51
|
Chen X, Yang F, Luo G. Identification of key regulatory genes in the pathogenesis of COVID-19 and sepsis: An observational study. Medicine (Baltimore) 2024; 103:e38378. [PMID: 39259097 PMCID: PMC11142772 DOI: 10.1097/md.0000000000038378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 09/12/2024] Open
Abstract
Patients with severe COVID-19 and those with sepsis have similar clinical manifestations. We used bioinformatics methods to identify the common hub genes in these 2 diseases. Two RNA-seq datasets from the Gene Expression Omnibus were used to identify common differentially expressed genes (DEGs) in COVID-19 and sepsis. These common genes were used for analysis of functional enrichment; pathway analysis; identification of associated transcription factors, metabolites, and miRNAs; and mapping of protein-protein interaction networks. The major hub genes of COVID-19 and sepsis were identified, and validation datasets were used to assess the value of these hub genes using receiver operating characteristic (ROC) curves. Analysis of the 800 common DEGs for COVID-19 and sepsis, as well as common transcription factors, miRNAs, and metabolites, demonstrated that the immune response had a key role in both diseases. DLGAP5, BUB1, CDK1, CCNB1, and BUB1B were the most important common hub genes. Analysis of a validation cohort indicated these 5 genes had significantly higher expression in COVID-19 patients and sepsis patients than in corresponding controls, and the area under the ROC curves ranged from 0.832 to 0.981 for COVID-19 and 0.840 to 0.930 for sepsis. We used bioinformatics tools to identify common DEGs, miRNAs, and transcription factors for COVID-19 and sepsis. The 5 identified hub genes had higher expression in validation cohorts of COVID-19 and sepsis. These genes had good or excellent diagnostic performance based on ROC analysis, and therefore have potential use as novel markers or therapeutic targets.
Collapse
Affiliation(s)
- Xing Chen
- Department of Infection, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Fengbo Yang
- Department of Otolaryngology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guoping Luo
- Department of Infection, Nanchong Central Hospital, Nanchong, Sichuan, China
| |
Collapse
|
52
|
Wu X, Yang Y. Neutrophil extracellular traps (NETs) and fibrotic diseases. Int Immunopharmacol 2024; 133:112085. [PMID: 38626550 DOI: 10.1016/j.intimp.2024.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Fibrosis, a common cause and serious outcome of organ failure that can affect any organ, is responsible for up to 45% of all deaths in various clinical settings. Both preclinical models and clinical trials investigating various organ systems have shown that fibrosis is a highly dynamic process. Although many studies have sought to gain understanding of the mechanism of fibrosis progression, their findings have been mixed. In recent years, increasing evidence indicates that neutrophil extracellular traps (NETs) are involved in many inflammatory and autoimmune disorders and participate in the regulation of fibrotic processes in various organs and systems. In this review, we summarize the current understanding of the role of NETs in fibrosis development and progression and their possibility as therapeutic targets.
Collapse
Affiliation(s)
- Xiaojiao Wu
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
53
|
Zhu D, Lu Y, Yan Z, Deng Q, Hu B, Wang Y, Wang W, Wang Y, Wang Y. A β-Carboline Derivate PAD4 Inhibitor Reshapes Neutrophil Phenotype and Improves the Tumor Immune Microenvironment against Triple-Negative Breast Cancer. J Med Chem 2024; 67:7973-7994. [PMID: 38728549 DOI: 10.1021/acs.jmedchem.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Triple-negative breast cancer is a highly aggressive and heterogeneous breast cancer subtype characterized by early metastasis, poor prognosis, and high recurrence. Targeting histone citrullination-mediated chromatin dysregulation to induce epigenetic alterations shows great promise in TNBC therapy. We report the synthesis, optimization, and evaluation of a novel series of β-carboline-derived peptidyl arginine deiminase 4 inhibitors that exhibited potent inhibition of TNBC cell proliferation. The most outstanding PAD4 inhibitor, compound 28, hindered the PAD4-H3cit-NET signaling pathway and inhibited the growth of solid tumors and pulmonary metastatic nodules in the 4T1 in situ mouse model. Furthermore, 28 improved the tumor immune microenvironment by reshaping neutrophil phenotype, upregulating the proportions of dendritic cells and M1 macrophages, and reducing the amount of myeloid-derived suppressor cells. In conclusion, our work offered 28 as an efficacious PAD4 inhibitor that exerts a combination of conventional chemotherapy and immune-boosting effects, which represents a potential therapy strategy for TNBC.
Collapse
Affiliation(s)
- Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, P. R. China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, P. R. China
| | - Zhanchao Yan
- The First Affiliated Hospital of Henan University, Center for Clinical Research and Translational Medicine, Laboratory of Epigenetics, Henan University, Kaifeng 475004, P. R. China
| | - Qian Deng
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, P. R. China
| | - Bo Hu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, P. R. China
| | - Yinsong Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P. R. China
| | - Yanming Wang
- The First Affiliated Hospital of Henan University, Center for Clinical Research and Translational Medicine, Laboratory of Epigenetics, Henan University, Kaifeng 475004, P. R. China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, P. R. China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing 100069, P. R. China
| |
Collapse
|
54
|
Song M, Zhang C, Cheng S, Ouyang D, Ping Y, Yang J, Zhang Y, Tang Y, Chen H, Wang QJ, Li YQ, He J, Xiang T, Zhang Y, Xia JC. DNA of Neutrophil Extracellular Traps Binds TMCO6 to Impair CD8+ T-cell Immunity in Hepatocellular Carcinoma. Cancer Res 2024; 84:1613-1629. [PMID: 38381538 DOI: 10.1158/0008-5472.can-23-2986] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/07/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Neutrophil extracellular traps (NET), formed by the extracellular release of decondensed chromatin and granules, have been shown to promote tumor progression and metastasis. Tumor-associated neutrophils in hepatocellular carcinoma (HCC) are prone to NET formation, highlighting the need for a more comprehensive understanding of the mechanisms of action of NETs in liver cancer. Here, we showed that DNA of NETs (NET-DNA) binds transmembrane and coiled-coil domains 6 (TMCO6) on CD8+ T cells to impair antitumor immunity and thereby promote HCC progression. TGFβ1 induced NET formation, which recruited CD8+ T cells. Binding to NET-DNA inhibited CD8+ T cells function while increasing apoptosis and TGFβ1 secretion, forming a positive feedback loop to further stimulate NET formation and immunosuppression. Mechanistically, the N-terminus of TMCO6 interacted with NET-DNA and suppressed T-cell receptor signaling and NFκB p65 nuclear translocation. Blocking NET formation by inhibiting PAD4 induced potent antitumor effects in wild-type mice but not TMCO6-/- mice. In clinical samples, CD8+ T cells expressing TMCO6 had an exhausted phenotype. TGFβ1 signaling inhibition or TMCO6 deficiency combined with anti-PD-1 abolished NET-driven HCC progression in vivo. Collectively, this study unveils the role of NET-DNA in impairing CD8+ T-cell immunity by binding TMCO6 and identifies targeting this axis as an immunotherapeutic strategy for blocking HCC progression. SIGNIFICANCE TMCO6 is a receptor for DNA of NETs that mediates CD8+ T-cell dysfunction in HCC, indicating that the NET-TMCO6 axis is a promising target for overcoming immunosuppression in liver cancer.
Collapse
Affiliation(s)
- Mengjia Song
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Shaoyan Cheng
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, P.R. China
| | - Dijun Ouyang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yu Ping
- Department of Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Jieying Yang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - YaoJun Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yan Tang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Hao Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Qi-Jing Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yong-Qiang Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jia He
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Tong Xiang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yizhuo Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jian-Chuan Xia
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| |
Collapse
|
55
|
Kim TS, Moutsopoulos NM. Neutrophils and neutrophil extracellular traps in oral health and disease. Exp Mol Med 2024; 56:1055-1065. [PMID: 38689085 PMCID: PMC11148164 DOI: 10.1038/s12276-024-01219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 05/02/2024] Open
Abstract
Neutrophils perform essential functions in antimicrobial defense and tissue maintenance at mucosal barriers. However, a dysregulated neutrophil response and, in particular, the excessive release of neutrophil extracellular traps (NETs) are implicated in the pathology of various diseases. In this review, we provide an overview of the basic concepts related to neutrophil functions, including NET formation, and discuss the mechanisms associated with NET activation and function in the context of the prevalent oral disease periodontitis.
Collapse
Affiliation(s)
- Tae Sung Kim
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
56
|
Xu X, Wang X, Zheng Z, Guo Y, He G, Wang Y, Fu S, Zheng C, Deng X. Neutrophil Extracellular Traps in Breast Cancer: Roles in Metastasis and Beyond. J Cancer 2024; 15:3272-3283. [PMID: 38817858 PMCID: PMC11134451 DOI: 10.7150/jca.94669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 06/01/2024] Open
Abstract
Despite advances in the treatment of breast cancer, the disease continues to exhibit high global morbidity and mortality. The importance of neutrophils in cancer development has been increasingly recognized. Neutrophil extracellular traps (NETs) are web-like structures released into the extracellular space by activated neutrophils, serving as a potential antimicrobial mechanism for capturing and eliminating microorganisms. The roles played by NETs in cancer development have been a subject of intense research in the last decade. In breast cancer, current evidence suggests that NETs are involved in various stages of cancer development, particularly during metastasis. In this review, we try to provide an updated overview of the roles played by NETs in breast cancer metastasis. These include: 1) facilitating systemic dissemination of cancer cells; 2) promoting cancer-associated inflammation; 3) facilitating cancer-associated thrombosis; 4) facilitating pre-metastatic niche formation; and 5) awakening dormant cancer cells. The translational implications of NETs in breast cancer treatment are also discussed. Understanding the relationship between NETs and breast cancer metastasis is expected to provide important insights for developing new therapeutic strategies for breast cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chanjuan Zheng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| |
Collapse
|
57
|
King PT, Dousha L. Neutrophil Extracellular Traps and Respiratory Disease. J Clin Med 2024; 13:2390. [PMID: 38673662 PMCID: PMC11051312 DOI: 10.3390/jcm13082390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Extracellular traps made by neutrophils (NETs) and other leukocytes such as macrophages and eosinophils have a key role in the initial immune response to infection but are highly inflammatory and may contribute to tissue damage. They are particularly relevant to lung disease, with the pulmonary anatomy facilitating their ability to fully extend into the airways/alveolar space. There has been a rapid expansion in the number of published studies demonstrating their role in a variety of important respiratory diseases including chronic obstructive pulmonary disease, cystic fibrosis, bronchiectasis, asthma, pneumonia, COVID-19, rhinosinusitis, interstitial lung disease and lung cancer. The expression of NETs and other traps is a specific process, and diagnostic tests need to differentiate them from other inflammatory pathways/causes of cell death that are also characterised by the presence of extracellular DNA. The specific targeting of this pathway by relevant therapeutics may have significant clinical benefit; however, current clinical trials/evidence are at a very early stage. This review will provide a broad overview of the role of NETs and their possible treatment in respiratory disease.
Collapse
Affiliation(s)
- Paul T. King
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Lovisa Dousha
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
58
|
Yu X, Li C, Wang Z, Xu Y, Shao S, Shao F, Wang H, Liu J. Neutrophils in cancer: dual roles through intercellular interactions. Oncogene 2024; 43:1163-1177. [PMID: 38472320 DOI: 10.1038/s41388-024-03004-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play crucial and diverse roles in tumor development. In the tumor microenvironment (TME), cancer cells regulate the recruitment and behaviors of neutrophils, transforming some of them into a pro-tumor phenotype. Pro-tumor neutrophils interact with cancer cells in various ways to promote cancer initiation, growth, and metastasis, while anti-tumor neutrophils interact with cancer cells to induce senescence and death. Neutrophils can also interact with other cells in TME, including T cells, macrophages, stromal cells, etc. to exert anti- or pro-tumor functions. In this review, we will analyze the anti- and pro-tumor intercellular interactions mediated by neutrophils, with a focus on generalizing the mechanisms underlying the interaction of neutrophils with tumor cells and T cells. Furthermore, we will provide an overview of cancer treatment strategies targeting neutrophil-mediated cellular interactions.
Collapse
Affiliation(s)
- Xinyu Yu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Changhui Li
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Zijin Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Yaping Xu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Fangwei Shao
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, China
- -University of Illinois Urbana-Champaign Institute, Zhejiang University, Haining, 314400, China
- National Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou, 310027, China
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China.
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, China.
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310002, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
59
|
Kiwit A, Lu Y, Lenz M, Knopf J, Mohr C, Ledermann Y, Klinke-Petrowsky M, Pagerols Raluy L, Reinshagen K, Herrmann M, Boettcher M, Elrod J. The Dual Role of Neutrophil Extracellular Traps (NETs) in Sepsis and Ischemia-Reperfusion Injury: Comparative Analysis across Murine Models. Int J Mol Sci 2024; 25:3787. [PMID: 38612596 PMCID: PMC11011604 DOI: 10.3390/ijms25073787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
A better understanding of the function of neutrophil extracellular traps (NETs) may facilitate the development of interventions for sepsis. The study aims to investigate the formation and degradation of NETs in three murine sepsis models and to analyze the production of reactive oxygen species (ROS) during NET formation. Murine sepsis was induced by midgut volvulus (720° for 15 min), cecal ligation and puncture (CLP), or the application of lipopolysaccharide (LPS) (10 mg/kg body weight i.p.). NET formation and degradation was modulated using mice that were genetically deficient for peptidyl arginine deiminase-4 (PAD4-KO) or DNase1 and 1L3 (DNase1/1L3-DKO). After 48 h, mice were killed. Plasma levels of circulating free DNA (cfDNA) and neutrophil elastase (NE) were quantified to assess NET formation and degradation. Plasma deoxyribonuclease1 (DNase1) protein levels, as well as tissue malondialdehyde (MDA) activity and glutathione peroxidase (GPx) activity, were quantified. DNase1 and DNase1L3 in liver, intestine, spleen, and lung tissues were assessed. The applied sepsis models resulted in a simultaneous increase in NET formation and oxidative stress. NET formation and survival differed in the three models. In contrast to LPS and Volvulus, CLP-induced sepsis showed a decreased and increased 48 h survival in PAD4-KO and DNase1/1L3-DKO mice, when compared to WT mice, respectively. PAD4-KO mice showed decreased formation of NETs and ROS, while DNase1/1L3-DKO mice with impaired NET degradation accumulated ROS and chronicled the septic state. The findings indicate a dual role for NET formation and degradation in sepsis and ischemia-reperfusion (I/R) injury: NETs seem to exhibit a protective capacity in certain sepsis paradigms (CLP model), whereas, collectively, they seem to contribute adversely to scenarios where sepsis is combined with ischemia-reperfusion (volvulus).
Collapse
Affiliation(s)
- Antonia Kiwit
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Yuqing Lu
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Moritz Lenz
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Jasmin Knopf
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Christoph Mohr
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Yannick Ledermann
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Michaela Klinke-Petrowsky
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Laia Pagerols Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Martin Herrmann
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Julia Elrod
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
60
|
Li C, Wu C, Li F, Xu W, Zhang X, Huang Y, Xia D. Targeting Neutrophil Extracellular Traps in Gouty Arthritis: Insights into Pathogenesis and Therapeutic Potential. J Inflamm Res 2024; 17:1735-1763. [PMID: 38523684 PMCID: PMC10960513 DOI: 10.2147/jir.s460333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Gouty arthritis (GA) is an immune-mediated disorder characterized by severe inflammation due to the deposition of monosodium urate (MSU) crystals in the joints. The pathophysiological mechanisms of GA are not yet fully understood, and therefore, the identification of effective therapeutic targets is of paramount importance. Neutrophil extracellular traps (NETs), an intricate structure of DNA scaffold, encompassing myeloperoxidase, histones, and elastases - have gained significant attention as a prospective therapeutic target for gouty arthritis, due to their innate antimicrobial and immunomodulatory properties. Hence, exploring the therapeutic potential of NETs in gouty arthritis remains an enticing avenue for further investigation. During the process of gouty arthritis, the formation of NETs triggers the release of inflammatory cytokines, thereby contributing to the inflammatory response, while MSU crystals and cytokines are sequestered and degraded by the aggregation of NETs. Here, we provide a concise summary of the inflammatory processes underlying the initiation and resolution of gouty arthritis mediated by NETs. Furthermore, this review presents an overview of the current pharmacological approaches for treating gouty arthritis and summarizes the potential of natural and synthetic product-based inhibitors that target NET formation as novel therapeutic options, alongside elucidating the intrinsic challenges of these inhibitors in NETs research. Lastly, the limitations of HL-60 cell as a suitable substitute of neutrophils in NETs research are summarized and discussed. Series of recommendations are provided, strategically oriented towards guiding future investigations to effectively address these concerns. These findings will contribute to an enhanced comprehension of the interplay between NETs and GA, facilitating the proposition of innovative therapeutic strategies and novel approaches for the management of GA.
Collapse
Affiliation(s)
- Cantao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenjing Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoxi Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
61
|
Li X, Hu L, Naeem A, Xiao S, Yang M, Shang H, Zhang J. Neutrophil Extracellular Traps in Tumors and Potential Use of Traditional Herbal Medicine Formulations for Its Regulation. Int J Nanomedicine 2024; 19:2851-2877. [PMID: 38529365 PMCID: PMC10961241 DOI: 10.2147/ijn.s449181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibers composed of deoxyribonucleic acid (DNA) and decorated proteins produced by neutrophils. Recently, NETs have been associated with the development of many diseases, including tumors. Herein, we reviewed the correlation between NETs and tumors. In addition, we detailed active compounds from traditional herbal medicine formulations that inhibit NETs, related nanodrug delivery systems, and antibodies that serve as "guiding moieties" to ensure targeted delivery to NETs. Furthermore, we discussed the strategies used by pathogenic microorganisms to evade NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|
62
|
Han C, Zhai Y, Wang Y, Peng X, Zhang X, Dai B, Leng Y, Zhang Z, Qi S. Intravital imaging of splenic classical monocytes modifying the hepatic CX3CR1 + cells motility to exacerbate liver fibrosis via spleen-liver axis. Theranostics 2024; 14:2210-2231. [PMID: 38505603 PMCID: PMC10945343 DOI: 10.7150/thno.87791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
CX3CR1+ cells play a crucial role in liver fibrosis progression. However, changes in the migratory behavior and spatial distribution of spleen-derived and hepatic CX3CR1+ cells in the fibrotic liver as well as their influence on the liver fibrosis remain unclear. METHODS The CX3CR1GFP/+ transgenic mice and CX3CR1-KikGR transgenic mice were used to establish the CCl4-induced liver fibrosis model. Splenectomy, adoptive transfusion of splenocytes, in vivo photoconversion of splenic CX3CR1+ cells and intravital imaging were performed to study the spatial distribution, migration and movement behavior, and regulatory function of CX3CR1+ cells in liver fibrosis. RESULTS Intravital imaging revealed that the CX3CR1GFP cells accumulated into the fibrotic liver and tended to accumulate towards the central vein (CV) in the hepatic lobules. Two subtypes of hepatic CX3CR1+ cells existed in the fibrotic liver. The first subtype was the interacting CX3CR1GFP cells, most of which were observed to distribute in the liver parenchyma and had a higher process velocity; the second subtype was mobile CX3CR1GFP cells, most of which were present in the hepatic vessels with a faster moving speed. Splenectomy ameliorated liver fibrosis and decreased the number of CX3CR1+ cells in the fibrotic liver. Moreover, splenectomy rearranged CX3CR1GFP cells to the boundary of the hepatic lobule, reduced the process velocity of interacting CX3CR1GFP cells and decreased the number and mobility of mobile CX3CR1GFP cells in the fibrotic liver. Transfusion of spleen-derived classical monocytes increased the process velocity and mobility of hepatic endogenous CX3CR1GFP cells and facilitated liver fibrosis progression via the production of proinflammatory and profibrotic cytokines. The photoconverted splenic CX3CR1+ KikRed+ cells were observed to leave the spleen, accumulate into the fibrotic liver and contact with hepatic CX3CR1+ KikGreen+ cells during hepatic fibrosis. CONCLUSION The splenic CX3CR1+ monocytes with classical phenotype migrated from the spleen to the fibrotic liver, modifying the migratory behavior of hepatic endogenous CX3CR1GFP cells and exacerbating liver fibrosis via the secretion of cytokines. This study reveals that splenic CX3CR1+ classical monocytes are a key driver of liver fibrosis via the spleen-liver axis and may be potential candidate targets for the treatment of chronic liver fibrosis.
Collapse
Affiliation(s)
- Chenlu Han
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Zhai
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yuke Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xuwen Peng
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xian Zhang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Bolei Dai
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yuehong Leng
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhihong Zhang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- State key laboratory of digital medical engineering, School of Biomedical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Shuhong Qi
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
63
|
Rizo-Téllez SA, Filep JG. Beyond host defense and tissue injury: the emerging role of neutrophils in tissue repair. Am J Physiol Cell Physiol 2024; 326:C661-C683. [PMID: 38189129 PMCID: PMC11193466 DOI: 10.1152/ajpcell.00652.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play a fundamental role in host defense against invading pathogens and tissue injury. Neutrophils carry potentially lethal weaponry to the affected site. Inadvertent and perpetual neutrophil activation could lead to nonresolving inflammation and tissue damage, a unifying mechanism of many common diseases. The prevailing view emphasizes the dichotomy of their function, host defense versus tissue damage. However, tissue injury may also persist during neutropenia, which is associated with disease severity and poor outcome. Numerous studies highlight neutrophil phenotypic heterogeneity and functional versatility, indicating that neutrophils play more complex roles than previously thought. Emerging evidence indicates that neutrophils actively orchestrate resolution of inflammation and tissue repair and facilitate return to homeostasis. Thus, neutrophils mobilize multiple mechanisms to limit the inflammatory reaction, assure debris removal, matrix remodeling, cytokine scavenging, macrophage reprogramming, and angiogenesis. In this review, we will summarize the homeostatic and tissue-reparative functions and mechanisms of neutrophils across organs. We will also discuss how the healing power of neutrophils might be harnessed to develop novel resolution and repair-promoting therapies while maintaining their defense functions.
Collapse
Affiliation(s)
- Salma A Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| |
Collapse
|
64
|
Ortmann W, Such A, Cichon I, Baj-Krzyworzeka M, Weglarczyk K, Kolaczkowska E. Large extracellular vesicle (EV) and neutrophil extracellular trap (NET) interaction captured in vivo during systemic inflammation. Sci Rep 2024; 14:4680. [PMID: 38409254 PMCID: PMC10897202 DOI: 10.1038/s41598-024-55081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024] Open
Abstract
Extracellular vesicles (EVs) and neutrophil extracellular traps (NETs) are pivotal bioactive structures involved in various processes including inflammation. Herein we report the interactions between EVs and NETs during murine endotoxemia studied in situ directly in the vasculature (cremaster muscle, liver sinusoids) using intravital microscopy (IVM). We captured NETs and EV release in real time by both non- and polarized neutrophils in liver but not in cremaster vasculature. When comparing numbers of circulating EVs of various origin (nanoparticle tracking analysis-NTA, flow cytometry) with those interacting with endothelium and NETs (IVM) we observed that whereas platelet and monocyte/macrophage-derived EVs dominate in blood and peritoneal lavage, respectively, mostly neutrophil-derived EVs interact with the vascular lining, NETs and leukocytes. Despite the interaction, NETs do not affect EV formation as NET release inhibition did not alter EV release. However, EVs inhibit NETs formation and in particular, erythrocyte-derived EVs downregulate NET release and this effect is mediated via Siglec-E-dependent interactions with neutrophils. Overall, we report that EVs are present in NETs in vivo and they do modulate their release but the process in not bidirectional. Moreover, EVs isolated from body fluids might not reflect their importance in direct endothelial- and leukocyte-related interactions.
Collapse
Affiliation(s)
- Weronika Ortmann
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Str, 30-387, Krakow, Poland
| | - Anna Such
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Str, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Iwona Cichon
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Str, 30-387, Krakow, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Jagiellonian University Medical College, Wielicka 265 Str, 30-663, Krakow, Poland
| | - Kazimierz Weglarczyk
- Department of Clinical Immunology, Jagiellonian University Medical College, Wielicka 265 Str, 30-663, Krakow, Poland
| | - Elzbieta Kolaczkowska
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Str, 30-387, Krakow, Poland.
| |
Collapse
|
65
|
Baz AA, Hao H, Lan S, Li Z, Liu S, Chen S, Chu Y. Neutrophil extracellular traps in bacterial infections and evasion strategies. Front Immunol 2024; 15:1357967. [PMID: 38433838 PMCID: PMC10906519 DOI: 10.3389/fimmu.2024.1357967] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
Neutrophils are innate immune cells that have a vital role in host defense systems. Neutrophil extracellular traps (NETs) are one of neutrophils' defense mechanisms against pathogens. NETs comprise an ejected lattice of chromatin associated with histones, granular proteins, and cytosolic proteins. They are thought to be an efficient strategy to capture and/or kill bacteria and received intensive research interest in the recent years. However, soon after NETs were identified, it was observed that certain bacteria were able to evade NET entrapment through many different mechanisms. Here, we outline the recent progress of NETs in bacterial infections and the strategies employed by bacteria to evade or withstand NETs. Identifying the molecules and mechanisms that modulate NET release will improve our understanding of the functions of NETs in infections and provide new avenues for the prevention and treatment of bacterial diseases.
Collapse
Affiliation(s)
- Ahmed Adel Baz
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Huafang Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shimei Lan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Zhangcheng Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shuang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shengli Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Ministry of Agricultural and Rural Affairs, Lanzhou, China
| |
Collapse
|
66
|
Tu H, Ren H, Jiang J, Shao C, Shi Y, Li P. Dying to Defend: Neutrophil Death Pathways and their Implications in Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306457. [PMID: 38044275 PMCID: PMC10885667 DOI: 10.1002/advs.202306457] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/06/2023] [Indexed: 12/05/2023]
Abstract
Neutrophils, accounting for ≈70% of human peripheral leukocytes, are key cells countering bacterial and fungal infections. Neutrophil homeostasis involves a balance between cell maturation, migration, aging, and eventual death. Neutrophils undergo different death pathways depending on their interactions with microbes and external environmental cues. Neutrophil death has significant physiological implications and leads to distinct immunological outcomes. This review discusses the multifarious neutrophil death pathways, including apoptosis, NETosis, pyroptosis, necroptosis, and ferroptosis, and outlines their effects on immune responses and disease progression. Understanding the multifaceted aspects of neutrophil death, the intersections among signaling pathways and ramifications of immunity will help facilitate the development of novel therapeutic methods.
Collapse
Affiliation(s)
- Haiyue Tu
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Haoyu Ren
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Junjie Jiang
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Peishan Li
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| |
Collapse
|
67
|
Dumont BL, Neagoe PE, Charles E, Villeneuve L, Tardif JC, Räkel A, White M, Sirois MG. Low-Density Neutrophils Contribute to Subclinical Inflammation in Patients with Type 2 Diabetes. Int J Mol Sci 2024; 25:1674. [PMID: 38338951 PMCID: PMC10855851 DOI: 10.3390/ijms25031674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Type 2 diabetes (T2D) is characterized by low-grade inflammation. Low-density neutrophils (LDNs) represent normally less than 2% of total neutrophils but increase in multiple pathologies, releasing inflammatory cytokines and neutrophil extracellular traps (NETs). We assessed the count and role of high-density neutrophils (HDNs), LDNs, and NET-related activities in patients with T2D. HDNs and LDNs were purified by fluorescence-activated cell sorting (FACS) and counted by flow cytometry. Circulating inflammatory and NETs biomarkers were measured by ELISA (Enzyme Linked Immunosorbent Assay). NET formation was quantified by confocal microscopy. Neutrophil adhesion onto a human extracellular matrix (hECM) was assessed by optical microscopy. We recruited 22 healthy volunteers (HVs) and 18 patients with T2D. LDN counts in patients with diabetes were significantly higher (160%), along with circulating NETs biomarkers (citrullinated H3 histone (H3Cit), myeloperoxidase (MPO), and MPO-DNA (137%, 175%, and 69%, respectively) versus HV. Circulating interleukins (IL-6 and IL-8) and C-Reactive Protein (CRP) were significantly increased by 117%, 171%, and 79%, respectively, in patients compared to HVs. Isolated LDNs from patients expressed more H3Cit, MPO, and NETs, formed more NETs, and adhered more on hECM compared to LDNs from HVs. Patients with T2D present higher levels of circulating LDN- and NET-related biomarkers and associated pro-inflammatory activities.
Collapse
Affiliation(s)
- Benjamin L. Dumont
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; (B.L.D.); (P.-E.N.); (E.C.); (L.V.); (J.-C.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Paul-Eduard Neagoe
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; (B.L.D.); (P.-E.N.); (E.C.); (L.V.); (J.-C.T.)
| | - Elcha Charles
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; (B.L.D.); (P.-E.N.); (E.C.); (L.V.); (J.-C.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Louis Villeneuve
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; (B.L.D.); (P.-E.N.); (E.C.); (L.V.); (J.-C.T.)
| | - Jean-Claude Tardif
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; (B.L.D.); (P.-E.N.); (E.C.); (L.V.); (J.-C.T.)
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada;
| | - Agnès Räkel
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada;
- Research Center, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0A9, Canada
| | - Michel White
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; (B.L.D.); (P.-E.N.); (E.C.); (L.V.); (J.-C.T.)
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada;
| | - Martin G. Sirois
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; (B.L.D.); (P.-E.N.); (E.C.); (L.V.); (J.-C.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
68
|
Zhou X, Jin J, Lv T, Song Y. A Narrative Review: The Role of NETs in Acute Respiratory Distress Syndrome/Acute Lung Injury. Int J Mol Sci 2024; 25:1464. [PMID: 38338744 PMCID: PMC10855305 DOI: 10.3390/ijms25031464] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
Nowadays, acute respiratory distress syndrome (ARDS) still has a high mortality rate, and the alleviation and treatment of ARDS remains a major research focus. There are various causes of ARDS, among which pneumonia and non-pulmonary sepsis are the most common. Trauma and blood transfusion can also cause ARDS. In ARDS, the aggregation and infiltration of neutrophils in the lungs have a great influence on the development of the disease. Neutrophils regulate inflammatory responses through various pathways, and the release of neutrophils through neutrophil extracellular traps (NETs) is considered to be one of the most important mechanisms. NETs are mainly composed of DNA, histones, and granuloproteins, all of which can mediate downstream signaling pathways that can activate inflammatory responses, generate immune clots, and cause damage to surrounding tissues. At the same time, the components of NETs can also promote the formation and release of NETs, thus forming a vicious cycle that continuously aggravates the progression of the disease. NETs are also associated with cytokine storms and immune balance. Since DNA is the main component of NETs, DNase I is considered a viable drug for removing NETs. Other therapeutic methods to inhibit the formation of NETs are also worthy of further exploration. This review discusses the formation and mechanism of NETs in ARDS. Understanding the association between NETs and ARDS may help to develop new perspectives on the treatment of ARDS.
Collapse
Affiliation(s)
| | | | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China; (X.Z.); (J.J.)
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China; (X.Z.); (J.J.)
| |
Collapse
|
69
|
Wu L, Du Z, Li L, Qiao L, Zhang S, Yin X, Chang X, Li C, Hua Z. Camouflaging attenuated Salmonella by cryo-shocked macrophages for tumor-targeted therapy. Signal Transduct Target Ther 2024; 9:14. [PMID: 38195682 PMCID: PMC10776584 DOI: 10.1038/s41392-023-01703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 01/11/2024] Open
Abstract
Live bacteria-mediated antitumor therapies mark a pivotal point in cancer immunotherapy. However, the difficulty in reconciling the safety and efficacy of bacterial therapies has limited their application. Improving bacterial tumor-targeted delivery while maintaining biosafety is a critical hurdle for the clinical translation of live microbial therapy for cancer. Here, we developed "dead" yet "functional" Salmonella-loaded macrophages using liquid nitrogen cold shock of an attenuated Salmonella typhimurium VNP20009-contained macrophage cell line. The obtained "dead" macrophages achieve an average loading of approximately 257 live bacteria per 100 cells. The engineered cells maintain an intact cellular structure but lose their original pathogenicity, while intracellular bacteria retain their original biological activity and are delay freed, followed by proliferation. This "Trojan horse"-like bacterial camouflage strategy avoids bacterial immunogenicity-induced neutrophil recruitment and activation in peripheral blood, reduces the clearance of bacteria by neutrophils and enhances bacterial tumor enrichment efficiently after systemic administration. Furthermore, this strategy also strongly activated the tumor microenvironment, including increasing antitumor effector cells (including M1-like macrophages and CD8+ Teffs) and decreasing protumor effector cells (including M2-like macrophages and CD4+ Tregs), and ultimately improved antitumor efficacy in a subcutaneous H22 tumor-bearing mouse model. The cryo-shocked macrophage-mediated bacterial delivery strategy holds promise for expanding the therapeutic applications of living bacteria for cancer.
Collapse
Affiliation(s)
- Leyang Wu
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 21008, Jiangsu, China
- Nanjing Generecom Biotechnology Co., Ltd, Nanjing, 210023, China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc, Changzhou, 213164, Jiangsu, China
| | - Zengzheng Du
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 21008, Jiangsu, China
| | - Lin Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 21008, Jiangsu, China
| | - Liyuan Qiao
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 21008, Jiangsu, China
| | - Shuhui Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 21008, Jiangsu, China
| | - Xingpeng Yin
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 21008, Jiangsu, China
| | - Xiaoyao Chang
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 21008, Jiangsu, China
| | - Chenyang Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 21008, Jiangsu, China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 21008, Jiangsu, China.
- Nanjing Generecom Biotechnology Co., Ltd, Nanjing, 210023, China.
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc, Changzhou, 213164, Jiangsu, China.
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
70
|
Brunnthaler L, Pereyra D, Brenner M, Santol J, Herrmann L, Schrottmaier WC, Pirabe A, Schmuckenschlager A, Kim S, Kern AE, Huber FX, Michels LE, Brostjan C, Salzmann M, Hohensinner P, Kain R, Gruenberger T, Starlinger P, Assinger A. Intrahepatic neutrophil accumulation and extracellular trap formation are associated with posthepatectomy liver failure. Hepatol Commun 2024; 8:e0348. [PMID: 38099865 PMCID: PMC10727591 DOI: 10.1097/hc9.0000000000000348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Posthepatectomy liver failure (PHLF) represents a life-threatening complication with limited therapeutic options. Neutrophils play a critical and dynamic role during regeneratory processes, but their role in human liver regeneration is incompletely understood, especially as underlying liver disease, detectable in the majority of patients, critically affects hepatic regeneration. Here we explored intrahepatic neutrophil accumulation and neutrophil extracellular traps (NETs) in patients with PHLF and validated the functional relevance of NETs in a murine partial hepatectomy (PHx) model. METHODS We investigated the influx of neutrophils, macrophages, eosinophils, and mast cells and the presence of their respective extracellular traps in liver biopsies of 35 patients undergoing hepatectomy (10 patients with PHLF) before and after the initiation of liver regeneration by fluorescence microscopy. In addition, NET formation and neutrophil activation were confirmed by plasma analysis of 99 patients (24 patients with PHLF) before and up to 5 days after surgery. Furthermore, we inhibited NETs via DNase I in a murine PHx model of mice with metabolically induced liver disease. RESULTS We detected rapid intrahepatic neutrophil accumulation, elevated levels of myeloperoxidase release, and NET formation in regenerating human livers, with a significantly higher increase of infiltrating neutrophils and NETs in patients with PHLF. Circulating markers of neutrophil activation, including elastase, myeloperoxidase, and citrullinated histone H3, correlated with markers of liver injury. In a murine PHx model, we showed that the inhibition of NET accelerated hepatocyte proliferation and liver regeneration. CONCLUSIONS Patients with PHLF showed accelerated intrahepatic neutrophil infiltration and NET formation, which were associated with liver damage. Further, we identified postsurgical myeloperoxidase levels as predictive markers for adverse outcomes and observed that blocking NETs in a murine PHx model accelerated tissue regeneration.
Collapse
Affiliation(s)
- Laura Brunnthaler
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - David Pereyra
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Miriam Brenner
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jonas Santol
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Surgery, HPB Center, Viennese Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
| | - Lukas Herrmann
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Waltraud C. Schrottmaier
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anita Pirabe
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anna Schmuckenschlager
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sarang Kim
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Anna Emilia Kern
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Felix Xaver Huber
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Lisa Emilie Michels
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Manuel Salzmann
- Department of Medicine II, Division of Cardiology, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Philipp Hohensinner
- Center for Biomedical Research, Division of Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Renate Kain
- Department of Pathology, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Thomas Gruenberger
- Department of Surgery, HPB Center, Viennese Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
| | - Patrick Starlinger
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
71
|
Shao Y, Li L, Yang Y, Ye Y, Guo Z, Liu L, Huang J, Chen Y, Gao X, Sun B. DNase aggravates intestinal microvascular injury in IBD patients by releasing NET-related proteins. FASEB J 2024; 38:e23395. [PMID: 38149880 DOI: 10.1096/fj.202301780r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/02/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
Neutrophils accumulate in the inflammatory mucosa of patients with inflammatory bowel disease (IBD), and excessive release of NETs (neutrophil extracellular traps may be one of the important factors that cause IBD progression. However, the specific mechanism underlying vascular injury caused by NETs remains unclear. Immunofluorescence, ELISA, and flow cytometry were used in this study to detect the expression of NETs and DNase in the tissue and peripheral blood samples of patients with IBD. DSS mouse model was used to detect colon injury and vascular permeability. We found that NETs and DNase levels increased in the colon of patients with IBD. We found an increase in the activity of NET-related MPO released by DNase. DNase released NET-related proteins and damaged vascular endothelial cells in vitro. In DSS mouse model, the synchronous increase of DNase and NETs in the colon leads to an increase in vascular injury markers (CD44, sTM). DNase aggravated colon injury and increased vascular permeability in vivo, which was inhibited by gentamicin sulfate (GS). GS does not reduce the expression of DNase, but rather reduces the release of NET-related proteins to protect vascular endothelium by inhibiting DNase activity. MPO and histones synergistically damaged the vascular endothelium, and vascular injury can be improved by their active inhibitors. We further found that H2 O2 is an important substrate for MPO induced vascular damage. In conclusion, in IBD, DNase, and NET levels increased synchronously in the lesion area and released NET-related proteins to damage the vascular endothelium. Therefore, targeting DNase may be beneficial for the treatment of IBD.
Collapse
Affiliation(s)
- Yiming Shao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining, China
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Linbin Li
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yunxi Yang
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yulan Ye
- Department of Gastroenterology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zaiwen Guo
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Lu Liu
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jiamin Huang
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yi Chen
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xi Gao
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Bingwei Sun
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
72
|
Hu Y, Wang H, Liu Y. NETosis: Sculpting tumor metastasis and immunotherapy. Immunol Rev 2024; 321:263-279. [PMID: 37712361 DOI: 10.1111/imr.13277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
The process of neutrophil extracellular traps (NETs) formation, called NETosis, is a peculiar death modality of neutrophils, which was first observed as an immune response against bacterial infection. However, recent work has revealed the unique biology of NETosis in facilitating tumor metastatic process. Neutrophil extracellular traps released by the tumor microenvironment (TME) shield tumor cells from cytotoxic immunity, leading to impaired tumor clearance. Besides, tumor cells tapped by NETs enable to travel through vessels and subsequently seed distant organs. Targeted ablation of NETosis has been proven to be beneficial in potentiating the efficacy of cancer immunotherapy in the metastatic settings. This review outlines the impact of NETosis at almost all stages of tumor metastasis. Furthermore, understanding the multifaceted interplay between NETosis and the TME components is crucial for supporting the rational development of highly effective combination immunotherapeutic strategies with anti-NETosis for patients with metastatic disease.
Collapse
Affiliation(s)
- Yanyan Hu
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Houhong Wang
- Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, China
| | - Yang Liu
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
73
|
Wang J, An H, Ding M, Liu Y, Wang S, Jin Q, Wu Q, Dong H, Guo Q, Tian X, Liu J, Zhang J, Zhu T, Li J, Shao Z, Briles DE, Veening JW, Zheng H, Zhang L, Zhang JR. Liver macrophages and sinusoidal endothelial cells execute vaccine-elicited capture of invasive bacteria. Sci Transl Med 2023; 15:eade0054. [PMID: 38117903 DOI: 10.1126/scitranslmed.ade0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
Vaccination has substantially reduced the morbidity and mortality of bacterial diseases, but mechanisms of vaccine-elicited pathogen clearance remain largely undefined. We report that vaccine-elicited immunity against invasive bacteria mainly operates in the liver. In contrast to the current paradigm that migrating phagocytes execute vaccine-elicited immunity against blood-borne pathogens, we found that invasive bacteria are captured and killed in the liver of vaccinated host via various immune mechanisms that depend on the protective potency of the vaccine. Vaccines with relatively lower degrees of protection only activated liver-resident macrophage Kupffer cells (KCs) by inducing pathogen-binding immunoglobulin M (IgM) or low amounts of IgG. IgG-coated pathogens were directly captured by KCs via multiple IgG receptors FcγRs, whereas IgM-opsonized bacteria were indirectly bound to KCs via complement receptors of immunoglobulin superfamily (CRIg) and complement receptor 3 (CR3) after complement C3 activation at the bacterial surface. Conversely, the more potent vaccines engaged both KCs and liver sinusoidal endothelial cells by inducing higher titers of functional IgG antibodies. Endothelial cells (ECs) captured densely IgG-opsonized pathogens by the low-affinity IgG receptor FcγRIIB in a "zipper-like" manner and achieved bacterial killing predominantly in the extracellular milieu via an undefined mechanism. KC- and endothelial cell-based capture of antibody-opsonized bacteria also occurred in FcγR-humanized mice. These vaccine protection mechanisms in the liver not only provide a comprehensive explanation for vaccine-/antibody-boosted immunity against invasive bacteria but also may serve as in vivo functional readouts of vaccine efficacy.
Collapse
Affiliation(s)
- Juanjuan Wang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haoran An
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Ding
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yanhong Liu
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shaomeng Wang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qian Jin
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qi Wu
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Haodi Dong
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qile Guo
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xianbin Tian
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | - Tao Zhu
- Cansino Biologics, Tianjin 300301, China
| | | | - Zhujun Shao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102299, China
| | - David E Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| | | | - Linqi Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
74
|
Zhu W, Fan C, Dong S, Li X, Chen H, Zhou W. Neutrophil extracellular traps regulating tumorimmunity in hepatocellular carcinoma. Front Immunol 2023; 14:1253964. [PMID: 38173719 PMCID: PMC10764195 DOI: 10.3389/fimmu.2023.1253964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
As a component of the innate immune system, there is emerging evidence to suggest that neutrophils may play a critical role in the initiation and progression of hepatocellular carcinoma (HCC). Neutrophil extracellular traps (NETs) are web-like chromatin structures that protrude from the membranes during neutrophil activation. Recent research has shown that NETs, which are at the forefront of the renewed interest in neutrophil studies, are increasingly intertwined with HCC. By exploring the mechanisms of NETs in HCC, we aim to improve our understanding of the role of NETs and gain deeper insights into neutrophil biology. Therefore, this article provides a summary of key findings and discusses the emerging field of NETs in HCC.
Collapse
Affiliation(s)
- Weixiong Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Chuanlei Fan
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shi Dong
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xin Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Haofei Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
75
|
Chooklin S, Chuklin S. The role of neutrophil extracellular traps in thrombosis. EMERGENCY MEDICINE 2023; 19:448-457. [DOI: 10.22141/2224-0586.19.7.2023.1627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
According to the cellular model of hemostasis, the process of blood coagulation is presented in the form of three phases: initiation, amplification and propagation, each of them includes several consecutive stages. At the same time, thrombus formation is often explained by Virchow’s triad: blood stasis, damage to the blood vessel walls, and hypercoagulation. Classically, the appearance of one of the three mentioned parameters can lead to thrombus formation. Over the past decade, our knowledge of the cross-talk between coagulation, inflammation, and innate immune activation and the involvement of neutrophil extracellular traps in these processes has expanded. This brief review shows their role in thrombosis through the mechanisms of activation of platelets, complement, interaction with blood coagulation factors and damage to the vascular endothelium. We searched the literature in the MEDLINE database on the PubMed platform.
Collapse
|
76
|
Liu Y, Wang R, Song C, Ding S, Zuo Y, Yi K, Li N, Wang B, Geng Q. Crosstalk between neutrophil extracellular traps and immune regulation: insights into pathobiology and therapeutic implications of transfusion-related acute lung injury. Front Immunol 2023; 14:1324021. [PMID: 38162674 PMCID: PMC10755469 DOI: 10.3389/fimmu.2023.1324021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-associated death, occurring during or within 6 hours after transfusion. Reports indicate that TRALI can be categorized as having or lacking acute respiratory distress syndrome (ARDS) risk factors. There are two types of TRALI in terms of its pathogenesis: antibody-mediated and non-antibody-mediated. The key initiation steps involve the priming and activation of neutrophils, with neutrophil extracellular traps (NETs) being established as effector molecules formed by activated neutrophils in response to various stimuli. These NETs contribute to the production and release of reactive oxygen species (ROS) and participate in the destruction of pulmonary vascular endothelial cells. The significant role of NETs in TRALI is well recognized, offering a potential pathway for TRALI treatment. Moreover, platelets, macrophages, endothelial cells, and complements have been identified as promoters of NET formation. Concurrently, studies have demonstrated that the storage of platelets and concentrated red blood cells (RBC) can induce TRALI through bioactive lipids. In this article, recent clinical and pre-clinical studies on the pathophysiology and pathogenesis of TRALI are reviewed to further illuminate the mechanism through which NETs induce TRALI. This review aims to propose new therapeutic strategies for TRALI, with the hope of effectively improving its poor prognosis.
Collapse
Affiliation(s)
- Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rong Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yifan Zuo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Yi
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
77
|
Zhang S, Wang Z. An Emerging Role of Extracellular Traps in Chronic Rhinosinusitis. Curr Allergy Asthma Rep 2023; 23:675-688. [PMID: 37934391 PMCID: PMC10739460 DOI: 10.1007/s11882-023-01082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE OF REVIEW Chronic rhinosinusitis (CRS) is a complicated, heterogeneous disease likely caused by inflammatory and infectious factors. There is clear evidence that innate immune cells, including neutrophils and eosinophils, play a significant role in CRS. Multiple immune cells, including neutrophils and eosinophils, have been shown to release chromatin and granular proteins into the extracellular space in response to triggering extracellular traps (ETs). The formation of ETs remains controversial due to their critical function during pathogen clearance while being associated with harmful inflammatory illnesses. This article summarizes recent research on neutrophil extracellular traps (NETs) and eosinophil extracellular traps (EETs) and their possible significance in the pathophysiology of CRS. RECENT FINDINGS A novel type of programmed cell death called ETosis, which releases ETs, has been proposed by recent study. Significantly more NETs are presented in nasal polyps, and its granule proteins LL-37 induce NETs production in CRS with nasal polyps (CRSwNP) patients. Similar to NETs, developed in the tissue of nasal polyps, primarily in subepithelial regions with epithelial barrier defects, and are associated with linked to elevated tissue levels of IL-5 and S. aureus colonization. This article provides a comprehensive overview of NETs and EETs, as well as an in-depth understanding of the functions of these ETs in CRS.
Collapse
Affiliation(s)
- Siyuan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenlin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
78
|
Ngo AT, Skidmore A, Oberg J, Yarovoi I, Sarkar A, Levine N, Bochenek V, Zhao G, Rauova L, Kowalska MA, Eckart K, Mangalmurti NS, Rux A, Cines DB, Poncz M, Gollomp K. Platelet factor 4 limits neutrophil extracellular trap- and cell-free DNA-induced thrombogenicity and endothelial injury. JCI Insight 2023; 8:e171054. [PMID: 37991024 PMCID: PMC10721321 DOI: 10.1172/jci.insight.171054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/02/2023] [Indexed: 11/23/2023] Open
Abstract
Plasma cell-free DNA (cfDNA), a marker of disease severity in sepsis, is a recognized driver of thromboinflammation and a potential therapeutic target. In sepsis, plasma cfDNA is mostly derived from neutrophil extracellular trap (NET) degradation. Proposed NET-directed therapeutic strategies include preventing NET formation or accelerating NET degradation. However, NET digestion liberates pathogens and releases cfDNA that promote thrombosis and endothelial cell injury. We propose an alternative strategy of cfDNA and NET stabilization with chemokine platelet factor 4 (PF4, CXCL4). We previously showed that human PF4 (hPF4) enhances NET-mediated microbial entrapment. We now show that hPF4 interferes with thrombogenicity of cfDNA and NETs by preventing their cleavage to short-fragment and single-stranded cfDNA that more effectively activates the contact pathway of coagulation. In vitro, hPF4 also inhibits cfDNA-induced endothelial tissue factor surface expression and von Willebrand factor release. In vivo, hPF4 expression reduced plasma thrombin-antithrombin (TAT) levels in animals infused with exogenous cfDNA. Following lipopolysaccharide challenge, Cxcl4-/- mice had significant elevation in plasma TAT, cfDNA, and cystatin C levels, effects prevented by hPF4 infusion. These results show that hPF4 interacts with cfDNA and NETs to limit thrombosis and endothelial injury, an observation of potential clinical benefit in the treatment of sepsis.
Collapse
Affiliation(s)
- Anh T.P. Ngo
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Abigail Skidmore
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jenna Oberg
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Irene Yarovoi
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amrita Sarkar
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nate Levine
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Veronica Bochenek
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Guohua Zhao
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lubica Rauova
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - M. Anna Kowalska
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Institute of Medical Biology, Polish Academy of Science, Lodz, Poland
| | | | | | - Ann Rux
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas B. Cines
- Department of Medicine, and
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mortimer Poncz
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kandace Gollomp
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
79
|
Zawrotniak M, Juszczak M, Mosio-Wójcik J, Rapala-Kozik M. Neutrophil extracellular traps in upper respiratory tract secretions: insights into infectious and allergic rhinitis. Front Immunol 2023; 14:1295921. [PMID: 38077338 PMCID: PMC10702990 DOI: 10.3389/fimmu.2023.1295921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Neutrophil extracellular traps (NETs) are structures released by neutrophils in response to various infections. NETs have a biocidal role and have been demonstrated to be effective against bacteria, fungi, viruses, and parasites. Depending on the situation, NETs can protect the host from pathogen invasion or contribute to the development of autoimmune diseases such as cystic fibrosis and rheumatoid arthritis. In this study, we aimed to investigate the occurrence of NET as one of the components in upper respiratory tract secretions in infectious and allergic diseases. Methods Nasal mucus was collected from donors diagnosed with infectious rhinitis or allergic rhinitis. The extracellular DNA content was determined using SytoxGreen staining, and the total protein pool was determined using the microBCA method. Micrococcal nuclease was used to digest the samples and ELISA was employed to identify the NET proteins. The enzymatic activity of elastase was determined. Results Our findings showed that nasal mucus collected from patients with infectious rhinosinusitis contained extracellular DNA that could come from a variety of sources, responsible for increasing the density and viscosity of secretions, as well as NETs proteins. The identified enzymatic activity of NET elastase indicates the possible irritation of nasal tissues. However, the DNA content was not identified in the samples from allergic patients. In addition, we have shown in preliminary studies that therapy using N-acetylcysteine can liquefy nasal secretions. Discussion The study suggests that the composition of nasal mucus varies according to the cause of mucosal irritation. The presence of DNA and NET proteins can have severe consequences for the therapeutic process prolonging treatment. The low viscosity of nasal mucus in allergic patients facilitates mucosal flushing and the removal of allergens. Understanding the occurrence and role of NETs in various respiratory diseases is critical for developing effective treatment strategies that consider the complex interaction between the immune system and pathogens. The results of this study suggest that NETs may be present in upper respiratory tract secretions with an infectious background, supporting basic defense mechanisms using eosinophils and EETs. Further research is needed to explore the potential of NETs as a therapeutic target in respiratory diseases.
Collapse
Affiliation(s)
- Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | | | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
80
|
Martens CP, Peetermans M, Vanassche T, Verhamme P, Jacquemin M, Martinod K. Peptidylarginine deiminase 4 and ADAMTS13 activity in Staphylococcus aureus bacteraemia. Philos Trans R Soc Lond B Biol Sci 2023; 378:20230042. [PMID: 37778390 PMCID: PMC10542450 DOI: 10.1098/rstb.2023.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/05/2023] [Indexed: 10/03/2023] Open
Abstract
Staphylococcus aureus infection is associated with increased levels of neutrophil extracellular traps (NETs) and von Willebrand factor (VWF), and with reduced activity of ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13). Peptidylarginine deiminase 4 (PAD4) contributes to NET formation and inactivates ADAMTS13 in vitro. The role of PADs in the dynamics of NETs, VWF and ADAMTS13 has not yet been studied. We thus aimed to assess the longitudinal evolution of NETs, PADs, VWF and ADAMTS13 activity in S. aureus infection. Plasma samples from S. aureus bacteraemia patients were longitudinally collected and analysed for NETs, PAD4/PAD2, VWF and ADAMTS13 activity. Correlation analyses with clinical data were performed. Recombinant PAD4 and S. aureus were assessed in vitro for their potential to modulate ADAMTS13 activity. Sixty-seven patients were included. Plasma levels of NETs, VWF, PAD4 and PAD2 were increased and ADAMTS13 activity was decreased. Levels of PADs were negatively correlated with ADAMTS13 activity. NETs were positively correlated with PADs, and negatively with ADAMTS13 activity. In vitro, recombinant PAD4 but not S. aureus reduced ADAMTS13 activity in plasma. Levels of PAD4 and PAD2 correlate with reduced ADAMTS13 activity, with neutrophils as the likely source of PAD activity in S. aureus bacteraemia. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
- Caroline P Martens
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Immunology and Transplantation, KU Leuven, Leuven, 3000, Belgium
| | - Marijke Peetermans
- Laboratory for Clinical Infectious and Inflammatory Diseases, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, 3000, Belgium
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Thomas Vanassche
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Immunology and Transplantation, KU Leuven, Leuven, 3000, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Peter Verhamme
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Immunology and Transplantation, KU Leuven, Leuven, 3000, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Marc Jacquemin
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Immunology and Transplantation, KU Leuven, Leuven, 3000, Belgium
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Immunology and Transplantation, KU Leuven, Leuven, 3000, Belgium
| |
Collapse
|
81
|
Drab D, Santocki M, Opydo M, Kolaczkowska E. Impact of endogenous and exogenous nitrogen species on macrophage extracellular trap (MET) formation by bone marrow-derived macrophages. Cell Tissue Res 2023; 394:361-377. [PMID: 37789240 PMCID: PMC10638184 DOI: 10.1007/s00441-023-03832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
Macrophage extracellular traps (METs) represent a novel defense mechanism in the antimicrobial arsenal of macrophages. However, mechanisms of MET formation are still poorly understood and this is at least partially due to the lack of reliable and reproducible models. Thus, we aimed at establishing a protocol of MET induction by bone marrow-derived macrophages (BMDMs) obtained from cryopreserved and then thawed bone marrow (BM) mouse cells. We report that BMDMs obtained in this way were morphologically (F4/80+) and functionally (expression of inducible nitric oxide (NO) synthase and NO production) differentiated and responded to various stimuli of bacterial (lipopolysaccharide, LPS), fungal (zymosan) and chemical (PMA) origin. Importantly, BMDMs were successfully casting METs composed of extracellular DNA (extDNA) serving as their backbone to which proteins such as H2A.X histones and matrix metalloproteinase 9 (MMP-9) were attached. In rendered 3D structure of METs, extDNA and protein components were embedded in each other. Since studies had shown the involvement of oxygen species in MET release, we aimed at studying if reactive nitrogen species (RNS) such as NO are also involved in MET formation. By application of NOS inhibitor - L-NAME or nitric oxide donor (SNAP), we studied the involvement of endogenous and exogenous RNS in traps release. We demonstrated that L-NAME halted MET formation upon stimulation with LPS while SNAP alone induced it. The latter phenomenon was further enhanced in the presence of LPS. Taken together, our findings demonstrate that BMDMs obtained from cryopreserved BM cells are capable of forming METs in an RNS-dependent manner.
Collapse
Affiliation(s)
- Dominika Drab
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Michal Santocki
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Malgorzata Opydo
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Elzbieta Kolaczkowska
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland.
| |
Collapse
|
82
|
Guilherme Neto JL, Rodrigues Venturini LG, Schneider AH, Taira TM, Duffles Rodrigues LF, Veras FP, Oliveira SR, da Silva TA, Cunha FQ, Fukada SY. Neutrophil Extracellular Traps Aggravate Apical Periodontitis by Stimulating Osteoclast Formation. J Endod 2023; 49:1514-1521. [PMID: 37619708 DOI: 10.1016/j.joen.2023.07.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
INTRODUCTION Neutrophil extracellular traps (NETs) have been described as structures composed of DNA and proteins, such as elastase and myeloperoxidase, that are able to kill bacteria extracellularly. The aim of the present study was to evaluate the role of NETs in bone resorption observed in pulp infection-induced apical periodontitis in mice. METHODS Apical periodontitis was experimentally induced by exposing the dental pulp of the mandibular first molar of mice to the oral microenvironment. The expression of NETs was evaluated by immunofluorescence in mice and biopsies of apical periodontitis. Mice were treated with vehicle or DNase I to degrade NETs, and the samples were collected after 7 days. The size of the apical lesion and the osteoclast number were determined in hematoxylin-eosin- and tartrate-resistant acid phosphatase-stained sections, respectively. Osteoclast differentiation and function markers were evaluated by quantitative polymerase chain reaction. The level of NETs in the serum was determined by the myeloperoxidase-DNA PicoGreen assay. RESULTS We first confirmed the presence of neutrophils and NETs at the site of the lesion in mice and in biopsies of patients with apical periodontitis. The treatment of mice with DNase I reduced the level of NETs in the serum and led to a reduction in apical lesion size and alveolar bone resorption. This effect was associated with a reduction of local inflammatory infiltrate and a reduced number of osteoclasts. We found that the increased expression of Acp5, Ctsk, and Rankl genes associated with osteoclast formation and function were abrogated by the absence of NETs. CONCLUSIONS Our data highlight NETs as an important player in the pathogenesis of apical periodontitis with regard to the local inflammation and consequent bone resorption after pulp infection.
Collapse
Affiliation(s)
- João Luiz Guilherme Neto
- Laboratory of Bone Biology, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas Gabriel Rodrigues Venturini
- Laboratory of Bone Biology, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ayda Henriques Schneider
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thaise Mayumi Taira
- Laboratory of Bone Biology, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Letícia Fernanda Duffles Rodrigues
- Laboratory of Bone Biology, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Flávio Protásio Veras
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sicília Rezende Oliveira
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Dentistry School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcília Aparecida da Silva
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Dentistry School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernando Queiroz Cunha
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sandra Yasuyo Fukada
- Laboratory of Bone Biology, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
83
|
Beam JE, Wagner NJ, Lu KY, Parsons JB, Fowler VG, Rowe SE, Conlon BP. Inflammasome-mediated glucose limitation induces antibiotic tolerance in Staphylococcus aureus. iScience 2023; 26:107942. [PMID: 37790275 PMCID: PMC10543182 DOI: 10.1016/j.isci.2023.107942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023] Open
Abstract
Staphylococcus aureus is a leading human pathogen that frequently causes relapsing infections. The failure of antibiotics to eradicate infection contributes to infection relapse. Host-pathogen interactions have a substantial impact on antibiotic susceptibility and the formation of antibiotic tolerant cells. In this study, we interrogate how a major S. aureus virulence factor, α-toxin, interacts with macrophages to alter the microenvironment of the pathogen, thereby influencing its susceptibility to antibiotics. We find α-toxin-mediated activation of the NLRP3 inflammasome induces antibiotic tolerance. Induction of tolerance is driven by increased glycolysis in the host cells, resulting in glucose limitation and ATP depletion in S. aureus. Additionally, inhibition of NLRP3 activation improves antibiotic efficacy in vitro and in vivo, suggesting that this strategy has potential as a host-directed therapeutic to improve outcomes. Our findings identify interactions between S. aureus and the host that result in metabolic crosstalk that can determine the outcome of antimicrobial therapy.
Collapse
Affiliation(s)
- Jenna E. Beam
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nikki J. Wagner
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kuan-Yi Lu
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua B. Parsons
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Vance G. Fowler
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Sarah E. Rowe
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian P. Conlon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
84
|
Wu X, You D, Pan M, Weng M, Xie Q, Guan Y, Zheng J, Lin S, Zhang X, Hao C, Wan J. Knockout of the C3a receptor protects against renal ischemia reperfusion injury by reduction of NETs formation. Cell Mol Life Sci 2023; 80:322. [PMID: 37816851 PMCID: PMC11072185 DOI: 10.1007/s00018-023-04967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/20/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023]
Abstract
Renal ischemia/reperfusion (I/R) injury is a local sterile inflammatory response driven by innate immunity. Emerging data have revealed that complement and neutrophils contribute to hyperinflammation and oxidative stress in I/R induced acute kidney injury (AKI). However, the interplay between the C3a/C3aR axis and neutrophil extracellular traps (NETs) is imcompletelyunderstood. Here, we utilize genetically engineered mouse models and pharmacological inhibitors to investigate this association. The C3a/C3aR axis is found to promote neutrophil recruitment and NETs formation, thereby accelerating renal damage and dysfunction. Knockout of C3aR restores NETs release and improves renal function after I/R injury. Antibody-mediated blockade of NETs can also significantly ameliorate renal tubular injury and inflammation. Consistently, under stimulation by C3a, neutrophils are activated to promote NETs formation and subsequent renal tubular epithelial cell damage, and blocking C3aR rescued the injury. Interfering with reactive oxygen species (ROS) accumulation in neutrophils by antioxidant treatment significantly attenuates NETs formation. Our findings demonstrate that the C3a/C3aR-ROS-NETs axis constitutes a promising target for prevention or treatment of renal I/R injury.
Collapse
Affiliation(s)
- Xiaoting Wu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Danyu You
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Maoen Pan
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Mengjie Weng
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qionghong Xie
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yi Guan
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jing Zheng
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Songhua Lin
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xiaohong Zhang
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Chuanming Hao
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jianxin Wan
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
85
|
Sprenkeler EGG, Goetschalckx I, Fernández Hermira S, Tool ATJ, Hoogenboezem M, van Bruggen R, Kuijpers TW. Lack of eosinophil extracellular trap formation due to failure of plasma membrane breakdown in the absence of elastase. Blood Adv 2023; 7:5868-5876. [PMID: 37428870 PMCID: PMC10558608 DOI: 10.1182/bloodadvances.2022009432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023] Open
Abstract
Activated eosinophils are described to release eosinophil extracellular traps (EETs), which consist of the cell's DNA covered with granule-derived antimicrobial peptides. Upon stimulation of eosinophils with the known EET-inducers phorbol 12-myristate 13-acetate, monosodium urate crystals, or Candida albicans, we observed that their plasma membrane became compromised, resulting in accessibility of the nuclear DNA for staining with the impermeable DNA dye Sytox Green. However, we did not observe any DNA decondensation or plasma membrane rupture by eosinophils, which sharply contrasts with neutrophil extracellular trap (NET) formation and the subsequent cell death known as NETosis. Neutrophil elastase (NE) activity is thought to be essential for the cleavage of histones and chromatin decondensation during NETosis. We observed that the neutrophils of a patient with a mutation in ELANE, leading to congenital neutropenia and NE deficiency, were unable to undergo NETosis. Taken together, we may suggest that the natural absence of any NE-like proteolytic activity in human eosinophils explains why EET formation is not observed, even when eosinophils become positive for an impermeable DNA dye in response to stimuli that induce NETosis in neutrophils.
Collapse
Affiliation(s)
- Evelien G. G. Sprenkeler
- Department of Molecular Hematology, Sanquin Research and Laboratory Services and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ines Goetschalckx
- Department of Molecular Hematology, Sanquin Research and Laboratory Services and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sara Fernández Hermira
- Department of Molecular Hematology, Sanquin Research and Laboratory Services and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anton T. J. Tool
- Department of Molecular Hematology, Sanquin Research and Laboratory Services and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Hoogenboezem
- Department of Research Facilities, Sanquin Research and Laboratory Services and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Robin van Bruggen
- Department of Molecular Hematology, Sanquin Research and Laboratory Services and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W. Kuijpers
- Department of Molecular Hematology, Sanquin Research and Laboratory Services and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
86
|
Bennike TB. Advances in proteomics: characterization of the innate immune system after birth and during inflammation. Front Immunol 2023; 14:1254948. [PMID: 37868984 PMCID: PMC10587584 DOI: 10.3389/fimmu.2023.1254948] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
Proteomics is the characterization of the protein composition, the proteome, of a biological sample. It involves the large-scale identification and quantification of proteins, peptides, and post-translational modifications. This review focuses on recent developments in mass spectrometry-based proteomics and provides an overview of available methods for sample preparation to study the innate immune system. Recent advancements in the proteomics workflows, including sample preparation, have significantly improved the sensitivity and proteome coverage of biological samples including the technically difficult blood plasma. Proteomics is often applied in immunology and has been used to characterize the levels of innate immune system components after perturbations such as birth or during chronic inflammatory diseases like rheumatoid arthritis (RA) and inflammatory bowel disease (IBD). In cancers, the tumor microenvironment may generate chronic inflammation and release cytokines to the circulation. In these situations, the innate immune system undergoes profound and long-lasting changes, the large-scale characterization of which may increase our biological understanding and help identify components with translational potential for guiding diagnosis and treatment decisions. With the ongoing technical development, proteomics will likely continue to provide increasing insights into complex biological processes and their implications for health and disease. Integrating proteomics with other omics data and utilizing multi-omics approaches have been demonstrated to give additional valuable insights into biological systems.
Collapse
Affiliation(s)
- Tue Bjerg Bennike
- Medical Microbiology and Immunology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
87
|
Bonilha CS, Veras FP, de Queiroz Cunha F. NET-targeted therapy: effects, limitations, and potential strategies to enhance treatment efficacy. Trends Pharmacol Sci 2023; 44:622-634. [PMID: 37468402 DOI: 10.1016/j.tips.2023.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023]
Abstract
Neutrophil extracellular traps (NETs) are complex structures released by activated neutrophils during inflammatory responses. Due to their unique potential for causing tissue damage and modulating immune responses, there is increasing interest in studying these structures as potential targets for the treatment of infectious diseases, autoimmune diseases, and cancer. However, therapeutic targeting of NETs might trigger deleterious effects that may limit treatment efficacy. NET disruption may increase the microbial load in infection; in autoimmunity, NET targeting might impair peripheral tolerance, but it might reduce adaptive immune responses in cancer. In this review, we explore the therapeutic and deleterious effects of NET-targeted therapy while shedding light on novel strategies to overcome treatment-related limitations and enhance treatment efficacy.
Collapse
Affiliation(s)
- Caio Santos Bonilha
- Center for Research in Inflammatory Diseases, University of Sao Paulo, Sao Paulo 14049-900, Brazil; Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow G12 8TA, UK.
| | - Flavio Protasio Veras
- Center for Research in Inflammatory Diseases, University of Sao Paulo, Sao Paulo 14049-900, Brazil; Institute of Biomedical Sciences, Federal University of Alfenas, Minas Gerais 37130-001, Brazil
| | | |
Collapse
|
88
|
Liu Y, Liang J, Li JW, Xing LH, Li FX, Wang N, Wu YJ, Ma YZ, Xing ZR, Jiang X, Zhang XY, Lei ZX, Wang X, Yu SX. Phagocyte extracellular traps formation contributes to host defense against Clostridium perfringens infection. Cytokine 2023; 169:156276. [PMID: 37339556 DOI: 10.1016/j.cyto.2023.156276] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
Clostridium perfringens (C. perfringens) is an important Gram-positive anaerobic spore-forming pathogen that provokes life-threatening gas gangrene and acute enterotoxaemia, although it colonizes as a component of the symbiotic bacteria in humans and animals. However, the mechanisms by which C. perfringens is cleared from the host remains poorly understood, thereby impeding the development of novel strategies for control this infection. Here, we uncover a beneficial effect of extracellular traps (ETs) formation on bacterial killing and clearance by phagocytes. C. perfringens strain ATCC13124, and wild-type isolates CP1 and CP3 markedly trigger ETs formation in macrophages and neutrophils. As expected, visualization of DNA decorated with histone, myeloperoxidase (MPO) and neutrophils elastase (NE) in C. perfringens-triggered classical ETs structures. Notably, the bacteria-induced ETs formation is an ERK1/2-, P38 MAPK-, store-operated calcium entry (SOCE)-, NADPH oxidase-, histone-, NE-, and MPO-dependent process, and is independent of LDH activity. Meanwhile, the defect of bactericidal activity is mediated by impairing ETs formation in phagocytes. Moreover, In vivo studies indicated that degradation of ETs by DNase I administration leads to a defect in the protection against experimental gas gangrene, with higher mortality rates, exacerbated tissue damage, and more bacterial colonization. Together, these results suggest that phagocyte ETs formation is essential for the host defense against C. perfringens infection.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Animal Husbandry Institute, Agriculture and Animal Husbandry Academy of Inner Mongolia, Hohhot 010031, China
| | - Jing Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jian-Wei Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Li-Hua Xing
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Fen-Xin Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Na Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yu-Jing Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yu-Ze Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Zhao-Rui Xing
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xue Jiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xin-Yue Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Zheng-Xuan Lei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Shui-Xing Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
89
|
Sikora JP, Karawani J, Sobczak J. Neutrophils and the Systemic Inflammatory Response Syndrome (SIRS). Int J Mol Sci 2023; 24:13469. [PMID: 37686271 PMCID: PMC10488036 DOI: 10.3390/ijms241713469] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
We are not entirely able to understand, assess, and modulate the functioning of the immune system in clinical situations that lead to a systemic inflammatory response. In the search for diagnostic and treatment strategies (which are still far from perfect), it became very important to study the pathogenesis and participation of endogenous inflammation mediators. This study attempts to more precisely establish the role of neutrophils in individual phenomena occurring during an inflammatory and anti-inflammatory reaction, taking into account their cidal, immunoregulatory, and reparative abilities. Pro- and anticoagulatory properties of endothelium in systemic inflammatory response syndrome (SIRS) are emphasised, along with the resulting clinical implications (the application of immunotherapy using mesenchymal stem/stromal cells (MSCs) or IL-6 antagonists in sepsis and COVID-19 treatment, among others). Special attention is paid to reactive oxygen species (ROS), produced by neutrophils activated during "respiratory burst" in the course of SIRS; the protective and pathogenic role of these endogenous mediators is highlighted. Moreover, clinically useful biomarkers of SIRS (neutrophil extracellular traps, cell-free DNA, DAMP, TREMs, NGAL, miRNA, selected cytokines, ROS, and recognised markers of endothelial damage from the group of adhesins by means of immunohistochemical techniques) related to the neutrophils are presented, and their role in the diagnosing and forecasting of sepsis, burn disease, and COVID-19 is emphasised. Finally, examples of immunomodulation of sepsis and antioxidative thermal injury therapy are presented.
Collapse
Affiliation(s)
- Janusz P. Sikora
- Department of Paediatric Emergency Medicine, 2nd Chair of Paediatrics, Central Clinical Hospital, Medical University of Łódź, ul. Sporna 36/50, 91-738 Łódź, Poland;
| | - Jakub Karawani
- Faculty of Medicine, Lazarski University, ul. Świeradowska 43, 02-662 Warsaw, Poland;
| | - Jarosław Sobczak
- Department of Paediatric Emergency Medicine, 2nd Chair of Paediatrics, Central Clinical Hospital, Medical University of Łódź, ul. Sporna 36/50, 91-738 Łódź, Poland;
- Department of Management and Logistics in Healthcare, Medical University of Łódź, ul. Lindleya 6, 90-131 Łódź, Poland
| |
Collapse
|
90
|
Medeiros SK, Sharma N, Dwivedi D, Liaw PC. INVESTIGATION OF THE PATHOLOGICAL EFFECTS OF HISTONES, DNA, AND NUCLEOSOMES IN A MURINE MODEL OF SEPSIS. Shock 2023; 60:291-297. [PMID: 37329563 DOI: 10.1097/shk.0000000000002165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
ABSTRACT Background: In sepsis, neutrophil extracellular traps (NETs) are an important interface between innate immunity and coagulation. The major structural component of neutrophil extracellular traps is nucleosomes (DNA-histone complexes). In vitro, DNA and histones exert procoagulant/cytotoxic effects whereas nucleosomes are not harmful. However, whether DNA, histones, and/or nucleosomes exert harmful effects in vivo remain unclear. Objectives: (1) The aims of the study are to investigate the cytotoxic effects of nucleosomes ± DNase I and heparin in vitro and (2) to investigate whether DNA, histones, and/or nucleosomes are harmful when injected into healthy and septic mice. Methods : The cytotoxic effects of DNA, histones, and nucleosomes (± DNaseI or ±heparin) were assessed in HEK293 cells. Mice underwent cecal ligation and puncture or sham surgery and then received injections of DNA (8 mg/kg), histones (8.5 mg/kg), or nucleosomes at 4 and 6 h. Organs and blood were harvested at 8 h. Cell-free DNA, IL-6, thrombin-anti-thrombin, and protein C were quantified from plasma. Results:In vitro , incubation of HEK293 cells with DNaseI-treated nucleosomes reduced cell survival compared with nucleosome-treated cells, suggesting that DNaseI releases cytotoxic histones from nucleosomes. Addition of heparin to DNaseI-treated nucleosomes rescued cell death. In vivo, administration of histones to septic mice increased markers of inflammation (IL-6) and coagulation (thrombin-anti-thrombin), which was not observed in sham or septic mice administered DNA or nucleosomes. Conclusions: Our studies suggest that DNA masks the harmful effects of histones in vitro and in vivo . Although administration of histones contributed to the pathogenesis of sepsis, administration of nucleosomes or DNA was not harmful in healthy or septic mice.
Collapse
|
91
|
Hu M, Kenific CM, Boudreau N, Lyden D. Tumor-derived nanoseeds condition the soil for metastatic organotropism. Semin Cancer Biol 2023; 93:70-82. [PMID: 37178822 PMCID: PMC10362948 DOI: 10.1016/j.semcancer.2023.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Primary tumors secrete a variety of factors to turn distant microenvironments into favorable and fertile 'soil' for subsequent metastases. Among these 'seeding' factors that initiate pre-metastatic niche (PMN) formation, tumor-derived extracellular vesicles (EVs) are of particular interest as tumor EVs can direct organotropism depending on their surface integrin profiles. In addition, EVs also contain versatile, bioactive cargo, which include proteins, metabolites, lipids, RNA, and DNA fragments. The cargo incorporated into EVs is collectively shed from cancer cells and cancer-associated stromal cells. Increased understanding of how tumor EVs promote PMN establishment and detection of EVs in bodily fluids highlight how tumor EVs could serve as potential diagnostic and prognostic biomarkers, as well as provide a therapeutic target for metastasis prevention. This review focuses on tumor-derived EVs and how they direct organotropism and subsequently modulate stromal and immune microenvironments at distal sites to facilitate PMN formation. We also outline the progress made thus far towards clinical applications of tumor EVs.
Collapse
Affiliation(s)
- Mengying Hu
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Candia M Kenific
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Nancy Boudreau
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
92
|
García-Bengoa M, Meurer M, Goethe R, Singh M, Reljic R, von Köckritz-Blickwede M. Role of phagocyte extracellular traps during Mycobacterium tuberculosis infections and tuberculosis disease processes. Front Microbiol 2023; 14:983299. [PMID: 37492257 PMCID: PMC10365110 DOI: 10.3389/fmicb.2023.983299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) infections remain one of the most significant causes of mortality worldwide. The current situation shows an emergence of new antibiotic-resistant strains making it difficult to control the tuberculosis (TB) disease. A large part of its success as a pathogen is due to its ability to persist for years or even decades without causing evident clinical manifestations. M.tb is highly successful in evading the host-defense by manipulating host-signalling pathways. Although macrophages are generally viewed as the key cell type involved in harboring M.tb, growing evidence shows that neutrophils also play a fundamental role. Both cells are known to act in multiple ways when encountering an invading pathogen, including phagocytosis, release of cytokines and chemokines, and oxidative burst. In addition, the formation of neutrophil extracellular traps (NETs) and macrophage extracellular traps (METs) has been described to contribute to M.tb infections. NETs/METs are extracellular DNA fibers with associated granule components, which are released upon activation of the cells by the pathogen or by pro-inflammatory mediators. On one hand, they can lead to a protective immune response by entrapment and killing of pathogens. However, on the other hand, they can also play a severe pathological role by inducing tissue damage. Extracellular traps (ETs) produced in the pulmonary alveoli can expand easily and expose tissue-damaging factors with detrimental effects. Since host-directed therapies offer a complementary strategy in TB, the knowledge of NET/MET formation is important for understanding potential protective versus detrimental pathways during innate immune signaling. In this review, we summarize the progress made in understanding the role of NETs/METs in the pathogenesis of TB.
Collapse
Affiliation(s)
- María García-Bengoa
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Marita Meurer
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Rajko Reljic
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Maren von Köckritz-Blickwede
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
93
|
Zhang C, Cao J, Xu M, Wu D, Li W, Chang Y. The role of neutrophils in chorioamnionitis. Front Immunol 2023; 14:1198831. [PMID: 37475854 PMCID: PMC10354368 DOI: 10.3389/fimmu.2023.1198831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
Chorioamnionitis, commonly referred to as intrauterine infection or inflammation, is pathologically defined by neutrophil infiltration and inflammation at the maternal-fetal interface. Chorioamnionitis is the common complication during late pregnancy, which lead to a series of serious consequences, such as preterm labor, preterm premature rupture of the fetal membranes, and fetal inflammatory response syndrome. During infection, a large number of neutrophils migrate to the chorio-decidua in response to chemokines. Although neutrophils, a crucial part of innate immune cells, have strong anti-inflammatory properties, over-activating them can harm the body while also eliminating pathogens. This review concentrated on the latest studies on chorioamnionitis-related consequences as well as the function and malfunction of neutrophils. The release of neutrophil extracellular traps, production of reactive oxygen species, and degranulation from neutrophils during intrauterine infection, as well as their pathological roles in complications related to chorioamnionitis, were discussed in detail, offering fresh perspectives on the treatment of chorioamnionitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin central hospital of Gynecology Obstetrics, Tianjin, China
| |
Collapse
|
94
|
Okeke EB, Louttit C, Snyder CM, Moon JJ. Neutrophils and neutrophil extracellular traps in cancer: promising targets for engineered nanomaterials. Drug Deliv Transl Res 2023; 13:1882-1895. [PMID: 36182992 PMCID: PMC10066838 DOI: 10.1007/s13346-022-01243-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 01/07/2023]
Abstract
Neutrophils are the most abundant white blood cells in circulation and constitute up to 60% of circulating leukocytes. Neutrophils play a significant role in host defense against pathogens through various mechanisms, including phagocytosis, production of antimicrobial proteins, and formation of neutrophil extracellular traps (NETs). Recently, the role of neutrophils and NETs in cancer has generated significant interest, as accumulating evidence suggests that neutrophils and NETs contribute to cancer progression and are associated with adverse patient outcomes. In this review, we will first highlight the roles of neutrophils and NETs in cancer progression and metastasis and discuss new drug delivery approaches to target and modulate neutrophils and NETs for cancer therapeutics.
Collapse
Affiliation(s)
- Emeka B Okeke
- Department of Biology, State University of New York at Fredonia, Fredonia, NY, 14063, USA.
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Cameron Louttit
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Caitlin M Snyder
- Department of Biology, State University of New York at Fredonia, Fredonia, NY, 14063, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
95
|
Zhang Z, Wang B, Tan B. Advances in the Mechanism of Action of Neutrophil Extracellular Traps in Gastrointestinal Tumors: A Review. Int J Gen Med 2023; 16:2783-2789. [PMID: 37408845 PMCID: PMC10319275 DOI: 10.2147/ijgm.s419542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction Neutrophils are important immune cells in the body, extremely abundant, phagocytic and bactericidal, and usually involved in the defense against infectious diseases as immune become. However, a new reticulum structure has been discovered: neutrophil extracellular traps (NETs), which consists of various components such as DNA and proteins, etc. Current studies have found that NETs are closely associated with various diseases such as immune diseases, inflammation and tumors, and the study of the development and metastasis of gastrointestinal tumors has become a recent research hotspot. The clinical significance of NETs has been gradually highlighted, especially in the area of immunosuppression. Methods We reviewed a large amount of relevant literature, summarized the latest detection methods of NETs, explored the mechanism of NETs in gastrointestinal tumors and summarized the latest hotspot directions. Results NETs are involved in the development of gastrointestinal tumors, and are closely related to the proliferation and metastasis of gastrointestinal tumors. Higher levels of NETs are associated with poor prognosis of gastrointestinal tumors, promote local growth of tumors through various pathways, participate in tumor-related systemic injury, and promote tumor growth and metastasis by enhancing the mitochondrial function of tumor cells and awakening dormant tumor cells. Discussion NETs are highly expressed in tumors, and tumors and their microenvironment can promote the production of NETs, providing new ideas for the clinical diagnosis and treatment of gastrointestinal tumors. In this paper, we describe the basic information about NETs, explore the research mechanisms related to NETs in gastrointestinal tumors, and prospectively explore the clinical potential of hotspots and inhibitors related to NETs for gastrointestinal tumors, in order to provide new ideas and targets for the diagnosis and treatment of gastrointestinal tumors.
Collapse
Affiliation(s)
- Zaibo Zhang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Bingyu Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| |
Collapse
|
96
|
Sousa AB, Barbosa JN. The Role of Neutrophils in Biomaterial-Based Tissue Repair-Shifting Paradigms. J Funct Biomater 2023; 14:327. [PMID: 37367291 DOI: 10.3390/jfb14060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Tissue engineering and regenerative medicine are pursuing clinical valid solutions to repair and restore function of damaged tissues or organs. This can be achieved in different ways, either by promoting endogenous tissue repair or by using biomaterials or medical devices to replace damaged tissues. The understanding of the interactions of the immune system with biomaterials and how immune cells participate in the process of wound healing are critical for the development of successful solutions. Until recently, it was thought that neutrophils participate only in the initial steps of an acute inflammatory response with the role of eliminating pathogenic agents. However, the appreciation that upon activation the longevity of neutrophils is highly increased and the fact that neutrophils are highly plastic cells and can polarize into different phenotypes led to the discovery of new and important actions of neutrophils. In this review, we focus on the roles of neutrophils in the resolution of the inflammatory response, in biomaterial-tissue integration and in the subsequent tissue repair/regeneration. We also discuss the potential of neutrophils for biomaterial-based immunomodulation.
Collapse
Affiliation(s)
- Ana Beatriz Sousa
- i3S-Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Judite N Barbosa
- i3S-Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
97
|
Liang W, Yang Y, Gong S, Wei M, Ma Y, Feng R, Gao J, Liu X, Tu F, Ma W, Yi X, Liang Z, Wang F, Wang L, Chen D, Shu W, Miller BE, Tal-Singer R, Donaldson GC, Wedzicha JA, Singh D, Wilkinson TMA, Brightling CE, Chen R, Zhong N, Wang Z. Airway dysbiosis accelerates lung function decline in chronic obstructive pulmonary disease. Cell Host Microbe 2023; 31:1054-1070.e9. [PMID: 37207649 DOI: 10.1016/j.chom.2023.04.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023]
Abstract
Progressive lung function decline is a hallmark of chronic obstructive pulmonary disease (COPD). Airway dysbiosis occurs in COPD, but whether it contributes to disease progression remains unknown. Here, we show, through a longitudinal analysis of two cohorts involving four UK centers, that baseline airway dysbiosis in COPD patients, characterized by the enrichment of opportunistic pathogenic taxa, associates with a rapid forced expiratory volume in 1 s (FEV1) decline over 2 years. Dysbiosis associates with exacerbation-related FEV1 fall and sudden FEV1 fall at stability, contributing to long-term FEV1 decline. A third cohort in China further validates the microbiota-FEV1-decline association. Human multi-omics and murine studies show that airway Staphylococcus aureus colonization promotes lung function decline through homocysteine, which elicits a neutrophil apoptosis-to-NETosis shift via the AKT1-S100A8/A9 axis. S. aureus depletion via bacteriophages restores lung function in emphysema mice, providing a fresh approach to slow COPD progression by targeting the airway microbiome.
Collapse
Affiliation(s)
- Weijie Liang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Yuqiong Yang
- First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong Province, China
| | - Shenhai Gong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Mingyuan Wei
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Yingfei Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Ruipei Feng
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Jingyuan Gao
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Xiaomin Liu
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Fuyi Tu
- Institute of Statistics and Big Data, Renmin University of China, Beijing, China
| | - Wei Ma
- Institute of Statistics and Big Data, Renmin University of China, Beijing, China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Zhenyu Liang
- First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong Province, China
| | - Fengyan Wang
- First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong Province, China
| | - Lingwei Wang
- Pulmonary and Critical Care Department, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong Province, China
| | - Dandan Chen
- Pulmonary and Critical Care Department, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong Province, China
| | - Wensheng Shu
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | | | | | - Gavin C Donaldson
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | - Tom M A Wilkinson
- NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Christopher E Brightling
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Rongchang Chen
- First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong Province, China; Pulmonary and Critical Care Department, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong Province, China
| | - Nanshan Zhong
- First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong Province, China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
98
|
Byun DJ, Lee J, Yu JW, Hyun YM. NLRP3 Exacerbate NETosis-Associated Neuroinflammation in an LPS-Induced Inflamed Brain. Immune Netw 2023; 23:e27. [PMID: 37416934 PMCID: PMC10320420 DOI: 10.4110/in.2023.23.e27] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/27/2023] [Accepted: 04/15/2023] [Indexed: 07/08/2023] Open
Abstract
Neutrophil extracellular traps (NETs) exert a novel function of trapping pathogens. Released NETs can accumulate in inflamed tissues, be recognized by other immune cells for clearance, and lead to tissue toxicity. Therefore, the deleterious effect of NET is an etiological factor, causing several diseases directly or indirectly. NLR family pyrin domain containing 3 (NLRP3) in neutrophils is pivotal in signaling the innate immune response and is associated with several NET-related diseases. Despite these observations, the role of NLRP3 in NET formation in neuroinflammation remains elusive. Therefore, we aimed to explore NET formation promoted by NLRP3 in an LPS-induced inflamed brain. Wild-type and NLRP3 knockout mice were used to investigate the role of NLRP3 in NET formation. Brain inflammation was systemically induced by administering LPS. In such an environment, the NET formation was evaluated based on the expression of its characteristic indicators. DNA leakage and NET formation were analyzed in both mice through Western blot, flow cytometry, and in vitro live cell imaging as well as two-photon imaging. Our data revealed that NLRP3 promotes DNA leakage and facilitates NET formation accompanied by neutrophil death. Moreover, NLRP3 is not involved in neutrophil infiltration but is predisposed to boost NET formation, which is accompanied by neutrophil death in the LPS-induced inflamed brain. Furthermore, either NLRP3 deficiency or neutrophil depletion diminished pro-inflammatory cytokine, IL-1β, and alleviated blood-brain barrier damage. Overall, the results suggest that NLRP3 exacerbates NETosis in vitro and in the inflamed brain, aggravating neuroinflammation. These findings provide a clue that NLRP3 would be a potential therapeutic target to alleviate neuroinflammation.
Collapse
Affiliation(s)
- Da Jeong Byun
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jaeho Lee
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Young-Min Hyun
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
99
|
Biswas S, Sarojini S, Jayaram S, Philip I, Umesh M, Mascarenhas R, Pappuswamy M, Balasubramanian B, Arokiyaraj S. Understanding the Role of Antimicrobial Peptides in Neutrophil Extracellular Traps Promoting Autoimmune Disorders. Life (Basel) 2023; 13:1307. [PMID: 37374090 DOI: 10.3390/life13061307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
AMPs are small oligopeptides acting as integral elements of the innate immune system and are of tremendous potential in the medical field owing to their antimicrobial and immunomodulatory activities. They offer a multitude of immunomodulatory properties such as immune cell differentiation, inflammatory responses, cytokine production, and chemoattraction. Aberrancy in neutrophil or epithelial cell-producing AMPs leads to inflammation culminating in various autoimmune responses. In this review, we have tried to explore the role of prominent mammalian AMPs-defensins and cathelicidins, as immune regulators with special emphasis on their role in neutrophil extracellular traps which promotes autoimmune disorders. When complexed with self-DNA or self-RNA, AMPs act as autoantigens which activate plasmacytoid dendritic cells and myeloid dendritic cells leading to the production of interferons and cytokines. These trigger a series of self-directed inflammatory reactions, leading to the emergence of diverse autoimmune disorders. Since AMPs show both anti- and pro-inflammatory abilities in different ADs, there is a dire need for a complete understanding of their role before developing AMP-based therapy for autoimmune disorders.
Collapse
Affiliation(s)
- Soma Biswas
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Suma Sarojini
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Saranya Jayaram
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Indhu Philip
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Roseanne Mascarenhas
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Manikantan Pappuswamy
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | | | - Selvaraj Arokiyaraj
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
100
|
Yokoyama APH, Kutner JM, de Moraes Mazetto Fonseca B, Mesquita GLTV, Sakashita AM, Dos Santos APR, Nakazawa CY, de Almeida MD, de Andrade Orsi FL. Neutrophil extracellular traps (NETs), transfusion requirements and clinical outcomes in orthotopic liver transplantation. J Thromb Thrombolysis 2023:10.1007/s11239-023-02825-7. [PMID: 37227652 DOI: 10.1007/s11239-023-02825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
Inflammatory phenomena have a direct impact on the prognosis of orthotopic liver transplantation (OLT). Neutrophil extracellular traps (NETs) contribute to OLT inflammation and hemostasis imbalance in OLT. The association between NETosis, clinical outcomes and transfusion requirements is not determined. To evaluate NETs release during OLT and the effect of NETosis ontransfusion requirements and adverse outcomes in a prospective cohort of patients submitted to OLT. We quantified citrullinated histones (cit-H3) and circulating-free-DNA (cf-DNA) in ninety-three patients submitted to OLT in three periods: pre-transplant, after graft reperfusion and before discharge. NETs markers were compared between these periods using ANOVA test. The association of NETosis and adverse outcomes was evaluated using regression models adjusted for age, sex and corrected MELD. We observed a peak of circulating NETs following reperfusion, evidenced by a 2.4-fold increase in cit-H3 levels in the post-graft reperfusion period (median levels of cit-H3 pre transplant: 0.5 ng/mL, after reperfusion: 1.2 ng/mL and at discharge 0.5 ng/mL, p < 0.0001). We observed an association between increased levels of cit-H3 and in-hospital death (OR = 1.168, 95% CI 1.021-1.336, p = 0.024). No association was found between NETs markers and transfusion requirements. There is a prompt release of NETs after reperfusion that is associated with poorer outcomes and death. Intraoperative NETs release seems to be independent of transfusion requirements. These findings highlight the relevance of inflammation promoted by NETS and its impact on OLT adverse clinical outcomes.
Collapse
Affiliation(s)
- Ana Paula Hitomi Yokoyama
- Hemotherapy and Cell Therapy Department, Hospital Israelita Albert Einstein, Av Albert Einstein, 627-3o Andar, São Paulo, SP, 05652-000, Brazil.
- Faculty of Medical Sciences, University of Campinas, Campinas, Brazil.
| | - Jose Mauro Kutner
- Hemotherapy and Cell Therapy Department, Hospital Israelita Albert Einstein, Av Albert Einstein, 627-3o Andar, São Paulo, SP, 05652-000, Brazil
| | | | | | - Araci Massami Sakashita
- Hemotherapy and Cell Therapy Department, Hospital Israelita Albert Einstein, Av Albert Einstein, 627-3o Andar, São Paulo, SP, 05652-000, Brazil
| | | | | | | | | |
Collapse
|