51
|
Shukla V, Høffding MK, Hoffmann ER. Genome diversity and instability in human germ cells and preimplantation embryos. Semin Cell Dev Biol 2021; 113:132-147. [PMID: 33500205 PMCID: PMC8097364 DOI: 10.1016/j.semcdb.2020.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022]
Abstract
Genome diversity is essential for evolution and is of fundamental importance to human health. Generating genome diversity requires phases of DNA damage and repair that can cause genome instability. Humans have a high incidence of de novo congenital disorders compared to other organisms. Recent access to eggs, sperm and preimplantation embryos is revealing unprecedented rates of genome instability that may result in infertility and de novo mutations that cause genomic imbalance in at least 70% of conceptions. The error type and incidence of de novo mutations differ during developmental stages and are influenced by differences in male and female meiosis. In females, DNA repair is a critical factor that determines fertility and reproductive lifespan. In males, aberrant meiotic recombination causes infertility, embryonic failure and pregnancy loss. Evidence suggest germ cells are remarkably diverse in the type of genome instability that they display and the DNA damage responses they deploy. Additionally, the initial embryonic cell cycles are characterized by a high degree of genome instability that cause congenital disorders and may limit the use of CRISPR-Cas9 for heritable genome editing.
Collapse
Affiliation(s)
- Vallari Shukla
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Miya Kudo Høffding
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
52
|
Homer HA. Senataxin: A New Guardian of the Female Germline Important for Delaying Ovarian Aging. Front Genet 2021; 12:647996. [PMID: 33995483 PMCID: PMC8118517 DOI: 10.3389/fgene.2021.647996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/08/2021] [Indexed: 12/01/2022] Open
Abstract
Early decline in ovarian function known as premature ovarian aging (POA) occurs in around 10% of women and is characterized by a markedly reduced ovarian reserve. Premature ovarian insufficiency (POI) affects ~1% of women and refers to the severe end of the POA spectrum in which, accelerated ovarian aging leads to menopause before 40 years of age. Ovarian reserve refers to the total number of follicle-enclosed oocytes within both ovaries. Oocyte DNA integrity is a critical determinant of ovarian reserve since damage to DNA of oocytes within primordial-stage follicles triggers follicular apoptosis leading to accelerated follicle depletion. Despite the high prevalence of POA, very little is known regarding its genetic causation. Another little-investigated aspect of oocyte DNA damage involves low-grade damage that escapes apoptosis at the primordial follicle stage and persists throughout oocyte growth and later follicle development. Senataxin (SETX) is an RNA/DNA helicase involved in repair of oxidative stress-induced DNA damage and is well-known for its roles in preventing neurodegenerative disease. Recent findings uncover an important role for SETX in protecting oocyte DNA integrity against aging-induced increases in oxidative stress. Significantly, this newly identified SETX-mediated regulation of oocyte DNA integrity is critical for preventing POA and early-onset female infertility by preventing premature depletion of the ovarian follicular pool and reducing the burden of low-grade DNA damage both in primordial and fully-grown oocytes.
Collapse
Affiliation(s)
- Hayden A Homer
- The Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia
| |
Collapse
|
53
|
Horta F, Catt S, Ramachandran P, Vollenhoven B, Temple-Smith P. Female ageing affects the DNA repair capacity of oocytes in IVF using a controlled model of sperm DNA damage in mice. Hum Reprod 2021; 35:529-544. [PMID: 32108237 DOI: 10.1093/humrep/dez308] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/17/2019] [Indexed: 01/07/2023] Open
Abstract
STUDY QUESTION Does female ageing have a negative effect on the DNA repair capacity of oocytes fertilised by spermatozoa with controlled levels of DNA damage? SUMMARY ANSWER Compared to oocytes from younger females, oocytes from older females have a reduced capacity to repair damaged DNA introduced by spermatozoa. WHAT IS KNOWN ALREADY The reproductive lifespan in women declines with age predominantly due to poor oocyte quality. This leads to decreased reproductive outcomes for older women undergoing assisted reproductive technology (ART) treatments, compared to young women. Ageing and oocyte quality have been clearly associated with aneuploidy, but the range of factors that influence this change in oocyte quality with age remains unclear. The DNA repair activity prior to embryonic genomic activation is considered to be of maternal origin, with maternal transcripts and proteins controlling DNA integrity. With increasing maternal age, the number of mRNAs stored in oocytes decreases. This could result in diminished efficiency of DNA repair and/or negative effects on embryo development, especially in the presence of DNA damage. STUDY DESIGN, SIZE, DURATION Oocytes from two age groups of 30 super-ovulated female mice (young: 5-8 weeks old, n = 15; old: 42-45 weeks old, n = 15) were inseminated with sperm from five males with three different controlled DNA damage levels; control: ≤10%, 1 Gray (Gy): 11-30%, and 30 Gy: >30%. Inseminated oocytes (young: 125, old: 78) were assessed for the formation of zygotes (per oocyte) and blastocysts (per zygote). Five replicates of five germinal vesicles (GVs) and five MII oocytes from each age group were analysed for gene expression. The DNA damage response (DDR) was assessed in a minimum of three IVF replicates in control and 1 Gy zygotes and two-cell embryos using γH2AX labelling. PARTICIPANTS/MATERIALS, SETTING, METHODS Swim-up sperm samples from the cauda epididymidis of C57BL6 mice were divided into control (no irradiation) and 1- and 30-Gy groups. Treated spermatozoa were irradiated at 1 and 30 Gy, respectively, using a linear accelerator Varian 21iX. Following irradiation, samples were used for DNA damage assessment (Halomax) and for insemination. Presumed zygotes were cultured in a time-lapse incubator (MIRI, ESCO). Gene expression of 91 DNA repair genes was assessed using the Fluidigm Biomark HD system. The DNA damage response in zygotes (6-8 h post-fertilisation) and two-cell embryos (22-24 h post-fertilisation) was assessed by immunocytochemical analysis of γH2AX using confocal microscopy (Olympus FV1200) and 3D volumetric analysis using IMARIS software. MAIN RESULTS AND THE ROLE OF CHANCE The average sperm DNA damage for the three groups was statistically different (control: 6.1%, 1 Gy: 16.1%, 30 Gy: 53.1%, P < 0.0001), but there were no significant differences in fertilisation rates after IVF within or between the two age groups [(young; control: 86.79%, 1 Gy: 82.75%, 30 Gy: 76.74%) (old; control: 93.1%, 1 Gy: 70.37%, 30 Gy: 68.18%) Fisher's exact]. However, blastocyst rates were significantly different (P < 0.0001) among the groups [(young; control: 86.95%, 1 Gy: 33.33%, 30 Gy: 0.0%) (old; control: 70.37%, 1 Gy: 0.0%, 30 Gy: 0.0%)]. Between the age groups, 1-Gy samples showed a significant decrease in the blastocyst rate in old females compared to young females (P = 0.0166). Gene expression analysis revealed a decrease in relative expression of 21 DNA repair genes in old GV oocytes compared to young GV oocytes (P < 0.05), and similarly, old MII oocytes showed 23 genes with reduced expression compared to young MII oocytes (P < 0.05). The number of genes with decreased expression in older GV and MII oocytes significantly affected pathways such as double strand break (GV: 5; MII: 6), nucleotide excision repair (GV: 8; MII: 5) and DNA damage response (GV: 4; MII: 8). There was a decreased DDR in zygotes and in two-cell embryos from old females compared to young regardless of sperm treatment (P < 0.05). The decrease in DNA repair gene expression of oocytes and decreased DDR in embryos derived from older females suggests that ageing results in a diminished DNA repair capacity. LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Ionising radiation was used only for experimental purposes, aiming at controlled levels of sperm DNA damage; however, it can also damage spermatozoa proteins. The female age groups selected in mice were intended to model effects in young and old women, but clinical studies are required to demonstrate a similar effect. WIDER IMPLICATIONS OF THE FINDINGS Fertilisation can occur with sperm populations with medium and high DNA damage, but subsequent embryo growth is affected to a greater extent with aging females, supporting the theory that oocyte DNA repair capacity decreases with age. Assessment of the oocyte DNA repair capacity may be a useful diagnostic tool for infertile couples. STUDY FUNDING/COMPETING INTEREST(S) Funded by the Education Program in Reproduction and Development, Department of Obstetrics and Gynaecology, Monash University. None of the authors has any conflict of interest to report.
Collapse
Affiliation(s)
- F Horta
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia
| | - S Catt
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia
| | - P Ramachandran
- Peter MacCallum Cancer Centre, Monash Health, Melbourne, VIC 3164, Australia
| | - B Vollenhoven
- Monash IVF, Melbourne, VIC 3168, Australia.,Women's and Newborn Program, Monash Health, VIC 3169, Australia.,Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia
| | - P Temple-Smith
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia
| |
Collapse
|
54
|
Anesetti G, Chávez-Genaro R. Neonatal androgenization in rats affects oocyte maturation. Reprod Sci 2021; 28:2799-2806. [PMID: 33825168 DOI: 10.1007/s43032-021-00559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Androgens are relevant in order to achieve a normal growth and maturation of the follicle and oocyte, since both excess and absence of androgens may affect the correct ovarian function. The current study analyzes the impact of neonatal androgenization in the first ovulation and oocyte maturation in response to exogenous gonadotrophin stimulation. Neonatal rats were daily treated with testosterone, dihydrotestosterone, or vehicle during follicle assembly period (days 1 to 5). At juvenile period, rats were stimulated sequentially with PMSG and hCG. Ovulation, ovarian histology, hormonal milieu, morphological characteristics of meiotic spindle, and in vitro fertilization rate in oocytes were analyzed. Our data shows that oocytes from androgenized rats displayed a major proportion of aberrant spindles and altered meiotic advance that control animals. These alterations were accompanied with an increase in both fertilization rate and aberrant embryos after 48 h of culture. Our findings showed a direct impact of neonatal androgens on oocyte development; their effects may be recognized at adulthood, supporting the idea of a programming effect exerted by neonatal androgens. These results could be relevant to explain the low fertility rate seen in polycystic ovary syndrome patients after in vitro fertilization procedures.
Collapse
Affiliation(s)
- Gabriel Anesetti
- Laboratorio de Biología de la Reproducción, Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Rebeca Chávez-Genaro
- Laboratorio de Biología de la Reproducción, Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
55
|
Subramanian GN, Lavin M, Homer HA. Premature ovarian ageing following heterozygous loss of Senataxin. Mol Hum Reprod 2021; 27:gaaa080. [PMID: 33337500 DOI: 10.1093/molehr/gaaa080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Premature loss of ovarian activity before 40 years of age is known as primary ovarian insufficiency (POI) and occurs in ∼1% of women. A more subtle decline in ovarian activity, known as premature ovarian ageing (POA), occurs in ∼10% of women. Despite the high prevalence of POA, very little is known regarding its genetic causation. Senataxin (SETX) is an RNA/DNA helicase involved in repair of oxidative stress-induced DNA damage. Homozygous mutation of SETX leads to the neurodegenerative disorder, ataxia oculomotor apraxia type 2 (AOA2). There have been reports of POI in AOA2 females suggesting a link between SETX and ovarian ageing. Here, we studied female mice lacking either one (Setx+/-) or both (Setx-/-) copies of SETX over a 12- to 14-month period. We find that DNA damage is increased in oocytes from 8-month-old Setx+/- and Setx-/- females compared with Setx+/+ oocytes leading to a marked reduction in all classes of ovarian follicles at least 4 months earlier than typically occurs in female mice. Furthermore, during a 12-month long mating trial, Setx+/- and Setx-/- females produced significantly fewer pups than Setx+/+ females from 7 months of age onwards. These data show that SETX is critical for preventing POA in mice, likely by preserving DNA integrity in oocytes. Intriguingly, heterozygous Setx loss causes an equally severe impact on ovarian ageing as homozygous Setx loss. Because heterozygous SETX disruption is less likely to produce systemic effects, SETX compromise could underpin some cases of insidious POA.
Collapse
Affiliation(s)
- G N Subramanian
- The Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia
| | - M Lavin
- Cancer and Neuroscience Laboratory, UQ Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia
| | - H A Homer
- The Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia
| |
Collapse
|
56
|
Horta F, Ravichandran A, Catt S, Vollenhoven B, Temple-Smith P. Ageing and ovarian stimulation modulate the relative levels of transcript abundance of oocyte DNA repair genes during the germinal vesicle-metaphase II transition in mice. J Assist Reprod Genet 2021; 38:55-69. [PMID: 33067741 PMCID: PMC7822980 DOI: 10.1007/s10815-020-01981-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022] Open
Abstract
PURPOSE Oocyte quality and reproductive outcome are negatively affected by advanced maternal age, ovarian stimulation and method of oocyte maturation during assisted reproduction; however, the mechanisms responsible for these associations are not fully understood. The aim of this study was to compare the effects of ageing, ovarian stimulation and in-vitro maturation on the relative levels of transcript abundance of genes associated with DNA repair during the transition of germinal vesicle (GV) to metaphase II (MII) stages of oocyte development. METHODS The relative levels of transcript abundance of 90 DNA repair-associated genes was compared in GV-stage and MII-stage oocytes from unstimulated and hormone-stimulated ovaries from young (5-8-week-old) and old (42-45-week-old) C57BL6 mice. Ovarian stimulation was conducted using pregnant mare serum gonadotropin (PMSG) or anti-inhibin serum (AIS). DNA damage response was quantified by immunolabeling of the phosphorylated histone variant H2AX (γH2AX). RESULTS The relative transcript abundance in DNA repair genes was significantly lower in MII oocytes compared to GV oocytes in young unstimulated and PMSG stimulated but was higher in AIS-stimulated mice. Interestingly, an increase in the relative level of transcript abundance of DNA repair genes was observed in MII oocytes from older mice in unstimulated, PMSG-stimulated and AIS-stimulated mice. Decreased γH2AX levels were found in both GV oocytes (82.9%) and MII oocytes (37.5%) during ageing in both ovarian stimulation types used (PMSG/AIS; p < 0.05). CONCLUSIONS In conclusion, DNA repair relative levels of transcript abundance are altered by maternal age and the method of ovarian stimulation during the GV-MII transition in oocytes.
Collapse
Affiliation(s)
- Fabrizzio Horta
- Education Program in Reproduction and Development, EPRD, Department of Obstetrics and Gynecology, School of Clinical Science, Monash University, Melbourne, VIC, 3168, Australia.
- Monash IVF, Melbourne, VIC, 3168, Australia.
| | - Aravind Ravichandran
- Education Program in Reproduction and Development, EPRD, Department of Obstetrics and Gynecology, School of Clinical Science, Monash University, Melbourne, VIC, 3168, Australia
| | - Sally Catt
- Education Program in Reproduction and Development, EPRD, Department of Obstetrics and Gynecology, School of Clinical Science, Monash University, Melbourne, VIC, 3168, Australia
| | - Beverley Vollenhoven
- Education Program in Reproduction and Development, EPRD, Department of Obstetrics and Gynecology, School of Clinical Science, Monash University, Melbourne, VIC, 3168, Australia
- Monash IVF, Melbourne, VIC, 3168, Australia
- Women's and Newborn Program, Monash Health, Melbourne, Australia
| | - Peter Temple-Smith
- Education Program in Reproduction and Development, EPRD, Department of Obstetrics and Gynecology, School of Clinical Science, Monash University, Melbourne, VIC, 3168, Australia
| |
Collapse
|
57
|
Subramanian GN, Greaney J, Wei Z, Becherel O, Lavin M, Homer HA. Oocytes mount a noncanonical DNA damage response involving APC-Cdh1-mediated proteolysis. J Cell Biol 2020; 219:151594. [PMID: 32328643 PMCID: PMC7147104 DOI: 10.1083/jcb.201907213] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/15/2019] [Accepted: 01/31/2020] [Indexed: 12/26/2022] Open
Abstract
In mitotic cells, DNA damage induces temporary G2 arrest via inhibitory Cdk1 phosphorylation. In contrast, fully grown G2-stage oocytes readily enter M phase immediately following chemical induction of DNA damage in vitro, indicating that the canonical immediate-response G2/M DNA damage response (DDR) may be deficient. Senataxin (Setx) is involved in RNA/DNA processing and maintaining genome integrity. Here we find that mouse oocytes deleted of Setx accumulate DNA damage when exposed to oxidative stress in vitro and during aging in vivo, after which, surprisingly, they undergo G2 arrest. Moreover, fully grown wild-type oocytes undergo G2 arrest after chemotherapy-induced in vitro damage if an overnight delay is imposed following damage induction. Unexpectedly, this slow-evolving DDR is not mediated by inhibitory Cdk1 phosphorylation but by APC-Cdh1–mediated proteolysis of the Cdk1 activator, cyclin B1, secondary to increased Cdc14B-dependent APC-Cdh1 activation and reduced Emi1-dependent inhibition. Thus, oocytes are unable to respond immediately to DNA damage, but instead mount a G2/M DDR that evolves slowly and involves a phosphorylation-independent proteolytic pathway.
Collapse
Affiliation(s)
- Goutham Narayanan Subramanian
- The Christopher Chen Oocyte Biology Research Laboratory, University of Queensland Centre for Clinical Research, The University of Queensland, Queensland, Australia
| | - Jessica Greaney
- The Christopher Chen Oocyte Biology Research Laboratory, University of Queensland Centre for Clinical Research, The University of Queensland, Queensland, Australia
| | - Zhe Wei
- The Christopher Chen Oocyte Biology Research Laboratory, University of Queensland Centre for Clinical Research, The University of Queensland, Queensland, Australia
| | - Olivier Becherel
- Cancer and Neurosciences Lab, University of Queensland Centre for Clinical Research, The University of Queensland, Queensland, Australia
| | - Martin Lavin
- Cancer and Neurosciences Lab, University of Queensland Centre for Clinical Research, The University of Queensland, Queensland, Australia
| | - Hayden Anthony Homer
- The Christopher Chen Oocyte Biology Research Laboratory, University of Queensland Centre for Clinical Research, The University of Queensland, Queensland, Australia
| |
Collapse
|
58
|
Jo YJ, Yoon SB, Park BJ, Lee SI, Kim KJ, Kim SY, Kim M, Lee JK, Lee SY, Lee DH, Kwon T, Son Y, Lee JR, Kwon J, Kim JS. Particulate Matter Exposure During Oocyte Maturation: Cell Cycle Arrest, ROS Generation, and Early Apoptosis in Mice. Front Cell Dev Biol 2020; 8:602097. [PMID: 33324650 PMCID: PMC7726243 DOI: 10.3389/fcell.2020.602097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
Particulate matter (PM) is a general atmospheric pollutant released into the air by an anthropogenic and naturally derived mixture of substances. Current studies indicate that fine dust can result in different health defects, including endothelial dysfunction, asthma, lung cancer, cardiovascular diseases, uterine leiomyoma, deterioration in sperm quality, and overall birth impairment. However, the most prominent effects of PM10 (diameter < 10 μM) exposure on the female reproductive system, especially with respect to oocyte maturation, remain unclear. In the present study, maturing mouse oocytes were treated with PM10 and the phenotypes of the resulting toxic effects were investigated. Exposure to PM10 led to impairment of maturation capacity by inducing cell cycle arrest and blocking normal polar body extrusion during in vitro maturation and activation of fertilization of mouse oocytes. Additionally, defects in tubulin formation and DNA alignment were observed in PM10-treated oocytes during metaphase I to anaphase/telophase I transition. Moreover, PM10 induced reactive oxygen species generation, mitochondrial dysfunction, DNA damage, and early apoptosis. Taken together, these results indicate that PM10 exposure leads to a decline in oocyte quality and affects the subsequent embryonic development potential of mammalian oocytes.
Collapse
Affiliation(s)
- Yu-Jin Jo
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Seung-Bin Yoon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Byoung-Jin Park
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Sang Il Lee
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Ki Jin Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Se-Yong Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Minseong Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Jun-Ki Lee
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Sang-Yong Lee
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Dong-Ho Lee
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Taeho Kwon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Yeonghoon Son
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Ja-Rang Lee
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Jeongwoo Kwon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| |
Collapse
|
59
|
Ma JY, Li S, Chen LN, Schatten H, Ou XH, Sun QY. Why is oocyte aneuploidy increased with maternal aging? J Genet Genomics 2020; 47:659-671. [PMID: 33184002 DOI: 10.1016/j.jgg.2020.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
Abstract
One of the main causes of pregnancy failure and fetus abortion is oocyte aneuploidy, which is increased with maternal aging. Numerous possible causes of oocyte aneuploidy in aged women have been proposed, including cross-over formation defect, cohesin loss, spindle deformation, spindle assembly checkpoint malfunction, microtubule-kinetochore attachment failure, kinetochore mis-orientation, mitochondria dysfunction-induced increases in reactive oxygen species, protein over-acetylation, and DNA damage. However, it still needs to be answered if these aneuploidization factors have inherent relations, and how to prevent chromosome aneuploidy in aged oocytes. Epidemiologically, oocyte aneuploidy has been found to be weakly associated with higher homocysteine concentrations, obesity, ionizing radiation and even seasonality. In this review, we summarize the research progress and present an integrated view of oocyte aneuploidization.
Collapse
Affiliation(s)
- Jun-Yu Ma
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Sen Li
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Lei-Ning Chen
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
60
|
|
61
|
Yang X, Zhang F, Shi Q, Wu Y. "Response to the letter to the editor "Concerns regarding the potentially causal role of FANCA heterozygous variants in human primary ovarian insufficiency"". Hum Genet 2020; 140:695-697. [PMID: 33175223 DOI: 10.1007/s00439-020-02233-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Xi Yang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Qinghua Shi
- The First Affiliated Hospital of USTC, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, 230027, China.
| | - Yanhua Wu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China. .,National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
62
|
Molecular basis of reproductive senescence: insights from model organisms. J Assist Reprod Genet 2020; 38:17-32. [PMID: 33006069 DOI: 10.1007/s10815-020-01959-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Reproductive decline due to parental age has become a major barrier to fertility as couples have delayed having offspring into their thirties and forties. Advanced parental age is also associated with increased incidence of neurological and cardiovascular disease in offspring. Thus, elucidating the etiology of reproductive decline is of clinical importance. METHODS Deciphering the underlying processes that drive reproductive decline is particularly challenging in women in whom a discrete oocyte pool is established during embryogenesis and may remain dormant for tens of years. Instead, our understanding of the processes that drive reproductive senescence has emerged from studies in model organisms, both vertebrate and invertebrate, that are the focus of this literature review. CONCLUSIONS Studies of reproductive aging in model organisms not only have revealed the detrimental cellular changes that occur with age but also are helping identify major regulator proteins controlling them. Here, we discuss what we have learned from model organisms with respect to the molecular mechanisms that maintain both genome integrity and oocyte quality.
Collapse
|
63
|
Li T, Liu C, Zhen X, Yu Y, Qiao J. Actinomycin D causes oocyte maturation failure by inhibiting chromosome separation and spindle assembly†. Biol Reprod 2020; 104:94-105. [PMID: 33106855 DOI: 10.1093/biolre/ioaa170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/08/2020] [Accepted: 09/21/2020] [Indexed: 11/12/2022] Open
Abstract
Actinomycin D (ActD) has been considered as one of the most effective and safe chemotherapeutic medications for treating a number of cancers. Although ActD has been used in the treatment of gynecological tumors and pediatric tumors for more than 50 years, the toxic effects of ActD on mammalian oocytes remain unknown. In this study, the influence of ActD on mouse and human oocyte maturation and the possible mechanisms were investigated. Notably, ActD inhibited oocyte maturation and arrested oocytes at the metaphase I (MI) stage in a dose-dependent manner. In addition, ActD arrested oocyte maturation when the oocytes were treated at different successive stages, including the germinal vesicle (GV), germinal vesicle breakdown, and MI stages. In ActD-treated oocytes, disordered chromosome condensation and irregular spindle assembly occurred, resulting in incomplete chromosome segregation and oocytes arresting at the MI phase; these results possibly occurred because ActD triggered the formation of reactive oxygen species, resulting in DNA damage and decreased ATP in mouse GV oocytes. Besides, in vivo treatment with ActD also inhibited mouse oocyte maturation. Similar effects were seen in human oocytes. Collectively, our results indicated that ActD exposure disrupted oocyte maturation by increasing DNA damage, which is a finding that might help with optimizing future methods for female fertility preservation before undergoing chemotherapy.
Collapse
Affiliation(s)
- Tianjie Li
- Department of Obstetrics and Gynecology, Beijing Key laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,Department of Obstetrics and Gynecology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Changyu Liu
- Department of Obstetrics and Gynecology, Beijing Key laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Xiumei Zhen
- Department of Obstetrics and Gynecology, Beijing Key laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, Beijing Key laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Beijing Key laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
64
|
Abstract
Primary ovarian insufficiency (POI) is an uncommon yet devastating occurrence that results from a premature depletion of the ovarian pool of primordial follicles. Our understanding of both putative and plausible mechanisms underlying POI, previously considered to be largely "idiopathic", has been furthered over the past several years, largely due to advances in the field of genetics and through expansion of translational models for experimental research. In this review, our goal is to familiarize the multidisciplinary readers of the F1000 platform with the strides made in the field of reproductive medicine that hold both preventative and therapeutic implications for those women who are at risk for or who have POI.
Collapse
Affiliation(s)
- Victoria Wesevich
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Amanada N Kellen
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Lubna Pal
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
65
|
Mogessie B. Advances and surprises in a decade of oocyte meiosis research. Essays Biochem 2020; 64:263-275. [PMID: 32538429 DOI: 10.1042/ebc20190068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Eggs are produced from progenitor oocytes through meiotic cell division. Fidelity of meiosis is critical for healthy embryogenesis - fertilisation of aneuploid eggs that contain the wrong number of chromosomes is a leading cause of genetic disorders including Down's syndrome, human embryo deaths and infertility. Incidence of meiosis-related oocyte and egg aneuploidies increases dramatically with advancing maternal age, which further complicates the 'meiosis problem'. We have just emerged from a decade of meiosis research that was packed with exciting and transformative research. This minireview will focus primarily on studies of mechanisms that directly influence chromosome segregation.
Collapse
Affiliation(s)
- Binyam Mogessie
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K
| |
Collapse
|
66
|
Turan V, Oktay K. BRCA-related ATM-mediated DNA double-strand break repair and ovarian aging. Hum Reprod Update 2020; 26:43-57. [PMID: 31822904 DOI: 10.1093/humupd/dmz043] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Oocyte aging has significant clinical consequences, and yet no treatment exists to address the age-related decline in oocyte quality. The lack of progress in the treatment of oocyte aging is due to the fact that the underlying molecular mechanisms are not sufficiently understood. BRCA1 and 2 are involved in homologous DNA recombination and play essential roles in ataxia telangiectasia mutated (ATM)-mediated DNA double-strand break (DSB) repair. A growing body of laboratory, translational and clinical evidence has emerged within the past decade indicating a role for BRCA function and ATM-mediated DNA DSB repair in ovarian aging. OBJECTIVE AND RATIONALE Although there are several competing or complementary theories, given the growing evidence tying BRCA function and ATM-mediated DNA DSB repair mechanisms in general to ovarian aging, we performed this review encompassing basic, translational and clinical work to assess the current state of knowledge on the topic. A clear understanding of the mechanisms underlying oocyte aging may result in targeted treatments to preserve ovarian reserve and improve oocyte quality. SEARCH METHODS We searched for published articles in the PubMed database containing key words, BRCA, BRCA1, BRCA2, Mutations, Fertility, Ovarian Reserve, Infertility, Mechanisms of Ovarian Aging, Oocyte or Oocyte DNA Repair, in the English-language literature until May 2019. We did not include abstracts or conference proceedings, with the exception of our own. OUTCOMES Laboratory studies provided robust and reproducible evidence that BRCA1 function and ATM-mediated DNA DSB repair, in general, weakens with age in oocytes of multiple species including human. In both women with BRCA mutations and BRCA-mutant mice, primordial follicle numbers are reduced and there is accelerated accumulation of DNA DSBs in oocytes. In general, women with BRCA1 mutations have lower ovarian reserves and experience earlier menopause. Laboratory evidence also supports critical role for BRCA1 and other ATM-mediated DNA DSB repair pathway members in meiotic function. When laboratory, translational and clinical evidence is considered together, BRCA-related ATM-mediated DNA DSB repair function emerges as a likely regulator of ovarian aging. Moreover, DNA damage and repair appear to be key features in chemotherapy-induced ovarian aging. WIDER IMPLICATIONS The existing data suggest that the BRCA-related ATM-mediated DNA repair pathway is a strong candidate to be a regulator of oocyte aging, and the age-related decline of this pathway likely impairs oocyte health. This knowledge may create an opportunity to develop targeted treatments to reverse or prevent physiological or chemotherapy-induced oocyte aging. On the immediate practical side, women with BRCA or similar mutations may need to be specially counselled for fertility preservation.
Collapse
Affiliation(s)
- Volkan Turan
- Department of Obstetrics and Gynecology, Uskudar University School of Medicine, Istanbul, Turkey.,Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Kutluk Oktay
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
67
|
Mikwar M, MacFarlane AJ, Marchetti F. Mechanisms of oocyte aneuploidy associated with advanced maternal age. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2020; 785:108320. [PMID: 32800274 DOI: 10.1016/j.mrrev.2020.108320] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/30/2022]
Abstract
It is well established that maternal age is associated with a rapid decline in the production of healthy and high-quality oocytes resulting in reduced fertility in women older than 35 years of age. In particular, chromosome segregation errors during meiotic divisions are increasingly common and lead to the production of oocytes with an incorrect number of chromosomes, a condition known as aneuploidy. When an aneuploid oocyte is fertilized by a sperm it gives rise to an aneuploid embryo that, except in rare situations, will result in a spontaneous abortion. As females advance in age, they are at higher risk of infertility, miscarriage, or having a pregnancy affected by congenital birth defects such as Down syndrome (trisomy 21), Edwards syndrome (trisomy 18), and Turner syndrome (monosomy X). Here, we review the potential molecular mechanisms associated with increased chromosome segregation errors during meiosis as a function of maternal age. Our review shows that multiple exogenous and endogenous factors contribute to the age-related increase in oocyte aneuploidy. Specifically, the weight of evidence indicates that recombination failure, cohesin deterioration, spindle assembly checkpoint (SAC) disregulation, abnormalities in post-translational modification of histones and tubulin, and mitochondrial dysfunction are the leading causes of oocyte aneuploidy associated with maternal aging. There is also growing evidence that dietary and other bioactive interventions may mitigate the effect of maternal aging on oocyte quality and oocyte aneuploidy, thereby improving fertility outcomes. Maternal age is a major concern for aneuploidy and genetic disorders in the offspring in the context of an increasing proportion of mothers having children at increasingly older ages. A better understanding of the mechanisms associated with maternal aging leading to aneuploidy and of intervention strategies that may mitigate these detrimental effects and reduce its occurrence are essential for preventing abnormal reproductive outcomes in the human population.
Collapse
Affiliation(s)
- Myy Mikwar
- Department of Biology, Carleton University, Ottawa, Ontario, Canada; Nutrition Research Division, Health Canada, Ottawa, Ontario, Canada
| | - Amanda J MacFarlane
- Department of Biology, Carleton University, Ottawa, Ontario, Canada; Nutrition Research Division, Health Canada, Ottawa, Ontario, Canada
| | - Francesco Marchetti
- Department of Biology, Carleton University, Ottawa, Ontario, Canada; Mechanistic Studies Division, Health Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
68
|
Holton RA, Harris AM, Mukerji B, Singh T, Dia F, Berkowitz KM. CHTF18 ensures the quantity and quality of the ovarian reserve†. Biol Reprod 2020; 103:24-35. [PMID: 32219340 DOI: 10.1093/biolre/ioaa036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/29/2019] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
The number and quality of oocytes, as well as the decline in both of these parameters with age, determines reproductive potential in women. However, the underlying mechanisms of this diminution are incompletely understood. Previously, we identified novel roles for CHTF18 (Chromosome Transmission Fidelity Factor 18), a component of the conserved Replication Factor C-like complex, in male fertility and gametogenesis. Currently, we reveal crucial roles for CHTF18 in female meiosis and oocyte development. Chtf18-/- female mice are subfertile and have fewer offspring beginning at 6 months of age. Consistent with age-dependent subfertility, Chtf18-/- ovaries contain fewer follicles at all stages of folliculogenesis than wild type ovaries, but the decreases are more significant at 3 and 6 months of age. By 6 months of age, both primordial and growing ovarian follicle pools are markedly reduced to near depletion. Chromosomal synapsis in Chtf18-/- oocytes is complete, but meiotic recombination is impaired resulting in persistent DNA double-strand breaks, fewer crossovers, and early homolog disjunction during meiosis I. Consistent with poor oocyte quality, the majority of Chtf18-/- oocytes fail to progress to metaphase II following meiotic resumption and a significant percentage of those that do progress are aneuploid. Collectively, our findings indicate critical functions for CHTF18 in ensuring both the quantity and quality of the mammalian oocyte pool.
Collapse
Affiliation(s)
| | | | | | - Tanu Singh
- Department of Biochemistry and Molecular Biology
| | - Ferdusy Dia
- Department of Biochemistry and Molecular Biology
| | - Karen M Berkowitz
- Department of Biochemistry and Molecular Biology.,Department of Obstetrics and Gynecology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
69
|
Martin JH, Aitken RJ, Bromfield EG, Nixon B. DNA damage and repair in the female germline: contributions to ART. Hum Reprod Update 2020; 25:180-201. [PMID: 30541031 DOI: 10.1093/humupd/dmy040] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/27/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND DNA integrity and stability are critical determinants of cell viability. This is especially true in the female germline, wherein DNA integrity underpins successful conception, embryonic development, pregnancy and the production of healthy offspring. However, DNA is not inert; rather, it is subject to assault from various environment factors resulting in chemical modification and/or strand breakage. If structural alterations result and are left unrepaired, they have the potential to cause mutations and propagate disease. In this regard, reduced genetic integrity of the female germline ranks among the leading causes of subfertility in humans. With an estimated 10% of couples in developed countries taking recourse to ART to achieve pregnancy, the need for ongoing research into the capacity of the oocyte to detect DNA damage and thereafter initiate cell cycle arrest, apoptosis or DNA repair is increasingly more pressing. OBJECTIVE AND RATIONALE This review documents our current knowledge of the quality control mechanisms utilised by the female germline to prevent and remediate DNA damage during their development from primordial follicles through to the formation of preimplantation embryos. SEARCH METHODS The PubMed database was searched using the keywords: primordial follicle, primary follicle, secondary follicle, tertiary follicle, germinal vesical, MI, MII oocyte, zygote, preimplantation embryo, DNA repair, double-strand break and DNA damage. These keywords were combined with other phrases relevant to the topic. Literature was restricted to peer-reviewed original articles in the English language (published 1979-2018) and references within these articles were also searched. OUTCOMES In this review, we explore the quality control mechanisms utilised by the female germline to prevent, detect and remediate DNA damage. We follow the trajectory of development from the primordial follicle stage through to the preimplantation embryo, highlighting findings likely to have important implications for fertility management, age-related subfertility and premature ovarian failure. In addition, we survey the latest discoveries regarding DNA repair within the metaphase II (MII) oocyte and implicate maternal stores of endogenous DNA repair proteins and mRNA transcripts as a primary means by which they defend their genomic integrity. The collective evidence reviewed herein demonstrates that the MII oocyte can engage in the activation of major DNA damage repair pathway(s), therefore encouraging a reappraisal of the long-held paradigm that oocytes are largely refractory to DNA repair upon reaching this late stage of their development. It is also demonstrated that the zygote can exploit a number of protective strategies to mitigate the risk and/or effect the repair, of DNA damage sustained to either parental germline; affirming that DNA protection is largely a maternally driven trait but that some aspects of repair may rely on a collaborative effort between the male and female germlines. WIDER IMPLICATIONS The present review highlights the vulnerability of the oocyte to DNA damage and presents a number of opportunities for research to bolster the stringency of the oocyte's endogenous defences, with implications extending to improved diagnostics and novel therapeutic applications to alleviate the burden of infertility.
Collapse
Affiliation(s)
- Jacinta H Martin
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, Australia
| |
Collapse
|
70
|
Oocytes can efficiently repair DNA double-strand breaks to restore genetic integrity and protect offspring health. Proc Natl Acad Sci U S A 2020; 117:11513-11522. [PMID: 32381741 DOI: 10.1073/pnas.2001124117] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Female fertility and offspring health are critically dependent on an adequate supply of high-quality oocytes, the majority of which are maintained in the ovaries in a unique state of meiotic prophase arrest. While mechanisms of DNA repair during meiotic recombination are well characterized, the same is not true for prophase-arrested oocytes. Here we show that prophase-arrested oocytes rapidly respond to γ-irradiation-induced DNA double-strand breaks by activating Ataxia Telangiectasia Mutated, phosphorylating histone H2AX, and localizing RAD51 to the sites of DNA damage. Despite mobilizing the DNA repair response, even very low levels of DNA damage result in the apoptosis of prophase-arrested oocytes. However, we show that, when apoptosis is inhibited, severe DNA damage is corrected via homologous recombination repair. The repair is sufficient to support fertility and maintain health and genetic fidelity in offspring. Thus, despite the preferential induction of apoptosis following exogenously induced genotoxic stress, prophase-arrested oocytes are highly capable of functionally efficient DNA repair. These data implicate DNA repair as a key quality control mechanism in the female germ line and a critical determinant of fertility and genetic integrity.
Collapse
|
71
|
Abstract
We have previously presented a stereological analysis of organelle distribution in human prophase I oocytes. In the present study, using a similar stereological approach, we quantified the distribution of organelles in human metaphase I (MI) oocytes also retrieved after ovarian stimulation. Five MI oocytes were processed for transmission electron microscopy and a classical manual stereological technique based on point-counting with an adequate stereological grid was used. Kruskal-Wallis and Mann-Whitney U-tests with Bonferroni correction were used to compare the means of relative volumes (Vv) occupied by organelles. In all oocyte regions, the most abundant organelles were mitochondria and smooth endoplasmic reticulum (SER) elements. No significant differences were observed in Vv of mitochondria, dictyosomes, lysosomes, or SER small and medium vesicles, tubular aggregates and tubules. Significant differences were observed in other organelle distributions: cortical vesicles presented a higher Vv (P = 0.004) in the cortex than in the subcortex (0.96% vs 0.1%) or inner cytoplasm (0.96% vs 0.1%), vesicles with dense granular contents had a higher Vv (P = 0.005) in the cortex than in the subcortex (0.1% vs 0%), and SER large vesicles exhibited a higher Vv (P = 0.011) in the inner cytoplasm than in the subcortex (0.2% vs 0%). Future stereological analysis of metaphase II oocytes and a combined quantitative data of mature and immature oocytes, will enable a better understanding of oocyte organelle distribution during in vivo maturation. Combined with molecular approaches, this may help improve stimulation protocols and in vitro maturation methods.
Collapse
|
72
|
Rémillard-Labrosse G, Dean NL, Allais A, Mihajlović AI, Jin SG, Son WY, Chung JT, Pansera M, Henderson S, Mahfoudh A, Steiner N, Agapitou K, Marangos P, Buckett W, Ligeti-Ruiter J, FitzHarris G. Human oocytes harboring damaged DNA can complete meiosis I. Fertil Steril 2020; 113:1080-1089.e2. [PMID: 32276763 DOI: 10.1016/j.fertnstert.2019.12.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To determine whether human oocytes possess a checkpoint to prevent completion of meiosis I when DNA is damaged. DESIGN DNA damage is considered a major threat to the establishment of healthy eggs and embryos. Recent studies found that mouse oocytes with damaged DNA can resume meiosis and undergo germinal vesicle breakdown (GVBD), but then arrest in metaphase of meiosis I in a process involving spindle assembly checkpoint (SAC) signaling. Such a mechanism could help prevent the generation of metaphase II (MII) eggs with damaged DNA. Here, we compared the impact of DNA-damaging agents with nondamaged control samples in mouse and human oocytes. SETTING University-affiliated clinic and research center. PATIENT(S) Patients undergoing ICSI cycles donated GV-stage oocytes after informed consent; 149 human oocytes were collected over 2 years (from 50 patients aged 27-44 years). INTERVENTIONS(S) Mice and human oocytes were treated with DNA-damaging drugs. MAIN OUTCOME MEASURE(S) Oocytes were monitored to evaluate GVBD and polar body extrusion (PBE), in addition to DNA damage assessment with the use of γH2AX antibodies and confocal microscopy. RESULT(S) Whereas DNA damage in mouse oocytes delays or prevents oocyte maturation, most human oocytes harboring experimentally induced DNA damage progress through meiosis I and subsequently form an MII egg, revealing the absence of a DNA damage-induced SAC response. Analysis of the resulting MII eggs revealed damaged DNA and chaotic spindle apparatus, despite the oocyte appearing morphologically normal. CONCLUSION(S) Our data indicate that experimentally induced DNA damage does not prevent PBE in human oocytes and can persist in morphologically normal looking MII eggs.
Collapse
Affiliation(s)
| | - Nicola L Dean
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Adélaïde Allais
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Aleksandar I Mihajlović
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada; Département d'Obstétrique-Gynécologie, Université de Montréal, Montreal, Quebec, Canada
| | - Shao Guang Jin
- Reproductive Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Weon-Young Son
- Reproductive Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jin-Tae Chung
- Reproductive Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Melissa Pansera
- Reproductive Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Sara Henderson
- Reproductive Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Alina Mahfoudh
- Reproductive Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Naama Steiner
- Reproductive Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Kristy Agapitou
- Department of Applications and Technology, University of Ioannina, Ioannina, Greece; Institute of Life Fertility Unit, IASO Maternity Hospital, Athens, Greece
| | - Petros Marangos
- Department of Applications and Technology, University of Ioannina, Ioannina, Greece; Department of Biomedical Research, Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology, Ioannina, Greece
| | - William Buckett
- Reproductive Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jacob Ligeti-Ruiter
- Reproductive Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Greg FitzHarris
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada; Département d'Obstétrique-Gynécologie, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
73
|
Huang B, Ding C, Zou Q, Lu J, Wang W, Li H. Human Amniotic Fluid Mesenchymal Stem Cells Improve Ovarian Function During Physiological Aging by Resisting DNA Damage. Front Pharmacol 2020; 11:272. [PMID: 32273842 PMCID: PMC7113373 DOI: 10.3389/fphar.2020.00272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
Many studies have shown that mesenchymal stem cells have the ability to restore function in models of premature ovarian insufficiency disease, but few studies have used stem cells in the treatment of ovarian physiologic aging (OPA). This experimental study was designed to determine whether human amniotic fluid mesenchymal stem cells (hAFMSCs) have the ability to recover ovarian vitality and to determine how they function in this process. Mice (12-14 months old) were used in this study, and young fertile female mice (3-5 months old) were the control group. Ovarian markers for four stages of folliculogenesis and DNA damage genes were tested by qPCR and western blot. hAFMSCs were used to treat an OPA mouse model, and the animals treated with hAFMSCs displayed better therapeutic activity in terms of the function of the mouse ovary, increasing follicle numbers and improving hormone levels. In addition, our results demonstrated that the marker expression level in ovarian granular cells from patients with OPA was elevated significantly after hAFMSC treatment. In addition, the proliferation activity was improved, and apoptosis was dramatically inhibited after hAFMSCs were cocultured with hGCs from OPA patients. Finally, in this study, hAFMSCs were shown to increase the mRNA and protein expression levels of ovarian markers at four stages of folliculogenesis and to inhibit the expression of DNA damage genes. These works have provided insight into the view that hAFMSCs play an integral role in resisting OPA. Moreover, our present study demonstrates that hAMSCs recover ovarian function in OPA by restoring the expression of DNA damage genes.
Collapse
Affiliation(s)
- Boxian Huang
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Chenyue Ding
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Qinyan Zou
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Jiafeng Lu
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Wei Wang
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Hong Li
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| |
Collapse
|
74
|
Leem J, Bai GY, Kim JS, Oh JS. Melatonin protects mouse oocytes from DNA damage by enhancing nonhomologous end-joining repair. J Pineal Res 2019; 67:e12603. [PMID: 31370106 DOI: 10.1111/jpi.12603] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Mammalian oocytes remain arrested at the first prophase of meiosis in ovarian follicles for an extended period. During this protracted arrest, oocytes are remarkably susceptible to the accumulation of DNA damage. Melatonin (N-acetyl-5-methoxytryptamine), a hormone secreted by the pineal gland, has diverse effects on various physiological processes. However, the effect of melatonin on DNA damage response in mammalian oocytes has not been explored. Here, we showed that melatonin protected mouse oocytes from DNA damage induced by double-strand breaks (DSBs) during prophase arrest and subsequently improved oocyte quality. We found that DNA damage during prophase arrest impaired subsequent meiotic maturation and deteriorated oocyte quality, increasing chromosome fragmentation, spindle abnormality, mitochondrial aggregation, and oxidative stress. However, melatonin treatment during DNA damage accumulation at prophase improved meiotic maturation and relieved the quality decline of oocytes. In addition, melatonin inhibited the accumulation of DNA damage during prophase arrest by reducing the γ-H2AX levels. Although activated ATM levels were decreased by melatonin treatment, the effect of melatonin on DNA damage response was not a direct consequence of ATM inhibition. Instead, melatonin enhanced DNA repair via nonhomologous end-joining (NHEJ) pathway. Interestingly, these actions of melatonin on DNA damage response are receptor-independent in mouse oocytes. Therefore, our results demonstrated that melatonin protects oocytes from DNA damage during prophase arrest by enhancing DNA repair via NHEJ and subsequently prevents the deterioration of oocyte quality during meiotic maturation.
Collapse
Affiliation(s)
- Jiyeon Leem
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Guang-Yu Bai
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, Korea
| | - Jae-Sung Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jeong Su Oh
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
75
|
Abstract
Chromosome segregation errors in human oocytes lead to aneuploid embryos that cause infertility and birth defects. Here we provide an overview of the chromosome-segregation process in the mammalian oocyte, highlighting mechanistic differences between oocytes and somatic cells that render oocytes so prone to segregation error. These differences include the extremely large size of the oocyte cytoplasm, the unique geometry of meiosis-I chromosomes, idiosyncratic function of the spindle assembly checkpoint, and dramatically altered oocyte cell-cycle control and spindle assembly, as compared to typical somatic cells. We summarise recent work suggesting that aging leads to a further deterioration in fidelity of chromosome segregation by impacting multiple components of the chromosome-segregation machinery. In addition, we compare and contrast recent results from mouse and human oocytes, which exhibit overlapping defects to differing extents. We conclude that the striking propensity of the oocyte to mis-segregate chromosomes reflects the unique challenges faced by the spindle in a highly unusual cellular environment.
Collapse
Affiliation(s)
- Aleksandar I Mihajlović
- Centre Recherche CHUM and Department OBGYN, Université de Montreal, Montreal, Quebec, Canada
| | - Greg FitzHarris
- Centre Recherche CHUM and Department OBGYN, Université de Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
76
|
Zhou Q, Pham KTM, Hu H, Kurasawa Y, Li Z. A kinetochore-based ATM/ATR-independent DNA damage checkpoint maintains genomic integrity in trypanosomes. Nucleic Acids Res 2019; 47:7973-7988. [PMID: 31147720 PMCID: PMC6736141 DOI: 10.1093/nar/gkz476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/23/2019] [Accepted: 05/17/2019] [Indexed: 02/02/2023] Open
Abstract
DNA damage-induced cell cycle checkpoints serve as surveillance mechanisms to maintain genomic stability, and are regulated by ATM/ATR-mediated signaling pathways that are conserved from yeast to humans. Trypanosoma brucei, an early divergent microbial eukaryote, lacks key components of the conventional DNA damage-induced G2/M cell cycle checkpoint and the spindle assembly checkpoint, and nothing is known about how T. brucei controls its cell cycle checkpoints. Here we discover a kinetochore-based, DNA damage-induced metaphase checkpoint in T. brucei. MMS-induced DNA damage triggers a metaphase arrest by modulating the abundance of the outer kinetochore protein KKIP5 in an Aurora B kinase- and kinetochore-dependent, but ATM/ATR-independent manner. Overexpression of KKIP5 arrests cells at metaphase through stabilizing the mitotic cyclin CYC6 and the cohesin subunit SCC1, mimicking DNA damage-induced metaphase arrest, whereas depletion of KKIP5 alleviates the DNA damage-induced metaphase arrest and causes chromosome mis-segregation and aneuploidy. These findings suggest that trypanosomes employ a novel DNA damage-induced metaphase checkpoint to maintain genomic integrity.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Kieu T M Pham
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Huiqing Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Yasuhiro Kurasawa
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| |
Collapse
|
77
|
Zhou C, Zhang X, Zhang Y, ShiYang X, Li Y, Shi X, Xiong B. Vitamin C protects carboplatin-exposed oocytes from meiotic failure. Mol Hum Reprod 2019; 25:601-613. [DOI: 10.1093/molehr/gaz046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
Abstract
CBP (carboplatin) is a second-generation chemotherapeutic drug of platinum compound commonly applied in the treatment of sarcomas and germ cell tumours. Although it is developed to replace cisplatin, which has been proven to have a variety of side effects during cancer treatment, CBP still exhibits a certain degree of toxicity including neurotoxicity, nephrotoxicity, hematotoxicity and myelosuppression. However, the underlying mechanisms regarding how CBP influences the female reproductive system especially oocyte quality have not yet been fully determined. Here, we report that CBP exposure led to the oocyte meiotic defects by impairing the dynamics of the meiotic apparatus, leading to a remarkably aberrant spindle organisation, actin polymerisation and mitochondrial integrity. Additionally, CBP exposure caused compromised sperm binding and fertilisation potential of oocytes by due to an abnormal distribution of cortical granules and its component ovastacin. More importantly, we demonstrated that vitamin C supplementation prevented meiotic failure induced by CBP exposure and inhibited the increase in ROS levels, DNA damage accumulation and apoptotic incidence. Taken together, our findings demonstrate the toxic effects of CBP exposure on oocyte development and provide a potential effective way to improve the quality of CBP-exposed oocytes in vitro.
Collapse
Affiliation(s)
- Changyin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xue Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuwei Zhang
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiayan ShiYang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyan Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
78
|
The effect and mechanism of millepachine-disrupted spindle assembly in tumor cells. Anticancer Drugs 2019; 29:449-456. [PMID: 29649038 DOI: 10.1097/cad.0000000000000618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Millepachine (MIL) is a bioactive natural product that shows great potential for cancer treatment. Previous studies showed that MIL was a novel cancer drug candidate with a special structure. To provide reference for the research and development of MIL, we further investigated the mechanism of MIL inducing G2/M arrest and found MIL disrupted spindle assembly in tumor cells. In this study, we investigated the disrupting spindle assembly effects of MIL with a focus on its potential mechanism of action. First, we indicated that MIL did not inhibit microtubule polymerization from the results of in-vivo microtubule nucleation assay and microtubule polymerization in-vitro assay but delayed this process by inhibiting the production of ATP in tumor cells. Thereafter, we investigated the effect of MIL on the mitotic spindle. We found that MIL induced multipolar spindles by inhibiting the activity of Eg5 and inhibited mitotic spindle formation and chromatin condensation by the activation of the spindle assembly checkpoint (SAC) in tumor cells. These results established a novel function of MIL in regulating the assembly of mitotic spindle. As Eg5 and SAC are antitumor targets, effect of MIL on the Eg5 protein and SAC activation hinted that MIL has novel application in the development of antitumor drugs.
Collapse
|
79
|
Pacchierotti F, Masumura K, Eastmond DA, Elhajouji A, Froetschl R, Kirsch-Volders M, Lynch A, Schuler M, Tweats D, Marchetti F. Chemically induced aneuploidy in germ cells. Part II of the report of the 2017 IWGT workgroup on assessing the risk of aneugens for carcinogenesis and hereditary diseases. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 848:403023. [PMID: 31708072 DOI: 10.1016/j.mrgentox.2019.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/01/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022]
Abstract
As part of the 7th International Workshops on Genotoxicity Testing held in Tokyo, Japan in November 2017, a workgroup of experts reviewed and assessed the risk of aneugens for human health. The present manuscript is one of three manuscripts from the workgroup and reports on the unanimous consensus reached on the evidence for aneugens affecting germ cells, their mechanisms of action and role in hereditary diseases. There are 24 chemicals with strong or sufficient evidence for germ cell aneugenicity providing robust support for the ability of chemicals to induce germ cell aneuploidy. Interference with microtubule dynamics or inhibition of topoisomerase II function are clear characteristics of germ cell aneugens. Although there are mechanisms of chromosome segregation that are unique to germ cells, there is currently no evidence for germ cell-specific aneugens. However, the available data are heavily skewed toward chemicals that are aneugenic in somatic cells. Development of high-throughput screening assays in suitable animal models for exploring additional targets for aneuploidy induction, such as meiosis-specific proteins, and to prioritize chemicals for the potential to be germ cell aneugens is encouraged. Evidence in animal models support that: oocytes are more sensitive than spermatocytes and somatic cells to aneugens; exposure to aneugens leads to aneuploid conceptuses; and, the frequencies of aneuploidy are similar in germ cells and zygotes. Although aneuploidy in germ cells is a significant cause of infertility and pregnancy loss in humans, there is currently limited evidence that aneugens induce hereditary diseases in human populations because the great majority of aneuploid conceptuses die in utero. Overall, the present work underscores the importance of protecting the human population from exposure to chemicals that can induce aneuploidy in germ cells that, in contrast to carcinogenicity, is directly linked to an adverse outcome.
Collapse
Affiliation(s)
- Francesca Pacchierotti
- Health Protection Technology Division, Laboratory of Biosafety and Risk Assessment, ENEA, CR Casaccia, Rome, Italy
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, Japan
| | - David A Eastmond
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA, USA
| | - Azeddine Elhajouji
- Novartis Institutes for Biomedical Research, Preclinical Safety, Basel, Switzerland
| | | | - Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Faculty of Sciences and Bio-Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada.
| |
Collapse
|
80
|
Lane S, Kauppi L. Meiotic spindle assembly checkpoint and aneuploidy in males versus females. Cell Mol Life Sci 2019; 76:1135-1150. [PMID: 30564841 PMCID: PMC6513798 DOI: 10.1007/s00018-018-2986-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/12/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
Abstract
The production of gametes (sperm and eggs in mammals) involves two sequential cell divisions, meiosis I and meiosis II. In meiosis I, homologous chromosomes segregate to different daughter cells, and meiosis II resembles mitotic divisions in that sister chromatids separate. While in principle the process is identical in males and females, the time frame and susceptibility to chromosomal defects, including achiasmy and cohesion weakening, and the response to mis-segregating chromosomes are not. In this review, we compare and contrast meiotic spindle assembly checkpoint function and aneuploidy in the two sexes.
Collapse
Affiliation(s)
- Simon Lane
- Department of Chemistry and the Institute for Life Sciences, University of Southampton, Building 85, Highfield Campus, Southampton, SO171BJ, UK
| | - Liisa Kauppi
- Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland.
| |
Collapse
|
81
|
Cell-Size-Independent Spindle Checkpoint Failure Underlies Chromosome Segregation Error in Mouse Embryos. Curr Biol 2019; 29:865-873.e3. [PMID: 30773364 DOI: 10.1016/j.cub.2018.12.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/23/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
Abstract
Chromosome segregation errors during mammalian preimplantation development cause "mosaic" embryos comprising a mixture of euploid and aneuploid cells, which reduce the potential for a successful pregnancy [1-5], but why these errors are common is unknown. In most cells, chromosome segregation error is averted by the spindle assembly checkpoint (SAC), which prevents anaphase-promoting complex (APC/C) activation and anaphase onset until chromosomes are aligned with kinetochores attached to spindle microtubules [6, 7], but little is known about the SAC's role in the early mammalian embryo. In C. elegans, the SAC is weak in early embryos, and it strengthens during early embryogenesis as a result of progressively lessening cell size [8, 9]. Here, using live imaging, micromanipulation, gene knockdown, and pharmacological approaches, we show that this is not the case in mammalian embryos. Misaligned chromosomes in the early mouse embryo can recruit SAC components to mount a checkpoint signal, but this signal fails to prevent anaphase onset, leading to high levels of chromosome segregation error. We find that failure of the SAC to prolong mitosis is not attributable to cell size. We show that mild chemical inhibition of APC/C can extend mitosis, thereby allowing more time for correct chromosome alignment and reducing segregation errors. SAC-APC/C disconnect thus presents a mechanistic explanation for frequent chromosome segregation errors in early mammalian embryos. Moreover, our data provide proof of principle that modulation of the SAC-APC/C axis can increase the likelihood of error-free chromosome segregation in cultured mammalian embryos.
Collapse
|
82
|
Sasaki H, Hamatani T, Kamijo S, Iwai M, Kobanawa M, Ogawa S, Miyado K, Tanaka M. Impact of Oxidative Stress on Age-Associated Decline in Oocyte Developmental Competence. Front Endocrinol (Lausanne) 2019; 10:811. [PMID: 31824426 PMCID: PMC6882737 DOI: 10.3389/fendo.2019.00811] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
Abstract
Reproductive capacity in women starts to decline beyond their mid-30s and pregnancies in older women result in higher rates of miscarriage with aneuploidy. Age-related decline in fertility is strongly attributed to ovarian aging, diminished ovarian reserves, and decreased developmental competence of oocytes. In this review, we discuss the underlying mechanisms of age-related decline in oocyte quality, focusing on oxidative stress (OS) in oocytes. The primary cause is the accumulation of spontaneous damage to the mitochondria arising from increased reactive oxygen species (ROS) in oocytes, generated by the mitochondria themselves during daily biological metabolism. Mitochondrial dysfunction reduces ATP synthesis and influences the meiotic spindle assembly responsible for chromosomal segregation. Moreover, reproductively aged oocytes produce a decline in the fidelity of the protective mechanisms against ROS, namely the ROS-scavenging metabolism, repair of ROS-damaged DNA, and the proteasome and autophagy system for ROS-damaged proteins. Accordingly, increased ROS and increased vulnerability of oocytes to ROS lead to spindle instability, chromosomal abnormalities, telomere shortening, and reduced developmental competence of aged oocytes.
Collapse
Affiliation(s)
- Hiroyuki Sasaki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Toshio Hamatani
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
- *Correspondence: Toshio Hamatani
| | - Shintaro Kamijo
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Maki Iwai
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Masato Kobanawa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Seiji Ogawa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Miyado
- National Center for Child Health and Development (NCCHD), Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
83
|
Mihalas BP, Bromfield EG, Sutherland JM, De Iuliis GN, McLaughlin EA, Aitken RJ, Nixon B. Oxidative damage in naturally aged mouse oocytes is exacerbated by dysregulation of proteasomal activity. J Biol Chem 2018; 293:18944-18964. [PMID: 30305393 DOI: 10.1074/jbc.ra118.005751] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/04/2018] [Indexed: 12/13/2022] Open
Abstract
An increase in oxidative protein damage is a leading contributor to the age-associated decline in oocyte quality. By removing such damaged proteins, the proteasome plays an essential role in maintaining the fidelity of oocyte meiosis. In this study, we established that decreased proteasome activity in naturally aged, germinal vesicle (GV) mouse oocytes positively correlates with increased protein modification by the lipid aldehyde 4-hydroxynonenal (4-HNE). Furthermore, attenuation of proteasome activity in GV oocytes of young animals was accompanied by an increase in 4-HNE-modified proteins, including α-tubulin, thereby contributing to a reduction in tubulin polymerization, microtubule stability, and integrity of oocyte meiosis. A decrease in proteasome activity was also recapitulated in the GV oocytes of young animals following exposure to oxidative insults in the form of either hydrogen peroxide (H2O2) or 4-HNE. We also observed that upon oxidative insult, 4-HNE exhibits elevated adduction to multiple proteasomal subunits. Notably, the inclusion of the antioxidant penicillamine, to limit propagation of oxidative stress cascades, led to a complete recovery of proteasome activity and enhanced clearance of 4-HNE-adducted α-tubulin during a 6-h post-treatment recovery period. This strategy also proved effective in reducing the incidence of oxidative stress-induced aneuploidy following in vitro oocyte maturation, but was ineffective for naturally aged oocytes. Taken together, our results implicate proteasome dysfunction as an important factor in the accumulation of oxidatively induced protein damage in the female germline. This discovery holds promise for the design of therapeutic interventions to address the age-dependent decline in oocyte quality.
Collapse
Affiliation(s)
- Bettina P Mihalas
- From the Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia and
| | - Elizabeth G Bromfield
- From the Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia and
| | - Jessie M Sutherland
- From the Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia and
| | - Geoffry N De Iuliis
- From the Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia and
| | - Eileen A McLaughlin
- From the Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia and.,the School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - R John Aitken
- From the Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia and
| | - Brett Nixon
- From the Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia and
| |
Collapse
|
84
|
Manil-Ségalen M, Łuksza M, Kanaan J, Marthiens V, Lane SIR, Jones KT, Terret ME, Basto R, Verlhac MH. Chromosome structural anomalies due to aberrant spindle forces exerted at gene editing sites in meiosis. J Cell Biol 2018; 217:3416-3430. [PMID: 30082296 PMCID: PMC6168266 DOI: 10.1083/jcb.201806072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 01/17/2023] Open
Abstract
Acentrosomal spindle assembly in mouse oocytes depends on chromosomes and acentriolar microtubule-organizing centers (aMTOCs). Manil-Ségalen et al. observe that Plk4-induced perturbation of aMTOCs coupled to Cre-mediated gene editing generates fragile chromosomes that break when subjected to forces exerted by altered meiosis I spindles. Mouse female meiotic spindles assemble from acentriolar microtubule-organizing centers (aMTOCs) that fragment into discrete foci. These are further sorted and clustered to form spindle poles, thus providing balanced forces for faithful chromosome segregation. To assess the impact of aMTOC biogenesis on spindle assembly, we genetically induced their precocious fragmentation in mouse oocytes using conditional overexpression of Plk4, a master microtubule-organizing center regulator. Excessive microtubule nucleation from these fragmented aMTOCs accelerated spindle assembly dynamics. Prematurely formed spindles promoted the breakage of three different fragilized bivalents, generated by the presence of recombined Lox P sites. Reducing the density of microtubules significantly diminished the extent of chromosome breakage. Thus, improper spindle forces can lead to widely described yet unexplained chromosomal structural anomalies with disruptive consequences on the ability of the gamete to transmit an uncorrupted genome.
Collapse
Affiliation(s)
- Marion Manil-Ségalen
- Collège de France, Centre for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM-U1050, Paris, France
| | - Małgorzata Łuksza
- Collège de France, Centre for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM-U1050, Paris, France
| | - Joanne Kanaan
- Collège de France, Centre for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM-U1050, Paris, France
| | - Véronique Marthiens
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| | - Simon I R Lane
- Biological Science, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Keith T Jones
- Biological Science, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Marie-Emilie Terret
- Collège de France, Centre for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM-U1050, Paris, France
| | - Renata Basto
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| | - Marie-Hélène Verlhac
- Collège de France, Centre for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM-U1050, Paris, France
| |
Collapse
|
85
|
Martin JH, Bromfield EG, Aitken RJ, Lord T, Nixon B. Double Strand Break DNA Repair occurs via Non-Homologous End-Joining in Mouse MII Oocytes. Sci Rep 2018; 8:9685. [PMID: 29946146 PMCID: PMC6018751 DOI: 10.1038/s41598-018-27892-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022] Open
Abstract
The unique biology of the oocyte means that accepted paradigms for DNA repair and protection are not of direct relevance to the female gamete. Instead, preservation of the integrity of the maternal genome depends on endogenous protein stores and/or mRNA transcripts accumulated during oogenesis. The aim of this study was to determine whether mature (MII) oocytes have the capacity to detect DNA damage and subsequently mount effective repair. For this purpose, DNA double strand breaks (DSB) were elicited using the topoisomerase II inhibitor, etoposide (ETP). ETP challenge led to a rapid and significant increase in DSB (P = 0.0002) and the consequential incidence of metaphase plate abnormalities (P = 0.0031). Despite this, ETP-treated MII oocytes retained their ability to participate in in vitro fertilisation, though displayed reduced developmental competence beyond the 2-cell stage (P = 0.02). To account for these findings, we analysed the efficacy of DSB resolution, revealing a significant reduction in DSB lesions 4 h post-ETP treatment. Notably, this response was completely abrogated by pharmacological inhibition of key elements (DNA-PKcs and DNA ligase IV) of the canonical non-homologous end joining DNA repair pathway, thus providing the first evidence implicating this reparative cascade in the protection of the maternal genome.
Collapse
Affiliation(s)
- Jacinta H Martin
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia. .,Preganancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Preganancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Preganancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Tessa Lord
- School of Molecular Biosciences, Centre for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Preganancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
86
|
Regulation of the meiotic divisions of mammalian oocytes and eggs. Biochem Soc Trans 2018; 46:797-806. [PMID: 29934303 PMCID: PMC6103459 DOI: 10.1042/bst20170493] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/28/2022]
Abstract
Initiated by luteinizing hormone and finalized by the fertilizing sperm, the mammalian oocyte completes its two meiotic divisions. The first division occurs in the mature Graafian follicle during the hours preceding ovulation and culminates in an extreme asymmetric cell division and the segregation of the two pairs of homologous chromosomes. The newly created mature egg rearrests at metaphase of the second meiotic division prior to ovulation and only completes meiosis following a Ca2+ signal initiated by the sperm at gamete fusion. Here, we review the cellular events that govern the passage of the oocyte through meiosis I with a focus on the role of the spindle assembly checkpoint in regulating its timing. In meiosis II, we examine how the egg achieves its arrest and how the fertilization Ca2+ signal allows the initiation of embryo development.
Collapse
|
87
|
He DJ, Wang L, Zhang ZB, Guo K, Li JZ, He XC, Cui QH, Zheng P. Maternal gene Ooep may participate in homologous recombination-mediated DNA double-strand break repair in mouse oocytes. Zool Res 2018; 39:387-395. [PMID: 29955025 PMCID: PMC6085769 DOI: 10.24272/j.issn.2095-8137.2018.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
DNA damage in oocytes can cause infertility and birth defects. DNA double-strand breaks (DSBs) are highly deleterious and can substantially impair genome integrity. Homologous recombination (HR)-mediated DNA DSB repair plays dominant roles in safeguarding oocyte quantity and quality. However, little is known regarding the key players of the HR repair pathway in oocytes. Here, we identified oocyte-specific gene Ooep as a novel key component of the HR repair pathway in mouse oocytes. OOEP was required for efficient ataxia telangiectasia mutated (ATM) kinase activation and Rad51 recombinase (RAD51) focal accumulation at DNA DSBs. Ooep null oocytes were defective in DNA DSB repair and prone to apoptosis upon exogenous DNA damage insults. Moreover, Ooep null oocytes exhibited delayed meiotic maturation. Therefore, OOEP played roles in preserving oocyte quantity and quality by maintaining genome stability. Ooep expression decreased with the advance of maternal age, suggesting its involvement in maternal aging.
Collapse
Affiliation(s)
- Da-Jian He
- Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; E-mail:.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan, 650204, China
| | - Lin Wang
- Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; E-mail:
| | - Zhi-Bi Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming Yunnan 650091, China; E-mail:
| | - Kun Guo
- Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; E-mail:
| | - Jing-Zheng Li
- Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; E-mail:
| | - Xie-Chao He
- Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; E-mail:
| | - Qing-Hua Cui
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming Yunnan 650091, China; E-mail:
| | - Ping Zheng
- Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; E-mail:
| |
Collapse
|
88
|
Winship AL, Stringer JM, Liew SH, Hutt KJ. The importance of DNA repair for maintaining oocyte quality in response to anti-cancer treatments, environmental toxins and maternal ageing. Hum Reprod Update 2018; 24:119-134. [PMID: 29377997 DOI: 10.1093/humupd/dmy002] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/05/2017] [Accepted: 01/14/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Within the ovary, oocytes are stored in long-lived structures called primordial follicles, each comprising a meiotically arrested oocyte, surrounded by somatic granulosa cells. It is essential that their genetic integrity is maintained throughout life to ensure that high quality oocytes are available for ovulation. Of all the possible types of DNA damage, DNA double-strand breaks (DSBs) are considered to be the most severe. Recent studies have shown that DNA DSBs can accumulate in oocytes in primordial follicles during reproductive ageing, and are readily induced by exogenous factors such as γ-irradiation, chemotherapy and environmental toxicants. DSBs can induce oocyte death or, alternatively, activate a program of DNA repair in order to restore genetic integrity and promote survival. The repair of DSBs has been intensively studied in the context of meiotic recombination, and in recent years more detail is becoming available regarding the repair capabilities of primordial follicle oocytes. OBJECTIVE AND RATIONALE This review discusses the induction and repair of DNA DSBs in primordial follicle oocytes. SEARCH METHODS PubMed (Medline) and Google Scholar searches were performed using the key words: primordial follicle oocyte, DNA repair, double-strand break, DNA damage, chemotherapy, radiotherapy, ageing, environmental toxicant. The literature was restricted to papers in the English language and limited to reports in animals and humans dated from 1964 until 2017. The references within these articles were also manually searched. OUTCOMES Recent experiments in animal models and humans have provided compelling evidence that primordial follicle oocytes can efficiently repair DNA DSBs arising from diverse origins, but this capacity may decline with increasing age. WIDER IMPLICATIONS Primordial follicle oocytes are vulnerable to DNA DSBs emanating from endogenous and exogenous sources. The ability to repair this damage is essential for female fertility. In the long term, augmenting DNA repair in primordial follicle oocytes has implications for the development of novel fertility preservation agents for female cancer patients and for the management of maternal ageing. However, further work is required to fully characterize the specific proteins involved and to develop strategies to bolster their activity.
Collapse
Affiliation(s)
- Amy L Winship
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Jessica M Stringer
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Seng H Liew
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Karla J Hutt
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
89
|
Nakagawa S, FitzHarris G. Quantitative Microinjection of Morpholino Antisense Oligonucleotides into Mouse Oocytes to Examine Gene Function in Meiosis-I. Methods Mol Biol 2018; 1457:217-30. [PMID: 27557584 DOI: 10.1007/978-1-4939-3795-0_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Specific protein depletion is a powerful approach for assessing individual gene function in cellular processes, and has been extensively employed in recent years in mammalian oocyte meiosis-I. Conditional knockout mice and RNA interference (RNAi) methods such as siRNA or dsRNA microinjection are among several approaches to have been applied in this system over the past decade. RNAi by microinjection of Morpholino antisense Oligonucleotides (MO), in particular, has proven highly popular and tractable in many studies, since MOs have high specificity of interaction, low cell toxicity, and are more stable than other microinjected RNAi molecules. Here, we describe a method of MO microinjection into the mouse germinal vesicle-stage (GV) oocyte followed by a simple immunofluorescence approach for examination of gene function in meiosis-I.
Collapse
Affiliation(s)
- Shoma Nakagawa
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 Rue St. Denis, Montreal, QC, Canada, H2X 0A9
| | - Greg FitzHarris
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 Rue St. Denis, Montreal, QC, Canada, H2X 0A9. .,Department of Obstetrics and Gynecology, Université de Montréal, 3175, Ch. Côte-Sainte-Catherine, Montréal, QC, Canada, H3T 1C5.
| |
Collapse
|
90
|
Vázquez-Diez C, FitzHarris G. Causes and consequences of chromosome segregation error in preimplantation embryos. Reproduction 2018; 155:R63-R76. [DOI: 10.1530/rep-17-0569] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/19/2017] [Accepted: 11/06/2017] [Indexed: 01/04/2023]
Abstract
Errors in chromosome segregation are common during the mitotic divisions of preimplantation development in mammalian embryos, giving rise to so-called ‘mosaic’ embryos possessing a mixture of euploid and aneuploid cells. Mosaicism is widely considered to be detrimental to embryo quality and is frequently used as criteria to select embryos for transfer in human fertility clinics. However, despite the clear clinical importance, the underlying defects in cell division that result in mosaic aneuploidy remain elusive. In this review, we summarise recent findings from clinical and animal model studies that provide new insights into the fundamental mechanisms of chromosome segregation in the highly unusual cellular environment of early preimplantation development and consider recent clues as to why errors should commonly occur in this setting. We furthermore discuss recent evidence suggesting that mosaicism is not an irrevocable barrier to a healthy pregnancy. Understanding the causes and biological impacts of mosaic aneuploidy will be pivotal in the development and fine-tuning of clinical embryo selection methods.
Collapse
|
91
|
Greaney J, Wei Z, Homer H. Regulation of chromosome segregation in oocytes and the cellular basis for female meiotic errors. Hum Reprod Update 2017; 24:135-161. [PMID: 29244163 DOI: 10.1093/humupd/dmx035] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/12/2017] [Accepted: 11/26/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Meiotic chromosome segregation in human oocytes is notoriously error-prone, especially with ageing. Such errors markedly reduce the reproductive chances of increasing numbers of women embarking on pregnancy later in life. However, understanding the basis for these errors is hampered by limited access to human oocytes. OBJECTIVE AND RATIONALE Important new discoveries have arisen from molecular analyses of human female recombination and aneuploidy along with high-resolution analyses of human oocyte maturation and mouse models. Here, we review these findings to provide a contemporary picture of the key players choreographing chromosome segregation in mammalian oocytes and the cellular basis for errors. SEARCH METHODS A search of PubMed was conducted using keywords including meiosis, oocytes, recombination, cohesion, cohesin complex, chromosome segregation, kinetochores, spindle, aneuploidy, meiotic cell cycle, spindle assembly checkpoint, anaphase-promoting complex, DNA damage, telomeres, mitochondria, female ageing and female fertility. We extracted papers focusing on mouse and human oocytes that best aligned with the themes of this review and that reported transformative and novel discoveries. OUTCOMES Meiosis incorporates two sequential rounds of chromosome segregation executed by a spindle whose component microtubules bind chromosomes via kinetochores. Cohesion mediated by the cohesin complex holds chromosomes together and should be resolved at the appropriate time, in a specific step-wise manner and in conjunction with meiotically programmed kinetochore behaviour. In women, the stage is set for meiotic error even before birth when female-specific crossover maturation inefficiency leads to the formation of at-risk recombination patterns. In adult life, multiple co-conspiring factors interact with at-risk crossovers to increase the likelihood of mis-segregation. Available evidence support that these factors include, but are not limited to, cohesion deterioration, uncoordinated sister kinetochore behaviour, erroneous microtubule attachments, spindle instability and structural chromosomal defects that impact centromeres and telomeres. Data from mice indicate that cohesin and centromere-specific histones are long-lived proteins in oocytes. Since these proteins are pivotal for chromosome segregation, but lack any obvious renewal pathway, their deterioration with age provides an appealing explanation for at least some of the problems in older oocytes. WIDER IMPLICATIONS Research in the mouse model has identified a number of candidate genes and pathways that are important for chromosome segregation in this species. However, many of these have not yet been investigated in human oocytes so it is uncertain at this stage to what extent they apply to women. The challenge for the future involves applying emerging knowledge of female meiotic molecular regulation towards improving clinical fertility management.
Collapse
Affiliation(s)
- Jessica Greaney
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| | - Zhe Wei
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| | - Hayden Homer
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| |
Collapse
|
92
|
Molecular Mechanisms Responsible for Increased Vulnerability of the Ageing Oocyte to Oxidative Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4015874. [PMID: 29312475 PMCID: PMC5664291 DOI: 10.1155/2017/4015874] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/03/2017] [Indexed: 12/23/2022]
Abstract
In their midthirties, women experience a decline in fertility, coupled to a pronounced increase in the risk of aneuploidy, miscarriage, and birth defects. Although the aetiology of such pathologies are complex, a causative relationship between the age-related decline in oocyte quality and oxidative stress (OS) is now well established. What remains less certain are the molecular mechanisms governing the increased vulnerability of the aged oocyte to oxidative damage. In this review, we explore the reduced capacity of the ageing oocyte to mitigate macromolecular damage arising from oxidative insults and highlight the dramatic consequences for oocyte quality and female fertility. Indeed, while oocytes are typically endowed with a comprehensive suite of molecular mechanisms to moderate oxidative damage and thus ensure the fidelity of the germline, there is increasing recognition that the efficacy of such protective mechanisms undergoes an age-related decline. For instance, impaired reactive oxygen species metabolism, decreased DNA repair, reduced sensitivity of the spindle assembly checkpoint, and decreased capacity for protein repair and degradation collectively render the aged oocyte acutely vulnerable to OS and limits their capacity to recover from exposure to such insults. We also highlight the inadequacies of our current armoury of assisted reproductive technologies to combat age-related female infertility, emphasising the need for further research into mechanisms underpinning the functional deterioration of the ageing oocyte.
Collapse
|
93
|
Capalbo A, Hoffmann ER, Cimadomo D, Maria Ubaldi F, Rienzi L. Human female meiosis revised: new insights into the mechanisms of chromosome segregation and aneuploidies from advanced genomics and time-lapse imaging. Hum Reprod Update 2017; 23:706-722. [DOI: 10.1093/humupd/dmx026] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/11/2017] [Indexed: 12/14/2022] Open
|
94
|
Lane SIR, Morgan SL, Wu T, Collins JK, Merriman JA, ElInati E, Turner JM, Jones KT. DNA damage induces a kinetochore-based ATM/ATR-independent SAC arrest unique to the first meiotic division in mouse oocytes. Development 2017; 144:3475-3486. [PMID: 28851706 PMCID: PMC5665484 DOI: 10.1242/dev.153965] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/18/2017] [Indexed: 12/31/2022]
Abstract
Mouse oocytes carrying DNA damage arrest in meiosis I, thereby preventing creation of embryos with deleterious mutations. The arrest is dependent on activation of the spindle assembly checkpoint, which results in anaphase-promoting complex (APC) inhibition. However, little is understood about how this checkpoint is engaged following DNA damage. Here, we find that within minutes of DNA damage checkpoint proteins are assembled at the kinetochore, not at damage sites along chromosome arms, such that the APC is fully inhibited within 30 min. Despite this robust response, there is no measurable loss in k-fibres, or tension across the bivalent. Through pharmacological inhibition we observed that the response is dependent on Mps1 kinase, aurora kinase and Haspin. Using oocyte-specific knockouts we find the response does not require the DNA damage response kinases ATM or ATR. Furthermore, checkpoint activation does not occur in response to DNA damage in fully mature eggs during meiosis II, despite the divisions being separated by just a few hours. Therefore, mouse oocytes have a unique ability to sense DNA damage rapidly by activating the checkpoint at their kinetochores.
Collapse
Affiliation(s)
- Simon I R Lane
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Stephanie L Morgan
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Tianyu Wu
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Josie K Collins
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Julie A Merriman
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Elias ElInati
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - James M Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Keith T Jones
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
95
|
The lipid peroxidation product 4-hydroxynonenal contributes to oxidative stress-mediated deterioration of the ageing oocyte. Sci Rep 2017; 7:6247. [PMID: 28740075 PMCID: PMC5524799 DOI: 10.1038/s41598-017-06372-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022] Open
Abstract
An increase in intraovarian reactive oxygen species (ROS) has long been implicated in the decline in oocyte quality associated with maternal ageing. Oxidative stress (OS)-induced lipid peroxidation and the consequent generation of highly electrophilic aldehydes, such as 4-hydroxynonenal (4-HNE), represents a potential mechanism by which ROS can inflict damage in the ageing oocyte. In this study, we have established that aged oocytes are vulnerable to damage by 4-HNE resulting from increased cytosolic ROS production within the oocyte itself. Further, we demonstrated that the age-related induction of OS can be recapitulated by exposure of germinal vesicle (GV) oocytes to exogenous H2O2. Such treatments stimulated an increase in 4-HNE generation, which remained elevated during in vitro oocyte maturation to metaphase II. Additionally, exposure of GV oocytes to either H2O2 or 4-HNE resulted in decreased meiotic completion, increased spindle abnormalities, chromosome misalignments and aneuploidy. In seeking to account for these data, we revealed that proteins essential for oocyte health and meiotic development, namely α-, β-, and γ-tubulin are vulnerable to adduction via 4-HNE. Importantly, 4-HNE-tubulin adduction, as well as increased aneuploidy rates, were resolved by co-treatment with the antioxidant penicillamine, demonstrating a possible therapeutic mechanism to improve oocyte quality in older females.
Collapse
|
96
|
Hu X, Shen B, Liao S, Ning Y, Ma L, Chen J, Lin X, Zhang D, Li Z, Zheng C, Feng Y, Huang X, Han C. Gene knockout of Zmym3 in mice arrests spermatogenesis at meiotic metaphase with defects in spindle assembly checkpoint. Cell Death Dis 2017; 8:e2910. [PMID: 28661483 PMCID: PMC5520888 DOI: 10.1038/cddis.2017.228] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 01/06/2023]
Abstract
ZMYM3, a member of the MYM-type zinc finger protein family and a component of a LSD1-containing transcription repressor complex, is predominantly expressed in the mouse brain and testis. Here, we show that ZMYM3 in the mouse testis is expressed in somatic cells and germ cells until pachytene spermatocytes. Knockout (KO) of Zmym3 in mice using the CRISPR-Cas9 system resulted in adult male infertility. Spermatogenesis of the KO mice was arrested at the metaphase of the first meiotic division (MI). ZMYM3 co-immunoprecipitated with LSD1 in spermatogonial stem cells, but its KO did not change the levels of LSD1 or H3K4me1/2 or H3K9me2. However, Zmym3 KO resulted in elevated numbers of apoptotic germ cells and of MI spermatocytes that are positive for BUB3, which is a key player in spindle assembly checkpoint. Zmym3 KO also resulted in up-regulated expression of meiotic genes in spermatogonia. These results show that ZMYM3 has an essential role in metaphase to anaphase transition during mouse spermatogenesis by regulating the expression of diverse families of genes.
Collapse
Affiliation(s)
- Xiangjing Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Shangying Liao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Ning
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longfei Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Daoqin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunwei Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanmin Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Xingxu Huang
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
97
|
Maternal age-dependent APC/C-mediated decrease in securin causes premature sister chromatid separation in meiosis II. Nat Commun 2017; 8:15346. [PMID: 28516917 PMCID: PMC5454377 DOI: 10.1038/ncomms15346] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 03/21/2017] [Indexed: 12/27/2022] Open
Abstract
Sister chromatid attachment during meiosis II (MII) is maintained by securin-mediated inhibition of separase. In maternal ageing, oocytes show increased inter-sister kinetochore distance and premature sister chromatid separation (PSCS), suggesting aberrant separase activity. Here, we find that MII oocytes from aged mice have less securin than oocytes from young mice and that this reduction is mediated by increased destruction by the anaphase promoting complex/cyclosome (APC/C) during meiosis I (MI) exit. Inhibition of the spindle assembly checkpoint (SAC) kinase, Mps1, during MI exit in young oocytes replicates this phenotype. Further, over-expression of securin or Mps1 protects against the age-related increase in inter-sister kinetochore distance and PSCS. These findings show that maternal ageing compromises the oocyte SAC–APC/C axis leading to a decrease in securin that ultimately causes sister chromatid cohesion loss. Manipulating this axis and/or increasing securin may provide novel therapeutic approaches to alleviating the risk of oocyte aneuploidy in maternal ageing. Sister chromatid cohesion during meiosis II (MII), maintained by securin-mediated inhibition of separase, is reduced in aged mouse oocytes. Here the authors show that, in MII oocytes, securin levels are reduced by increased destruction by the anaphase promoting complex/cyclosome.
Collapse
|
98
|
Sun MH, Yang M, Xie FY, Wang W, Zhang L, Shen W, Yin S, Ma JY. DNA Double-Strand Breaks Induce the Nuclear Actin Filaments Formation in Cumulus-Enclosed Oocytes but Not in Denuded Oocytes. PLoS One 2017; 12:e0170308. [PMID: 28099474 PMCID: PMC5242499 DOI: 10.1371/journal.pone.0170308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/02/2017] [Indexed: 01/21/2023] Open
Abstract
As a gamete, oocyte needs to maintain its genomic integrity and passes this haploid genome to the next generation. However, fully-grown mouse oocyte cannot respond to DNA double-strand breaks (DSBs) effectively and it is also unable to repair them before the meiosis resumption. To compensate for this disadvantage and control the DNA repair events, oocyte needs the cooperation with its surrounding cumulus cells. Recently, evidences have shown that nuclear actin filament formation plays roles in cellular DNA DSB repair. To explore whether these nuclear actin filaments are formed in the DNA-damaged oocytes, here, we labeled the filament actins in denuded oocytes (DOs) and cumulus-enclosed oocytes (CEOs). We observed that the nuclear actin filaments were formed only in the DNA-damaged CEOs, but not in DOs. Formation of actin filaments in the nucleus was an event downstream to the DNA damage response. Our data also showed that the removal of cumulus cells led to a reduction in the nuclear actin filaments in oocytes. Knocking down of the Adcy1 gene in cumulus cells did not affect the formation of nuclear actin filaments in oocytes. Notably, we also observed that the nuclear actin filaments in CEOs could be induced by inhibition of gap junctions. From our results, it was confirmed that DNA DSBs induce the nuclear actin filament formation in oocyte and which is controlled by the cumulus cells.
Collapse
Affiliation(s)
- Ming-Hong Sun
- College of Animal Science and Technology, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Mo Yang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Feng-Yun Xie
- College of Animal Science and Technology, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Wei Wang
- College of Animal Science and Technology, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Lili Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- College of Animal Science and Technology, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
- Institute of Reproductive Science, Qingdao Agricultural University, Qingdao, China
| | - Shen Yin
- College of Animal Science and Technology, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
- Institute of Reproductive Science, Qingdao Agricultural University, Qingdao, China
| | - Jun-Yu Ma
- College of Animal Science and Technology, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
- Institute of Reproductive Science, Qingdao Agricultural University, Qingdao, China
- * E-mail:
| |
Collapse
|
99
|
The sensitivity of the DNA damage checkpoint prevents oocyte maturation in endometriosis. Sci Rep 2016; 6:36994. [PMID: 27841311 PMCID: PMC5107963 DOI: 10.1038/srep36994] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/20/2016] [Indexed: 12/17/2022] Open
Abstract
Mouse oocytes respond to DNA damage by arresting in meiosis I through activity of the Spindle Assembly Checkpoint (SAC) and DNA Damage Response (DDR) pathways. It is currently not known if DNA damage is the primary trigger for arrest, or if the pathway is sensitive to levels of DNA damage experienced physiologically. Here, using follicular fluid from patients with the disease endometriosis, which affects 10% of women and is associated with reduced fertility, we find raised levels of Reactive Oxygen Species (ROS), which generate DNA damage and turn on the DDR-SAC pathway. Only follicular fluid from patients with endometriosis, and not controls, produced ROS and damaged DNA in the oocyte. This activated ATM kinase, leading to SAC mediated metaphase I arrest. Completion of meiosis I could be restored by ROS scavengers, showing this is the primary trigger for arrest and offering a novel clinical therapeutic treatment. This study establishes a clinical relevance to the DDR induced SAC in oocytes. It helps explain how oocytes respond to a highly prevalent human disease and the reduced fertility associated with endometriosis.
Collapse
|
100
|
Environmental Enrichment Therapy for Autism: Outcomes with Increased Access. Neural Plast 2016; 2016:2734915. [PMID: 27721995 PMCID: PMC5046013 DOI: 10.1155/2016/2734915] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/20/2016] [Accepted: 08/23/2016] [Indexed: 01/24/2023] Open
Abstract
We have previously shown in two randomized clinical trials that environmental enrichment is capable of ameliorating symptoms of autism spectrum disorder (ASD), and in the present study, we determined whether this therapy could be effective under real-world circumstances. 1,002 children were given daily Sensory Enrichment Therapy, by their parents, using personalized therapy instructions given over the Internet. Parents were asked to assess the symptoms of their child every 2 weeks for up to 7 months. An intention-to-treat analysis showed significant overall gains for a wide range of symptoms in these children, including learning, memory, anxiety, attention span, motor skills, eating, sleeping, sensory processing, self-awareness, communication, social skills, and mood/autism behaviors. The children of compliant caregivers were more likely to experience a significant improvement in their symptoms. The treatment was effective across a wide age range and there was equal progress reported for males and females, for USA and international subjects, for those who paid and those who did not pay for the therapy, and for individuals at all levels of initial symptom severity. Environmental enrichment, delivered via an online system, therefore appears to be an effective, low-cost means of treating the symptoms of ASD.
Collapse
|