP-43 gene have been associated with TDP-43 proteinopathy, a spectrum of neurodegenerative diseases including Frontotemporal Lobar Degeneration (FTLD) and Amyotrophic Lateral Sclerosis (ALS). The underlying molecular and cellular defects, however, remain unclear. Here, we report a systematic study combining analyses of patient brain samples with cellular and animal models for TDP-43 proteinopathy. Electron microscopy (EM) analyses of patient samples revealed prominent mitochondrial impairment, including abnormal cristae and a loss of cristae; these ultrastructural changes were consistently observed in both cellular and animal models of TDP-43 proteinopathy. In these models, increased TDP-43 expression induced mitochondrial dysfunction, including decreased mitochondrial membrane potential and elevated production of reactive oxygen species (ROS). TDP-43 expression suppressed mitochondrial complex I activity and reduced mitochondrial ATP synthesis. Importantly, TDP-43 activated the mitochondrial unfolded protein response (UPRmt) in both cellular and animal models. Down-regulating mitochondrial protease LonP1 increased mitochondrial TDP-43 levels and exacerbated TDP-43-induced mitochondrial damage as well as neurodegeneration. Together, our results demonstrate that TDP-43 induced mitochondrial impairment is a critical aspect in TDP-43 proteinopathy. Our work has not only uncovered a previously unknown role of LonP1 in regulating mitochondrial TDP-43 levels, but also advanced our understanding of the pathogenic mechanisms for TDP-43 proteinopathy. Our study suggests that blocking or reversing mitochondrial damage may provide a potential therapeutic approach to these devastating diseases. TDP-43 proteinopathy is a group of fatal neurological diseases. Here, we report a systematic examination of the role of mitochondrial damage in TDP-43 proteinopathy using patient brain tissues, as well as cellular and animal models. Our data show that TDP-43 induces severe mitochondrial damage, accompanied by activation of UPRmt in both cellular and animal models of TDP-43 proteinopathy. LonP1, one of the key mitochondrial proteases in UPRmt, protects against TDP-43 induced cytotoxicity and neurodegeneration. Our study uncovers LonP1 as a modifier gene for TDP-43 proteinopathy and suggests protecting against or reversing mitochondrial damage as a potential therapeutic approach to these neurodegenerative disorders.
Collapse
|
57
|
Babinchak WM, Haider R, Dumm BK, Sarkar P, Surewicz K, Choi JK, Surewicz WK. The role of liquid-liquid phase separation in aggregation of the TDP-43 low-complexity domain. J Biol Chem 2019; 294:6306-6317. [PMID: 30814253 PMCID: PMC6484124 DOI: 10.1074/jbc.ra118.007222] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Pathological aggregation of the transactive response DNA-binding protein of 43 kDa (TDP-43) is associated with several neurodegenerative disorders, including ALS, frontotemporal dementia, chronic traumatic encephalopathy, and Alzheimer's disease. TDP-43 aggregation appears to be largely driven by its low-complexity domain (LCD), which also has a high propensity to undergo liquid-liquid phase separation (LLPS). However, the mechanism of TDP-43 LCD pathological aggregation and, most importantly, the relationship between the aggregation process and LLPS remains largely unknown. Here, we show that amyloid formation by the LCD is controlled by electrostatic repulsion. We also demonstrate that the liquid droplet environment strongly accelerates LCD fibrillation and that its aggregation under LLPS conditions involves several distinct events, culminating in rapid assembly of fibrillar aggregates that emanate from within mature liquid droplets. These combined results strongly suggest that LLPS may play a major role in pathological TDP-43 aggregation, contributing to pathogenesis in neurodegenerative diseases.
Collapse
Affiliation(s)
- W Michael Babinchak
- From the Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Raza Haider
- From the Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Benjamin K Dumm
- From the Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Prottusha Sarkar
- From the Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Krystyna Surewicz
- From the Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Jin-Kyu Choi
- From the Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Witold K Surewicz
- From the Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
58
|
Berning BA, Walker AK. The Pathobiology of TDP-43 C-Terminal Fragments in ALS and FTLD. Front Neurosci 2019; 13:335. [PMID: 31031584 PMCID: PMC6470282 DOI: 10.3389/fnins.2019.00335] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
During neurodegenerative disease, the multifunctional RNA-binding protein TDP-43 undergoes a vast array of post-translational modifications, including phosphorylation, acetylation, and cleavage. Many of these alterations may directly contribute to the pathogenesis of TDP-43 proteinopathies, which include most forms of amyotrophic lateral sclerosis (ALS) and approximately half of all frontotemporal dementia, pathologically identified as frontotemporal lobar degeneration (FTLD) with TDP-43 pathology. However, the relative contributions of the various TDP-43 post-translational modifications to disease remain unclear, and indeed some may be secondary epiphenomena rather than disease-causative. It is therefore critical to determine the involvement of each modification in disease processes to allow the design of targeted treatments. In particular, TDP-43 C-terminal fragments (CTFs) accumulate in the brains of people with ALS and FTLD and are therefore described as a neuropathological signature of these diseases. Remarkably, these TDP-43 CTFs are rarely observed in the spinal cord, even in ALS which involves dramatic degeneration of spinal motor neurons. Therefore, TDP-43 CTFs are not produced non-specifically in the course of all forms of TDP-43-related neurodegeneration, but rather variably arise due to additional factors influenced by regional heterogeneity in the central nervous system. In this review, we summarize how TDP-43 CTFs are generated and degraded by cells, and critique evidence from studies of TDP-43 CTF pathology in human disease tissues, as well as cell and animal models, to analyze the pathophysiological relevance of TDP-43 CTFs to ALS and FTLD. Numerous studies now indicate that, although TDP-43 CTFs are prevalent in ALS and FTLD brains, disease-related pathology is only variably reproduced in TDP-43 CTF cell culture models. Furthermore, TDP-43 CTF expression in both transgenic and viral-mediated in vivo models largely fails to induce motor or behavioral dysfunction reminiscent of human disease. We therefore conclude that although TDP-43 CTFs are a hallmark of TDP-43-related neurodegeneration in the brain, they are not a primary cause of ALS or FTLD.
Collapse
Affiliation(s)
- Britt A. Berning
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Adam K. Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
59
|
Jung JY, Naleway SE, Maker YN, Kang KY, Lee J, Ha J, Hur SS, Chien S, McKittrick J. 3D Printed Templating of Extrinsic Freeze-Casting for Macro–Microporous Biomaterials. ACS Biomater Sci Eng 2019; 5:2122-2133. [DOI: 10.1021/acsbiomaterials.8b01308] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | - Steven E. Naleway
- Department of Mechanical Engineering, The University of Utah, Salt Lake, Utah 84112, United States
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Tavella D, Zitzewitz JA, Massi F. Characterization of TDP-43 RRM2 Partially Folded States and Their Significance to ALS Pathogenesis. Biophys J 2018; 115:1673-1680. [PMID: 30309612 PMCID: PMC6224623 DOI: 10.1016/j.bpj.2018.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022] Open
Abstract
The human protein TDP-43 is a major component of the cellular aggregates found in amyotrophic lateral sclerosis and other neurodegenerative diseases. Insoluble cytoplasmic aggregates isolated from the brain of amyotrophic lateral sclerosis and frontotemporal lobar degeneration patients contain ubiquitinated, hyperphosphorylated, and N-terminally truncated TDP-43. Truncated fragments of TDP-43 identified from patient tissues contain part of the second RNA recognition motif (RRM2) and the disordered C-terminus, indicating that both domains can be involved in aggregation and toxicity. Here, we focus on RRM2. Using all-atom replica-averaged metadynamics simulations with NMR chemical shift restraints, we characterized the atomic structure of non-native states of RRM2, sparsely populated under native conditions. These structures reveal the exposure to the solvent of aggregation-prone peptide regions, normally buried in the native state, supporting a role in aggregation for the partially folded states of RRM2.
Collapse
Affiliation(s)
- Davide Tavella
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jill A Zitzewitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Francesca Massi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
61
|
Steinacker P, Barschke P, Otto M. Biomarkers for diseases with TDP-43 pathology. Mol Cell Neurosci 2018; 97:43-59. [PMID: 30399416 DOI: 10.1016/j.mcn.2018.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 01/01/2023] Open
Abstract
The discovery that aggregated transactive response DNA-binding protein 43 kDa (TDP-43) is the major component of pathological ubiquitinated inclusions in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) caused seminal progress in the unveiling of the genetic bases and molecular characteristics of these now so-called TDP-43 proteinopathies. Substantial increase in the knowledge of clinic-pathological coherencies, especially for FTLD variants, could be made in the last decade, but also revealed a considerable complexity of TDP-43 pathology and often a poor correlation of clinical and molecular disease characteristics. To date, an underlying TDP-43 pathology can be predicted only for patients with mutations in the genes C9orf72 and GRN, but is dependent on neuropathological verification in patients without family history, which represent the majority of cases. As etiology-specific therapies for neurodegenerative proteinopathies are emerging, methods to forecast TDP-43 pathology at patients' lifetime are highly required. Here, we review the current status of research pursued to identify specific indicators to predict or exclude TDP-43 pathology in the ALS-FTLD spectrum disorders and findings on candidates for prognosis and monitoring of disease progression in TDP-43 proteinopathies with a focus on TDP-43 with its pathological forms, neurochemical and imaging biomarkers.
Collapse
Affiliation(s)
| | - Peggy Barschke
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.
| |
Collapse
|
62
|
Exploring the aggregation-prone regions from structural domains of human TDP-43. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:286-296. [PMID: 30315897 DOI: 10.1016/j.bbapap.2018.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/15/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022]
Abstract
TDP-43 (transactive- response DNA binding protein) amazes structural biologist as its aberrant ubiquitinated cytosolic inclusions is largely involved in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). An important question in TDP-43 research is to identify the structural region mediating the formation of cytoplasmic pathological aggregates. In this study, we attempted to delineate the aggregation-prone sequences of the structural domain of TDP-43. Here, we investigated the self-assembly of peptides of TDP-43 using aggregation prediction algorithms, Zipper DB and AMYLPRED2. The three aggregation-prone peptides identified were from N-terminal domain (24GTVLLSTV31), and RNA recognition motifs, RRM1 (128GEVLMVQV135) and RRM2 (247DLIIKGIS254). Furthermore, the amyloid fibril forming propensities of these peptides were analyzed through different biophysical techniques and molecular dynamics simulation. Our study shows the different aggregation ability of conserved stretches in structural domain of TDP-43 that will possibly induce full-length aggregation of TDP-43 in vivo. The peptide form RRM2 demonstrates the higher intrinsic amyloid forming propensity and suggests that RRM2 might form the structural core of TDP-43 aggregation seen in vivo. The results of this study would help in designing peptide based inhibitors of TDP-43 aggregation.
Collapse
|
63
|
The N Termini of TAR DNA-Binding Protein 43 (TDP43) C-Terminal Fragments Influence Degradation, Aggregation Propensity, and Morphology. Mol Cell Biol 2018; 38:MCB.00243-18. [PMID: 29987190 PMCID: PMC6146831 DOI: 10.1128/mcb.00243-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/03/2018] [Indexed: 02/08/2023] Open
Abstract
Fragments of the TAR DNA-binding protein 43 (TDP43) are major components of intracellular aggregates associated with amyotrophic lateral sclerosis and frontotemporal dementia. A variety of C-terminal fragments (CTFs) exist, with distinct N termini; however, little is known regarding their differences in metabolism and aggregation dynamics. Fragments of the TAR DNA-binding protein 43 (TDP43) are major components of intracellular aggregates associated with amyotrophic lateral sclerosis and frontotemporal dementia. A variety of C-terminal fragments (CTFs) exist, with distinct N termini; however, little is known regarding their differences in metabolism and aggregation dynamics. Previously, we found that specific CTFs accumulate in the absence of the Arg/N-end rule pathway of the ubiquitin proteasome system (UPS) and that their degradation requires arginyl-tRNA protein transferase 1 (ATE1). Here, we examined two specific CTFs of TDP43 (TDP43219 and TDP43247), which are ∼85% identical and differ at their N termini by 28 amino acids. We found that TDP43247 is degraded primarily by the Arg/N-end rule pathway, whereas degradation of TDP43219 continues in the absence of ATE1. These fragments also differ in their aggregation propensities and form morphologically distinct aggregates. This work reveals that the N termini of otherwise similar CTFs have profound effects on fragment behavior and may influence clinical outcomes in neurodegeneration associated with aggregation.
Collapse
|
64
|
Tan XL, Sun M, Brady RD, Liu S, Llanos R, Cheung S, Wright DK, Casillas-Espinosa PM, Sashindranath M, O'Brien TJ, McDonald SJ, Turner BJ, Shultz SR. Transactive Response DNA-Binding Protein 43 Abnormalities after Traumatic Brain Injury. J Neurotrauma 2018; 36:87-99. [PMID: 29901412 DOI: 10.1089/neu.2017.5491] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Initial studies have found some evidence for transactive response DNA-binding protein 43 (TDP-43) abnormalities after traumatic brain injury (TBI), and the presence of protein inclusions consisting of TDP-43 are a pathological hallmark of amyotrophic lateral sclerosis (ALS), a condition associated with TBI. However, no study has characterized changes in TDP-43 phosphorylation, mislocalization, and fragmentation (i.e., abnormalities linked to hallmark TDP-43 pathology) after TBI, and how these relate to functional outcomes. Further, how TBI affects an individual with a known predisposition to TDP-43 pathology is unknown. Therefore, this study examined the effects of TBI on TDP-43 post-translational processing, localization, and behavioral outcomes in wild-type (WT) mice and mutant TDP-43A315T mice (i.e., mice predisposed to TDP-43 pathology) at 24 h and 1 week after TBI. Post-mortem brain tissue from human patients with acute TBI was also examined. Western blots found that WT mice given TBI had increased TDP-43 phosphorylation, mislocalization, and fragmentation compared with sham-injured WT mice. The TDP-43A315T mice given a TBI had exacerbated TDP-43 abnormalities, worse cell death, and cognitive deficits compared with all other groups. In the human TBI patients, the only significant finding was increased nuclear accumulation of phosphorylated TDP-43 fragments. The discrepancy between the robust mouse findings and the largely non-significant human findings may be due to factors including heterogeneity in clinical TBI, the small group sizes, and temporal complexities with TDP-43 abnormalities. These findings indicate that TBI can induce a number of TDP-43 abnormalities that may contribute to the neurological consequences of TBI, though further research is still needed.
Collapse
Affiliation(s)
- Xin Lin Tan
- 1 Department of Medicine, The University of Melbourne , Parkville, Victoria, Australia
| | - Mujun Sun
- 1 Department of Medicine, The University of Melbourne , Parkville, Victoria, Australia
| | - Rhys D Brady
- 1 Department of Medicine, The University of Melbourne , Parkville, Victoria, Australia
- 2 Department of Neuroscience, Monash University , Melbourne, Victoria, Australia
| | - Shijie Liu
- 2 Department of Neuroscience, Monash University , Melbourne, Victoria, Australia
| | - Roxana Llanos
- 3 Life and Environmental Sciences, Deakin University , Burwood, Victoria, Australia
| | - Steve Cheung
- 3 Life and Environmental Sciences, Deakin University , Burwood, Victoria, Australia
| | - David K Wright
- 2 Department of Neuroscience, Monash University , Melbourne, Victoria, Australia
| | - Pablo M Casillas-Espinosa
- 1 Department of Medicine, The University of Melbourne , Parkville, Victoria, Australia
- 2 Department of Neuroscience, Monash University , Melbourne, Victoria, Australia
| | - Maithili Sashindranath
- 4 Australian Center for Blood Disease, Monash University , Melbourne, Victoria, Australia
| | - Terence J O'Brien
- 1 Department of Medicine, The University of Melbourne , Parkville, Victoria, Australia
- 2 Department of Neuroscience, Monash University , Melbourne, Victoria, Australia
| | - Stuart J McDonald
- 5 Physiology, Anatomy, and Microbiology, La Trobe University , Bundoora, Victoria, Australia
| | - Bradley J Turner
- 6 The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria, Australia
| | - Sandy R Shultz
- 1 Department of Medicine, The University of Melbourne , Parkville, Victoria, Australia
- 2 Department of Neuroscience, Monash University , Melbourne, Victoria, Australia
| |
Collapse
|
65
|
Tan J, Liu M, Zhang JY, Yao YL, Wang YX, Lin Y, Song K, Tan J, Wu JR, Cui YH, Wang Y, Bian XW. Capillary morphogenesis protein 2 is a novel prognostic biomarker and plays oncogenic roles in glioma. J Pathol 2018; 245:160-171. [PMID: 29473166 DOI: 10.1002/path.5062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 12/23/2022]
Abstract
Capillary morphogenesis protein 2 (CMG2) was originally identified through its participation in capillary morphogenesis, and subsequently identified as the second receptor for anthrax toxin (ANTXR2). Although tumor-associated functions of CMG2 have also been reported, the clinical significance and functional mechanism of CMG2 in glioma remain to be elucidated. We assessed the clinicopathological relevance of CMG2 in a cohort of 48 glioma patients as well as through public glioma databases, and explored the function of CMG2 using glioblastoma (GBM) models in vitro and in vivo. CMG2 overexpression was associated with increased tumor grade and poor patient survival. CMG2 promoted G2/M-phase transition during the cell cycle of GBM cells in vitro and contributed to tumor growth in vivo. We also observed that CMG2 is implicated in the activation of extracellular signal-regulated kinases (ERKs), epithelial-mesenchymal transition (EMT), migration, and invasion in GBM cells. Transcriptomic analysis of GBM cells with or without CMG2 overexpression indicated that a panel of oncogenic signaling pathways was altered with CMG2 upregulation, implying that CMG2 might orchestrate these signaling pathways to regulate the growth of GBM cells. Yes-associated protein 1 (YAP1) activity was enhanced by CMG2 overexpression but suppressed with CMG2 deficiency. Since YAP1 is critically implicated in GBM, the oncogenic roles of CMG2 in GBM cells might thus be mediated, at least partially, by YAP1. Altogether, CMG2 functioned as an oncogene in glioma cells and is a potential prognostic biomarker or therapeutic target for the clinical treatment of glioma. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Juan Tan
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, PR China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, PR China
| | - Mei Liu
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, PR China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, PR China
| | - Jun-Ying Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, PR China
| | - Yue-Liang Yao
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, PR China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, PR China
| | - Yan-Xia Wang
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, PR China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, PR China
| | - Yong Lin
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, PR China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, PR China
| | - Kang Song
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, PR China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, PR China
| | - Jiao Tan
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, PR China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, PR China
| | - Jin-Rong Wu
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, PR China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, PR China
| | - You-Hong Cui
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, PR China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, PR China
| | - Yan Wang
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, PR China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, PR China
| | - Xiu-Wu Bian
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, PR China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, PR China
| |
Collapse
|
66
|
State-of-the-Art Fluorescence Fluctuation-Based Spectroscopic Techniques for the Study of Protein Aggregation. Int J Mol Sci 2018; 19:ijms19040964. [PMID: 29570669 PMCID: PMC5979297 DOI: 10.3390/ijms19040964] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/17/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, are devastating proteinopathies with misfolded protein aggregates accumulating in neuronal cells. Inclusion bodies of protein aggregates are frequently observed in the neuronal cells of patients. Investigation of the underlying causes of neurodegeneration requires the establishment and selection of appropriate methodologies for detailed investigation of the state and conformation of protein aggregates. In the current review, we present an overview of the principles and application of several methodologies used for the elucidation of protein aggregation, specifically ones based on determination of fluctuations of fluorescence. The discussed methods include fluorescence correlation spectroscopy (FCS), imaging FCS, image correlation spectroscopy (ICS), photobleaching ICS (pbICS), number and brightness (N&B) analysis, super-resolution optical fluctuation imaging (SOFI), and transient state (TRAST) monitoring spectroscopy. Some of these methodologies are classical protein aggregation analyses, while others are not yet widely used. Collectively, the methods presented here should help the future development of research not only into protein aggregation but also neurodegenerative diseases.
Collapse
|
67
|
Sun L, Zhang K, Zhai W, Li H, Shen H, Yu Z, Chen G. TAR DNA Binding Protein-43 Loss of Function Induced by Phosphorylation at S409/410 Blocks Autophagic Flux and Participates in Secondary Brain Injury After Intracerebral Hemorrhage. Front Cell Neurosci 2018; 12:79. [PMID: 29623031 PMCID: PMC5874314 DOI: 10.3389/fncel.2018.00079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/07/2018] [Indexed: 11/13/2022] Open
Abstract
This study aimed to determine the role of TAR DNA binding protein-43 (TDP-43) in intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI) and its underlying mechanisms. After ICH, expression of TDP-43 in the nucleus was significantly decreased, and its expression in the cytoplasm increased both in vivo and in vitro, which indicates that TDP-43 translocates from the nucleus to the cytoplasm during SBI after ICH. In addition, mutations at S409/410 of TDP-43 could inhibit its phosphorylation, attenuate nuclear loss, and abolish the increase in neuronal apoptosis in the subcortex. Inhibition of TDP-43 phosphorylation attenuated ICH-induced downregulation of mTOR activity and dynactin1 expression, which may relieve blocking of autophagosome-lysosome fusion and the increase of autophagosomal and lysosomal biogenesis induced by ICH. However, knockdown of TDP-43 could worsen ICH-induced SBI. Furthermore, TDP-43 could be dephosphorylated by calcineurin (CN), and CN activity was increased by OxyHb treatment. In conclusion, this study demonstrated that TDP-43 loss-of-function by phosphorylation at S409/410 may block autophagosome-lysosome fusion and induce elevation of LC3II and p62 levels by inhibiting the activity of mTOR and expression of dynactin1. This mechanism may play an important role in ICH-induced SBI, and TDP-43 may be a potential therapeutic target.
Collapse
Affiliation(s)
- Liang Sun
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China.,Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weiwei Zhai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
68
|
Guenther EL, Ge P, Trinh H, Sawaya MR, Cascio D, Boyer DR, Gonen T, Zhou ZH, Eisenberg DS. Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2. Nat Struct Mol Biol 2018. [PMID: 29531287 DOI: 10.1038/s41594-018-0045-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proteins in the fibrous amyloid state are a major hallmark of neurodegenerative disease. Understanding the multiple conformations, or polymorphs, of amyloid proteins at the molecular level is a challenge of amyloid research. Here, we detail the wide range of polymorphs formed by a segment of human TAR DNA-binding protein 43 (TDP-43) as a model for the polymorphic capabilities of pathological amyloid aggregation. Using X-ray diffraction, microelectron diffraction (MicroED) and single-particle cryo-EM, we show that the 247DLIIKGISVHI257 segment from the second RNA-recognition motif (RRM2) forms an array of amyloid polymorphs. These associations include seven distinct interfaces displaying five different symmetry classes of steric zippers. Additionally, we find that this segment can adopt three different backbone conformations that contribute to its polymorphic capabilities. The polymorphic nature of this segment illustrates at the molecular level how amyloid proteins can form diverse fibril structures.
Collapse
Affiliation(s)
- Elizabeth L Guenther
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peng Ge
- Electron Imaging Center for Nanomachines, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hamilton Trinh
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA.,Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael R Sawaya
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Duilio Cascio
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - David R Boyer
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tamir Gonen
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA.,Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Z Hong Zhou
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Electron Imaging Center for Nanomachines, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - David S Eisenberg
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA. .,UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, CA, USA. .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA. .,Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
69
|
Gao J, Wang L, Huntley ML, Perry G, Wang X. Pathomechanisms of TDP-43 in neurodegeneration. J Neurochem 2018; 146:10.1111/jnc.14327. [PMID: 29486049 PMCID: PMC6110993 DOI: 10.1111/jnc.14327] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/08/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). There is no cure or treatment available that can prevent or reverse neurodegenerative conditions. The causes of neurodegeneration in these diseases remain largely unknown; yet, an extremely small proportion of these devastating diseases are associated with genetic mutations in proteins involved in a wide range of cellular pathways and processes. Over the past decade, it has become increasingly clear that the most notable neurodegenerative diseases, such as ALS, FTLD, and AD, share a common prominent pathological feature known as TAR DNA-binding protein 43 (TDP-43) proteinopathy, which is usually characterized by the presence of aberrant phosphorylation, ubiquitination, cleavage and/or nuclear depletion of TDP-43 in neurons and glial cells. The role of TDP-43 as a neurotoxicity trigger has been well documented in different in vitro and in vivo experimental models. As such, the investigation of TDP-43 pathomechanisms in various major neurodegenerative diseases is on the rise. Here, after a discussion of stages of TDP-43 proteinopathy during disease progression in various major neurodegenerative diseases, we review previous and most recent studies about the potential pathomechanisms with a particular emphasis on ALS, FTLD, and AD, and discuss the possibility of targeting TDP-43 as a common therapeutic approach to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Ju Gao
- Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Luwen Wang
- Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mikayla L. Huntley
- Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Xinglong Wang
- Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
70
|
Abstract
INTRODUCTION Nuclear factor TDP-43 is a ubiquitously expressed RNA binding protein that plays a key causative role in several neurodegenerative diseases, especially in the ALS/FTD spectrum. In addition, its aberrant aggregation and expression has been recently observed in other type of diseases, such as myopathies and Niemann-Pick C, a lysosomal storage disease. Areas covered: This review aims to specifically cover the post-translational modifications (PTMs) that can affect TDP-43 function and cellular status both in health and disease. To this date, these include phosphorylation, formation of C-terminal fragments, disulfide bridge formation, ubiquitination, acetylation, and sumoylation. Recently published articles on these subjects have been reviewed in this manuscript. Expert opinion: Targeting aberrant TDP-43 expression in neurodegenerative diseases is a very challenging task due to the fact that both its overexpression and downregulation are considerably toxic to cells. This characteristic makes it difficult to therapeutically target this protein in a generalized manner. An alternative approach could be the identification of specific aberrant PTMs that promote its aggregation or toxicity, and developing novel therapeutic approaches toward their selective modification.
Collapse
Affiliation(s)
- Emanuele Buratti
- a Department of Molecular Pathology , International Centre for Genetic Engineering and Biotechnology (ICGEB) , Trieste , Italy
| |
Collapse
|
71
|
Uversky VN. The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll-Mr. Hyde" behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy 2017; 13:2115-2162. [PMID: 28980860 DOI: 10.1080/15548627.2017.1384889] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pathological developments leading to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are associated with misbehavior of several key proteins, such as SOD1 (superoxide dismutase 1), TARDBP/TDP-43, FUS, C9orf72, and dipeptide repeat proteins generated as a result of the translation of the intronic hexanucleotide expansions in the C9orf72 gene, PFN1 (profilin 1), GLE1 (GLE1, RNA export mediator), PURA (purine rich element binding protein A), FLCN (folliculin), RBM45 (RNA binding motif protein 45), SS18L1/CREST, HNRNPA1 (heterogeneous nuclear ribonucleoprotein A1), HNRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2/B1), ATXN2 (ataxin 2), MAPT (microtubule associated protein tau), and TIA1 (TIA1 cytotoxic granule associated RNA binding protein). Although these proteins are structurally and functionally different and have rather different pathological functions, they all possess some levels of intrinsic disorder and are either directly engaged in or are at least related to the physiological liquid-liquid phase transitions (LLPTs) leading to the formation of various proteinaceous membrane-less organelles (PMLOs), both normal and pathological. This review describes the normal and pathological functions of these ALS- and FTLD-related proteins, describes their major structural properties, glances at their intrinsic disorder status, and analyzes the involvement of these proteins in the formation of normal and pathological PMLOs, with the ultimate goal of better understanding the roles of LLPTs and intrinsic disorder in the "Dr. Jekyll-Mr. Hyde" behavior of those proteins.
Collapse
Affiliation(s)
- Vladimir N Uversky
- a Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute , Morsani College of Medicine , University of South Florida , Tampa , FL , USA.,b Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino, Moscow region , Russia
| |
Collapse
|
72
|
Abstract
Neurodegeneration is a leading cause of death in the developed world and a natural, albeit unfortunate, consequence of longer-lived populations. Despite great demand for therapeutic intervention, it is often the case that these diseases are insufficiently understood at the basic molecular level. What little is known has prompted much hopeful speculation about a generalized mechanistic thread that ties these disparate conditions together at the subcellular level and can be exploited for broad curative benefit. In this review, we discuss a prominent theory supported by genetic and pathological changes in an array of neurodegenerative diseases: that neurons are particularly vulnerable to disruption of RNA-binding protein dosage and dynamics. Here we synthesize the progress made at the clinical, genetic, and biophysical levels and conclude that this perspective offers the most parsimonious explanation for these mysterious diseases. Where appropriate, we highlight the reciprocal benefits of cross-disciplinary collaboration between disease specialists and RNA biologists as we envision a future in which neurodegeneration declines and our understanding of the broad importance of RNA processing deepens.
Collapse
Affiliation(s)
- Erin G Conlon
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
73
|
Onset of disorder and protein aggregation due to oxidation-induced intermolecular disulfide bonds: case study of RRM2 domain from TDP-43. Sci Rep 2017; 7:11161. [PMID: 28894122 PMCID: PMC5593996 DOI: 10.1038/s41598-017-10574-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
We have investigated the behavior of second RNA-recognition motif (RRM2) of neuropathological protein TDP43 under the effect of oxidative stress as modeled in vitro. Toward this end we have used the specially adapted version of H/D exchange experiment, NMR relaxation and diffusion measurements, dynamic light scattering, controlled proteolysis, gel electrophoresis, site-directed mutagenesis and microsecond MD simulations. Under oxidizing conditions RRM2 forms disulfide-bonded dimers that experience unfolding and then assemble into aggregate particles (APs). These particles are strongly disordered, highly inhomogeneous and susceptible to proteolysis; some of them withstand the dithiothreitol treatment. They can recruit/release monomeric RRM2 through thiol-disulfide exchange reactions. By using a combination of dynamic light scattering and NMR diffusion data we were able to approximate the size distribution function for the APs. The key to the observed aggregation behavior is the diminished ability of disulfide-bonded RRM2 dimers to refold and their increased propensity to misfold, which makes them vulnerable to large thermal fluctuations. The emerging picture provides detailed insight on how oxidative stress can contribute to neurodegenerative disease, with unfolding, aggregation, and proteolytic cleavage as different facets of the process.
Collapse
|
74
|
Platelet phosphorylated TDP-43: an exploratory study for a peripheral surrogate biomarker development for Alzheimer's disease. Future Sci OA 2017; 3:FSO238. [PMID: 29134122 PMCID: PMC5674277 DOI: 10.4155/fsoa-2017-0090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022] Open
Abstract
Aim: Alzheimer's disease (AD) and other forms of dementia create a noncurable disease population in world's societies. To develop a blood-based biomarker is important so that the remedial or disease-altering therapeutic intervention for AD patients would be available at the early stage. Materials & methods: TDP-43 levels were analyzed in postmortem brain tissue and platelets of AD and control subjects. Results: We observed an increased TDP-43 (<60%) in postmortem AD brain regions and similar trends were also observed in patient's platelets. Conclusion: Platelet TDP-43 could be used as a surrogate biomarker that is measurable, reproducible and sensitive for screening the patients with some early clinical signs of AD and can be used to monitor disease prognosis. In this study, we explore to identify an Alzheimer's disease (AD)-selective phospho-specific antibody that recognizes the diseased form of TDP-43 protein in patient's blood-derived platelets. Our results suggest that selective antiphosphorylated TDP-43 antibody discriminates AD from non-demented controls and patients with amyotrophic lateral sclerosis. Therefore, platelet screening with a selective antibody could potentially be a useful tool for diagnostic purposes for AD.
Collapse
|
75
|
Wobst HJ, Delsing L, Brandon NJ, Moss SJ. Truncation of the TAR DNA-binding protein 43 is not a prerequisite for cytoplasmic relocalization, and is suppressed by caspase inhibition and by introduction of the A90V sequence variant. PLoS One 2017; 12:e0177181. [PMID: 28510586 PMCID: PMC5433705 DOI: 10.1371/journal.pone.0177181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 04/23/2017] [Indexed: 12/12/2022] Open
Abstract
The RNA-binding and -processing protein TAR DNA-binding protein 43 (TDP-43) is heavily linked to the underlying causes and pathology of neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. In these diseases, TDP-43 is mislocalized, hyperphosphorylated, ubiquitinated, aggregated and cleaved. The importance of TDP-43 cleavage in the disease pathogenesis is still poorly understood. Here we detail the use of D-sorbitol as an exogenous stressor that causes TDP-43 cleavage in HeLa cells, resulting in a 35 kDa truncated product that accumulates in the cytoplasm within one hour of treatment. We confirm that the formation of this 35 kDa cleavage product is mediated by the activation of caspases. Inhibition of caspases blocks the cleavage of TDP-43, but does not prevent the accumulation of full-length protein in the cytoplasm. Using D-sorbitol as a stressor and caspase activator, we also demonstrate that the A90V variant of TDP-43, which lies adjacent to the caspase cleavage site within the nuclear localization sequence of TDP-43, confers partial resistance against caspase-mediated generation of the 35 kDa cleavage product.
Collapse
Affiliation(s)
- Heike J. Wobst
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Tufts University, Boston, MA, United States of America
| | - Louise Delsing
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Tufts University, Boston, MA, United States of America
- AstraZeneca, Discovery Science, Innovative Medicines and Early Development Biotech Unit, Mölndal, Sweden
| | - Nicholas J. Brandon
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Tufts University, Boston, MA, United States of America
- AstraZeneca, Neuroscience, Innovative Medicines and Early Development, Waltham, MA, United States of America
| | - Stephen J. Moss
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Tufts University, Boston, MA, United States of America
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States of America
| |
Collapse
|
76
|
Wobst HJ, Wesolowski SS, Chadchankar J, Delsing L, Jacobsen S, Mukherjee J, Deeb TZ, Dunlop J, Brandon NJ, Moss SJ. Cytoplasmic Relocalization of TAR DNA-Binding Protein 43 Is Not Sufficient to Reproduce Cellular Pathologies Associated with ALS In vitro. Front Mol Neurosci 2017; 10:46. [PMID: 28286471 PMCID: PMC5323424 DOI: 10.3389/fnmol.2017.00046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/10/2017] [Indexed: 12/12/2022] Open
Abstract
Mutations in the gene TARDBP, which encodes TAR DNA-binding protein 43 (TDP-43), are a rare cause of familial forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). While the majority of mutations are found in the C-terminal glycine-rich domain, an alanine to valine amino acid change at position 90 (A90V) in the bipartite nuclear localization signal (NLS) of TDP-43 has been described. This sequence variant has previously been shown to cause cytoplasmic mislocalization of TDP-43 and decrease protein solubility, leading to the formation of insoluble aggregates. Since the A90V mutation has been described both in patients as well as healthy controls, its pathogenic potential in ALS and FTD remains unclear. Here we compare properties of overexpressed A90V to the highly pathogenic M337V mutation. Though both mutations drive mislocalization of the protein to the cytoplasm to the same extent, M337V produces more significant damage in terms of protein solubility, levels of pathogenic phosphorylation, and formation of C-terminal truncated protein species. Furthermore, the M337V, but not the A90V mutant, leads to a downregulation of histone deacetylase 6 and Ras GTPase-activating protein-binding protein. We conclude that in the absence of another genetic or environmental ‘hit’ the A90V variant is not sufficient to cause the deleterious phenotypes associated with ALS and FTD, despite prominent cytoplasmic protein relocalization of TDP-43.
Collapse
Affiliation(s)
- Heike J Wobst
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University School of Medicine, Boston MA, USA
| | - Steven S Wesolowski
- IMED Biotech Unit, AstraZeneca Neuroscience IMED, AstraZeneca, Cambridge MA, USA
| | - Jayashree Chadchankar
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University School of Medicine, Boston MA, USA
| | - Louise Delsing
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University School of Medicine, BostonMA, USA; IMED Biotech Unit, AstraZeneca Discovery ScienceMölndal, Sweden
| | - Steven Jacobsen
- IMED Biotech Unit, AstraZeneca Neuroscience IMED, AstraZeneca, Cambridge MA, USA
| | - Jayanta Mukherjee
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University School of Medicine, Boston MA, USA
| | - Tarek Z Deeb
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University School of Medicine, Boston MA, USA
| | - John Dunlop
- IMED Biotech Unit, AstraZeneca Neuroscience IMED, AstraZeneca, Cambridge MA, USA
| | - Nicholas J Brandon
- IMED Biotech Unit, AstraZeneca Neuroscience IMED, AstraZeneca, Cambridge MA, USA
| | - Stephen J Moss
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University School of Medicine, BostonMA, USA; Department of Neuroscience, Tufts University School of Medicine, BostonMA, USA
| |
Collapse
|
77
|
Nagahara Y, Shimazawa M, Ohuchi K, Ito J, Takahashi H, Tsuruma K, Kakita A, Hara H. GPNMB ameliorates mutant TDP-43-induced motor neuron cell death. J Neurosci Res 2016; 95:1647-1665. [PMID: 27935101 DOI: 10.1002/jnr.23999] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/15/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022]
Abstract
Glycoprotein nonmetastatic melanoma protein B (GPNMB) aggregates are observed in the spinal cord of amyotrophic lateral sclerosis (ALS) patients, but the detailed localization is still unclear. Mutations of transactive response DNA binding protein 43kDa (TDP-43) are associated with neurodegenerative diseases including ALS. In this study, we evaluated the localization of GPNMB aggregates in the spinal cord of ALS patients and the effect of GPNMB against mutant TDP-43 induced motor neuron cell death. GPNMB aggregates were not localized in the glial fibrillary acidic protein (GFAP)-positive astrocyte and ionized calcium binding adaptor molecule-1 (Iba1)-positive microglia. GPNMB aggregates were localized in the microtubule-associated protein 2 (MAP-2)-positive neuron and neurofilament H non-phosphorylated (SMI-32)-positive neuron, and these were co-localized with TDP-43 aggregates in the spinal cord of ALS patients. Mock or TDP-43 (WT, M337V, and A315T) plasmids were transfected into mouse motor neuron cells (NSC34). The expression level of GPNMB was increased by transfection of mutant TDP-43 plasmids. Recombinant GPNMB ameliorated motor neuron cell death induced by transfection of mutant TDP-43 plasmids and serum-free stress. Furthermore, the expression of phosphorylated ERK1/2 and phosphorylated Akt were decreased by this stress, and these expressions were increased by recombinant GPNMB. These results indicate that GPNMB has protective effects against mutant TDP-43 stress via activating the ERK1/2 and Akt pathways, and GPNMB may be a therapeutic target for TDP-43 proteinopathy in familial and sporadic ALS. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuki Nagahara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuki Ohuchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Junko Ito
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
78
|
Guerrero EN, Wang H, Mitra J, Hegde PM, Stowell SE, Liachko NF, Kraemer BC, Garruto RM, Rao KS, Hegde ML. TDP-43/FUS in motor neuron disease: Complexity and challenges. Prog Neurobiol 2016; 145-146:78-97. [PMID: 27693252 PMCID: PMC5101148 DOI: 10.1016/j.pneurobio.2016.09.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/19/2016] [Accepted: 09/20/2016] [Indexed: 01/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), a common motor neuron disease affecting two per 100,000 people worldwide, encompasses at least five distinct pathological subtypes, including, ALS-SOD1, ALS-C9orf72, ALS-TDP-43, ALS-FUS and Guam-ALS. The etiology of a major subset of ALS involves toxicity of the TAR DNA-binding protein-43 (TDP-43). A second RNA/DNA binding protein, fused in sarcoma/translocated in liposarcoma (FUS/TLS) has been subsequently associated with about 1% of ALS patients. While mutations in TDP-43 and FUS have been linked to ALS, the key contributing molecular mechanism(s) leading to cell death are still unclear. One unique feature of TDP-43 and FUS pathogenesis in ALS is their nuclear clearance and simultaneous cytoplasmic aggregation in affected motor neurons. Since the discoveries in the last decade implicating TDP-43 and FUS toxicity in ALS, a majority of studies have focused on their cytoplasmic aggregation and disruption of their RNA-binding functions. However, TDP-43 and FUS also bind to DNA, although the significance of their DNA binding in disease-affected neurons has been less investigated. A recent observation of accumulated genomic damage in TDP-43 and FUS-linked ALS and association of FUS with neuronal DNA damage repair pathways indicate a possible role of deregulated DNA binding function of TDP-43 and FUS in ALS. In this review, we discuss the different ALS disease subtypes, crosstalk of etiopathologies in disease progression, available animal models and their limitations, and recent advances in understanding the specific involvement of RNA/DNA binding proteins, TDP-43 and FUS, in motor neuron diseases.
Collapse
Affiliation(s)
- Erika N. Guerrero
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Centre for Neuroscience, Institute for Scientific Research and Technology Services (INDICASAT-AIP), City of Knowledge, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Pavana M. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Sara E. Stowell
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, New York
| | - Nicole F Liachko
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Brian C. Kraemer
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Ralph M. Garruto
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, New York
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, New York
| | - K. S. Rao
- Centre for Neuroscience, Institute for Scientific Research and Technology Services (INDICASAT-AIP), City of Knowledge, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Houston Methodist Neurological Institute, Houston, Texas 77030 USA
- Weill Medical College of Cornell University, New York
| |
Collapse
|
79
|
Suzuki H, Matsuoka M. The Lysosomal Trafficking Transmembrane Protein 106B Is Linked to Cell Death. J Biol Chem 2016; 291:21448-21460. [PMID: 27563066 DOI: 10.1074/jbc.m116.737171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 08/24/2016] [Indexed: 12/12/2022] Open
Abstract
A common genetic variation in the transmembrane protein 106B (TMEM106B) gene has been suggested to be a risk factor for frontotemporal lobar degeneration (FTLD) with inclusions of transactive response DNA-binding protein-43 (TDP-43) (FTLD-TDP), the most common pathological subtype in FTLD. Furthermore, previous studies have shown that TMEM106B levels are up-regulated in the brains of FTLD-TDP patients, although the significance of this finding remains unknown. In this study, we show that the overexpression of TMEM106B and its N-terminal fragments induces cell death, enhances oxidative stress-induced cytotoxicity, and causes the cleavage of TDP-43, which represents TDP-43 pathology, using cell-based models. TMEM106B-induced death is mediated by the caspase-dependent mitochondrial cell death pathways and possibly by the lysosomal cell death pathway. These findings suggest that the up-regulation of TMEM106B may increase the risk of FTLD by directly causing neurotoxicity and a pathological phenotype linked to FTLD-TDP.
Collapse
Affiliation(s)
| | - Masaaki Matsuoka
- From the Departments of Pharmacology and .,Dermatological Neuroscience, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
80
|
Chen CH, Khan A, Huang JJT, Ulmschneider MB. Mechanisms of Membrane Pore Formation by Amyloidogenic Peptides in Amyotrophic Lateral Sclerosis. Chemistry 2016; 22:9958-61. [PMID: 27224887 DOI: 10.1002/chem.201601765] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Indexed: 12/11/2022]
Abstract
Using unbiased atomic-detailed molecular dynamics simulations, the C-terminal fragments of TDP-43 are observed to aggregate and form disordered-toroidal pores in a lipid bilayer. Cytotoxicity of TDP-43 may be inferred from the observation that the membrane pores catalyze lipid flip-flop between bilayer leaflets and conduct water at high rates.
Collapse
Affiliation(s)
- Charles H Chen
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218-2608, USA
| | - Ayesha Khan
- Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218-2608, USA
| | - Joseph Jen-Tse Huang
- Institute of Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang Taipei, 115 Taiwan, ROC
| | - Martin B Ulmschneider
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218-2608, USA. .,Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218-2608, USA.
| |
Collapse
|
81
|
Yamashita T, Teramoto S, Kwak S. Phosphorylated TDP-43 becomes resistant to cleavage by calpain: A regulatory role for phosphorylation in TDP-43 pathology of ALS/FTLD. Neurosci Res 2016; 107:63-9. [DOI: 10.1016/j.neures.2015.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022]
|
82
|
Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains. Sci Rep 2016; 6:23281. [PMID: 26980269 PMCID: PMC4793195 DOI: 10.1038/srep23281] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
TDP-43 is the major disease-associated protein involved in the pathogenesis and progression of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions linked to TDP-43 pathology (FTLD-TDP). Abnormal phosphorylation, truncation and cytoplasmic mis-localization are known to be the characteristics for the aggregated forms of TDP-43, and gain of toxic abnormal TDP-43 or loss of function of physiological TDP-43 have been suggested as the cause of neurodegeneration. However, most of the post-translational modifications or truncation sites in the abnormal TDP-43 in brains of patients remain to be identified by protein chemical analysis. In this study, we carried out a highly sensitive liquid chromatography-mass spectrometry analysis of Sarkosyl-insoluble pathological TDP-43 from brains of ALS patients and identified several novel phosphorylation sites, deamidation sites, and cleavage sites. Almost all modifications were localized in the Gly-rich C-terminal half. Most of the cleavage sites identified in this study are novel and are located in N-terminal half, suggesting that these sites may be more accessible to proteolytic enzymes. The data obtained in this study provide a foundation for the molecular mechanisms of TDP-43 aggregation and ALS pathogenesis.
Collapse
|
83
|
Chiang CH, Grauffel C, Wu LS, Kuo PH, Doudeva LG, Lim C, Shen CKJ, Yuan HS. Structural analysis of disease-related TDP-43 D169G mutation: linking enhanced stability and caspase cleavage efficiency to protein accumulation. Sci Rep 2016; 6:21581. [PMID: 26883171 PMCID: PMC4756693 DOI: 10.1038/srep21581] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/25/2016] [Indexed: 12/12/2022] Open
Abstract
The RNA-binding protein TDP-43 forms intracellular inclusions in amyotrophic lateral sclerosis (ALS). While TDP-43 mutations have been identified in ALS patients, how these mutations are linked to ALS remains unclear. Here we examined the biophysical properties of six ALS-linked TDP-43 mutants and found that one of the mutants, D169G, had higher thermal stability than wild-type TDP-43 and that it was cleaved by caspase 3 more efficiently, producing increased levels of the C-terminal 35 kD fragments (TDP-35) in vitro and in neuroblastoma cells. The crystal structure of the TDP-43 RRM1 domain containing the D169G mutation in complex with DNA along with molecular dynamics simulations reveal that the D169G mutation induces a local conformational change in a β turn and increases the hydrophobic interactions in the RRM1 core, thus enhancing the thermal stability of the RRM1 domain. Our results provide the first crystal structure of TDP-43 containing a disease-linked D169G mutation and a disease-related mechanism showing that D169G mutant is more susceptible to proteolytic cleavage by caspase 3 into the pathogenic C-terminal 35-kD fragments due to its increased stability in the RRM1 domain. Modulation of TDP-43 stability and caspase cleavage efficiency could present an avenue for prevention and treatment of TDP-43-linked neurodegeneration.
Collapse
Affiliation(s)
- Chien-Hao Chiang
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsin Chu, 30013, Taiwan
| | - Cédric Grauffel
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Lien-Szu Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Pan-Hsien Kuo
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | | | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | | | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
84
|
Interaction of RNA with a C-terminal fragment of the amyotrophic lateral sclerosis-associated TDP43 reduces cytotoxicity. Sci Rep 2016; 6:19230. [PMID: 26757674 PMCID: PMC4725827 DOI: 10.1038/srep19230] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
A hallmark of amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease, is formation of inclusion bodies (IBs) from misfolded proteins in neuronal cells. TAR RNA/DNA-binding protein 43 kDa (TDP43) is an ALS-causative protein forming IBs in ALS patients. The relation between localization of the IBs and neurotoxicity remains largely unknown. We characterized aggregation of fluorescently tagged TDP43 and its carboxyl-terminal fragments (CTFs) by analytical fluorescence imaging techniques. Quantitative time-lapse analysis in individual live cells showed that fluorescent-protein-tagged TDP43 was cleaved and a 35 kDa TDP43 CTF (TDP35) formed ubiquitin (Ub)-negative cytoplasmic IBs. Although TDP35 formed mildly toxic Ub-negative IBs in the cytoplasm, TDP25, another type of a TDP43 CTF, efficiently formed sufficiently toxic Ub-positive IBs. One- or two-color fluorescence correlation spectroscopy (FCS/FCCS) revealed that coaggregation of TDP25 with TDP43 was initiated by depletion of the RNA that binds to TDP25. Moreover, nuclear localization tagging TDP25 reduced the rate of neuronal cell death. These observations point to the need to elucidate the novel sequestration mechanism and details of the toxicity of the misfolded and aggregation-prone TDP43 CTFs (as well as the RNA binding and nuclear retention) in order to identify possible preventive interventions against ALS.
Collapse
|
85
|
Uchida T, Tamaki Y, Ayaki T, Shodai A, Kaji S, Morimura T, Banno Y, Nishitsuji K, Sakashita N, Maki T, Yamashita H, Ito H, Takahashi R, Urushitani M. CUL2-mediated clearance of misfolded TDP-43 is paradoxically affected by VHL in oligodendrocytes in ALS. Sci Rep 2016; 6:19118. [PMID: 26751167 PMCID: PMC4707540 DOI: 10.1038/srep19118] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/04/2015] [Indexed: 12/28/2022] Open
Abstract
The molecular machinery responsible for cytosolic accumulation of misfolded TDP-43 in amyotrophic lateral sclerosis (ALS) remains elusive. Here we identified a cullin-2 (CUL2) RING complex as a novel ubiquitin ligase for fragmented forms of TDP-43. The von Hippel Lindau protein (VHL), a substrate binding component of the complex, preferentially recognized misfolded TDP-43 at Glu246 in RNA-recognition motif 2. Recombinant full-length TDP-43 was structurally fragile and readily cleaved, suggesting that misfolded TDP-43 is cleared by VHL/CUL2 in a step-wise manner via fragmentation. Surprisingly, excess VHL stabilized and led to inclusion formation of TDP-43, as well as mutant SOD1, at the juxtanuclear protein quality control center. Moreover, TDP-43 knockdown elevated VHL expression in cultured cells, implying an aberrant interaction between VHL and mislocalized TDP-43 in ALS. Finally, cytoplasmic inclusions especially in oligodendrocytes in ALS spinal cords were immunoreactive to both phosphorylated TDP-43 and VHL. Thus, our results suggest that an imbalance in VHL and CUL2 may underlie oligodendrocyte dysfunction in ALS, and highlight CUL2 E3 ligase emerges as a novel therapeutic potential for ALS.
Collapse
Affiliation(s)
- Tsukasa Uchida
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Yoshitaka Tamaki
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Takashi Ayaki
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Akemi Shodai
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Seiji Kaji
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Toshifumi Morimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Yoshinori Banno
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Kazuchika Nishitsuji
- Department of Molecular Pathology, Tokushima University, 2-24 Shinkuracho, Tokushima, Tokushima Prefecture 770-0855, Japan
| | - Naomi Sakashita
- Department of Molecular Pathology, Tokushima University, 2-24 Shinkuracho, Tokushima, Tokushima Prefecture 770-0855, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Hirofumi Yamashita
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Hidefumi Ito
- Department of Neurology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama Prefecture 641-8509, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Makoto Urushitani
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| |
Collapse
|
86
|
Walker AK, Tripathy K, Restrepo CR, Ge G, Xu Y, Kwong LK, Trojanowski JQ, Lee VMY. An insoluble frontotemporal lobar degeneration-associated TDP-43 C-terminal fragment causes neurodegeneration and hippocampus pathology in transgenic mice. Hum Mol Genet 2015; 24:7241-54. [PMID: 26476406 PMCID: PMC5007600 DOI: 10.1093/hmg/ddv424] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) causes progressive personality, behavior and/or language disturbances and represents the second most common form of dementia under the age of 65. Over half of all FTD cases are classified pathologically as frontotemporal lobar degeneration (FTLD) with TAR DNA-binding protein of 43 kDa (TDP-43) pathology (FTLD-TDP). In FTLD-TDP brains, TDP-43 is phosphorylated, C-terminally cleaved, lost from the nucleus and accumulates in the cytoplasm and processes of neurons and glia. However, the contribution of TDP-43 C-terminal fragments (CTFs) to pathogenesis remains poorly understood. Here, we developed transgenic (Tg) mice with forebrain Camk2a-controlled doxycycline-suppressible expression of a TDP-43 CTF (amino acids 208-414, designated 208 TDP-43 CTF), previously identified in FTLD-TDP brains. In these 208 TDP-43 Tg mice, detergent-insoluble 208 TDP-43 CTF was present in a diffuse punctate pattern in neuronal cytoplasm and dendrites without forming large cytoplasmic inclusions. Remarkably, the hippocampus showed progressive neuron loss and astrogliosis in the dentate gyrus (DG). This was accompanied by phosphorylated TDP-43 in the CA1 subfield, and ubiquitin and mitochondria accumulations in the stratum lacunosum moleculare (SLM) layer, without loss of endogenous nuclear TDP-43. Importantly, 208 TDP-43 CTF and phosphorylated TDP-43 were rapidly cleared when CTF expression was suppressed in aged Tg mice, which ameliorated neuron loss in the DG despite persistence of ubiquitin accumulation in the SLM. Our results demonstrate that Camk2a-directed 208 TDP-43 CTF overexpression is sufficient to cause hippocampal pathology and neurodegeneration in vivo, suggesting an active role for TDP-43 CTFs in the pathogenesis of FTLD-TDP and related TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Adam K Walker
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research and
| | - Kalyan Tripathy
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research and
| | - Clark R Restrepo
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research and
| | - Guanghui Ge
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research and
| | - Yan Xu
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research and
| | - Linda K Kwong
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research and
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|