51
|
Chen J, Zhu Q, Li L, Xue Z. Celiac disease and attention-deficit/hyperactivity disorder: a bidirectional Mendelian randomization analysis. Front Psychiatry 2024; 15:1291096. [PMID: 38868492 PMCID: PMC11167073 DOI: 10.3389/fpsyt.2024.1291096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Recent observational research suggests a potential link between celiac disease (CeD) and an increased incidence of attention-deficit/hyperactivity disorder (ADHD). However, the genetic relationship between CeD and ADHD remains unclear. In order to assess the potential genetic causality between these two conditions, we conducted a Mendelian randomization (MR) analysis. METHODS We performed a bidirectional MR analysis to investigate the relationship between CeD and ADHD. We carefully selected single nucleotide polymorphisms (SNPs) from publicly available large-scale genome-wide association studies (GWAS) databases, employing rigorous quality screening criteria. MR estimates were obtained using four different methods: fixed-effect inverse variance weighted (fe-IVW), random-effect inverse variance weighting (re-IVW), weighted median (WM), and MR-Egger. The robustness and reliability of our findings were confirmed through sensitivity analyses, assessment of instrumental variable (IV) strength (F-statistic), and statistical power calculations. RESULTS Our MR analyses did not reveal any significant genetic associations between CeD and ADHD (fe-IVW: OR = 1.003, 95% CI = 0.932-1.079, P = 0.934). Similarly, in the reverse direction analysis, we found no evidence supporting a genetic relationship between ADHD and CeD (fe-IVW: OR = 0.850, 95% CI = 0.591-1.221, P = 0.378). Various MR approaches consistently yielded similar results. Sensitivity analysis indicated the absence of significant horizontal pleiotropy or heterogeneity. However, it's important to note that the limited statistical power of our study may have constrained the causal analysis of the exposure's influence on the outcome. CONCLUSIONS Our findings do not provide compelling evidence for a genetic association between CeD and ADHD within the European population. While the statistical power of our study was limited, future MR research could benefit from larger-scale datasets or datasets involving similar traits. To validate our results in real-world scenarios, further mechanistic studies, large-sample investigations, multicenter collaborations, and longitudinal studies are warranted.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiaozhen Zhu
- Infection and Immunity Institute and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Lan Li
- Department of Pediatrics, The first affiliated hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng Xue
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
52
|
Yang J, Lin W, Ma Y, Song H, Mu C, Wu Q, Han C, Zhang J, Liu X. Investigation of the causal association between Parkinson's disease and autoimmune disorders: a bidirectional Mendelian randomization study. Front Immunol 2024; 15:1370831. [PMID: 38774879 PMCID: PMC11106379 DOI: 10.3389/fimmu.2024.1370831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/24/2024] [Indexed: 05/24/2024] Open
Abstract
Background To date, an increasing number of epidemiological evidence has pointed to potential relationships between Parkinson's disease (PD) and various autoimmune diseases (AIDs), however, no definitive conclusions has been drawn about whether PD is causally related to AIDs risk. Methods By employing summary statistics from the latest and most extensive genome-wide association studies (GWAS), we performed a bidirectional two-sample Mendelian randomization (MR) analysis to investigate the causal associations between PD and a variety of 17 AIDs, encompassing multiple sclerosis, neuromyelitis optica spectrum disorder, myasthenia gravis, asthma, inflammatory bowel disease, Crohn's disease, ulcerative colitis, irritable bowel syndrome, celiac disease, primary biliary cirrhosis, primary sclerosing cholangitis, type 1 diabetes, ankylosing spondylitis, rheumatoid arthritis, systemic lupus erythematosus, psoriasis and vitiligo. Inverse-variance weighted (IVW) was adopted as the main statistical approach to obtain the causal estimates of PD on different AIDs, supplemented by a series of complementary analyses (weighted median, MR Egger regression, and MR-PRESSO) for further strengthening the robustness of results. Results Our MR findings suggested that genetically predicted higher liability to PD was causally associated with a decreased risk of irritable bowel syndrome (OR = 0.98; 95% CI: 0.96-0.99; P = 0.032). On the contrary, IVW analysis showed a potential positive correlation between genetically determined PD and the incidence of type 1 diabetes (OR = 1.10; 95%CI: 1.02-1.19; P = 0.010). Subsequent MR tests ended up in similar results, confirming our findings were reliable. Additionally, in the reverse MR analyses, we did not identify any evidence to support the causal relationship of genetic predisposition to AIDs with PD susceptibility. Conclusion In general, a bifunctional role that PD exerted on the risk of developing AIDs was detected in our studies, both protecting against irritable bowel syndrome occurrence and raising the incidence of type 1 diabetes. Future studies, including population-based observational studies and molecular experiments in vitro and in vivo, are warranted to validate the results of our MR analyses and refine the underlying pathological mechanisms involved in PD-AIDs associations.
Collapse
Affiliation(s)
- Junyi Yang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weiran Lin
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the People's Republic of China, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of the People's Republic of China, China Medical University, Shenyang, Liaoning, China
- Department of Laboratory Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Yumei Ma
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hui Song
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the People's Republic of China, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of the People's Republic of China, China Medical University, Shenyang, Liaoning, China
| | - Changqing Mu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chen Han
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the People's Republic of China, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of the People's Republic of China, China Medical University, Shenyang, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
53
|
Orenay-Boyacioglu S, Dogan G, Caliskan M, Uzuner EG. Autoimmunity-related LINC01934 and AP002954.4 lncRNA polymorphisms may be effective in pediatric celiac disease: a case-control study. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20231490. [PMID: 38716950 PMCID: PMC11068376 DOI: 10.1590/1806-9282.20231490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 05/12/2024]
Abstract
OBJECTIVE Various studies have reported that certain long non-coding RNA levels are unusually low in the intestines of celiac disease patients, suggesting that this may be associated with the inflammation observed in celiac disease. Despite these studies, the research aimed at uncovering the potential role of long non-coding RNAs in the pathogenesis of autoimmune diseases like celiac disease remains insufficient. Therefore, in this study, we plan to assess long non-coding RNA polymorphisms associated with autoimmunity in children diagnosed with celiac disease according to the European Society for Paediatric Gastroenterology Hepatology and Nutrition criteria. METHODS DNA was isolated from paraffin tissue samples of 88 pediatric celiac disease patients and 74 healthy pediatric individuals. Single-nucleotide polymorphism genotyping of five long non-coding RNA polymorphisms associated with autoimmunity (LINC01934-rs1018326, IL18RAP-rs917997, AP002954.4-rs10892258, UQCRC2P1-rs6441961, and HCG14 rs3135316) was conducted using the TaqMan single-nucleotide polymorphism genotyping assays with the LightCycler 480. RESULTS In our study, the genotypic and allelic frequency distribution of LINC01934-rs1018326 and AP002954.4-rs10892258 polymorphisms was found to be statistically significant in the comparison between the two groups (p<0.05). According to the multiple genetic model analyses, the LINC01934-rs1018326 polymorphism was observed to confer a 1.14-fold risk in the recessive model and a 1.2-fold risk in the additive model for pediatric celiac disease. Similarly, the AP002954.4-rs10892258 polymorphism was found to pose a 1.40-fold risk in the dominant model and a 1.7-fold risk in the additive model. CONCLUSION Our study results draw attention to the LINC01934-rs1018326 and AP002954.4-rs10892258 polymorphisms in celiac disease and suggest that these polymorphisms may be associated with inflammation in autoimmune diseases like celiac disease.
Collapse
Affiliation(s)
- Seda Orenay-Boyacioglu
- Aydın Adnan Menderes University, Faculty of Medicine, Department of Medical Genetics, – Aydın, Turkey
| | - Guzide Dogan
- Haseki Education Research Hospital, Department of Pediatric Gastroenterology – İstanbul, Turkey
- Biruni University, Faculty of Medicine, Department of Pediatric Gastroenterology – İstanbul, Turkey
| | - Metin Caliskan
- Aydın Adnan Menderes University, Faculty of Medicine, Department of Medical Genetics, – Aydın, Turkey
- Uşak University, Faculty of Medicine, Department of Medical Biology – Uşak, Turkey
| | - Esen Gul Uzuner
- Haseki Education Research Hospital, Department of Pathology – İstanbul, Turkey
| |
Collapse
|
54
|
Lincoln MR, Connally N, Axisa PP, Gasperi C, Mitrovic M, van Heel D, Wijmenga C, Withoff S, Jonkers IH, Padyukov L, Rich SS, Graham RR, Gaffney PM, Langefeld CD, Vyse TJ, Hafler DA, Chun S, Sunyaev SR, Cotsapas C. Genetic mapping across autoimmune diseases reveals shared associations and mechanisms. Nat Genet 2024; 56:838-845. [PMID: 38741015 DOI: 10.1038/s41588-024-01732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/21/2024] [Indexed: 05/16/2024]
Abstract
Autoimmune and inflammatory diseases are polygenic disorders of the immune system. Many genomic loci harbor risk alleles for several diseases, but the limited resolution of genetic mapping prevents determining whether the same allele is responsible, indicating a shared underlying mechanism. Here, using a collection of 129,058 cases and controls across 6 diseases, we show that ~40% of overlapping associations are due to the same allele. We improve fine-mapping resolution for shared alleles twofold by combining cases and controls across diseases, allowing us to identify more expression quantitative trait loci driven by the shared alleles. The patterns indicate widespread sharing of pathogenic mechanisms but not a single global autoimmune mechanism. Our approach can be applied to any set of traits and is particularly valuable as sample collections become depleted.
Collapse
Affiliation(s)
- Matthew R Lincoln
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Division of Neurology at the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Noah Connally
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Pierre-Paul Axisa
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | | | - Mitja Mitrovic
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - David van Heel
- Blizard Institute, Queen Mary University of London, London, UK
| | - Cisca Wijmenga
- Department of Genetics at the University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sebo Withoff
- Department of Genetics at the University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Iris H Jonkers
- Department of Genetics at the University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leonid Padyukov
- Division of Rheumatology at the Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Robert R Graham
- Maze Therapeutics, South San Francisco, CA, USA
- Genentech, South San Francisco, CA, USA
| | - Patrick M Gaffney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Timothy J Vyse
- Department of Medical and Molecular Genetics, Kings College London, London, UK
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Sung Chun
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Shamil R Sunyaev
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Chris Cotsapas
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Vesalius Therapeutics, Cambridge, MA, USA.
| |
Collapse
|
55
|
Sollid LM. Tolerance-inducing therapies in coeliac disease - mechanisms, progress and future directions. Nat Rev Gastroenterol Hepatol 2024; 21:335-347. [PMID: 38336920 DOI: 10.1038/s41575-024-00895-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Coeliac disease is an autoinflammatory condition caused by immune reactions to cereal gluten proteins. Currently, the only available treatment for the condition is a lifelong avoidance of gluten proteins in the diet. There is an unmet need for alternative therapies. Coeliac disease has a strong association with certain HLA-DQ allotypes (DQ2.5, DQ2.2 and DQ8), and these disease-associated HLA-DQ molecules present deamidated gluten peptides to gluten-specific CD4+ T cells. The gluten-specific CD4+ T cells are the drivers of the immune reactions leading to coeliac disease. Once established, the clonotypes of gluten-specific CD4+ T cells persist for decades, explaining why patients must adhere to a gluten-free diet for life. Given the key pathogenic role of gluten-specific CD4+ T cells, tolerance-inducing therapies that target these T cells are attractive for treatment of the disorder. Lessons learned from coeliac disease might provide clues for treatment of other HLA-associated diseases for which the disease-driving antigens are unknown. Thus, intensive efforts have been and are currently implemented to bring an effective tolerance-inducing therapy for coeliac disease. This Review discusses mechanisms of the various approaches taken, summarizing the progress made, and highlights future directions in this field.
Collapse
Affiliation(s)
- Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Immunology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
56
|
Skoracka K, Hryhorowicz S, Tovoli F, Raiteri A, Rychter AM, Słomski R, Dobrowolska A, Granito A, Krela-Kaźmierczak I. From an understanding of etiopathogenesis to novel therapies-what is new in the treatment of celiac disease? Front Pharmacol 2024; 15:1378172. [PMID: 38698821 PMCID: PMC11063403 DOI: 10.3389/fphar.2024.1378172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Celiac disease, a chronic autoimmune disorder caused by genetic factors and exposure to gluten, is increasingly being recognized and diagnosed in both children and adults. Scientists have been searching for a cure for this disease for many years, but despite the impressive development of knowledge in this field, a gluten-free diet remains the only recommended therapy for all patients. At the same time, the increasing diagnosis of celiac disease in adults, which was considered a childhood disease in the 20th century, has opened a discussion on the etiopathology of the disease, which is proven to be very complex and involves genetic, immunological, nutritional, environmental and gut microbiota-related factors. In this review, we extensively discuss these factors and summarize the knowledge of the proposed state-of-the-art treatments for celiac disease to address the question of whether a better understanding of the etiopathogenesis of celiac disease has opened new directions for therapy.
Collapse
Affiliation(s)
- Kinga Skoracka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Francesco Tovoli
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alberto Raiteri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Alessandro Granito
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
57
|
Wang W, Huang M, Ge W, Feng J, Zhang X, Li C, Wang L. Identifying serum metabolite biomarkers for autoimmune diseases: a two-sample mendelian randomization and meta-analysis. Front Immunol 2024; 15:1300457. [PMID: 38686387 PMCID: PMC11056515 DOI: 10.3389/fimmu.2024.1300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Background Extensive evidence suggests a link between alterations in serum metabolite composition and various autoimmune diseases (ADs). Nevertheless, the causal relationship underlying these correlations and their potential utility as dependable biomarkers for early AD detection remain uncertain. Objective The objective of this study was to employ a two-sample Mendelian randomization (MR) approach to ascertain the causal relationship between serum metabolites and ADs. Additionally, a meta-analysis incorporating data from diverse samples was conducted to enhance the validation of this causal effect. Materials and methods A two-sample MR analysis was performed to investigate the association between 486 human serum metabolites and six prevalent autoimmune diseases: systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), inflammatory bowel disease (IBD), dermatomyositis (DM), type 1 diabetes (T1D), and celiac disease (CeD). The inverse variance weighted (IVW) model was employed as the primary analytical technique for the two-sample MR analysis, aiming to identify blood metabolites linked with autoimmune diseases. Independent outcome samples were utilized for further validation of significant blood metabolites. Additional sensitivity analyses, including heterogeneity test, horizontal pleiotropy test, and retention rate analysis, were conducted. The results from these analyses were subsequently meta-integrated. Finally, metabolic pathway analysis was performed using the KEGG and Small Molecule Pathway Databases (SMPD). Results Following the discovery and replication phases, eight metabolites were identified as causally associated with various autoimmune diseases, encompassing five lipid metabolism types: 1-oleoylglycerophosphoethanolamine, 1-arachidonoylglycerophosphoethanolamine, 1-myristoylglycerophosphocholine, arachidonate (20:4 n6), and glycerol. The meta-analysis indicated that three out of these eight metabolites exhibited a protective effect, while the remaining five were designated as pathogenic factors. The robustness of these associations was further confirmed through sensitivity analysis. Moreover, an investigation into metabolic pathways revealed a significant correlation between galactose metabolism and autoimmune diseases. Conclusion This study revealed a causal relationship between lipid metabolites and ADs, providing novel insights into the mechanism of AD development mediated by serum metabolites and possible biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Health Statistics, School of Preventive Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Manli Huang
- Department of Health Statistics, School of Preventive Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wei Ge
- Department of Field and Disaster Nursing, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Junling Feng
- Department of Health Statistics, School of Preventive Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xihua Zhang
- Department of Neurological Intensive Care Rehabilitation, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Chen Li
- Department of Health Statistics, School of Preventive Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ling Wang
- Department of Health Statistics, School of Preventive Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
58
|
Zhou Z, Chen Y, Wang L. Causal influence of celiac disease on the risk of sarcoidosis: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37736. [PMID: 38608121 PMCID: PMC11018160 DOI: 10.1097/md.0000000000037736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/06/2024] [Indexed: 04/14/2024] Open
Abstract
Observational research shows a link between celiac disease (CeD) and sarcoidosis, but the causal link between CeD and sarcoidosis is still unknown. A two-sample Mendelian randomization (MR) study was conducted to ascertain the causal connection between the 2 disorders. In our two-sample MR analysis, we identified independent genetic variants associated with CeD using publicly accessible GWAS data from people of European ancestry. Summary data for sarcoidosis were obtained from the FinnGen Consortium, the UK-Biobank, and a large GWAS dataset. To assess the association between CeD and sarcoidosis, our MR analysis used inverse variance weighted (IVW) as the primary method, incorporating the MR-Egger, weighted median (WM), and MR-PRESSO (outliers test) as a complementary method. In order to ensure that the findings were reliable, several sensitivity analyses were performed. Our study indicated that CeD had a significant causal relationship with sarcoidosis (IVW odds ratio (OR) = 1.13, 95% confidence interval (CI): 1.07-1.20, P = 5.58E-05; WM OR = 1.12, 95% CI: 1.03-1.23, P = 1.03E-02; MR-Egger OR = 1.07, 95% CI: 0.96-1.19, P = 2.20E-01). Additionally, we obtain the same results in the duplicated datasets as well, which makes our results even more reliable. The results of this investigation did not reveal any evidence of horizontal pleiotropy or heterogeneity. Our MR analysis showed a causal effect between CeD and an elevated risk of sarcoidosis. Further study is still needed to confirm the findings and look into the processes underlying these relationships.
Collapse
Affiliation(s)
- Zhangbing Zhou
- Department of Respiratory Medicine, Chengdu Integrated Traditional Chinese Medicine and Western Medicine Hospital, Chengdu First People’s Hospital, Chengdu, China
| | - Yunfeng Chen
- Department of Respiratory Medicine, Chengdu Integrated Traditional Chinese Medicine and Western Medicine Hospital, Chengdu First People’s Hospital, Chengdu, China
| | - Liu Wang
- Department of Rheumatology and Immunology, Chengdu Third People’s Hospital, Chengdu, China
| |
Collapse
|
59
|
Fu Y, Kelly JA, Gopalakrishnan J, Pelikan RC, Tessneer KL, Pasula S, Grundahl K, Murphy DA, Gaffney PM. Massively parallel reporter assay confirms regulatory potential of hQTLs and reveals important variants in lupus and other autoimmune diseases. HGG ADVANCES 2024; 5:100279. [PMID: 38389303 PMCID: PMC10943488 DOI: 10.1016/j.xhgg.2024.100279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024] Open
Abstract
We designed a massively parallel reporter assay (MPRA) in an Epstein-Barr virus transformed B cell line to directly characterize the potential for histone post-translational modifications, i.e., histone quantitative trait loci (hQTLs), expression QTLs (eQTLs), and variants on systemic lupus erythematosus (SLE) and autoimmune (AI) disease risk haplotypes to modulate regulatory activity in an allele-dependent manner. Our study demonstrates that hQTLs, as a group, are more likely to modulate regulatory activity in an MPRA compared with other variant classes tested, including a set of eQTLs previously shown to interact with hQTLs and tested AI risk variants. In addition, we nominate 17 variants (including 11 previously unreported) as putative causal variants for SLE and another 14 for various other AI diseases, prioritizing these variants for future functional studies in primary and immortalized B cells. Thus, we uncover important insights into the mechanistic relationships among genotype, epigenetics, and gene expression in SLE and AI disease phenotypes.
Collapse
Affiliation(s)
- Yao Fu
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jennifer A Kelly
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jaanam Gopalakrishnan
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Neuro-Immune Regulome Unit, National Eye Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Richard C Pelikan
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Kandice L Tessneer
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Satish Pasula
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Kiely Grundahl
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - David A Murphy
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Patrick M Gaffney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
60
|
Su Y, Zhang Y, Chai Y, Xu J. Autoimmune diseases and their genetic link to bronchiectasis: insights from a genetic correlation and Mendelian randomization study. Front Immunol 2024; 15:1343480. [PMID: 38660310 PMCID: PMC11039849 DOI: 10.3389/fimmu.2024.1343480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Background Previous studies have demonstrated that autoimmune diseases are closely associated with bronchiectasis (BE). However, the causal effects between autoimmune diseases and BE remain elusive. Methods All summary-level data were obtained from large-scale Genome-Wide Association Studies (GWAS). The univariate Mendelian randomization (UVMR) was utilized to investigate the genetic causal correlation (rg) of 12 autoimmune diseases and bronchiectasis, The Multivariable Mendelian Randomization (MVMR) method was used to explore the effects of the confounding factors. Further investigation was conducted to identify potential intermediate factors using mediation analysis. Finally, the linkage disequilibrium score regression (LDSC) method was used to identify genetic correlations among complex traits. A series of sensitivity analyses was performed to validate the robustness of the results. Results The LDSC analysis revealed significant genetic correlations between BE and Crohn's disease (CD) (rg = 0.220, P = 0.037), rheumatoid arthritis (RA) (rg = 0.210, P = 0.021), and ulcerative colitis (UC) (rg = 0.247, P = 0.023). However, no genetic correlation was found with other autoimmune diseases (P > 0.05). The results of the primary IVW analysis suggested that for every SD increase in RA, there was a 10.3% increase in the incidence of BE (odds ratio [OR] = 1.103, 95% confidence interval [CI] 1.055-1.154, P = 1.75×10-5, FDR = 5.25×10-5). Furthermore, for every standard deviation (SD) increase in celiac disease (CeD), the incidence of BE reduced by 5.1% (OR = 0.949, 95% CI 0.902-0.999, P = 0.044, FDR = 0.044). We also observed suggestive evidence corresponding to a 3% increase in BE incidence with T1DM (OR = 1.033, 95% CI 1.001-1.066, P = 0.042, FDR = 0.063). Furthermore, MVMR analysis showed that RA was an independent risk factor for BE, whereas mediator MR analysis did not identify any mediating factors. The sensitivity analyses corroborated the robustness of these findings. Conclusion LDSC analysis revealed significant genetic correlations between several autoimmune diseases and BE, and further MVMR analysis showed that RA is an independent risk factor for BE.
Collapse
Affiliation(s)
- Yue Su
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Youqian Zhang
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yanhua Chai
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinfu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
61
|
Trasciatti S, Grizzi F. Vitamin D and celiac disease. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 109:249-270. [PMID: 38777415 DOI: 10.1016/bs.afnr.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Celiac disease (CD) is an immune-mediated condition affecting the small intestine. Its reported global prevalence falls within the range of 0.7% to 1.4%. Notably, historically, higher rates, reaching 1% in Western Ireland, have been documented. Recent research has even revealed prevalence rates as elevated as 2% in northern Europe. These findings underscore the urgency for swift and cost-effective diagnosis, especially in individuals identified through screening efforts. At present, the diagnosis of CD relies on a multifaceted approach involving positive serological markers such as IgA anti-tissue transglutaminase (anti-TTG) and anti-endomysial antibodies (anti-EMA). These serological findings are assessed in conjunction with classical histological alterations, as outlined in the Marsh classification. CD is an inflammatory condition triggered by the consumption of gluten, resulting from intricate interactions between genetic, immunological, and environmental factors. CD is linked to malabsorption, leading to nutritional deficiencies. Individuals with CD are required to adhere to a gluten-free diet, which itself can lead to nutrient deficiencies. One such deficiency includes vitamin D, and there is substantial experimental evidence supporting the notion of a bidirectional relationship between CD and vitamin D status. A low level of vitamin D has a detrimental impact on the clinical course of the disease. Here we summarize the key characteristics of CD and explore the prominent roles of vitamin D in individuals with CD.
Collapse
Affiliation(s)
| | - Fabio Grizzi
- Head Histology Core, Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
62
|
Zhou S, Sun Q, Gao N, Hu Z, Jia J, Song J, Xu G, Dong A, Xia W, Wu J. The Role of Inflammatory Biomarkers in Mediating the Effect of Inflammatory Bowel Disease on nonmalignant Digestive System Diseases: A Multivariable Mendelian Randomized Study. Can J Gastroenterol Hepatol 2024; 2024:1266139. [PMID: 38529201 PMCID: PMC10963109 DOI: 10.1155/2024/1266139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/03/2024] [Accepted: 03/10/2024] [Indexed: 03/27/2024] Open
Abstract
Background While observation studies have shown a positive correlation between inflammatory bowel disease (IBD) and the risk of nonmalignant digestive system diseases, a definitive causal relationship has not yet been clearly established. Methods Mendelian randomization (MR) was employed to investigate the potential causal association between genetic susceptibility to IBD and nonmalignant gastrointestinal diseases. Genetic variants were extracted as instrumental variables (IVs) from a genome-wide association study (GWAS) meta-analysis, which included 12,194 cases of Crohn's disease (CD) and 28,072 control cases of European ancestry. The GWAS for ulcerative colitis (UC) included 12,366 UC and 33,609 control cases of European ancestry. All IVs reached genome-wide significance (GWAS p value <5 × 10-8). Summary-level data for acute pancreatitis (AP), irritable bowel syndrome (IBS), gastroesophageal reflux disease, cholelithiasis, and CeD (celiac disease) were obtained from the GWAS meta-analysis and the FinnGen dataset. Summary-level data on relevant inflammatory factors were provided by the International Genetic Consortium. Univariate MR analysis was conducted using inverse variance weighting as the primary method for estimating causal effects. Multivariate MR analyses were also performed to detect possible mediators. Results Genetic susceptibility to UC was associated with an increased risk of AP (OR = 1.08; 95% CI = 1.03-1.13; p=0.002) and IBS odds ratio (OR] = 1.07; 95% confidence interval (CI] = 1.03-1.11; (p < 0.001). In terms of potential mediators, interleukin 6 (IL-6) had a driving effect on the association between UC and AP. There was no apparent evidence of increased risk with CD. Meanwhile, genetic susceptibility to CD increases the risk of CeD (OR = 1.14; 95% CI = 1.03-1.25; p=0.01). Conclusions The evidence suggests that UC is associated with an elevated risk of AP and IBS, and IL-6 may be responsible in AP. CD is associated with an increased risk of developing CeD. Implementing a proactive monitoring program for assessing the risk of gastrointestinal diseases in UC patients, particularly those with elevated IL-6 levels, may be of interest. In addition, the presence of AP and IBS may indicate the presence of UC. Preventing CeD is an essential consideration in the therapeutic management of patients with CD.
Collapse
Affiliation(s)
- Shu Zhou
- Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Qi Sun
- Hangzhou Ninth People's Hospital, Hangzhou, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou 310003, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou 310003, China
| | - Ning Gao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zekai Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou 310003, China
| | - Junjun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou 310003, China
| | | | - Guocong Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Aiqiang Dong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiliang Xia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou 310003, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou 310003, China
| | - Jiafeng Wu
- Hangzhou Ninth People's Hospital, Hangzhou, China
| |
Collapse
|
63
|
Sun Y, Zhou Q, Tian D, Zhou J, Dong S. Relationship between vitamin D levels and pediatric celiac disease: a systematic review and meta-analysis. BMC Pediatr 2024; 24:185. [PMID: 38491474 PMCID: PMC10943820 DOI: 10.1186/s12887-024-04688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND The relationship between Vitamin D levels and pediatric celiac disease (CD) remains controversial. In this study, we conducted a systematic review and meta-analysis to examine the relationship between Vitamin D and pediatric CD. METHODS We screened relevant studies from PubMed, EMBASE, and Web of Science published in English from January 1, 2000, to August 1, 2023. The included studies were assessed according to the STROBE checklist. Heterogeneity was quantified by Cochran's Q test and the I2 statistic. Publication bias was estimated by Begg's test and Egger's test. Meta-regression was used to detect potential sources of heterogeneity. RESULTS A total of 26 studies were included in the meta-analysis. Nineteen articles compared 25(OH)D3 levels between CD patients and control groups, average 25-hydroxyvitamin D3 [25(OH)D3 or calcidiol], and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3 or calcitriol] levels, as the main forms of Vitamin D, there was a significant difference in CD patients and healthy controls (weighted mean difference (WMD) = - 5.77, 95% confidence interval (CI) = [- 10.86, - 0.69] nmol/L). Meanwhile, eleven articles reported the numbers of patients and controls with Vitamin D deficiency, there was a significant difference in the incidence of 25(OH)D3 deficiency between CD patients and healthy controls (odds ratio 2.20, 95% CI= [1.19, 4.08]). Nine articles reported changes in 25(OH)D3 levels before and after administering a GFD in patients with CD, the result of this study revealed the increase of 25(OH)D3 levels in CD patients after a gluten-free diet (GFD) (WMD = - 6.74, 95% CI = [- 9.78, - 3.70] nmol/L). CONCLUSIONS Vitamin D levels in pediatric CD patients were lower than in healthy controls, and 25(OH)D3 deficiency was more prevalent in CD patients. We found that 25(OH)D3 levels were elevated in CD patients after GFD, which is consistent with previous research. Further well-designed, longitudinal, prospective cohort studies focusing on the role of Vitamin D in the pathogenesis of CD are therefore needed.
Collapse
Affiliation(s)
- Yanhong Sun
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, , National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Qingxue Zhou
- Department of Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou, 310008, China
| | - Dandan Tian
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, , National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Jianming Zhou
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, , National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Shilei Dong
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, 310013, China.
| |
Collapse
|
64
|
Yuan S, Jiang F, Chen J, Lebwohl B, Green PHR, Leffler D, Larsson SC, Li X, Ludvigsson JF. Phenome-wide Mendelian randomization analysis reveals multiple health comorbidities of coeliac disease. EBioMedicine 2024; 101:105033. [PMID: 38382313 PMCID: PMC10900254 DOI: 10.1016/j.ebiom.2024.105033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/28/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Coeliac disease (CeD) has been associated with a broad range of diseases in observational data; however, whether these associations are causal remains undetermined. We conducted a phenome-wide Mendelian randomization analysis (MR-PheWAS) to investigate the comorbidities of CeD. METHODS Single nucleotide polymorphisms (SNPs) associated with CeD at the genome-wide significance threshold and without linkage disequilibrium (R2 <0.001) were selected from a genome-wide association study including 12,041 CeD cases as the instrumental variables. We first constructed a polygenic risk score for CeD and estimated its associations with 1060 unique clinical outcomes in the UK Biobank study (N = 385,917). We then used two-sample MR analysis to replicate the identified associations using data from the FinnGen study (N = 377,277). We performed a secondary analysis using a genetic instrument without extended MHC gene SNPs. FINDINGS Genetic liability to CeD was associated with 68 clinical outcomes in the UK Biobank, and 38 of the associations were replicated in the FinnGen study. Genetic liability to CeD was associated with a higher risk of several autoimmune diseases (type 1 diabetes and its complications, Graves' disease, Sjögren syndrome, chronic hepatitis, systemic and cutaneous lupus erythematosus, and sarcoidosis), non-Hodgkin's lymphoma, and osteoporosis and a lower risk of prostate diseases. The associations for type 1 diabetes and non-Hodgkin's lymphoma attenuated when excluding SNPs in the MHC region, indicating shared genetic aetiology. INTERPRETATION This study uncovers multiple clinical outcomes associated with genetic liability to CeD, which suggests the necessity of comorbidity monitoring among this population. FUNDING This project was funded by Karolinska Institutet and the Swedish Research Council.
Collapse
Affiliation(s)
- Shuai Yuan
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Fangyuan Jiang
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Chen
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Benjamin Lebwohl
- Department of Medicine, Celiac Disease Center at Columbia University Medical Center, New York, NY, USA
| | - Peter H R Green
- Departments of Medicine and Surgical Pathology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Daniel Leffler
- The Celiac Center at Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Xue Li
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jonas F Ludvigsson
- Department of Medicine, Celiac Disease Center at Columbia University Medical Center, New York, NY, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Pediatrics, Orebro University Hospital, Orebro, Sweden.
| |
Collapse
|
65
|
Senapati S, Singh H, Bk T, Verma N, Kumar U. HLA sequencing identifies novel associations and suggests clinical relevance of DPB1*04:01 in ANCA-associated Granulomatosis with polyangiitis. Gene 2024; 896:148024. [PMID: 38040271 DOI: 10.1016/j.gene.2023.148024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Granulomatosis with polyangiitis (GPA) is a rare systemic autoimmune disease. Major contributions of HLA genes have been reported; however, HLA typing-based diagnosis or risk prediction in GPA has not been established. We have performed a sequencing-based HLA genotyping in a north Indian GPA cohort and controls to identify clinically relevant novel associations. PR3-ANCA-positive 40 GPA patients and 40 healthy controls from north India were recruited for the study. Targeted sequencing of HLA-A,-B,-C,-DRB1,-DQB1, and -DPB1 was performed. Allelic and haplotypic associations were tested. Molecular docking of susceptibility HLA alleles with reported super-antigen epitopes was performed. The association of substituted amino acids located at the antigen-binding domain of HLA was evaluated. Genetic association of five HLA-alleles was identified in GPA. The novel association was identified for C*15:02 (p = 0.04; OR = 0.27(0.09-0.88)). The strongest association was observed for DPB1*04:01 (p < 0.0001; OR = 6.2(3.08-11.71)), previously reported in European studies. 35 of 40 GPA subjects had at least one DPB1*04:01 allele, and its significant risk was previously not reported from the Indian population. Significantly associated haplotypes DRB1*03:01-DQB1*02:01-DPB1*04:01 (p = 0.02; OR = 3.46(1.11-12.75)) and DRB1*07:01-DQB1*02:02-DPB1*04:01 (p = 0.04; OR = 3.35(0.95-14.84)) were the most frequent in GPA patients. Ranging from 89 % to 100 % of GPA patients with organ involvement can be explained by at least one DPB1*04:01 allele. A strong interaction between the HLA and three epitopes of the reported super antigen TSST-1 of Staphylococcus aureus was confirmed. Our study highlighted the potential applicability of HLA typing for screening and diagnosis of GPA. A large multi-centric study and genotype-phenotype correlation analysis among GPA patients will enable the establishment of HLA-typing based GPA diagnosis.
Collapse
Affiliation(s)
- Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Punjab, India.
| | - Harinder Singh
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Punjab, India
| | - Thelma Bk
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Narendra Verma
- Department of Rheumatology, All India Institute of Medical Sciences, New Delhi, India
| | - Uma Kumar
- Department of Rheumatology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
66
|
Størdal K, Tapia G, Lund-Blix NA, Stene LC. Genotypes predisposing for celiac disease and autoimmune diabetes and risk of infections in early childhood. J Pediatr Gastroenterol Nutr 2024; 78:295-303. [PMID: 38374560 DOI: 10.1002/jpn3.12078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 02/21/2024]
Abstract
OBJECTIVES Infections in early childhood have been associated with risk of celiac disease (CD) and type 1 diabetes (T1D). We investigated whether this is driven by susceptibility genes for autoimmune disease by comparing infection frequency by genetic susceptibility variants for CD or T1D. METHODS We genotyped 373 controls and 384 children who developed CD or T1D in the population-based Norwegian Mother, Father and Child Cohort study (MoBa) study for human leukocyte antigen (HLA)-DQ, FUT2, SH2B3, and PTPN22, and calculated a weighted non-HLA genetic risk score (GRS) for CD and T1D based on over 40 SNPs. Parents reported infections in questionnaires when children were 6 and 18 months old. We used negative binomial regression to estimate incidence rate ratio (IRR) for infections by genotype. RESULTS HLA genotypes for CD and T1D or non-HLA GRS for T1D were not associated with infections. The non-HLA GRS for CD was associated with a nonsignificantly lower frequency of infections (aIRR: 0.95, 95% CI: 0.87-1.03 per weighted allele score), and significantly so when restricting to healthy controls (aIRR: 0.89, 0.81-0.99). Participants homozygous for rs601338(A;A) at FUT2, often referred to as nonsecretors, had a nonsignificantly lower risk of infections (aIRR: 0.91, 95% CI: 0.83-1.01). SH2B3 and PTPN22 genotypes were not associated with infections. The association between infections and risk of CD (OR: 1.15 per five infections) was strengthened after adjustment for HLA genotype and non-HLA GRS (OR: 1.24). CONCLUSIONS HLA variants and non-HLA GRS conferring susceptibility for CD were not associated with increased risk of infections in early childhood and is unlikely to drive the observed association between infections and risk of CD or T1D in many studies.
Collapse
Affiliation(s)
- Ketil Størdal
- Department of Pediatric Research, Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - German Tapia
- Norwegian Institute of Public Health, Oslo, Norway
| | | | - Lars C Stene
- Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
67
|
Banerjee P, Sood A, Midha V, Narang V, Grover J, Senapati S. A duodenal mucosa transcriptome study identified reduced expression of a novel gene CDH18 in celiac disease. Dig Liver Dis 2024; 56:258-264. [PMID: 37813809 DOI: 10.1016/j.dld.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Celiac disease (CD) a complex immune disease that affects duodenal mucosa. Identification of tissue specific biomarkers is expected to improve the existing biopsy based CD diagnosis. AIMS To investigate the differentially expressed genes (DEGs) in duodenal mucosa tissue to identify clinically relevant gene expression pattern in CD. METHODS Whole RNA extracted from the duodenal biopsies of three CD patients and four non-CD controls were sequenced. Significant DEGs were identified. Prioritized DEGs were validated using qRT-PCR in an independent group (CD=23; Control=26). Enriched pathways were analyzed, protein-protein interaction networks were evaluated. RESULTS 923 DEGs comprising of 135 up-regulated, and 788 down-regulated genes, with p-value≤0.05; log2FC>2 or <-2 were identified. A novel down-regulated gene CDH18 (p = 0.03; log2FC=-0.74) was identified. Previously known CXCL9 was replicated. CDH18, a trans-membrane protein was found to interact with other CDH proteins, α/β catenins, and other membrane transporters such as SLC and ABCB. Pathways and protein networks contributing in channel activity (p = 2.15E-12), membrane transporters (p = 2.15E-12), and cellular adhesion (p = 8.05E-6) were identified. CONCLUSIONS CDH18, a novel DEG identified in the present study is a pivotal gene involved in maintaining epithelial membrane organization and integrity. The functional significance of lower expression of CDH18 in pathogenesis of CD warranted to be investigated. CDH18 expression could be tested for its effectiveness in diagnostic, prognostic and therapeutic purposes.
Collapse
Affiliation(s)
- Pratibha Banerjee
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Ajit Sood
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, 141001, Punjab, India
| | - Vandana Midha
- Department of Medicine, Dayanand Medical College and Hospital, Ludhiana, 141001, Punjab, India
| | - Vikram Narang
- Department of Pathology, Dayanand Medical College and Hospital, Ludhiana, 141001, Punjab, India
| | - Jasmine Grover
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, 141001, Punjab, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
68
|
Hou Y, Si K, Yang J, Liu T, Abdelazeem B, Theerasuwipakorn N, Zhao J, Shen Z. Association between regulatory T cells and ischemic heart disease: a Mendelian randomization study. J Thorac Dis 2024; 16:564-572. [PMID: 38410592 PMCID: PMC10894418 DOI: 10.21037/jtd-23-1790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND An imbalance of innate and acquired immune responses is significantly involved in the pathophysiology of coronary atherosclerosis and the occurrence of ischemic heart disease (IHD). Regulatory T cells (Tregs) play an essential regulatory role in atherosclerotic plaque formation and maintenance; therefore, dysfunction of Tregs triggers the formation of atherosclerotic plaques and accelerates their progression. However, due to the inherent limitations of observational research, clinical evidence is limited concerning the relationship between the variation in peripheral Tregs and the risk of IHD, and the cause-and-effect relationship between these factors is unclear. Mendelian randomization (MR) uses genetic variation as a proxy for exposure and can be used to inferentially determine the causal effect of exposure on outcomes. We thus used MR analysis to investigate whether there is a causal relationship between the biomarkers of Tregs and IHD. METHODS Selected genetic variants (P<5.00E-08) from the summary data of a genome-wide association study (GWAS) were used to conduct a two-sample bidirectional MR analysis. The analysis included 51 extensive Treg subtypes involving 3,757 individuals from the general population. Summary statistics of IHD were obtained from the IEU open GWAS project, which contains 30,952 cases and 187,845 controls. The populations in both GWAS studies were of European ancestry. RESULTS We identified a set of 197 single-nucleotide polymorphisms (SNPs) that served as instrumental variables (IVs) for evaluating 51 Treg subtypes. Thirteen significant variables were found to be potentially associated with IHD. After false-discovery rate (FDR) adjustment, we identified four Treg subtypes to be causally protective for IHD risk: CD28 on activated & secreting CD4 Tregs [odds ratio (OR) =0.89; 95% confidence interval (CI): 0.82-0.96; P=3.10E-03; adjusted P=0.04], CD28 on activated CD4 Tregs (OR =0.87; 95% CI: 0.80-0.95; P=3.10E-03; adjusted P=0.04), CD28 on CD4 Tregs (OR =0.87; 95% CI: 0.80-0.96; P=3.41E-03; adjusted P=0.04), and CD28 on resting CD4 Treg cell (OR =0.91; 95% CI: 0.85-0.97; P=3.48E-03; adjusted P=0.04). Reverse MR analysis found eight potential causal variables, but these associations were nonsignificant after FDR correction (all adjusted P values >0.05). CONCLUSIONS This study identified the significance of elevated CD28 expression on CD4 Tregs as a novel molecular modifier that may influence IHD occurrence, suggesting that targeting CD28 expression on CD4 Tregs could offer a promising therapeutic approach for IHD.
Collapse
Affiliation(s)
- Yucheng Hou
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ke Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingyue Yang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tan Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Basel Abdelazeem
- Department of Cardiology, West Virginia University, Morgantown, WV, USA
| | - Nonthikorn Theerasuwipakorn
- Division of Cardiovascular Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cardiac Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Jingwei Zhao
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine & Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
69
|
Chen L, Wang F, Zhang H, Cao B. Exploring potential causal associations between autoimmune diseases and colorectal cancer using bidirectional Mendelian randomization. Sci Rep 2024; 14:1557. [PMID: 38238429 PMCID: PMC10796354 DOI: 10.1038/s41598-024-51903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
Several observational studies have revealed an association between autoimmune diseases (AIDs) and colorectal cancer (CRC), although their causal association remained controversial. Therefore, our study used a two-sample Mendelian randomization (MR) analysis to verify the causal association between AIDs and CRC. We employed three common MR approaches, including inverse variance weighted (IVW), weighted median, and MR-Egger methods, to assess the causal association between type 1 diabetes (T1D), systemic lupus erythematosus, rheumatoid arthritis, psoriasis, multiple sclerosis, juvenile idiopathic arthritis, celiac disease, and primary sclerosing cholangitis (PSC) and CRC. The reverse MR analysis was performed to assess the possibility of reverse causation. To evaluate the validity of the analysis, we also performed sensitivity analysis, such as the heterogeneity test, the horizontal pleiotropy test, and the leave-one-out sensitivity analysis, and validated the results in the validation cohort. Our results showed that genetically predicted T1D was nominally associated with a lower risk of CRC (IVW OR = 0.965, 95% CI = 0.939-0.992, P = 0.012). However, genetic susceptibility to psoriasis nominally increased the risk of CRC (IVW OR = 1.026, 95% CI = 1.002-1.050, P = 0.037). Genetically predicted PSC had a significant causal effect on the increasing risk of CRC (IVW OR = 1.038, 95% CI = 1.016-1.060, P = 5.85 × 10-4). Furthermore, the MR analysis between PSC and the CRC validation cohort indicated consistent results. We found no causal association between genetically predicted other five AIDs and CRC (P > 0.05). The results of reverse MR analysis showed that genetically predicted CRC had no causal effect on T1D, psoriasis, and PSC (P > 0.05). The sensitivity analysis demonstrated that the results of the MR analysis were reliable. Our findings help to understand the causal association between AIDs and CRC, which deserves further investigation.
Collapse
Affiliation(s)
- Lu Chen
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China
| | - Feifan Wang
- Gastrointestinal Disease Diagnosis and Treatment Center, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Hua Zhang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Baoshan Cao
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
70
|
Pritchard D, Anand A, De'Ath A, Lee H, Rees MT. UK NEQAS and BSHI guideline: Laboratory testing and clinical interpretation of HLA genotyping results supporting the diagnosis of coeliac disease. Int J Immunogenet 2024; 51 Suppl 1:3-20. [PMID: 38153308 DOI: 10.1111/iji.12649] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
Coeliac disease is a common immune-mediated inflammatory disorder caused by dietary gluten in genetically susceptible individuals. While the diagnosis of coeliac disease is based on serological and histological criteria, HLA-DQ genotyping can be useful, especially in excluding the diagnosis in patients who do not carry the relevant DQ heterodimers: DQA1*05 DQB1*02, DQB1*03:02 or DQA1*02 DQB1*02 (commonly referred to as DQ2.5, DQ8 and DQ2.2, respectively). External quality assessment results for HLA genotyping in coeliac disease have revealed concerning errors in HLA genotyping, reporting and clinical interpretation. In response, these guidelines have been developed as an evidence-based approach to guide laboratories undertaking HLA genotyping for coeliac disease and provide recommendations for reports to standardise and improve the communication of results.
Collapse
Affiliation(s)
| | - Arthi Anand
- H&I Laboratory, North West London Pathology, Imperial College Healthcare NHS Trust, London, UK
| | - Amy De'Ath
- UK NEQAS for H&I, Velindre University NHS Trust, Cardiff, UK
| | - Helena Lee
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | | |
Collapse
|
71
|
Stahl M, Koletzko S, Andrén Aronsson C, Lindfors K, Liu E, Agardh D. Coeliac disease: what can we learn from prospective studies about disease risk? THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:63-74. [PMID: 37972632 PMCID: PMC10965251 DOI: 10.1016/s2352-4642(23)00232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 11/19/2023]
Abstract
Paediatric prospective studies of coeliac disease with longitudinal collection of biological samples and clinical data offer a unique perspective on disease risk. This Review highlights the information now available from international paediatric prospective studies on genetic and environmental risk factors for coeliac disease. In addition, recent omics studies have made it possible to study complex interactions between genetic and environmental factors and thereby further our insight into the causes of the disease. In the future, paediatric prospective studies will be able to provide more detailed risk prediction models combining genes, the environment, and biological corroboration from multiomics. Such studies could also contribute to biomarker development and an improved understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Marisa Stahl
- Pediatric Gastroenterology, Hepatology, and Nutrition, Digestive Health Institute, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Sibylle Koletzko
- Department of Pediatrics, Dr von Hauner Kinderspital, LMU University Hospital, LMU Munich, Munich, Germany; Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Carin Andrén Aronsson
- Unit of Celiac Disease and Diabetes, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Katri Lindfors
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Edwin Liu
- Pediatric Gastroenterology, Hepatology, and Nutrition, Digestive Health Institute, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel Agardh
- Unit of Celiac Disease and Diabetes, Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
72
|
Duchniewicz M, Lee JYW, Menon DK, Needham EJ. Candidate Genetic and Molecular Drivers of Dysregulated Adaptive Immune Responses After Traumatic Brain Injury. J Neurotrauma 2024; 41:3-12. [PMID: 37376743 DOI: 10.1089/neu.2023.0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Abstract Neuroinflammation is a significant and modifiable cause of secondary injury after traumatic brain injury (TBI), driven by both central and peripheral immune responses. A substantial proportion of outcome after TBI is genetically mediated, with an estimated heritability effect of around 26%, but because of the comparatively small datasets currently available, the individual drivers of this genetic effect have not been well delineated. A hypothesis-driven approach to analyzing genome-wide association study (GWAS) datasets reduces the burden of multiplicity testing and allows variants with a high prior biological probability of effect to be identified where sample size is insufficient to withstand data-driven approaches. Adaptive immune responses show substantial genetically mediated heterogeneity and are well established as a genetic source of risk for numerous disease states; importantly, HLA class II has been specifically identified as a locus of interest in the largest TBI GWAS study to date, highlighting the importance of genetic variance in adaptive immune responses after TBI. In this review article we identify and discuss adaptive immune system genes that are known to confer strong risk effects for human disease, with the dual intentions of drawing attention to this area of immunobiology, which, despite its importance to the field, remains under-investigated in TBI and presenting high-yield testable hypotheses for application to TBI GWAS datasets.
Collapse
Affiliation(s)
- Michał Duchniewicz
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - John Y W Lee
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Edward J Needham
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
73
|
Nies YH, Yahaya MF, Lim WL, Teoh SL. Microarray-based Analysis of Differential Gene Expression Profile in Rotenone-induced Parkinson's Disease Zebrafish Model. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:761-772. [PMID: 37291778 DOI: 10.2174/1871527322666230608122552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND & OBJECTIVES Despite much clinical and laboratory research that has been performed to explore the mechanisms of Parkinson's disease (PD), its pathogenesis remains elusive to date. Therefore, this study aimed to identify possible regulators of neurodegeneration by performing microarray analysis of the zebrafish PD model's brain following rotenone exposure. METHODS A total of 36 adult zebrafish were divided into two groups: control (n = 17) and rotenonetreated (n = 19). Fish were treated with rotenone water (5 μg/L water) for 28 days and subjected to locomotor behavior analysis. Total RNA was extracted from the brain tissue after rotenone treatment. The cDNA synthesized was subjected to microarray analysis and subsequently validated by qPCR. RESULTS Administration of rotenone has significantly reduced locomotor activity in zebrafish (p < 0.05), dysregulated dopamine-related gene expression (dat, th1, and th2, p < 0.001), and reduced dopamine level in the brain (p < 0.001). In the rotenone-treated group, genes involved in cytotoxic T lymphocytes (gzm3, cd8a, p < 0.001) and T cell receptor signaling (themis, lck, p < 0.001) were upregulated significantly. Additionally, gene expression involved in microgliosis regulation (tyrobp, p < 0.001), cellular response to IL-1 (ccl34b4, il2rb, p < 0.05), and regulation of apoptotic process (dedd1, p < 0.001) were also upregulated significantly. CONCLUSION The mechanisms of T cell receptor signaling, microgliosis regulation, cellular response to IL-1, and apoptotic signaling pathways have potentially contributed to PD development in rotenonetreated zebrafish.
Collapse
Affiliation(s)
- Yong Hui Nies
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
74
|
Betzler AC, Brunner C. The Role of the Transcriptional Coactivator BOB.1/OBF.1 in Adaptive Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:53-77. [PMID: 39017839 DOI: 10.1007/978-3-031-62731-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
BOB.1/OBF.1 is a transcriptional coactivator involved in octamer-dependent transcription. Thereby, BOB.1/OBF.1 is involved in the transcriptional regulation of genes important for lymphocyte physiology. BOB.1/OBF.1-deficient mice reveal multiple B- and T-cell developmental defects. The most prominent defect of these mice is the complete absence of germinal centers (GCs) resulting in severely impaired T-cell-dependent immune responses. In humans, BOB.1/OBF.1 is associated with several autoimmune and inflammatory diseases but also linked to liquid and solid tumors. Although its role for B-cell development is relatively well understood, its exact role for the GC reaction and T-cell biology has long been unclear. Here, the contribution of BOB.1/OBF.1 for B-cell maturation is summarized, and recent findings regarding its function in GC B- as well as in various T-cell populations are discussed. Finally, a detailed perspective on how BOB.1/OBF.1 contributes to different pathologies is provided.
Collapse
Affiliation(s)
- Annika C Betzler
- Department of Oto-Rhino-Larnygology, Ulm University Medical Center, Ulm, Germany
- Core Facility Immune Monitoring, Ulm University, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Larnygology, Ulm University Medical Center, Ulm, Germany.
- Core Facility Immune Monitoring, Ulm University, Ulm, Germany.
| |
Collapse
|
75
|
Hernangomez-Laderas A, Cilleros-Portet A, Martínez Velasco S, Marí S, Legarda M, González-García BP, Tutau C, García-Santisteban I, Irastorza I, Fernandez-Jimenez N, Bilbao JR. Sex bias in celiac disease: XWAS and monocyte eQTLs in women identify TMEM187 as a functional candidate gene. Biol Sex Differ 2023; 14:86. [PMID: 38072919 PMCID: PMC10712119 DOI: 10.1186/s13293-023-00572-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Celiac disease (CeD) is an immune-mediated disorder that develops in genetically predisposed individuals upon gluten consumption. HLA risk alleles explain 40% of the genetic component of CeD, so there have been continuing efforts to uncover non-HLA loci that can explain the remaining heritability. As in most autoimmune disorders, the prevalence of CeD is significantly higher in women. Here, we investigated the possible involvement of the X chromosome on the sex bias of CeD. METHODS We performed a X chromosome-wide association study (XWAS) and a gene-based association study in women from the CeD Immunochip (7062 cases, 5446 controls). We also constructed a database of X chromosome cis-expression quantitative trait loci (eQTLs) in monocytes from unstimulated (n = 226) and lipopolysaccharide (LPS)-stimulated (n = 130) female donors and performed a Summary-data-based MR (SMR) analysis to integrate XWAS and eQTL information. We interrogated the expression of the potentially causal gene (TMEM187) in peripheral blood mononuclear cells (PBMCs) from celiac patients at onset, on a gluten-free diet, potential celiac patients and non-celiac controls. RESULTS The XWAS and gene-based analyses identified 13 SNPs and 25 genes, respectively, 22 of which had not been previously associated with CeD. The X chromosome cis-eQTL analysis found 18 genes with at least one cis-eQTL in naïve female monocytes and 8 genes in LPS-stimulated female monocytes, 2 of which were common to both situations and 6 were unique to LPS stimulation. SMR identified a potentially causal association of TMEM187 expression in naïve monocytes with CeD in women, regulated by CeD-associated, eQTL-SNPs rs7350355 and rs5945386. The CeD-risk alleles were correlated with lower TMEM187 expression. These results were replicated using eQTLs from LPS-stimulated monocytes. We observed higher levels of TMEM187 expression in PBMCs from female CeD patients at onset compared to female non-celiac controls, but not in male CeD individuals. CONCLUSION Using X chromosome genotypes and gene expression data from female monocytes, SMR has identified TMEM187 as a potentially causal candidate in CeD. Further studies are needed to understand the implication of the X chromosome in the higher prevalence of CeD in women.
Collapse
Affiliation(s)
- Alba Hernangomez-Laderas
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain
| | - Ariadna Cilleros-Portet
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain
| | - Silvia Martínez Velasco
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain
- Pediatric Gastroenterology Unit, Cruces University Hospital, Barakaldo, Basque Country, Spain
| | - Sergi Marí
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain
| | - María Legarda
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain
- Pediatric Gastroenterology Unit, Cruces University Hospital, Barakaldo, Basque Country, Spain
| | - Bárbara Paola González-García
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain
| | - Carlos Tutau
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain
- Pediatric Gastroenterology Unit, Cruces University Hospital, Barakaldo, Basque Country, Spain
| | - Iraia García-Santisteban
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain
| | - Iñaki Irastorza
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain
- Pediatric Gastroenterology Unit, Cruces University Hospital, Barakaldo, Basque Country, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain.
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain.
| | - Jose Ramon Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain.
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain.
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| |
Collapse
|
76
|
Li H, Pan X, Zhang S, Shen X, Li W, Shang W, Wen Z, Huang S, Chen L, Zhang X, Chen D, Liu J. Association of autoimmune diseases with the occurrence and 28-day mortality of sepsis: an observational and Mendelian randomization study. Crit Care 2023; 27:476. [PMID: 38053214 PMCID: PMC10698937 DOI: 10.1186/s13054-023-04763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Observational studies have indicated a potential association between autoimmune diseases and the occurrence of sepsis, with an increased risk of mortality among affected patients. However, whether a causal relationship exists between the two remains unknown. METHODS In the Mendelian randomization (MR) study, we accessed exposure Genome-wide association study (GWAS) data from both the MRC Integrative Epidemiology Unit (MRC-IEU) and the FinnGen consortium. GWAS data for sepsis and its 28-day mortality were obtained from MRC-IEU. We employed univariable, multivariable, and reverse MR analyses to explore potential associations between autoimmune disorders and sepsis and its 28-day mortality. Additionally, a two-step mediation MR analysis was performed to investigate indirect factors possibly influencing the relationship between autoimmune disorders and sepsis. Afterward, we conducted an observational analysis to further explore the relationship between autoimmune disease and occurrence as well as 28-day mortality of sepsis using a real-world database (the MIMIC-IV database). A cohort of 2537 patients diagnosed with autoimmune disease were extracted from the database for analysis. Multivariable logistic regression models were used to confirm the association between autoimmune diseases and the occurrence of sepsis, as well as the 28-day mortality associated with sepsis. RESULTS In univariable MR analysis, there appeared to be causal relationships between genetically predicted type 1 diabetes (OR = 1.036, 95% CI = 1.023-1.048, p = 9.130E-09), rheumatoid arthritis (OR = 1.077, 95% CI = 1.058-1.097, p = 1.00E-15) and sepsis, while a potential causal link was observed between celiac disease and sepsis (OR = 1.013, 95% CI = 1.002-1.024, p = 0.026). In a subsequent multivariable MR analysis, only rheumatoid arthritis was found to be independently associated with the risk of sepsis (OR = 1.138, 95% CI = 1.044-1.240, p = 3.36E-03). Furthermore, there was no causal link between autoimmune disorders and 28-day mortality from sepsis. In reverse MR analysis, sepsis was suggested to potentially trigger the onset of psoriasis (OR = 1.084, 95% CI = 1.040-1.131, p = 1.488E-04). In the real-world observational study, adjusting for multiple confounders, rheumatoid arthritis (OR = 1.34, 95% CI = 1.11-1.64, p = 0.003) and multiple sclerosis (OR = 1.31, 95% CI = 1.03-1.68, p = 0.02) were associated with a higher risk of sepsis. In addition, we did not find that autoimmune diseases were associated with 28-day mortality from sepsis. CONCLUSION Both in observational and MR analysis, only rheumatoid arthritis is highly correlated with occurrence of sepsis. However, autoimmune disease was not associated with an increased 28-day mortality in patient with sepsis. Sepsis may increase the risk of developing psoriasis.
Collapse
Affiliation(s)
- Hui Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201801, China
| | - Xiaojun Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201801, China
| | - Sheng Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201801, China
| | - Xuan Shen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201801, China
| | - Wan Li
- Department of General Medicine, Qujiang Town Health Hospital, Fengcheng, Jiangxi, China
| | - Weifeng Shang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201801, China
| | - Zhenliang Wen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201801, China
| | - Sisi Huang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201801, China
| | - Limin Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201801, China
| | - Xu Zhang
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
- Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China.
- Chongqing Reproductive Genetics Institute, Chongqing, China.
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201801, China.
| | - Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201801, China.
| |
Collapse
|
77
|
Besser HA, Khosla C. Celiac disease: mechanisms and emerging therapeutics. Trends Pharmacol Sci 2023; 44:949-962. [PMID: 37839914 PMCID: PMC10843302 DOI: 10.1016/j.tips.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Celiac disease (CeD) is a widespread, gluten-induced, autoimmune disorder that lacks any medicinal therapy. Towards the goal of developing non-dietary treatments for CeD, research has focused on elucidating its molecular and cellular etiology. A model of pathogenesis has emerged centered on interactions between three molecular families: specific class II MHC proteins on antigen-presenting cells (APCs), deamidated gluten-derived peptides, and T cell receptors (TCRs) on inflammatory CD4+ T cells. Growing evidence suggests that this pathogenic axis can be pharmacologically targeted to protect patients from some of the adverse effects of dietary gluten. Further studies have revealed the existence of additional host and environmental contributors to disease initiation and tissue damage. This review summarizes our current understanding of CeD pathogenesis and how it is being harnessed for therapeutic design and development.
Collapse
Affiliation(s)
- Harrison A Besser
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H (Chemistry, Engineering and Medicine for Human Health), Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
78
|
Tanigawa Y, Kellis M. Power of inclusion: Enhancing polygenic prediction with admixed individuals. Am J Hum Genet 2023; 110:1888-1902. [PMID: 37890495 PMCID: PMC10645553 DOI: 10.1016/j.ajhg.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Admixed individuals offer unique opportunities for addressing limited transferability in polygenic scores (PGSs), given the substantial trans-ancestry genetic correlation in many complex traits. However, they are rarely considered in PGS training, given the challenges in representing ancestry-matched linkage-disequilibrium reference panels for admixed individuals. Here we present inclusive PGS (iPGS), which captures ancestry-shared genetic effects by finding the exact solution for penalized regression on individual-level data and is thus naturally applicable to admixed individuals. We validate our approach in a simulation study across 33 configurations with varying heritability, polygenicity, and ancestry composition in the training set. When iPGS is applied to n = 237,055 ancestry-diverse individuals in the UK Biobank, it shows the greatest improvements in Africans by 48.9% on average across 60 quantitative traits and up to 50-fold improvements for some traits (neutrophil count, R2 = 0.058) over the baseline model trained on the same number of European individuals. When we allowed iPGS to use n = 284,661 individuals, we observed an average improvement of 60.8% for African, 11.6% for South Asian, 7.3% for non-British White, 4.8% for White British, and 17.8% for the other individuals. We further developed iPGS+refit to jointly model the ancestry-shared and -dependent genetic effects when heterogeneous genetic associations were present. For neutrophil count, for example, iPGS+refit showed the highest predictive performance in the African group (R2 = 0.115), which exceeds the best predictive performance for the White British group (R2 = 0.090 in the iPGS model), even though only 1.49% of individuals used in the iPGS training are of African ancestry. Our results indicate the power of including diverse individuals for developing more equitable PGS models.
Collapse
Affiliation(s)
- Yosuke Tanigawa
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
79
|
Garrett-Sinha LA. An update on the roles of transcription factor Ets1 in autoimmune diseases. WIREs Mech Dis 2023; 15:e1627. [PMID: 37565573 PMCID: PMC10842644 DOI: 10.1002/wsbm.1627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Transcription factors are crucial to regulate gene expression in immune cells and in other cell types. In lymphocytes, there are a large number of different transcription factors that are known to contribute to cell differentiation and the balance between quiescence and activation. One such transcription factor is E26 oncogene homolog 1 (Ets1). Ets1 expression is high in quiescent B and T lymphocytes and its levels are decreased upon activation. The human ETS1 gene has been identified as a susceptibility locus for many autoimmune and inflammatory diseases. In accord with this, gene knockout of Ets1 in mice leads to development of a lupus-like autoimmune disease, with enhanced activation and differentiation of both B cells and T cells. Prior reviews have summarized functional roles for Ets1 based on studies of Ets1 knockout mice. In recent years, numerous additional studies have been published that further validate ETS1 as a susceptibility locus for human diseases where immune dysregulation plays a causative role. In this update, new information that further links Ets1 to human autoimmune diseases is organized and collated to serve as a resource. This update also describes recent studies that seek to understand molecularly how Ets1 regulates immune cell activation, either using human cells and tissues or mouse models. This resource is expected to be useful to investigators seeking to understand how Ets1 may regulate the human immune response, particularly in terms of its roles in autoimmunity and inflammation. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Lee Ann Garrett-Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, USA
| |
Collapse
|
80
|
Zhu N, LeDuc CA, Fennoy I, Laferrère B, Doege CA, Shen Y, Chung WK, Leibel RL. Rare predicted loss of function alleles in Bassoon (BSN) are associated with obesity. NPJ Genom Med 2023; 8:33. [PMID: 37865656 PMCID: PMC10590409 DOI: 10.1038/s41525-023-00376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/02/2023] [Indexed: 10/23/2023] Open
Abstract
Bassoon (BSN) is a component of a hetero-dimeric presynaptic cytomatrix protein that orchestrates neurotransmitter release with Piccolo (PCLO) from glutamatergic neurons throughout the brain. Heterozygous missense variants in BSN have previously been associated with neurodegenerative disorders in humans. We performed an exome-wide association analysis of ultra-rare variants in about 140,000 unrelated individuals from the UK Biobank to search for new genes associated with obesity. We found that rare heterozygous predicted loss of function (pLoF) variants in BSN are associated with higher BMI with p-value of 3.6e-12 in the UK biobank cohort. Additionally, we identified two individuals (one of whom has a de novo variant) with a heterozygous pLoF variant in a cohort of early onset or extreme obesity and report the clinical histories of these individuals with non-syndromic obesity with no history of neurobehavioral or cognitive disability. The BMI association was replicated in the All of Us whole genome sequencing data. Heterozygous pLoF BSN variants constitute a new etiology for obesity.
Collapse
Affiliation(s)
- Na Zhu
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles A LeDuc
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- NY Obesity Research Center, Columbia University Irving Medical Center, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ilene Fennoy
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Blandine Laferrère
- NY Obesity Research Center, Columbia University Irving Medical Center, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Claudia A Doege
- NY Obesity Research Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
- JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
- NY Obesity Research Center, Columbia University Irving Medical Center, New York, NY, USA.
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| | - Rudolph L Leibel
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
- NY Obesity Research Center, Columbia University Irving Medical Center, New York, NY, USA.
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
81
|
Xu M, Wu T, Li Z, Xin G. Influence of genetically predicted autoimmune diseases on NAFLD. Front Immunol 2023; 14:1229570. [PMID: 37767101 PMCID: PMC10520707 DOI: 10.3389/fimmu.2023.1229570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD), the emerging cause of end-stage liver disease, is the most common liver disease. Determining the independent risk factors of NAFLD and patients who need more monitoring is important. Methods Two-Sample Mendelian randomization (MR) was performed in the analysis to investigate the causal association of different autoimmune diseases with NAFLD using summary level data. Genome-wide association study (GWAS) of 5 autoimmune diseases including celiac disease (CeD), Crohn's disease (CD), multiple sclerosis (MS), rheumatoid arthritis (RA), and type 1 diabetes (T1D) were selected for Instrument variables (IVs). NAFLD was included as outcome. Result After adjusting for confounding factors, genetic predisposition of CeD (OR= 0.973, [0.949,0.997], IVW p-value=0.026), MS (OR= 1.048, [1.012,1.085], IVW p-value= 0.008), RA (OR= 1.036, [1.006,1.066], IVW p-value=0.019), T1D (OR= 1.039, [1.002,1.079], IVW p-value= 0.041) is causally associated with NAFLD. No causal effect was found between CD and NAFLD. Conclusion CeD itself may be a protective factor for NAFLD, the results of previous observational studies have been influenced by confounding factors, and the morbidity of NAFLD may be higher in patients with MS, RA, and T1D than in common populations, and monitoring the prevalence of NAFLD in these populations is considerable.
Collapse
|
82
|
Akbari P, Vuckovic D, Stefanucci L, Jiang T, Kundu K, Kreuzhuber R, Bao EL, Collins JH, Downes K, Grassi L, Guerrero JA, Kaptoge S, Knight JC, Meacham S, Sambrook J, Seyres D, Stegle O, Verboon JM, Walter K, Watkins NA, Danesh J, Roberts DJ, Di Angelantonio E, Sankaran VG, Frontini M, Burgess S, Kuijpers T, Peters JE, Butterworth AS, Ouwehand WH, Soranzo N, Astle WJ. A genome-wide association study of blood cell morphology identifies cellular proteins implicated in disease aetiology. Nat Commun 2023; 14:5023. [PMID: 37596262 PMCID: PMC10439125 DOI: 10.1038/s41467-023-40679-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/07/2023] [Indexed: 08/20/2023] Open
Abstract
Blood cells contain functionally important intracellular structures, such as granules, critical to immunity and thrombosis. Quantitative variation in these structures has not been subjected previously to large-scale genetic analysis. We perform genome-wide association studies of 63 flow-cytometry derived cellular phenotypes-including cell-type specific measures of granularity, nucleic acid content and reactivity-in 41,515 participants in the INTERVAL study. We identify 2172 distinct variant-trait associations, including associations near genes coding for proteins in organelles implicated in inflammatory and thrombotic diseases. By integrating with epigenetic data we show that many intracellular structures are likely to be determined in immature precursor cells. By integrating with proteomic data we identify the transcription factor FOG2 as an early regulator of platelet formation and α-granularity. Finally, we show that colocalisation of our associations with disease risk signals can suggest aetiological cell-types-variants in IL2RA and ITGA4 respectively mirror the known effects of daclizumab in multiple sclerosis and vedolizumab in inflammatory bowel disease.
Collapse
Affiliation(s)
- Parsa Akbari
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- Department of Human Genetics, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
- Medical Research Council Biostatistics Unit, University of Cambridge, East Forvie Building, Cambridge Biomedical Campus, Forvie Site, Robinson Way, Cambridge, CB2 0SR, UK
- The National Institute for Health and Care Research Blood and Transplant Unit in Donor Health and Genomics, Strangeways Research Laboratory, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Dragana Vuckovic
- Department of Human Genetics, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
- The National Institute for Health and Care Research Blood and Transplant Unit in Donor Health and Genomics, Strangeways Research Laboratory, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Luca Stefanucci
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- National Health Service Blood and Transplant, Cambridge Centre, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Tao Jiang
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- The National Institute for Health and Care Research Blood and Transplant Unit in Donor Health and Genomics, Strangeways Research Laboratory, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, CB2 0BB, UK
| | - Kousik Kundu
- Department of Human Genetics, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
| | - Roman Kreuzhuber
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
| | - Erik L Bao
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, 1 Blackfan Circle, Boston, MA, 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Janine H Collins
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- National Health Service Blood and Transplant, Cambridge Centre, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- Department of Haematology, Barts Health National Health Service Trust, London, E1 1BB, UK
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- National Health Service Blood and Transplant, Cambridge Centre, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
| | - Luigi Grassi
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- National Health Service Blood and Transplant, Cambridge Centre, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- National Institute for Health and Care Research Cambridge BioResource, Box 229, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Jose A Guerrero
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- National Health Service Blood and Transplant, Cambridge Centre, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
| | - Stephen Kaptoge
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- The National Institute for Health and Care Research Blood and Transplant Unit in Donor Health and Genomics, Strangeways Research Laboratory, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, CB2 0BB, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Stuart Meacham
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Jennifer Sambrook
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- National Institute for Health and Care Research Cambridge BioResource, Box 229, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Denis Seyres
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- National Health Service Blood and Transplant, Cambridge Centre, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- National Institute for Health and Care Research Cambridge BioResource, Box 229, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- European Molecular Biology Laboratory, Genome Biology Unit, 69117, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Jeffrey M Verboon
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, 1 Blackfan Circle, Boston, MA, 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
| | - Klaudia Walter
- Department of Human Genetics, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
| | - Nicholas A Watkins
- National Health Service Blood and Transplant, Cambridge Centre, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- Department of Human Genetics, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
- The National Institute for Health and Care Research Blood and Transplant Unit in Donor Health and Genomics, Strangeways Research Laboratory, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, CB2 0BB, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - David J Roberts
- The National Institute for Health and Care Research Blood and Transplant Unit in Donor Health and Genomics, Strangeways Research Laboratory, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Headley Way, Headington, Oxford, OX3 9DU, UK
- National Institute for Health Research Oxford Biomedical Research Centre-Haematology Theme, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
- National Health Service Blood and Transplant, Oxford Centre, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- The National Institute for Health and Care Research Blood and Transplant Unit in Donor Health and Genomics, Strangeways Research Laboratory, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, CB2 0BB, UK
- Health Data Science Research Centre, Fondazione Human Technopole, Viale Rita Levi Montalcini 1, Milan, 20157, Italy
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, 1 Blackfan Circle, Boston, MA, 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- National Health Service Blood and Transplant, Cambridge Centre, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Stephen Burgess
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- Medical Research Council Biostatistics Unit, University of Cambridge, East Forvie Building, Cambridge Biomedical Campus, Forvie Site, Robinson Way, Cambridge, CB2 0SR, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, CB2 0BB, UK
| | - Taco Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, CB2 0PT, UK
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Sanquin, University of Amsterdam, Amsterdam, Netherlands
| | - James E Peters
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Department of Immunology and Inflammation, Imperial College London, Commonwealth Building, The Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK.
- The National Institute for Health and Care Research Blood and Transplant Unit in Donor Health and Genomics, Strangeways Research Laboratory, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK.
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, CB2 0BB, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK.
- National Health Service Blood and Transplant, Cambridge Centre, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK.
- Department of Haematology, University College London Hospitals, WC1E 6AS, London, UK.
| | - Nicole Soranzo
- Department of Human Genetics, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1HH, UK.
- The National Institute for Health and Care Research Blood and Transplant Unit in Donor Health and Genomics, Strangeways Research Laboratory, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK.
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK.
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- Genomics Research Centre, Fondazione Human Technopole, Viale Rita Levi Montalcini 1, Milan, 20157, Italy.
| | - William J Astle
- Medical Research Council Biostatistics Unit, University of Cambridge, East Forvie Building, Cambridge Biomedical Campus, Forvie Site, Robinson Way, Cambridge, CB2 0SR, UK.
- The National Institute for Health and Care Research Blood and Transplant Unit in Donor Health and Genomics, Strangeways Research Laboratory, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK.
- National Health Service Blood and Transplant, Cambridge Centre, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK.
| |
Collapse
|
83
|
Fu Y, Kelly JA, Gopalakrishnan J, Pelikan RC, Tessneer KL, Pasula S, Grundahl K, Murphy DA, Gaffney PM. Massively Parallel Reporter Assay Confirms Regulatory Potential of hQTLs and Reveals Important Variants in Lupus and Other Autoimmune Diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553722. [PMID: 37645944 PMCID: PMC10462090 DOI: 10.1101/2023.08.17.553722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Objective To systematically characterize the potential for histone post-translational modifications, i.e., histone quantitative trait loci (hQTLs), expression QTLs (eQTLs), and variants on systemic lupus erythematosus (SLE) and autoimmune (AI) disease risk haplotypes to modulate gene expression in an allele dependent manner. Methods We designed a massively parallel reporter assay (MPRA) containing ~32K variants and transfected it into an Epstein-Barr virus transformed B cell line generated from an SLE case. Results Our study expands our understanding of hQTLs, illustrating that epigenetic QTLs are more likely to contribute to functional mechanisms than eQTLs and other variant types, and a large proportion of hQTLs overlap transcription start sites (TSS) of noncoding RNAs. In addition, we nominate 17 variants (including 11 novel) as putative causal variants for SLE and another 14 for various other AI diseases, prioritizing these variants for future functional studies primary and immortalized B cells. Conclusion We uncover important insights into the mechanistic relationships between genotype, epigenetics, gene expression, and SLE and AI disease phenotypes.
Collapse
Affiliation(s)
- Yao Fu
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Jennifer A Kelly
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Jaanam Gopalakrishnan
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Neuro-Immune Regulome Unit, National Eye Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Richard C Pelikan
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Kandice L Tessneer
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Satish Pasula
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Kiely Grundahl
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - David A Murphy
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Patrick M Gaffney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| |
Collapse
|
84
|
Rizzi A, Di Gioacchino M, Gammeri L, Inchingolo R, Chini R, Santilli F, Nucera E, Gangemi S. The Emerging Role of Innate Lymphoid Cells (ILCs) and Alarmins in Celiac Disease: An Update on Pathophysiological Insights, Potential Use as Disease Biomarkers, and Therapeutic Implications. Cells 2023; 12:1910. [PMID: 37508573 PMCID: PMC10378400 DOI: 10.3390/cells12141910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Celiac disease (CD) is an intestinal disease that develops in genetically predisposed individuals and is triggered by the ingestion of gluten. CD was considered a Th1-disease. Today, the role of Th17, IL-21, and IL-17A lymphocytes is well known. Inflammation is regulated by the activity of gluten-specific CD4+ T lymphocytes that produce pro-inflammatory cytokines, including IFN-γ, TNF-α, and IL-21, perpetuating the Th1 response. These cytokines determine an inflammatory state of the small intestine, with consequent epithelial infiltration of lymphocytes and an alteration of the architecture of the duodenal mucosa. B cells produce antibodies against tissue transglutaminase and against deamidated gliadin. Although the role of the adaptive immune response is currently known, the evidence about the role of innate immunity cells is still poorly understood. Epithelial damage determines the release of damage-associated molecular patterns (DAMPs), also known as alarmins. Together with the intestinal epithelial cells and the type 1 innate lymphoid cells (ILC1s), alarmins like TSLP, IL-33, and HMGB1 could have a fundamental role in the genesis and maintenance of inflammation. Our study aims to evaluate the evidence in the literature about the role of ILCs and alarmins in celiac disease, evaluating the possible future diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Angela Rizzi
- UOSD Allergologia e Immunologia Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.R.); (R.C.); (E.N.)
| | - Mario Di Gioacchino
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
- Center for Advanced Studies and Technology, G. d’Annunzio University, 66100 Chieti, Italy;
| | - Luca Gammeri
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (L.G.); (S.G.)
| | - Riccardo Inchingolo
- Pulmonary Medicine Unit, Department of Neurosciences, Sense Organs and Thorax, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Raffaella Chini
- UOSD Allergologia e Immunologia Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.R.); (R.C.); (E.N.)
| | - Francesca Santilli
- Center for Advanced Studies and Technology, G. d’Annunzio University, 66100 Chieti, Italy;
| | - Eleonora Nucera
- UOSD Allergologia e Immunologia Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.R.); (R.C.); (E.N.)
- Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (L.G.); (S.G.)
| |
Collapse
|
85
|
González-García BP, Marí S, Cilleros-Portet A, Hernangomez-Laderas A, Fernandez-Jimenez N, García-Santisteban I, Bilbao JR. Two-Sample Mendelian Randomization detects bidirectional causality between gut microbiota and celiac disease in individuals with high genetic risk. Front Immunol 2023; 14:1082862. [PMID: 37457693 PMCID: PMC10347381 DOI: 10.3389/fimmu.2023.1082862] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Background Celiac Disease (CeD) is an autoimmune disorder triggered by gluten intake in genetically susceptible individuals. Highest risk individuals are homozygous for the Human Leucocyte Antigen (HLA) DQ2.5 haplotype or DQ2.5/DQ2.2 heterozygous. Both the HLA-DQ2-positive high genetic risk individuals and those that have developed the disease have altered intestinal microbiota, but it remains unclear whether these alterations are a cause or a consequence of CeD. Objective To investigate a potential bidirectional causality between gut microbiota (GM) and CeD in HLA-DQ2 high genetic risk individuals. Materials and Methods We performed a bidirectional Two-Sample Mendelian Randomization (2SMR) test using summary statistics from the largest publicly available Genome-Wide Association Study (GWAS) of GM and the summary statistics of the Immunochip CeD study of those individuals with the HLA-DQ2 high-risk haplotype. To test whether changes in GM composition were causally linked to CeD, GM data were used as exposure and CeD data as outcome; to test for reverse causation, the exposure and outcome datasets were inverted. Results We identified several bacteria from Ruminococcaceae and Lachnospiraceae families of the Firmicutes phylum as potentially causal in both directions. In addition, our results suggest that changes in the abundance of Veillonellaceae family might be causal in the development of CeD, while alterations in Pasteurellaceae family might be a consequence of the disease itself. Conclusion Our results suggest that the relationship between GM and HLA-DQ2 high risk individuals is highly complex and bidirectional.
Collapse
Affiliation(s)
- Bárbara P. González-García
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces Bizkaia Health Research Institute, Leioa, Spain
| | - Sergi Marí
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces Bizkaia Health Research Institute, Leioa, Spain
| | - Ariadna Cilleros-Portet
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces Bizkaia Health Research Institute, Leioa, Spain
| | - Alba Hernangomez-Laderas
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces Bizkaia Health Research Institute, Leioa, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces Bizkaia Health Research Institute, Leioa, Spain
| | - Iraia García-Santisteban
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces Bizkaia Health Research Institute, Leioa, Spain
| | - Jose Ramon Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces Bizkaia Health Research Institute, Leioa, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
86
|
Mao J, Chao K, Jiang FL, Ye XP, Yang T, Li P, Zhu X, Hu PJ, Zhou BJ, Huang M, Gao X, Wang XD. Comparison and development of machine learning for thalidomide-induced peripheral neuropathy prediction of refractory Crohn’s disease in Chinese population. World J Gastroenterol 2023; 29:3855-3870. [PMID: 37426324 PMCID: PMC10324537 DOI: 10.3748/wjg.v29.i24.3855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/07/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Thalidomide is an effective treatment for refractory Crohn’s disease (CD). However, thalidomide-induced peripheral neuropathy (TiPN), which has a large individual variation, is a major cause of treatment failure. TiPN is rarely predictable and recognized, especially in CD. It is necessary to develop a risk model to predict TiPN occurrence.
AIM To develop and compare a predictive model of TiPN using machine learning based on comprehensive clinical and genetic variables.
METHODS A retrospective cohort of 164 CD patients from January 2016 to June 2022 was used to establish the model. The National Cancer Institute Common Toxicity Criteria Sensory Scale (version 4.0) was used to assess TiPN. With 18 clinical features and 150 genetic variables, five predictive models were established and evaluated by the confusion matrix receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), specificity, sensitivity (recall rate), precision, accuracy, and F1 score.
RESULTS The top-ranking five risk variables associated with TiPN were interleukin-12 rs1353248 [P = 0.0004, odds ratio (OR): 8.983, 95% confidence interval (CI): 2.497-30.90], dose (mg/d, P = 0.002), brain-derived neurotrophic factor (BDNF) rs2030324 (P = 0.001, OR: 3.164, 95%CI: 1.561-6.434), BDNF rs6265 (P = 0.001, OR: 3.150, 95%CI: 1.546-6.073) and BDNF rs11030104 (P = 0.001, OR: 3.091, 95%CI: 1.525-5.960). In the training set, gradient boosting decision tree (GBDT), extremely random trees (ET), random forest, logistic regression and extreme gradient boosting (XGBoost) obtained AUROC values > 0.90 and AUPRC > 0.87. Among these models, XGBoost and GBDT obtained the first two highest AUROC (0.90 and 1), AUPRC (0.98 and 1), accuracy (0.96 and 0.98), precision (0.90 and 0.95), F1 score (0.95 and 0.98), specificity (0.94 and 0.97), and sensitivity (1). In the validation set, XGBoost algorithm exhibited the best predictive performance with the highest specificity (0.857), accuracy (0.818), AUPRC (0.86) and AUROC (0.89). ET and GBDT obtained the highest sensitivity (1) and F1 score (0.8). Overall, compared with other state-of-the-art classifiers such as ET, GBDT and RF, XGBoost algorithm not only showed a more stable performance, but also yielded higher ROC-AUC and PRC-AUC scores, demonstrating its high accuracy in prediction of TiPN occurrence.
CONCLUSION The powerful XGBoost algorithm accurately predicts TiPN using 18 clinical features and 14 genetic variables. With the ability to identify high-risk patients using single nucleotide polymorphisms, it offers a feasible option for improving thalidomide efficacy in CD patients.
Collapse
Affiliation(s)
- Jing Mao
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
| | - Kang Chao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
| | - Fu-Lin Jiang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
| | - Xiao-Ping Ye
- Department of Pharmacy, Guangdong Women and Children Hospital, Guangzhou 510000, Guangdong Province, China
| | - Ting Yang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
| | - Pan Li
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
| | - Xia Zhu
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
| | - Pin-Jin Hu
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
| | - Bai-Jun Zhou
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
| | - Xiang Gao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
| | - Xue-Ding Wang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
| |
Collapse
|
87
|
Maitusong B, Laguzzi F, Strawbridge RJ, Baldassarre D, Veglia F, Humphries SE, Savonen K, Kurl S, Pirro M, Smit AJ, Giral P, Silveira A, Tremoli E, Hamsten A, de Faire U, Gigante B, Leander K. Cross-Sectional Gene-Smoking Interaction Analysis in Relation to Subclinical Atherosclerosis-Results From the IMPROVE Study. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:236-247. [PMID: 37021583 PMCID: PMC10284137 DOI: 10.1161/circgen.122.003710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/29/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Smoking is associated with carotid intima-media thickness (C-IMT). However, knowledge about how genetics may influence this association is limited. We aimed to perform nonhypothesis driven gene-smoking interaction analyses to identify potential genetic variants, among those included in immune and metabolic platforms, that may modify the effect of smoking on carotid intima-media thickness. METHODS We used baseline data from 1551 men and 1700 women, aged 55 to 79, included in a European multi-center study. Carotid intima-media thickness maximum, the maximum of values measured at different locations of the carotid tree, was dichotomized with cut point values ≥75, respectively. Genetic data were retrieved through use of the Illumina Cardio-Metabo- and Immuno- Chips. Gene-smoking interactions were evaluated through calculations of Synergy index (S). After adjustments for multiple testing, P values of <2.4×10-7 for S were considered significant. The models were adjusted for age, sex, education, physical activity, type of diet, and population stratification. RESULTS Our screening of 207 586 SNPs available for analysis, resulted in the identification of 47 significant gene-smoking synergistic interactions in relation to carotid intima-media thickness maximum. Among the significant SNPs, 28 were in protein coding genes, 2 in noncoding RNA and the remaining 17 in intergenic regions. CONCLUSIONS Through nonhypothesis-driven analyses of gene-smoking interactions, several significant results were observed. These may stimulate further research on the role of specific genes in the process that determines the effect of smoking habits on the development of carotid atherosclerosis.
Collapse
Affiliation(s)
- Buamina Maitusong
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China (B.M.)
| | - Federica Laguzzi
- Unit of Cardiovascular & Nutritional Epidemiology, Institute of Environmental Medicine (F.L., U.d.F., K.L.), Karolinska Institutet, Stockholm, Sweden
| | - Rona J. Strawbridge
- Cardiovascular Medicine Unit, Department of Medicine Solna (R.J.S., B.G.), Karolinska Institutet, Stockholm, Sweden
- Mental Health & Wellbeing, Institute of Mental Health & Wellbeing, University of Glasgow (R.J.S.)
- Health Data Research, United Kingdom (R.J.S.)
| | - Damiano Baldassarre
- Department of Medical Biotechnology & Translational Medicine, Università degli Studi di Milano (D.B.)
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (D.B., F.V., E.T.)
| | - Fabrizio Veglia
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (D.B., F.V., E.T.)
| | - Steve E. Humphries
- Cardiovascular Genetics, Institute Cardiovascular Science, University College London, United Kingdom (S.E.H.)
| | - Kai Savonen
- Foundation for Research in Health Exercise & Nutrition, Kuopio & Research Institute of Exercise Medicine, Kuopio, Finland (K.S.)
- Department of Clinical Physiology & Nuclear Medicine, Kuopio University Hospital (K.S.)
| | - Sudhir Kurl
- Institute of Public Health & Clinical Nutrition, University of Eastern Finland, Kuopio (S.K.)
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology & Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Italy (M.P.)
| | - Andries J. Smit
- Department of Medicine, University Medical Center Groningen, the Netherlands (A.J.S.)
| | - Philippe Giral
- Unités de Prévention Cardiovasculaire, Assistance Publique-Hôpitaux de Paris, Service Endocrinologie-Métabolisme, Groupe Hospitalier Pitié-Salpétrière, France (P.G.)
| | - Angela Silveira
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet & Karolinska Hospital, Stockholm, Sweden (A.S., A.H.)
| | - Elena Tremoli
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (D.B., F.V., E.T.)
| | - Anders Hamsten
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet & Karolinska Hospital, Stockholm, Sweden (A.S., A.H.)
| | - Ulf de Faire
- Unit of Cardiovascular & Nutritional Epidemiology, Institute of Environmental Medicine (F.L., U.d.F., K.L.), Karolinska Institutet, Stockholm, Sweden
| | - Bruna Gigante
- Cardiovascular Medicine Unit, Department of Medicine Solna (R.J.S., B.G.), Karolinska Institutet, Stockholm, Sweden
| | - Karin Leander
- Unit of Cardiovascular & Nutritional Epidemiology, Institute of Environmental Medicine (F.L., U.d.F., K.L.), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
88
|
Demela P, Pirastu N, Soskic B. Cross-disorder genetic analysis of immune diseases reveals distinct gene associations that converge on common pathways. Nat Commun 2023; 14:2743. [PMID: 37173304 PMCID: PMC10182075 DOI: 10.1038/s41467-023-38389-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Genome-wide association studies (GWAS) have mapped thousands of susceptibility loci associated with immune-mediated diseases. To assess the extent of the genetic sharing across nine immune-mediated diseases we apply genomic structural equation modelling to GWAS data from European populations. We identify three disease groups: gastrointestinal tract diseases, rheumatic and systemic diseases, and allergic diseases. Although loci associated with the disease groups are highly specific, they converge on perturbing the same pathways. Finally, we test for colocalization between loci and single-cell eQTLs derived from peripheral blood mononuclear cells. We identify the causal route by which 46 loci predispose to three disease groups and find evidence for eight genes being candidates for drug repurposing. Taken together, here we show that different constellations of diseases have distinct patterns of genetic associations, but that associated loci converge on perturbing different nodes in T cell activation and signalling pathways.
Collapse
Affiliation(s)
- Pietro Demela
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Nicola Pirastu
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Blagoje Soskic
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy.
| |
Collapse
|
89
|
Welander NZ, Rukh G, Rask-Andersen M, Harder AVE, van den Maagdenberg AMJM, Schiöth HB, Mwinyi J. Migraine, inflammatory bowel disease and celiac disease: A Mendelian randomization study. Headache 2023; 63:642-651. [PMID: 36705326 DOI: 10.1111/head.14470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To assess whether migraine may be genetically and/or causally associated with inflammatory bowel disease (IBD) or celiac disease. BACKGROUND Migraine has been linked to IBD and celiac disease in observational studies, but whether this link may be explained by a shared genetic basis or could be causal has not been established. The presence of a causal association could be clinically relevant, as treating one of these medical conditions might mitigate the symptoms of a causally linked condition. METHODS Linkage disequilibrium score regression and two-sample bidirectional Mendelian randomization analyses were performed using summary statistics from cohort-based genome-wide association studies of migraine (59,674 cases; 316,078 controls), IBD (25,042 cases; 34,915 controls) and celiac disease (11,812 or 4533 cases; 11,837 or 10,750 controls). Migraine with and without aura were analyzed separately, as were the two IBD subtypes Crohn's disease and ulcerative colitis. Positive control analyses and conventional Mendelian randomization sensitivity analyses were performed. RESULTS Migraine was not genetically correlated with IBD or celiac disease. No evidence was observed for IBD (odds ratio [OR] 1.00, 95% confidence interval [CI] 0.99-1.02, p = 0.703) or celiac disease (OR 1.00, 95% CI 0.99-1.02, p = 0.912) causing migraine or migraine causing either IBD (OR 1.08, 95% CI 0.96-1.22, p = 0.181) or celiac disease (OR 1.08, 95% CI 0.79-1.48, p = 0.614) when all participants with migraine were analyzed jointly. There was some indication of a causal association between celiac disease and migraine with aura (OR 1.04, 95% CI 1.00-1.08, p = 0.045), between celiac disease and migraine without aura (OR 0.95, 95% CI 0.92-0.99, p = 0.006), as well as between migraine without aura and ulcerative colitis (OR 1.15, 95% CI 1.02-1.29, p = 0.025). However, the results were not significant after multiple testing correction. CONCLUSIONS We found no evidence of a shared genetic basis or of a causal association between migraine and either IBD or celiac disease, although we obtained some indications of causal associations with migraine subtypes.
Collapse
Affiliation(s)
- Nike Zoe Welander
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Gull Rukh
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Aster V E Harder
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Jessica Mwinyi
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
90
|
Oliveira LC, Dornelles AC, Nisihara RM, Bruginski ERD, Santos PID, Cipolla GA, Boschmann SE, Messias-Reason IJD, Campos FR, Petzl-Erler ML, Boldt ABW. The Second Highest Prevalence of Celiac Disease Worldwide: Genetic and Metabolic Insights in Southern Brazilian Mennonites. Genes (Basel) 2023; 14:genes14051026. [PMID: 37239386 DOI: 10.3390/genes14051026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Celiac disease (CD), despite its high morbidity, is an often-underdiagnosed autoimmune enteropathy. Using a modified version of the Brazilian questionnaire of the 2013 National Health Survey, we interviewed 604 Mennonites of Frisian/Flemish origin that have been isolated for 25 generations. A subgroup of 576 participants were screened for IgA autoantibodies in serum, and 391 participants were screened for HLA-DQ2.5/DQ8 subtypes. CD seroprevalence was 1:29 (3.48%, 95% CI = 2.16-5.27%) and biopsy-confirmed CD was 1:75 (1.32%, 95% CI = 0.57-2.59%), which is superior to the highest reported global prevalence (1:100). Half (10/21) of the patients did not suspect the disease. HLA-DQ2.5/DQ8 increased CD susceptibility (OR = 12.13 [95% CI = 1.56-94.20], p = 0.003). The HLA-DQ2.5 carrier frequency was higher in Mennonites than in Brazilians (p = 7 × 10-6). HLA-DQ8 but not HLA-DQ2.5 carrier frequency differed among settlements (p = 0.007) and was higher than in Belgians, a Mennonite ancestral population (p = 1.8 × 10-6), and higher than in Euro-Brazilians (p = 6.5 × 10-6). The glutathione pathway, which prevents reactive oxygen species-causing bowel damage, was altered within the metabolic profiles of untreated CD patients. Those with lower serological positivity clustered with controls presenting close relatives with CD or rheumatoid arthritis. In conclusion, Mennonites have a high CD prevalence with a strong genetic component and altered glutathione metabolism that calls for urgent action to alleviate the burden of comorbidities due to late diagnosis.
Collapse
Affiliation(s)
- Luana Caroline Oliveira
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, Paraná, Brazil
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, Paraná, Brazil
| | - Amanda Coelho Dornelles
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, Paraná, Brazil
| | - Renato Mitsunori Nisihara
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Clinical Hospital, Federal University of Paraná (UFPR), Rua General Carneiro, 181 Prédio Central, 11° Andar, Alto da Glória, Curitiba 80060-240, Paraná, Brazil
| | - Estevan Rafael Dutra Bruginski
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Bioscience and Mass Spectrometry, Department of Pharmacy, Federal University of Paraná (UFPR), Av. Pref. Lothário Meissner, 632, Jardim Botânico, Curitiba 80210-170, Paraná, Brazil
| | - Priscila Ianzen Dos Santos
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, Paraná, Brazil
- Postgraduate Program in Internal Medicine, Federal University of Paraná (UFPR), Rua General Carneiro, 181 Prédio Central, 11° Andar, Alto da Glória, Curitiba 80060-240, Paraná, Brazil
| | - Gabriel Adelman Cipolla
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, Paraná, Brazil
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, Paraná, Brazil
| | - Stefanie Epp Boschmann
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Clinical Hospital, Federal University of Paraná (UFPR), Rua General Carneiro, 181 Prédio Central, 11° Andar, Alto da Glória, Curitiba 80060-240, Paraná, Brazil
- Postgraduate Program in Internal Medicine, Federal University of Paraná (UFPR), Rua General Carneiro, 181 Prédio Central, 11° Andar, Alto da Glória, Curitiba 80060-240, Paraná, Brazil
| | - Iara José de Messias-Reason
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Clinical Hospital, Federal University of Paraná (UFPR), Rua General Carneiro, 181 Prédio Central, 11° Andar, Alto da Glória, Curitiba 80060-240, Paraná, Brazil
- Postgraduate Program in Internal Medicine, Federal University of Paraná (UFPR), Rua General Carneiro, 181 Prédio Central, 11° Andar, Alto da Glória, Curitiba 80060-240, Paraná, Brazil
| | - Francinete Ramos Campos
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Bioscience and Mass Spectrometry, Department of Pharmacy, Federal University of Paraná (UFPR), Av. Pref. Lothário Meissner, 632, Jardim Botânico, Curitiba 80210-170, Paraná, Brazil
| | - Maria Luiza Petzl-Erler
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, Paraná, Brazil
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, Paraná, Brazil
| | - Angelica Beate Winter Boldt
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, Paraná, Brazil
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, Paraná, Brazil
| |
Collapse
|
91
|
Engin B, Huseynova C, Ak T, Ayla AY, Can G, Uğurlu S. Screening of antigliadin and antitissue transglutaminase antibodies in patients with chronic plaque psoriasis: a case-control study. Turk J Med Sci 2023; 53:544-551. [PMID: 37476878 PMCID: PMC10387849 DOI: 10.55730/1300-0144.5615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/01/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND In this study, we aimed to investigate different types of celiac antibodies in psoriasis patients and to see if the presenceof the antibodies was associated with other variables. METHODS We included patients with plaque psoriasis who were followed up in our dermatology clinic between February 2019 and February 2021 and added a healthy control group for comparison. The antibodies studied were serum antitissue transglutaminase (tTG)-IgA, tTG-IgG, antigliadin antibody (AGA)-IgA, and AGA-IgG. The patients' records were used to note age, sex, the pattern of psoriasis involvement, psoriasis area and severity index (PASI), presence of hypertension, presence of type 2 diabetes mellitus, use of methotrexate, and use of biologic agents. RESULTS Sixty-five psoriasis patients (31 F, 34 M, mean age: 38.9 ± 15.2) and 65 controls (42 F, 23 M, mean age: 40.7 ± 13.2) wereincluded in the study. There was no significant difference in antibody levels between the groups: tTG-IgA (2.4 U/mL vs 3.2 U/mL, p = 0.11), tTG-IgG (2.2 U/mL vs 3.2 U/mL, p = 0.74), AGA-IgA (2.4 U/mL vs 3.5 U/mL, p = 0.068), and AGA-IgG (3.2 U/mL vs 4.2 U/mL, p = 0.15). One patient from the psoriasis group only had borderline positive antibody levels whereas the rest of the psoriasis and control group had negative levels. Hypertensive psoriasis patients had significantly higher AGA-IgA titers compared to normotensive psoriasis patients (4.2 U/mL vs 2.3 U/mL, p = 0.005). DISCUSSION There was no increase in the AGA-IgA/IgG and tTG-IgA/IgG levels in psoriasis patients compared to the healthy population. However, hypertensive psoriasis patients had higher AGA-IgA levels compared to normotensive ones.
Collapse
Affiliation(s)
- Burhan Engin
- Department of Dermatology, Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Chinara Huseynova
- Department of Dermatology, Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Tümay Ak
- Department of Internal Medicine, Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Ali Yağız Ayla
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Günay Can
- Department of Public Health, Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Serdal Uğurlu
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| |
Collapse
|
92
|
Fehrenbach DJ, Nguyen B, Alexander MR, Madhur MS. Modulating T Cell Phenotype and Function to Treat Hypertension. KIDNEY360 2023; 4:e534-e543. [PMID: 36951464 PMCID: PMC10278787 DOI: 10.34067/kid.0000000000000090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 01/25/2023] [Indexed: 03/24/2023]
Abstract
Hypertension is the leading modifiable risk factor of worldwide morbidity and mortality because of its effects on cardiovascular and renal end-organ damage. Unfortunately, BP control is not sufficient to fully reduce the risks of hypertension, underscoring the need for novel therapies that address end-organ damage in hypertension. Over the past several decades, the link between immune activation and hypertension has been well established, but there are still no therapies for hypertension that specifically target the immune system. In this review, we describe the critical role played by T cells in hypertension and hypertensive end-organ damage and outline potential therapeutic targets to modulate T-cell phenotype and function in hypertension without causing global immunosuppression.
Collapse
Affiliation(s)
- Daniel J. Fehrenbach
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee
| | - Bianca Nguyen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Matthew R. Alexander
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, Tennessee
| | - Meena S. Madhur
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, Tennessee
| |
Collapse
|
93
|
Mao X, Mao S, Sun H, Huang F, Wang Y, Zhang D, Wang Q, Li Z, Zou W, Liao Z. Causal associations between modifiable risk factors and pancreatitis: A comprehensive Mendelian randomization study. Front Immunol 2023; 14:1091780. [PMID: 36999014 PMCID: PMC10043332 DOI: 10.3389/fimmu.2023.1091780] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/03/2023] [Indexed: 03/15/2023] Open
Abstract
BackgroundThe pathogenesis of pancreatitis involves diverse environmental risk factors, some of which have not yet been clearly elucidated. This study systematically investigated the causal effects of genetically predicted modifiable risk factors on pancreatitis using the Mendelian randomization (MR) approach.MethodsGenetic variants associated with 30 exposure factors were obtained from genome-wide association studies. Summary-level statistical data for acute pancreatitis (AP), chronic pancreatitis (CP), alcohol-induced AP (AAP) and alcohol-induced CP (ACP) were obtained from FinnGen consortia. Univariable and multivariable MR analyses were performed to identify causal risk factors for pancreatitis.ResultsGenetic predisposition to smoking (OR = 1.314, P = 0.021), cholelithiasis (OR = 1.365, P = 1.307E-19) and inflammatory bowel disease (IBD) (OR = 1.063, P = 0.008) as well as higher triglycerides (OR = 1.189, P = 0.016), body mass index (BMI) (OR = 1.335, P = 3.077E-04), whole body fat mass (OR = 1.291, P = 0.004) and waist circumference (OR = 1.466, P = 0.011) were associated with increased risk of AP. The effect of obesity traits on AP was attenuated after correcting for cholelithiasis. Genetically-driven smoking (OR = 1.595, P = 0.005), alcohol consumption (OR = 3.142, P = 0.020), cholelithiasis (OR = 1.180, P = 0.001), autoimmune diseases (OR = 1.123, P = 0.008), IBD (OR = 1.066, P = 0.042), type 2 diabetes (OR = 1.121, P = 0.029), and higher serum calcium (OR = 1.933, P = 0.018), triglycerides (OR = 1.222, P = 0.021) and waist-to-hip ratio (OR = 1.632, P = 0.023) increased the risk of CP. Cholelithiasis, triglycerides and the waist-to-hip ratio remained significant predictors in the multivariable MR. Genetically predicted alcohol drinking was associated with increased risk of AAP (OR = 15.045, P = 0.001) and ACP (OR = 6.042, P = 0.014). After adjustment of alcohol drinking, genetic liability to IBD had a similar significant causal effect on AAP (OR = 1.137, P = 0.049), while testosterone (OR = 0.270, P = 0.002) a triglyceride (OR = 1.610, P = 0.001) and hip circumference (OR = 0.648, P = 0.040) were significantly associated with ACP. Genetically predicted higher education and household income levels could lower the risk of pancreatitis.ConclusionsThis MR study provides evidence of complex causal associations between modifiable risk factors and pancreatitis. These findings provide new insights into potential therapeutic and prevention strategies.
Collapse
Affiliation(s)
- Xiaotong Mao
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Shenghan Mao
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Hongxin Sun
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Fuquan Huang
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Yuanchen Wang
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Deyu Zhang
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Qiwen Wang
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Wenbin Zou
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- *Correspondence: Zhuan Liao, ; Wenbin Zou,
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- *Correspondence: Zhuan Liao, ; Wenbin Zou,
| |
Collapse
|
94
|
Stankey CT, Lee JC. Translating non-coding genetic associations into a better understanding of immune-mediated disease. Dis Model Mech 2023; 16:dmm049790. [PMID: 36897113 PMCID: PMC10040244 DOI: 10.1242/dmm.049790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Genome-wide association studies have identified hundreds of genetic loci that are associated with immune-mediated diseases. Most disease-associated variants are non-coding, and a large proportion of these variants lie within enhancers. As a result, there is a pressing need to understand how common genetic variation might affect enhancer function and thereby contribute to immune-mediated (and other) diseases. In this Review, we first describe statistical and experimental methods to identify causal genetic variants that modulate gene expression, including statistical fine-mapping and massively parallel reporter assays. We then discuss approaches to characterise the mechanisms by which these variants modulate immune function, such as clustered regularly interspaced short palindromic repeats (CRISPR)-based screens. We highlight examples of studies that, by elucidating the effects of disease variants within enhancers, have provided important insights into immune function and uncovered key pathways of disease.
Collapse
Affiliation(s)
- Christina T. Stankey
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - James C. Lee
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Institute of Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| |
Collapse
|
95
|
Saadh MJ, Pal RS, Arias-Gonzáles JL, Orosco Gavilán JC, JC D, Mohany M, Al-Rejaie SS, Bahrami A, Kadham MJ, Amin AH, Georgia H. A Mendelian Randomization Analysis Investigates Causal Associations between Inflammatory Bowel Diseases and Variable Risk Factors. Nutrients 2023; 15:1202. [PMID: 36904201 PMCID: PMC10005338 DOI: 10.3390/nu15051202] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
The question of whether variable risk factors and various nutrients are causally related to inflammatory bowel diseases (IBDs) has remained unanswered so far. Thus, this study investigated whether genetically predicted risk factors and nutrients play a function in the occurrence of inflammatory bowel diseases, including ulcerative colitis (UC), non-infective colitis (NIC), and Crohn's disease (CD), using Mendelian randomization (MR) analysis. Utilizing the data of genome-wide association studies (GWASs) with 37 exposure factors, we ran Mendelian randomization analyses based on up to 458,109 participants. Univariable and multivariable MR analyses were conducted to determine causal risk factors for IBD diseases. Genetic predisposition to smoking and appendectomy as well as vegetable and fruit intake, breastfeeding, n-3 PUFAs, n-6 PUFAs, vitamin D, total cholesterol, whole-body fat mass, and physical activity were related to the risk of UC (p < 0.05). The effect of lifestyle behaviors on UC was attenuated after correcting for appendectomy. Genetically driven smoking, alcohol consumption, appendectomy, tonsillectomy, blood calcium, tea intake, autoimmune diseases, type 2 diabetes, cesarean delivery, vitamin D deficiency, and antibiotic exposure increased the risk of CD (p < 0.05), while vegetable and fruit intake, breastfeeding, physical activity, blood zinc, and n-3 PUFAs decreased the risk of CD (p < 0.05). Appendectomy, antibiotics, physical activity, blood zinc, n-3 PUFAs, and vegetable fruit intake remained significant predictors in multivariable MR (p < 0.05). Besides smoking, breastfeeding, alcoholic drinks, vegetable and fruit intake, vitamin D, appendectomy, and n-3 PUFAs were associated with NIC (p < 0.05). Smoking, alcoholic drinks, vegetable and fruit intake, vitamin D, appendectomy, and n-3 PUFAs remained significant predictors in multivariable MR (p < 0.05). Our results provide new and comprehensive evidence demonstrating that there are approving causal effects of various risk factors on IBDs. These findings also supply some suggestions for the treatment and prevention of these diseases.
Collapse
Affiliation(s)
- Mohamed J. Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan;
- Applied Science Research Center, Applied Science Private University, Amman 11152, Jordan
| | - Rashmi Saxena Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144001, Punjab, India;
| | - José Luis Arias-Gonzáles
- Department of Social Sciences, Faculty of Social Studies, Pontifical University of Peru, San Miguel 15088, Peru;
| | | | - Darshan JC
- Department of Pharmacy Practice, Yenepoya Pharmacy College & Research Centre, Yenepoya Deemed to Be University, Mangalore 575018, Karnataka, India;
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 1145, Saudi Arabia; (M.M.); (S.S.A.-R.)
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 1145, Saudi Arabia; (M.M.); (S.S.A.-R.)
| | - Abolfazl Bahrami
- Biomedical Center for Systems Biology Science Munich, Ludwig Maximilians University, 80333 Munich, Germany
| | | | - Ali H. Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - Hrosti Georgia
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
96
|
Tang Y, Liu W, Kong W, Zhang S, Zhu T. Multisite chronic pain and the risk of autoimmune diseases: A Mendelian randomization study. Front Immunol 2023; 14:1077088. [PMID: 36845101 PMCID: PMC9947645 DOI: 10.3389/fimmu.2023.1077088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Background Accumulating evidence has demonstrated that an association between chronic pain and autoimmune diseases (AIDs). Nevertheless, it is unclear whether these associations refer to a causal relationship. We used a two-sample Mendelian randomization (MR) method to determine the causal relationship between chronic pain and AIDs. Methods We assessed genome-wide association study (GWAS) summary statistics for chronic pain [multisite chronic pain (MCP) and chronic widespread pain (CWP)], and eight common AIDs, namely, amyotrophic lateral sclerosis (ALS), celiac disease (CeD), inflammatory bowel disease (IBD), multiple sclerosis (MS), rheumatoid arthritis (RA), systemic lupus Erythematosus (SLE), type 1 diabetes (T1D) and psoriasis. Summary statistics data were from publicly available and relatively large-scale GWAS meta-analyses to date. The two-sample MR analyses were first performed to identify the causal effect of chronic pain on AIDs. The two-step MR and multivariable MR were used to determine if mediators (BMI and smoking) causally mediated any connection and to estimate the proportion of the association mediated by these factors combined. Results With the utilization of MR analysis, multisite chronic pain was associated with a higher risk of MS [odds ratio (OR) = 1.59, 95% confidence interval (CI) = 1.01-2.49, P = 0.044] and RA (OR = 1.72, 95% CI = 1.06-2.77, P = 0.028). However, multisite chronic pain had no significant effect on ALS (OR = 1.26, 95% CI = 0.92-1.71, P = 0.150), CeD (OR = 0.24, 95% CI = 0.02-3.64, P = 0.303), IBD (OR = 0.46, 95% CI = 0.09-2.27, P = 0.338), SLE (OR = 1.78, 95% CI = 0.82-3.88, P = 0.144), T1D (OR = 1.15, 95% CI = 0.65-2.02, P = 0.627) or Psoriasis (OR = 1.59, 95% CI = 0.22-11.26, P = 0.644). We also found positive causal effects of MCP on BMI and causal effects of BMI on MS and RA. Moreover, there were no causal connections between genetically predicted chronic widespread pain and the risk of most types of AIDs disease. Conclusion Our MR analysis implied a causal relationship between MCP and MS/RA, and the effect of MCP on MS and RA may be partially mediated by BMI.
Collapse
Affiliation(s)
- Yidan Tang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China,Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Yidan Tang, ; Tao Zhu,
| | - Weizhi Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China,Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Weishuang Kong
- Department of Surgery, Xuanwei Hospital of traditional Chinese Medicine, Xuanwei, China
| | - Shuangyi Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China,Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China,Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Yidan Tang, ; Tao Zhu,
| |
Collapse
|
97
|
Abstract
Among human leukocyte antigen (HLA)-associated disorders, celiac disease has an immunopathogenesis that is particularly well understood. The condition is characterized by hypersensitivity to cereal gluten proteins, and the disease lesion is localized in the gut. Still, the diagnosis can be made by detection of highly disease-specific autoantibodies to transglutaminase 2 in the blood. We now have mechanistic insights into how the disease-predisposing HLA-DQ molecules, via presentation of posttranslationally modified gluten peptides, are connected to the generation of these autoantibodies. This review presents our current understanding of the immunobiology of this common disorder that is positioned in the border zone between food hypersensitivity and autoimmunity.
Collapse
Affiliation(s)
- Rasmus Iversen
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; .,Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; .,Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
98
|
Skoracka K, Hryhorowicz S, Rychter AM, Ratajczak AE, Szymczak-Tomczak A, Zawada A, Słomski R, Dobrowolska A, Krela-Kaźmierczak I. Why are western diet and western lifestyle pro-inflammatory risk factors of celiac disease? Front Nutr 2023; 9:1054089. [PMID: 36742009 PMCID: PMC9895111 DOI: 10.3389/fnut.2022.1054089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023] Open
Abstract
The prevalence of celiac disease increased in recent years. In addition to the genetic and immunological factors, it appears that environmental determinants are also involved in the pathophysiology of celiac disease. Gastrointestinal infections impact the development of celiac disease. Current research does not directly confirm the protective effect of natural childbirth and breastfeeding on celiac disease. However, it seems that in genetically predisposed children, the amount of gluten introduced into the diet may have an impact on celiac disease development. Also western lifestyle, including western dietary patterns high in fat, sugar, and gliadin, potentially may increase the risk of celiac disease due to changes in intestinal microbiota, intestinal permeability, or mucosal inflammation. Further research is needed to expand the knowledge of the relationship between environmental factors and the development of celiac disease to define evidence-based preventive interventions against the development of celiac disease. The manuscript summarizes current knowledge on factors predisposing to the development of celiac disease including factors associated with the western lifestyle.
Collapse
Affiliation(s)
- Kinga Skoracka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland,Doctoral School, Poznan University of Medical Sciences, Poznań, Poland,*Correspondence: Kinga Skoracka ✉
| | | | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland,Doctoral School, Poznan University of Medical Sciences, Poznań, Poland
| | - Alicja Ewa Ratajczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland,Doctoral School, Poznan University of Medical Sciences, Poznań, Poland
| | - Aleksandra Szymczak-Tomczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
| | - Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
| | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
99
|
Yuan S, Kim JH, Xu P, Wang Z. Causal association between celiac disease and inflammatory bowel disease: A two-sample bidirectional Mendelian randomization study. Front Immunol 2023; 13:1057253. [PMID: 36685511 PMCID: PMC9845610 DOI: 10.3389/fimmu.2022.1057253] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Background An epidemiological link between celiac disease (CeD) and inflammatory bowel disease (IBD) has been well established recently. In this study, Mendelian randomization (MR) analysis was performed employing pooled data of publicly available genome-wide association studies (GWAS) to determine the causal relationship between CeD and IBD, encompassing ulcerative colitis (UC) and Crohn's disease (CD). Methods Dataset of CeD was acquired from GWAS for 12,041 cases and 12,228 controls. A GWAS of more than 86,000 patients and controls was used to identify genetic variations underlying IBD. MR analyses were performed with an inverse-variance-weighted approach, an MR-Egger regression, a weighted-mode approach, a weighted-median method, and sensitivity analyses of MR pleiotropy residual sum and outlie (MR-PRESSO). Results MR demonstrated that genetic predisposition to CeD was linked to a augmented risk of IBD (OR: 1.1408; 95% CI: 1.0614-1.2261; P = 0.0003). In the analysis of the two IBD subtypes, genetic predisposition to CeD was also linked to increased risks of UC (OR: 1.1646; 95% CI: 1.0614-1.2779; P = 0.0012) and CD (OR: 1.1865; 95% CI: 1.0948-1.2859; P = 3.07E-05). Reverse MR analysis results revealed that genetic susceptibility to IBD and CD was correlated with an augmented risk of CeD. However, there was no genetic correlation between UC and CeD. All of the above results were validated with other GWAS databases. Conclusion There is a bidirectional causal relationship of CeD with IBD and CD. However, UC only augments the risk of developing CeD.
Collapse
Affiliation(s)
- Shuai Yuan
- Division of Pancreatobiliary Surgery, Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ji Hun Kim
- Division of Pancreatobiliary Surgery, Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea,*Correspondence: Ji Hun Kim,
| | - Pai Xu
- Department of Orthopaedic Surgery, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Zhao Wang
- Department of Orthopaedic Surgery, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
100
|
Velásquez IM, Malarstig A, Baldassarre D, Borne Y, de Faire U, Engström G, Eriksson P, Giral P, Humphries SE, Kurl S, Leander K, Lind L, Lindén A, Orsini N, Pirro M, Silveira A, Smit AJ, Tremoli E, Veglia F, Strawbridge RJ, Gigante B. Causal analysis of plasma IL-8 on carotid intima media thickness, a measure of subclinical atherosclerosis. Curr Res Transl Med 2023; 71:103374. [PMID: 36493747 DOI: 10.1016/j.retram.2022.103374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND We investigated the causality of IL-8 on carotid intima-media thickness (c-IMT), a measure of sub-clinical atherosclerosis. METHODS The IMPROVE is a multicenter European study (n = 3,711). The association of plasma IL-8 with c-IMT (mm) was estimated by quantile regression. Genotyping was performed using the Illumina CardioMetabo and Immuno chips. Replication was attempted in three independent studies and a meta-analysis was performed using a random model. RESULTS In IMPROVE, each unit increase in plasma IL-8 was associated with an increase in median c-IMT measures (all p<0·03) in multivariable analyses. Linear regression identified rs117518778 and rs8057084 as associated with IL-8 levels and with measures of c-IMT. The two SNPs were combined in an IL-8-increasing genetic risk that showed causality of IL-8 on c-IMT in IMPROVE and in the UK Biobank (n = 22,179). The effect of IL-8 on c-IMT measures was confirmed in PIVUS (n = 1,016) and MDCCC (n = 6,103). The association of rs8057084 with c-IMT was confirmed in PIVUS and UK Biobank with a pooled estimate effect (β) of -0·006 with 95%CI (-0·008- -0·003). CONCLUSION Our results indicate that genetic variants associated with plasma IL-8 also associate with c-IMT. However, we cannot infer causality of this association, as these variants lie outside of the IL8 locus.
Collapse
Affiliation(s)
- Ilais Moreno Velásquez
- Gorgas Memorial Institute for Health Studies, Panama City, Panama; Max Delbrück Center for Molecular Medicine in the Helmholtz-Association, Molecular Epidemiology Research Group, Berlin, Germany
| | - Anders Malarstig
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Emerging Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
| | - Damiano Baldassarre
- Department of Medical Biotechnology and Translational Medicine, Università di Milano, Milan, Italy; Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Yan Borne
- Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| | - Ulf de Faire
- Cardiovascular and Nutritional Epidemiology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| | - Per Eriksson
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Karolinska University Hospital Solna, Stockholm, Sweden
| | - Philippe Giral
- Sorbonne Université, INSERM UMR1166, Cardiovascular prevention unit, AP-HP, Groupe Hôpitalier Pitié-Salpetriere, Paris, France
| | - Steve E Humphries
- Cardiovascular Genetics, Institute Cardiovascular Science, University College London, United Kingdom
| | - Sudhir Kurl
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Finland
| | - Karin Leander
- Cardiovascular and Nutritional Epidemiology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Anders Lindén
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Stockholm, Sweden; Karolinska Severe COPD Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Nicola Orsini
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Matteo Pirro
- Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Angela Silveira
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Karolinska University Hospital Solna, Stockholm, Sweden
| | - Andries J Smit
- Department of Medicine, University Medical Center Groningen, Groningen & Isala Clinics Zwolle, Department of Medicine, the Netherlands
| | | | - Fabrizio Veglia
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Maria Cecilia Hospital, Cotignola, RA, Italy
| | - Rona J Strawbridge
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom; Health Data Research, United Kingdom
| | - Bruna Gigante
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd University Hospital, Stockholm, Sweden.
| |
Collapse
|