51
|
Shi Y, Jia M, Xu L, Fang Z, Wu W, Zhang Q, Chung P, Lin Y, Wang S, Zhang Y. miR-96 and autophagy are involved in the beneficial effect of grape seed proanthocyanidins against high-fat-diet-induced dyslipidemia in mice. Phytother Res 2019; 33:1222-1232. [PMID: 30848548 DOI: 10.1002/ptr.6318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/10/2019] [Accepted: 01/24/2019] [Indexed: 12/15/2022]
Abstract
We aimed to investigate the possible signaling pathways underlying the regulation of grape seed proanthocyanidins extracts (GSPE) on lipid metabolism. One hundred male C57BL/6 mice were divided into four groups: control group (normal diet), GSPE group (normal diet + GSPE), high-fat diet group (HFD), and high-fat diet plus GSPE (200 mg/kg/day) group (HFD + GSPE). Mice received the diets for 180 days. Body weight and serum lipid levels were measured. Autophagic flux characteristics, such as accumulation of lipids, mitochondria, and autophagosomes in the liver, were detected using transmission electron microscopy. Expression profile of microRNAs (miRNAs) in the liver was determined using RNA microarray and quantitative real time polymerase chain reaction (qRt-PCR). GSPE significantly decreased the weight gain, serum levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol but increased high-density lipoprotein cholesterol in the HFD mice. Autophagic flux was significantly increased by HFD but decreased by GSPE treatment. GSPE significantly attenuated HFD-induced miR-96 upregulation, which in turn reduced the expressions of miR-96 downstream molecules, FOXO1, mTOR, p-mTOR, and LC3A/B. These results suggested that the miR-96 is involved in the protective effect of GSPE against HFD-induced dyslipidemia. Possible mechanisms might be through mTOR and FOXO1, which facilitate autophagic flux for clearance of lipid accumulation.
Collapse
Affiliation(s)
- Yawei Shi
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minghan Jia
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangzhou, China
| | - Lixia Xu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zeng Fang
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weibin Wu
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Peter Chung
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - Ying Lin
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shenming Wang
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunjian Zhang
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
52
|
Cifarelli V, Eichmann A. The Intestinal Lymphatic System: Functions and Metabolic Implications. Cell Mol Gastroenterol Hepatol 2018; 7:503-513. [PMID: 30557701 DOI: 10.1016/j.jcmgh.2018.12.002'||'] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 01/29/2024]
Abstract
The lymphatic system of the gut plays important roles in the transport of dietary lipids, as well as in immunosurveillance and removal of interstitial fluid. Historically, despite its crucial functions in intestinal homeostasis, the lymphatic system has been poorly studied. In the last 2 decades, identification of specific molecular mediators of lymphatic endothelial cells (LECs) growth together with novel genetic approaches and intravital imaging techniques, have advanced our understanding of the mechanisms regulating intestinal lymphatic physiology in health and disease. As its metabolic implications are gaining recognition, intestinal lymphatic biology is currently experiencing a surge in interest. This review describes current knowledge related to molecular control of intestinal lymphatic vessel structure and function. We discuss regulation of chylomicron entry into lymphatic vessels by vascular endothelial growth factors (VEGFs), hormones, transcription factors and the specific signaling pathways involved. The information covered supports the emerging role of intestinal lymphatics in etiology of the metabolic syndrome and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri.
| | - Anne Eichmann
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
53
|
Cifarelli V, Eichmann A. The Intestinal Lymphatic System: Functions and Metabolic Implications. Cell Mol Gastroenterol Hepatol 2018; 7:503-513. [PMID: 30557701 DOI: 10.1016/j.jcmgh.2018.12.002" and 2*3*8=6*8 and "tkbp"="tkbp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 01/29/2024]
Abstract
The lymphatic system of the gut plays important roles in the transport of dietary lipids, as well as in immunosurveillance and removal of interstitial fluid. Historically, despite its crucial functions in intestinal homeostasis, the lymphatic system has been poorly studied. In the last 2 decades, identification of specific molecular mediators of lymphatic endothelial cells (LECs) growth together with novel genetic approaches and intravital imaging techniques, have advanced our understanding of the mechanisms regulating intestinal lymphatic physiology in health and disease. As its metabolic implications are gaining recognition, intestinal lymphatic biology is currently experiencing a surge in interest. This review describes current knowledge related to molecular control of intestinal lymphatic vessel structure and function. We discuss regulation of chylomicron entry into lymphatic vessels by vascular endothelial growth factors (VEGFs), hormones, transcription factors and the specific signaling pathways involved. The information covered supports the emerging role of intestinal lymphatics in etiology of the metabolic syndrome and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri.
| | - Anne Eichmann
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
54
|
Cifarelli V, Eichmann A. The Intestinal Lymphatic System: Functions and Metabolic Implications. Cell Mol Gastroenterol Hepatol 2018; 7:503-513. [PMID: 30557701 DOI: 10.1016/j.jcmgh.2018.12.002' and 2*3*8=6*8 and 'gakc'='gakc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 01/29/2024]
Abstract
The lymphatic system of the gut plays important roles in the transport of dietary lipids, as well as in immunosurveillance and removal of interstitial fluid. Historically, despite its crucial functions in intestinal homeostasis, the lymphatic system has been poorly studied. In the last 2 decades, identification of specific molecular mediators of lymphatic endothelial cells (LECs) growth together with novel genetic approaches and intravital imaging techniques, have advanced our understanding of the mechanisms regulating intestinal lymphatic physiology in health and disease. As its metabolic implications are gaining recognition, intestinal lymphatic biology is currently experiencing a surge in interest. This review describes current knowledge related to molecular control of intestinal lymphatic vessel structure and function. We discuss regulation of chylomicron entry into lymphatic vessels by vascular endothelial growth factors (VEGFs), hormones, transcription factors and the specific signaling pathways involved. The information covered supports the emerging role of intestinal lymphatics in etiology of the metabolic syndrome and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri.
| | - Anne Eichmann
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
55
|
Cifarelli V, Eichmann A. The Intestinal Lymphatic System: Functions and Metabolic Implications. Cell Mol Gastroenterol Hepatol 2018; 7:503-513. [PMID: 30557701 DOI: 10.1016/j.jcmgh.2018.12.002����%2527%2522\'\"] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 01/29/2024]
Abstract
The lymphatic system of the gut plays important roles in the transport of dietary lipids, as well as in immunosurveillance and removal of interstitial fluid. Historically, despite its crucial functions in intestinal homeostasis, the lymphatic system has been poorly studied. In the last 2 decades, identification of specific molecular mediators of lymphatic endothelial cells (LECs) growth together with novel genetic approaches and intravital imaging techniques, have advanced our understanding of the mechanisms regulating intestinal lymphatic physiology in health and disease. As its metabolic implications are gaining recognition, intestinal lymphatic biology is currently experiencing a surge in interest. This review describes current knowledge related to molecular control of intestinal lymphatic vessel structure and function. We discuss regulation of chylomicron entry into lymphatic vessels by vascular endothelial growth factors (VEGFs), hormones, transcription factors and the specific signaling pathways involved. The information covered supports the emerging role of intestinal lymphatics in etiology of the metabolic syndrome and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri.
| | - Anne Eichmann
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
56
|
Cifarelli V, Eichmann A. The Intestinal Lymphatic System: Functions and Metabolic Implications. Cell Mol Gastroenterol Hepatol 2018; 7:503-513. [PMID: 30557701 DOI: 10.1016/j.jcmgh.2018.12.002'"] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 01/29/2024]
Abstract
The lymphatic system of the gut plays important roles in the transport of dietary lipids, as well as in immunosurveillance and removal of interstitial fluid. Historically, despite its crucial functions in intestinal homeostasis, the lymphatic system has been poorly studied. In the last 2 decades, identification of specific molecular mediators of lymphatic endothelial cells (LECs) growth together with novel genetic approaches and intravital imaging techniques, have advanced our understanding of the mechanisms regulating intestinal lymphatic physiology in health and disease. As its metabolic implications are gaining recognition, intestinal lymphatic biology is currently experiencing a surge in interest. This review describes current knowledge related to molecular control of intestinal lymphatic vessel structure and function. We discuss regulation of chylomicron entry into lymphatic vessels by vascular endothelial growth factors (VEGFs), hormones, transcription factors and the specific signaling pathways involved. The information covered supports the emerging role of intestinal lymphatics in etiology of the metabolic syndrome and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri.
| | - Anne Eichmann
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
57
|
Cifarelli V, Eichmann A. The Intestinal Lymphatic System: Functions and Metabolic Implications. Cell Mol Gastroenterol Hepatol 2018; 7:503-513. [PMID: 30557701 DOI: 10.1016/j.jcmgh.2018.12.002%' and 2*3*8=6*8 and 'htng'!='htng%] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 01/29/2024]
Abstract
The lymphatic system of the gut plays important roles in the transport of dietary lipids, as well as in immunosurveillance and removal of interstitial fluid. Historically, despite its crucial functions in intestinal homeostasis, the lymphatic system has been poorly studied. In the last 2 decades, identification of specific molecular mediators of lymphatic endothelial cells (LECs) growth together with novel genetic approaches and intravital imaging techniques, have advanced our understanding of the mechanisms regulating intestinal lymphatic physiology in health and disease. As its metabolic implications are gaining recognition, intestinal lymphatic biology is currently experiencing a surge in interest. This review describes current knowledge related to molecular control of intestinal lymphatic vessel structure and function. We discuss regulation of chylomicron entry into lymphatic vessels by vascular endothelial growth factors (VEGFs), hormones, transcription factors and the specific signaling pathways involved. The information covered supports the emerging role of intestinal lymphatics in etiology of the metabolic syndrome and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri.
| | - Anne Eichmann
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
58
|
Cifarelli V, Eichmann A. The Intestinal Lymphatic System: Functions and Metabolic Implications. Cell Mol Gastroenterol Hepatol 2018; 7:503-513. [PMID: 30557701 DOI: 10.1016/j.jcmgh.2018.12.002mueybbdd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 01/29/2024]
Abstract
The lymphatic system of the gut plays important roles in the transport of dietary lipids, as well as in immunosurveillance and removal of interstitial fluid. Historically, despite its crucial functions in intestinal homeostasis, the lymphatic system has been poorly studied. In the last 2 decades, identification of specific molecular mediators of lymphatic endothelial cells (LECs) growth together with novel genetic approaches and intravital imaging techniques, have advanced our understanding of the mechanisms regulating intestinal lymphatic physiology in health and disease. As its metabolic implications are gaining recognition, intestinal lymphatic biology is currently experiencing a surge in interest. This review describes current knowledge related to molecular control of intestinal lymphatic vessel structure and function. We discuss regulation of chylomicron entry into lymphatic vessels by vascular endothelial growth factors (VEGFs), hormones, transcription factors and the specific signaling pathways involved. The information covered supports the emerging role of intestinal lymphatics in etiology of the metabolic syndrome and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri.
| | - Anne Eichmann
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
59
|
Cifarelli V, Eichmann A. The Intestinal Lymphatic System: Functions and Metabolic Implications. Cell Mol Gastroenterol Hepatol 2018; 7:503-513. [PMID: 30557701 PMCID: PMC6396433 DOI: 10.1016/j.jcmgh.2018.12.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/26/2022]
Abstract
The lymphatic system of the gut plays important roles in the transport of dietary lipids, as well as in immunosurveillance and removal of interstitial fluid. Historically, despite its crucial functions in intestinal homeostasis, the lymphatic system has been poorly studied. In the last 2 decades, identification of specific molecular mediators of lymphatic endothelial cells (LECs) growth together with novel genetic approaches and intravital imaging techniques, have advanced our understanding of the mechanisms regulating intestinal lymphatic physiology in health and disease. As its metabolic implications are gaining recognition, intestinal lymphatic biology is currently experiencing a surge in interest. This review describes current knowledge related to molecular control of intestinal lymphatic vessel structure and function. We discuss regulation of chylomicron entry into lymphatic vessels by vascular endothelial growth factors (VEGFs), hormones, transcription factors and the specific signaling pathways involved. The information covered supports the emerging role of intestinal lymphatics in etiology of the metabolic syndrome and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri,Correspondence Address correspondence to: Vincenza Cifarelli, PhD, Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, Campus box 8031, 660 Euclid Avenue, St. Louis, Missouri 63110. fax: (314) 362-8230.
| | - Anne Eichmann
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut,INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
60
|
Cordoba-Chacon J, Sarmento-Cabral A, del Rio-Moreno M, Diaz-Ruiz A, Subbaiah PV, Kineman RD. Adult-Onset Hepatocyte GH Resistance Promotes NASH in Male Mice, Without Severe Systemic Metabolic Dysfunction. Endocrinology 2018; 159:3761-3774. [PMID: 30295789 PMCID: PMC6202859 DOI: 10.1210/en.2018-00669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which includes nonalcoholic steatohepatitis (NASH), is associated with reduced GH input/signaling, and GH therapy is effective in the reduction/resolution of NAFLD/NASH in selected patient populations. Our laboratory has focused on isolating the direct vs indirect effects of GH in preventing NAFLD/NASH. We reported that chow-fed, adult-onset, hepatocyte-specific, GH receptor knockdown (aHepGHRkd) mice rapidly (within 7 days) develop steatosis associated with increased hepatic de novo lipogenesis (DNL), independent of changes in systemic metabolic function. In this study, we report that 6 months after induction of aHepGHRkd early signs of NASH develop, which include hepatocyte ballooning, inflammation, signs of mild fibrosis, and elevated plasma alanine aminotransferase. These changes occur in the presence of enhanced systemic lipid utilization, without evidence of white adipose tissue lipolysis, indicating that the liver injury that develops after aHepGHRkd is due to hepatocyte-specific loss of GH signaling and not due to secondary defects in systemic metabolic function. Specifically, enhanced hepatic DNL is sustained with age in aHepGHRkd mice, associated with increased hepatic markers of lipid uptake/re-esterification. Because hepatic DNL is a hallmark of NAFLD/NASH, these studies suggest that enhancing hepatocyte GH signaling could represent an effective therapeutic target to reduce DNL and treat NASH.
Collapse
Affiliation(s)
- Jose Cordoba-Chacon
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Andre Sarmento-Cabral
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Mercedes del Rio-Moreno
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, Cordoba, Spain
| | - Alberto Diaz-Ruiz
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
- Nutritional Interventions Group, Precision Nutrition and Aging, Institute IMDEA Food, Madrid, Spain
| | - Papasani V Subbaiah
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Rhonda D Kineman
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
61
|
MFGE8 polymorphisms are significantly associated with metabolism-related indicators rather than metabolic syndrome in Chinese people: A nested case–control study. Gene 2018; 677:176-181. [DOI: 10.1016/j.gene.2018.07.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 01/07/2023]
|
62
|
Abstract
At the simplest level, obesity is the manifestation of an imbalance between caloric intake and expenditure; however, the pathophysiological mechanisms that govern the development of obesity and associated complications are enormously complex. Fibrosis within the adipose tissue compartment is one such factor that may influence the development of obesity and/or obesity-related comorbidities. Furthermore, the functional consequences of adipose tissue fibrosis are a matter of considerable debate, with evidence that fibrosis serves both adaptive and maladaptive roles. Tissue fibrosis itself is incompletely understood, and multiple cellular and molecular pathways are involved in the development, maintenance, and resolution of the fibrotic state. Within the context of obesity, fibrosis influences molecular and cellular events that relate to adipocytes, inflammatory cells, inflammatory mediators, and supporting adipose stromal tissue. In this Review, we explore what is known about the interplay between the development of adipose tissue fibrosis and obesity, with a view toward future investigative and therapeutic avenues.
Collapse
Affiliation(s)
| | - Michael J Podolsky
- Cardiovascular Research Institute.,Lung Biology Center, and.,Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Kamran Atabai
- Cardiovascular Research Institute.,Lung Biology Center, and.,Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
63
|
Autocrine Mfge8 Signaling Prevents Developmental Exhaustion of the Adult Neural Stem Cell Pool. Cell Stem Cell 2018; 23:444-452.e4. [PMID: 30174295 DOI: 10.1016/j.stem.2018.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022]
Abstract
Adult neurogenesis, arising from quiescent radial-glia-like neural stem cells (RGLs), occurs throughout life in the dentate gyrus. How neural stem cells are maintained throughout development to sustain adult mammalian neurogenesis is not well understood. Here, we show that milk fat globule-epidermal growth factor (EGF) 8 (Mfge8), a known phagocytosis factor, is highly enriched in quiescent RGLs in the dentate gyrus. Mfge8-null mice exhibit decreased adult dentate neurogenesis, and furthermore, adult RGL-specific deletion of Mfge8 leads to RGL overactivation and depletion. Similarly, loss of Mfge8 promotes RGL activation in the early postnatal dentate gyrus, resulting in a decreased number of label-retaining RGLs in adulthood. Mechanistically, loss of Mfge8 elevates mTOR1 signaling in RGLs, inhibition of which by rapamycin returns RGLs to quiescence. Together, our study identifies a neural-stem-cell-enriched niche factor that maintains quiescence and prevents developmental exhaustion of neural stem cells to sustain continuous neurogenesis in the adult mammalian brain.
Collapse
|
64
|
Khalifeh-Soltani A, Gupta D, Ha A, Podolsky MJ, Datta R, Atabai K. The Mfge8-α8β1-PTEN pathway regulates airway smooth muscle contraction in allergic inflammation. FASEB J 2018; 32:fj201800109R. [PMID: 29763381 DOI: 10.1096/fj.201800109r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Asthma affects ∼300 million people worldwide. Despite multiple treatment options, asthma treatment remains unsatisfactory in a subset of patients. Airway obstruction is a hallmark of allergic asthma and is largely due to airway smooth muscle hypercontractility induced by airway inflammation. Identification of molecular pathways that regulate airway smooth muscle hypercontractility is of considerable therapeutic interest. We previously identified roles for milk fat globule epidermal growth factor-like 8 (Mfge8) in opposing the effects of allergic inflammation on increasing airway smooth muscle contractile force. In this study, we delineate the signaling pathway by which Mfge8 mediates these effects. By using genetic and pharmacologic approaches, we show that the α8β1 integrin and the phosphatase and tensin homolog (PTEN) mediate the effects of Mfge8 on preventing IL-13-induced increases in airway contractility. Tracheal rings from mice with smooth muscle-specific deletion of α8β1 or PTEN have enhanced contraction in response to treatment with IL-13. Enhanced IL-13-induced tracheal ring contraction in Mfge8-/- mice was abolished by treatment with the PI3K inhibitor. Mechanistically, IL-13 induces ubiquitination and degradation of PTEN protein. Our findings identify a role for the Mfge8-α8β1-PTEN pathway in regulating the force of airway smooth muscle contraction in the setting of allergic inflammation.-Khalifeh-Soltani, A., Gupta, D., Ha, A., Podolsky, M. J., Datta, R., Atabai, K. The Mfge8-α8β1-PTEN pathway regulates airway smooth muscle contraction in allergic inflammation.
Collapse
Affiliation(s)
- Amin Khalifeh-Soltani
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Deepti Gupta
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Arnold Ha
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Michael J Podolsky
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
- Lung Biology Center, University of California, San Francisco, San Francisco, California, USA; and
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ritwik Datta
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Kamran Atabai
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
- Lung Biology Center, University of California, San Francisco, San Francisco, California, USA; and
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
65
|
Comparative transcriptome analysis to investigate the potential role of miRNAs in milk protein/fat quality. Sci Rep 2018; 8:6250. [PMID: 29674689 PMCID: PMC5908868 DOI: 10.1038/s41598-018-24727-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/14/2018] [Indexed: 01/06/2023] Open
Abstract
miRNAs play an important role in the processes of cell differentiation, biological development, and physiology. Here we investigated the molecular mechanisms regulating milk secretion and quality in dairy cows via transcriptome analyses of mammary gland tissues from dairy cows during the high-protein/high-fat, low-protein/low-fat or dry periods. To characterize the important roles of miRNAs and mRNAs in milk quality and to elucidate their regulatory networks in relation to milk secretion and quality, an integrated analysis was performed. A total of 25 core miRNAs were found to be differentially expressed (DE) during lactation compared to non-lactation, and these miRNAs were involved in epithelial cell terminal differentiation and mammary gland development. In addition, comprehensive analysis of mRNA and miRNA expression between high-protein/high-fat group and low-protein/low-fat groups indicated that, 38 miRNAs and 944 mRNAs were differentially expressed between them. Furthermore, 38 DE miRNAs putatively negatively regulated 253 DE mRNAs. The putative genes (253 DE mRNAs) were enriched in lipid biosynthetic process and amino acid transmembrane transporter activity. Moreover, putative DE genes were significantly enriched in fatty acid (FA) metabolism, biosynthesis of amino acids, synthesis and degradation of ketone bodies and biosynthesis of unsaturated FAs. Our results suggest that DE miRNAs might play roles as regulators of milk quality and milk secretion during mammary gland differentiation.
Collapse
|
66
|
Luo H, Jiang M, Lian G, Liu Q, Shi M, Li TY, Song L, Ye J, He Y, Yao L, Zhang C, Lin ZZ, Zhang CS, Zhao TJ, Jia WP, Li P, Lin SY, Lin SC. AIDA Selectively Mediates Downregulation of Fat Synthesis Enzymes by ERAD to Retard Intestinal Fat Absorption and Prevent Obesity. Cell Metab 2018; 27:843-853.e6. [PMID: 29617643 DOI: 10.1016/j.cmet.2018.02.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/05/2017] [Accepted: 02/21/2018] [Indexed: 01/24/2023]
Abstract
The efficiency of intestinal absorption of dietary fat constitutes a primary determinant accounting for individual vulnerability to obesity. However, how fat absorption is controlled and contributes to obesity remains unclear. Here, we show that inhibition of endoplasmic-reticulum-associated degradation (ERAD) increases the abundance of triacylglycerol synthesis enzymes and fat absorption in small intestine. The C2-domain protein AIDA acts as an essential factor for the E3-ligase HRD1 of ERAD to downregulate rate-limiting acyltransferases GPAT3, MOGAT2, and DGAT2. Aida-/- mice, when grown in a thermal-neutral condition or fed high-fat diet, display increased intestinal fatty acid re-esterification, circulating and tissue triacylglycerol, accompanied with severely increased adiposity without enhancement of adipogenesis. Intestine-specific knockout of Aida largely phenocopies its whole-body knockout, strongly indicating that increased intestinal TAG synthesis is a primary impetus to obesity. The AIDA-mediated ERAD system may thus represent an anti-thrifty mechanism impinging on the enzymes for intestinal fat absorption and systemic fat storage.
Collapse
Affiliation(s)
- Hui Luo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ming Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Guili Lian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qing Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Meng Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Terytty Yang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lintao Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jing Ye
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ying He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Luming Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhi-Zhong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Tong-Jin Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wei-Ping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiaotong University, Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Peng Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shu-Yong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
67
|
Auclair N, Melbouci L, St-Pierre D, Levy E. Gastrointestinal factors regulating lipid droplet formation in the intestine. Exp Cell Res 2018; 363:1-14. [PMID: 29305172 DOI: 10.1016/j.yexcr.2017.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022]
Abstract
Cytoplasmic lipid droplets (CLD) are considered as neutral lipid reservoirs, which protect cells from lipotoxicity. It became clear that these fascinating dynamic organelles play a role not only in energy storage and metabolism, but also in cellular lipid and protein handling, inter-organelle communication, and signaling among diverse functions. Their dysregulation is associated with multiple disorders, including obesity, liver steatosis and cardiovascular diseases. The central aim of this review is to highlight the link between intra-enterocyte CLD dynamics and the formation of chylomicrons, the main intestinal dietary lipid vehicle, after overviewing the morphology, molecular composition, biogenesis and functions of CLD.
Collapse
Affiliation(s)
- N Auclair
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5
| | - L Melbouci
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - D St-Pierre
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - E Levy
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada G1V 0A6.
| |
Collapse
|
68
|
Barua S, Macedo A, Kolb DS, Wynne-Edwards KE, Klein C. Milk-fat globule epidermal growth factor 8 (MFGE8) is expressed at the embryo– and fetal–maternal interface in equine pregnancy. Reprod Fertil Dev 2018; 30:585-590. [DOI: 10.1071/rd17094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/14/2017] [Indexed: 01/18/2023] Open
Abstract
Milk-fat globule epidermal growth factor (EGF) 8 protein (MFGE8), also known as lactadherin, promotes cell adhesion in an Arg-Gly-Asp (RGD)-dependent modus via integrins. In the present study, the expression of MFGE8 was examined in equine endometrium during oestrus and at Days 12 and 16 after ovulation in pregnant and non-pregnant mares and in mares during the 5th month of gestation. Results demonstrated that MFGE8 is expressed at the embryo– and fetal–maternal interface in equine pregnancy. In non-pregnant endometrium its expression was upregulated by oestrogen, a finding that was confirmed using endometrial explant culture. MFGE8 was expressed at similar levels by conceptuses collected 13 and 14 days after ovulation and by allantochorion sampled during the 5th month of gestation. Pericytes of endometrial blood vessels displayed strong MFGE8 expression upon in situ hybridisation. During the 5th month of gestation, the fetal side of the allantochorionic villi in particular displayed pronounced staining upon in situ hybridisation, confirming that MFGE8 expression is not restricted to early pregnancy but persists and is present at the fetal–maternal interface. Potential roles of MFGE8 in equine pregnancy include mediating cell–cell adhesion, promotion of angiogenesis and placental transfer of fatty acids.
Collapse
|
69
|
Gong Y, Sasidharan N, Laheji F, Frosch M, Musolino P, Tanzi R, Kim DY, Biffi A, El Khoury J, Eichler F. Microglial dysfunction as a key pathological change in adrenomyeloneuropathy. Ann Neurol 2017; 82:813-827. [PMID: 29059709 PMCID: PMC5725816 DOI: 10.1002/ana.25085] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Mutations in ABCD1 cause the neurodegenerative disease, adrenoleukodystrophy, which manifests as the spinal cord axonopathy adrenomyeloneuropathy (AMN) in nearly all males surviving into adulthood. Microglial dysfunction has long been implicated in pathogenesis of brain disease, but its role in the spinal cord is unclear. METHODS We assessed spinal cord microglia in humans and mice with AMN and investigated the role of ABCD1 in microglial activity toward neuronal phagocytosis in cell culture. Because mutations in ABCD1 lead to incorporation of very-long-chain fatty acids into phospholipids, we separately examined the effects of lysophosphatidylcholine (LPC) upon microglia. RESULTS Within the spinal cord of humans and mice with AMN, upregulation of several phagocytosis-related markers, such as MFGE8 and TREM2, precedes complement activation and synapse loss. Unexpectedly, this occurs in the absence of overt inflammation. LPC C26:0 added to ABCD1-deficient microglia in culture further enhances MFGE8 expression, aggravates phagocytosis, and leads to neuronal injury. Furthermore, exposure to a MFGE8-blocking antibody reduces phagocytic activity. INTERPRETATION Spinal cord microglia lacking ABCD1 are primed for phagocytosis, affecting neurons within an altered metabolic milieu. Blocking phagocytosis or specific phagocytic receptors may alleviate synapse loss and axonal degeneration. Ann Neurol 2017;82:813-827.
Collapse
Affiliation(s)
- Yi Gong
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMA
| | - Nikhil Sasidharan
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMA
| | - Fiza Laheji
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMA
| | - Matthew Frosch
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMA
| | - Patricia Musolino
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMA
| | - Rudy Tanzi
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMA
| | - Doo Yeon Kim
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMA
| | | | - Joseph El Khoury
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMA
| | - Florian Eichler
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMA
| |
Collapse
|
70
|
Deng KQ, Li J, She ZG, Gong J, Cheng WL, Gong FH, Zhu XY, Zhang Y, Wang Z, Li H. Restoration of Circulating MFGE8 (Milk Fat Globule-EGF Factor 8) Attenuates Cardiac Hypertrophy Through Inhibition of Akt Pathway. Hypertension 2017; 70:770-779. [PMID: 28827473 DOI: 10.1161/hypertensionaha.117.09465] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/13/2017] [Accepted: 08/01/2017] [Indexed: 01/26/2023]
Abstract
Cardiac hypertrophy occurs in response to numerous stimuli like neurohumoral stress, pressure overload, infection, and injury, and leads to heart failure. Mfge8 (milk fat globule-EGF factor 8) is a secreted protein involved in various human diseases, but its regulation and function during cardiac hypertrophy remain unexplored. Here, we found that circulating MFGE8 levels declined significantly in failing hearts from patients with dilated cardiomyopathy. Correlation analyses revealed that circulating MFGE8 levels were negatively correlated with the severity of cardiac dysfunction and remodeling in affected patients. Deleting Mfge8 in mice maintained normal heart function at basal level but substantially exacerbated the hypertrophic enlargement of cardiomyocytes, reprogramming of pathological genes, contractile dysfunction, and myocardial fibrosis after aortic banding surgery. In contrast, cardiac-specific Mfge8 overexpression in transgenic mice significantly blunted aortic banding-induced cardiac hypertrophy. Whereas MAPK (mitogen-activated protein kinase) pathways were unaffected in either Mfge8-knockout or Mfge8-overexpressing mice, the activated Akt/PKB (protein kinase B)-Gsk-3β (glycogen synthase kinase-3β)/mTOR (mammalian target of rapamycin) pathway after aortic banding was significantly potentiated by Mfge8 deficiency but suppressed by Mfge8 overexpression. Inhibition of Akt with MK-2206 blocked the prohypertrophic effects of Mfge8 deficiency in angiotensin II-treated neonatal rat cardiomyocytes. Finally, administering a recombinant human MFGE8 in mice in vivo alleviated cardiac hypertrophy induced by aortic banding. Our findings indicate that Mfge8 is an endogenous negative regulator of pathological cardiac hypertrophy and may, thus, have potential both as a novel biomarker and as a therapeutic target for treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Ke-Qiong Deng
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China; School of Basic Medical Sciences and Medical Research Institute, School of Medicine, Wuhan University, China; and Institute of Model Animal of Wuhan University, China
| | - Jing Li
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China; School of Basic Medical Sciences and Medical Research Institute, School of Medicine, Wuhan University, China; and Institute of Model Animal of Wuhan University, China
| | - Zhi-Gang She
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China; School of Basic Medical Sciences and Medical Research Institute, School of Medicine, Wuhan University, China; and Institute of Model Animal of Wuhan University, China
| | - Jun Gong
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China; School of Basic Medical Sciences and Medical Research Institute, School of Medicine, Wuhan University, China; and Institute of Model Animal of Wuhan University, China
| | - Wen-Lin Cheng
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China; School of Basic Medical Sciences and Medical Research Institute, School of Medicine, Wuhan University, China; and Institute of Model Animal of Wuhan University, China
| | - Fu-Han Gong
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China; School of Basic Medical Sciences and Medical Research Institute, School of Medicine, Wuhan University, China; and Institute of Model Animal of Wuhan University, China
| | - Xue-Yong Zhu
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China; School of Basic Medical Sciences and Medical Research Institute, School of Medicine, Wuhan University, China; and Institute of Model Animal of Wuhan University, China
| | - Yan Zhang
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China; School of Basic Medical Sciences and Medical Research Institute, School of Medicine, Wuhan University, China; and Institute of Model Animal of Wuhan University, China
| | - Zhihua Wang
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China; School of Basic Medical Sciences and Medical Research Institute, School of Medicine, Wuhan University, China; and Institute of Model Animal of Wuhan University, China.
| | - Hongliang Li
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China; School of Basic Medical Sciences and Medical Research Institute, School of Medicine, Wuhan University, China; and Institute of Model Animal of Wuhan University, China.
| |
Collapse
|
71
|
McCurley A, Alimperti S, Campos-Bilderback SB, Sandoval RM, Calvino JE, Reynolds TL, Quigley C, Mugford JW, Polacheck WJ, Gomez IG, Dovey J, Marsh G, Huang A, Qian F, Weinreb PH, Dolinski BM, Moore S, Duffield JS, Chen CS, Molitoris BA, Violette SM, Crackower MA. Inhibition of αv β5 Integrin Attenuates Vascular Permeability and Protects against Renal Ischemia-Reperfusion Injury. J Am Soc Nephrol 2017; 28:1741-1752. [PMID: 28062569 DOI: 10.1681/asn.2016020200] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 11/22/2016] [Indexed: 01/28/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is a leading cause of AKI. This common clinical complication lacks effective therapies and can lead to the development of CKD. The αvβ5 integrin may have an important role in acute injury, including septic shock and acute lung injury. To examine its function in AKI, we utilized a specific function-blocking antibody to inhibit αvβ5 in a rat model of renal IRI. Pretreatment with this anti-αvβ5 antibody significantly reduced serum creatinine levels, diminished renal damage detected by histopathologic evaluation, and decreased levels of injury biomarkers. Notably, therapeutic treatment with the αvβ5 antibody 8 hours after IRI also provided protection from injury. Global gene expression profiling of post-ischemic kidneys showed that αvβ5 inhibition affected established injury markers and induced pathway alterations previously shown to be protective. Intravital imaging of post-ischemic kidneys revealed reduced vascular leak with αvβ5 antibody treatment. Immunostaining for αvβ5 in the kidney detected evident expression in perivascular cells, with negligible expression in the endothelium. Studies in a three-dimensional microfluidics system identified a pericyte-dependent role for αvβ5 in modulating vascular leak. Additional studies showed αvβ5 functions in the adhesion and migration of kidney pericytes in vitro Initial studies monitoring renal blood flow after IRI did not find significant effects with αvβ5 inhibition; however, future studies should explore the contribution of vasomotor effects. These studies identify a role for αvβ5 in modulating injury-induced renal vascular leak, possibly through effects on pericyte adhesion and migration, and reveal αvβ5 inhibition as a promising therapeutic strategy for AKI.
Collapse
Affiliation(s)
| | - Stella Alimperti
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts.,The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Silvia B Campos-Bilderback
- Indiana University School of Medicine, The Roudebush Veterans Affair Medical Center, Indiana Center for Biological Microscopy, Indianapolis, Indiana; and
| | - Ruben M Sandoval
- Indiana University School of Medicine, The Roudebush Veterans Affair Medical Center, Indiana Center for Biological Microscopy, Indianapolis, Indiana; and
| | | | | | | | | | - William J Polacheck
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts.,The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | | | | | | | | | - Fang Qian
- Biogen Inc., Cambridge, Massachusetts
| | | | | | | | | | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts.,The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Bruce A Molitoris
- Indiana University School of Medicine, The Roudebush Veterans Affair Medical Center, Indiana Center for Biological Microscopy, Indianapolis, Indiana; and.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | |
Collapse
|
72
|
Khalifeh-Soltani A, Gupta D, Ha A, Iqbal J, Hussain M, Podolsky MJ, Atabai K. Mfge8 regulates enterocyte lipid storage by promoting enterocyte triglyceride hydrolase activity. JCI Insight 2016; 1:e87418. [PMID: 27812539 DOI: 10.1172/jci.insight.87418] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The small intestine has an underappreciated role as a lipid storage organ. Under conditions of high dietary fat intake, enterocytes can minimize the extent of postprandial lipemia by storing newly absorbed dietary fat in cytoplasmic lipid droplets. Lipid droplets can be subsequently mobilized for the production of chylomicrons. The mechanisms that regulate this process are poorly understood. We report here that the milk protein Mfge8 regulates hydrolysis of cytoplasmic lipid droplets in enterocytes after interacting with the αvβ3 and αvβ5 integrins. Mice deficient in Mfge8 or the αvβ3 and αvβ5 integrins accumulate excess cytoplasmic lipid droplets after a fat challenge. Mechanistically, interruption of the Mfge8-integrin axis leads to impaired enterocyte intracellular triglyceride hydrolase activity in vitro and in vivo. Furthermore, Mfge8 increases triglyceride hydrolase activity through a PI3 kinase/mTORC2-dependent signaling pathway. These data identify a key role for Mfge8 and the αvβ3 and αvβ5 integrins in regulating enterocyte lipid processing.
Collapse
Affiliation(s)
- Amin Khalifeh-Soltani
- Department of Medicine.,Cardiovascular Research Institute.,Lung Biology Center, University of California, San Francisco, San Francisco, California, USA
| | - Deepti Gupta
- Department of Medicine.,Cardiovascular Research Institute.,Lung Biology Center, University of California, San Francisco, San Francisco, California, USA
| | - Arnold Ha
- Department of Medicine.,Cardiovascular Research Institute
| | - Jahangir Iqbal
- Departments of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Mahmood Hussain
- Departments of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Michael J Podolsky
- Department of Medicine.,Cardiovascular Research Institute.,Lung Biology Center, University of California, San Francisco, San Francisco, California, USA
| | - Kamran Atabai
- Department of Medicine.,Cardiovascular Research Institute.,Lung Biology Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
73
|
Pandanus amaryllifolius leaf extract increases insulin sensitivity in high-fat diet-induced obese mice. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
74
|
Ding X, Luo Y, Zhang X, Zheng H, Yang X, Yang X, Liu M. IL-33-driven ILC2/eosinophil axis in fat is induced by sympathetic tone and suppressed by obesity. J Endocrinol 2016; 231:35-48. [PMID: 27562191 PMCID: PMC5003423 DOI: 10.1530/joe-16-0229] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) in white adipose tissue (WAT) promote WAT browning and assist in preventing the development of obesity. However, how ILC2 in adipose tissue is regulated remains largely unknown. Here, our study shows that ILC2s are present in brown adipose tissue (BAT) as well as subcutaneous and epididymal WAT (sWAT and eWAT). The fractions of ILC2s, natural killer T (NKT) cells and eosinophils in sWAT, eWAT and BAT are significantly decreased by high-fat-diet (HFD) feeding and leptin deficiency-induced obesity. Consistent with this, the adipose expression and circulating levels of IL-33, a key inducing cytokine of ILC2, are significantly downregulated by obesity. Furthermore, administration of IL-33 markedly increases the fraction of ILC2 and eosinophil as well as the expression of UCP1 and tyrosine hydroxylase (TH), a rate-limiting enzyme in catecholamine biosynthesis, in adipose tissue of HFD-fed mice. On the other hand, cold exposure induces the expression levels of IL-33 and UCP1 and the population of ILC2 and eosinophil in sWAT, and these promoting effects of cold stress are reversed by neutralization of IL-33 signaling in vivo Moreover, the basal and cold-induced IL-33 and ILC2/eosinophil pathways are significantly suppressed by sympathetic denervation via local injection of 6-hydroxydopamine (6-OHDA) in sWAT. Taken together, our data suggest that the ILC2/eosinophil axis in adipose tissue is regulated by sympathetic nervous system and obesity in IL-33-dependent manner, and IL-33-driven ILC2/eosinophil axis is implicated in the development of obesity.
Collapse
Affiliation(s)
- Xiaofeng Ding
- Department of Biochemistry and Molecular BiologyUniversity of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of ChinaCollege of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Yan Luo
- Department of Biochemistry and Molecular BiologyUniversity of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA Department of Metabolism and EndocrinologyMetabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xing Zhang
- Department of Biochemistry and Molecular BiologyUniversity of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Handong Zheng
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Xin Yang
- Department of Biochemistry and Molecular BiologyUniversity of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Xuexian Yang
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular BiologyUniversity of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA Department of Metabolism and EndocrinologyMetabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
75
|
Wang X, Bu HF, Liu SXL, De Plaen IG, Tan XD. Molecular Mechanisms Underlying the Regulation of the MFG-E8 Gene Promoter Activity in Physiological and Inflammatory Conditions. J Cell Biochem 2016; 116:1867-79. [PMID: 25711369 DOI: 10.1002/jcb.25142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/17/2015] [Indexed: 12/15/2022]
Abstract
Milk fat globule-EGF factor 8 (MFG-E8) is expressed by macrophages and plays an important role in attenuating inflammation and maintaining tissue homeostasis. Previously, we and others found that lipopolysaccharide (LPS) inhibits MFG-E8 gene expression in macrophages. Here, we characterized the 5'-flanking region of the mouse MFG-E8 gene. To functionally analyze the upstream regulatory region of the MFG-E8 gene, a series of luciferase reporter gene constructs containing deleted or mutated regulatory elements were prepared. Using the luciferase assay, we revealed that Sp1 binding motifs within the proximal promoter region were necessary for full activity of the MFG-E8 promoter, whereas AP-1 like binding sequence at -372 played a role in governing the promoter activity at a homeostatic level. With chromatin immunoprecipitation assay, we showed that Sp1 and c-Jun physically interact with the MFG-E8 promoter region in vivo. In addition, Sp1 was found to regulate the MFG-E8 promoter activity positively and c-Jun negatively. Furthermore, we demonstrated that LPS inhibited MFG-E8 promoter activity via targeting Sp1 and AP-1-like motifs in the 5'-flanking region. Collectively, our data indicate that Sp1 and AP-1-related factors are involved in the regulation of MFG-E8 gene transcription by targeting their binding sites in the 5'-flanking region under physiological and inflammatory states.
Collapse
Affiliation(s)
- Xiao Wang
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Heng-Fu Bu
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Shirley X L Liu
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Isabelle G De Plaen
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xiao-Di Tan
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Research & Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
76
|
Khalifeh-Soltani A, Ha A, Podolsky MJ, McCarthy DA, McKleroy W, Azary S, Sakuma S, Tharp KM, Wu N, Yokosaki Y, Hart D, Stahl A, Atabai K. α8β1 integrin regulates nutrient absorption through an Mfge8-PTEN dependent mechanism. eLife 2016; 5. [PMID: 27092791 PMCID: PMC4868538 DOI: 10.7554/elife.13063] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 04/18/2016] [Indexed: 12/25/2022] Open
Abstract
Coordinated gastrointestinal smooth muscle contraction is critical for proper nutrient absorption and is altered in a number of medical disorders. In this work, we demonstrate a critical role for the RGD-binding integrin α8β1 in promoting nutrient absorption through regulation of gastrointestinal motility. Smooth muscle-specific deletion and antibody blockade of α8 in mice result in enhanced gastric antral smooth muscle contraction, more rapid gastric emptying, and more rapid transit of food through the small intestine leading to malabsorption of dietary fats and carbohydrates as well as protection from weight gain in a diet-induced model of obesity. Mechanistically, ligation of α8β1 by the milk protein Mfge8 reduces antral smooth muscle contractile force by preventing RhoA activation through a PTEN-dependent mechanism. Collectively, our results identify a role for α8β1 in regulating gastrointestinal motility and identify α8 as a potential target for disorders characterized by hypo- or hyper-motility. DOI:http://dx.doi.org/10.7554/eLife.13063.001 Animals absorb nutrients from the food they eat in a complicated process that involves multiple steps. In the mouth, teeth break down the food into smaller chunks. Then the food passes through the stomach and small intestine, where enzymes break it down into individual molecules that are small enough to be absorbed by cells that line the small intestine. These cells then package the molecules and release them into the bloodstream so that they can be distributed to the rest of the body. Muscles in the wall of the small intestine control how quickly food travels through this part of the gut. If food moves too quickly, the cells that line the intestine have less time to absorb the food molecules and may fail to absorb enough nutrients. If the food moves too slowly, an individual may experience nausea or vomiting, or the contents of their stomach may spill into their lungs. In 2014, researchers reported that a protein in breast milk called Mfge8 helps to boost the number of fat molecules absorbed from food. Now, Khalifeh-Soltani et al. – including some of the same researchers involved in the earlier work – show that Mfge8 also slows the rate at which food travels through the small intestine in mice. Mfge8 binds to another protein called integrin α8β1 to control how often the intestine muscles contract. Genetically engineered mice that lacked integrin α8β1 developed diarrhea and food passed through their intestines more quickly than in normal mice. Furthermore, these mice did not gain as much weight as normal mice when they were fed a high-fat diet. Khalifeh-Soltani et al.’s findings show that Mfge8 has a dual role in controlling the absorption of food molecules in the small intestine. The next challenge is to find out whether drugs that alter the activity of integrin α8β1 could be used to help treat patients with diseases in which food moves too quickly, or too slowly, through the gut. DOI:http://dx.doi.org/10.7554/eLife.13063.002
Collapse
Affiliation(s)
- Amin Khalifeh-Soltani
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States.,Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Arnold Ha
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Michael J Podolsky
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States.,Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Donald A McCarthy
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - William McKleroy
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Saeedeh Azary
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Stephen Sakuma
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Kevin M Tharp
- Metabolic Biology, University of California, Berkeley, Berkeley, United States.,Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, United States
| | - Nanyan Wu
- Lung Biology Center, University of California, San Francisco, San Francisco, United States
| | - Yasuyuki Yokosaki
- Cell-Matrix Frontier Laboratory, Biomedical Research Unit, Health Administration Center, Hiroshima University, Hiroshima, Japan
| | - Daniel Hart
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Andreas Stahl
- Metabolic Biology, University of California, Berkeley, Berkeley, United States.,Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, United States
| | - Kamran Atabai
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States.,Department of Medicine, University of California, San Francisco, San Francisco, United States.,Lung Biology Center, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
77
|
Naowaboot J, Wannasiri S. Anti-lipogenic effect of Senna alata leaf extract in high-fat diet-induced obese mice. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2015.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
78
|
Wilson CG, Tran JL, Erion DM, Vera NB, Febbraio M, Weiss EJ. Hepatocyte-Specific Disruption of CD36 Attenuates Fatty Liver and Improves Insulin Sensitivity in HFD-Fed Mice. Endocrinology 2016; 157:570-85. [PMID: 26650570 PMCID: PMC4733118 DOI: 10.1210/en.2015-1866] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CD36/FAT (fatty acid translocase) is associated with human and murine nonalcoholic fatty liver disease, but it has been unclear whether it is simply a marker or whether it directly contributes to disease pathogenesis. Mice with hepatocyte-specific deletion of Janus kinase 2 (JAK2L mice) have increased circulating free fatty acids (FAs), dramatically increased hepatic CD36 expression and profound fatty liver. To investigate the role of elevated CD36 in the development of fatty liver, we studied two models of hepatic steatosis, a genetic model (JAK2L mice) and a high-fat diet (HFD)-induced steatosis model. We deleted Cd36 specifically in hepatocytes of JAK2L mice to generate double knockouts and from wild-type mice to generate CD36L single-knockout mice. Hepatic Cd36 disruption in JAK2L livers significantly improved steatosis by lowering triglyceride, diacylglycerol, and cholesterol ester content. The largest differences in liver triglycerides were in species comprised of oleic acid (C18:1). Reduction in liver lipids correlated with an improvement in the inflammatory markers that were elevated in JAK2L mice, namely aspartate aminotransferase and alanine transaminase. Cd36 deletion in mice on HFD (CD36L-HFD) reduced liver lipid content and decreased hepatic 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-FA uptake as compared with CON-HFD. Additionally, CD36L-HFD mice had improved whole-body insulin sensitivity and reduced liver and serum inflammatory markers. Therefore, CD36 directly contributes to development of fatty liver under conditions of elevated free FAs by modulating the rate of FA uptake by hepatocytes. In HFD-fed animals, disruption of hepatic Cd36 protects against associated systemic inflammation and insulin resistance.
Collapse
Affiliation(s)
- Camella G Wilson
- Cardiovascular Research Institute (C.G.W., J.L.T., E.J.W.), University of California, San Francisco, San Francisco, California 94158-9001; Pfizer Pharmaceuticals (D.M.E., N.B.V.), Cambridge, Massachusetts 02139; and School of Dentistry (M.F.), University of Alberta, Edmonton AB, Canada T6G 2E1
| | - Jennifer L Tran
- Cardiovascular Research Institute (C.G.W., J.L.T., E.J.W.), University of California, San Francisco, San Francisco, California 94158-9001; Pfizer Pharmaceuticals (D.M.E., N.B.V.), Cambridge, Massachusetts 02139; and School of Dentistry (M.F.), University of Alberta, Edmonton AB, Canada T6G 2E1
| | - Derek M Erion
- Cardiovascular Research Institute (C.G.W., J.L.T., E.J.W.), University of California, San Francisco, San Francisco, California 94158-9001; Pfizer Pharmaceuticals (D.M.E., N.B.V.), Cambridge, Massachusetts 02139; and School of Dentistry (M.F.), University of Alberta, Edmonton AB, Canada T6G 2E1
| | - Nicholas B Vera
- Cardiovascular Research Institute (C.G.W., J.L.T., E.J.W.), University of California, San Francisco, San Francisco, California 94158-9001; Pfizer Pharmaceuticals (D.M.E., N.B.V.), Cambridge, Massachusetts 02139; and School of Dentistry (M.F.), University of Alberta, Edmonton AB, Canada T6G 2E1
| | - Maria Febbraio
- Cardiovascular Research Institute (C.G.W., J.L.T., E.J.W.), University of California, San Francisco, San Francisco, California 94158-9001; Pfizer Pharmaceuticals (D.M.E., N.B.V.), Cambridge, Massachusetts 02139; and School of Dentistry (M.F.), University of Alberta, Edmonton AB, Canada T6G 2E1
| | - Ethan J Weiss
- Cardiovascular Research Institute (C.G.W., J.L.T., E.J.W.), University of California, San Francisco, San Francisco, California 94158-9001; Pfizer Pharmaceuticals (D.M.E., N.B.V.), Cambridge, Massachusetts 02139; and School of Dentistry (M.F.), University of Alberta, Edmonton AB, Canada T6G 2E1
| |
Collapse
|
79
|
Fonseca DMD, Hand TW, Han SJ, Gerner MY, Glatman Zaretsky A, Byrd AL, Harrison OJ, Ortiz AM, Quinones M, Trinchieri G, Brenchley JM, Brodsky IE, Germain RN, Randolph GJ, Belkaid Y. Microbiota-Dependent Sequelae of Acute Infection Compromise Tissue-Specific Immunity. Cell 2016; 163:354-66. [PMID: 26451485 DOI: 10.1016/j.cell.2015.08.030] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/09/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
Abstract
Infections have been proposed as initiating factors for inflammatory disorders; however, identifying associations between defined infectious agents and the initiation of chronic disease has remained elusive. Here, we report that a single acute infection can have dramatic and long-term consequences for tissue-specific immunity. Following clearance of Yersinia pseudotuberculosis, sustained inflammation and associated lymphatic leakage in the mesenteric adipose tissue deviates migratory dendritic cells to the adipose compartment, thereby preventing their accumulation in the mesenteric lymph node. As a consequence, canonical mucosal immune functions, including tolerance and protective immunity, are persistently compromised. Post-resolution of infection, signals derived from the microbiota maintain inflammatory mesentery remodeling and consequently, transient ablation of the microbiota restores mucosal immunity. Our results indicate that persistent disruption of communication between tissues and the immune system following clearance of an acute infection represents an inflection point beyond which tissue homeostasis and immunity is compromised for the long-term. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Denise Morais da Fonseca
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Bethesda, MD 20892, USA; Immunity at Barrier Sites Initiative, NIAID/NIH, Bethesda, MD 20892, USA; Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Timothy W Hand
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Bethesda, MD 20892, USA; Immunity at Barrier Sites Initiative, NIAID/NIH, Bethesda, MD 20892, USA
| | - Seong-Ji Han
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Bethesda, MD 20892, USA; Immunity at Barrier Sites Initiative, NIAID/NIH, Bethesda, MD 20892, USA
| | - Michael Y Gerner
- Lymphocyte Biology Section, Laboratory of Systems Biology, NIAID/NIH, Bethesda, MD 20892, USA
| | - Arielle Glatman Zaretsky
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Bethesda, MD 20892, USA; Immunity at Barrier Sites Initiative, NIAID/NIH, Bethesda, MD 20892, USA
| | - Allyson L Byrd
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Bethesda, MD 20892, USA; Immunity at Barrier Sites Initiative, NIAID/NIH, Bethesda, MD 20892, USA; Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; Department of Bioinformatics, Boston University, Boston, MA 02215, USA
| | - Oliver J Harrison
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Bethesda, MD 20892, USA; Immunity at Barrier Sites Initiative, NIAID/NIH, Bethesda, MD 20892, USA
| | - Alexandra M Ortiz
- Program in Tissue Immunity and Repair and Immunopathogenesis Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Mariam Quinones
- Bioinformatics and Computational Bioscience Branch, NIAID/NIH, Bethesda, MD 20892, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jason M Brenchley
- Program in Tissue Immunity and Repair and Immunopathogenesis Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Systems Biology, NIAID/NIH, Bethesda, MD 20892, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yasmine Belkaid
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Bethesda, MD 20892, USA; Immunity at Barrier Sites Initiative, NIAID/NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
80
|
Wannasiri S, Piyabhan P, Naowaboot J. Rhinacanthus nasutus leaf improves metabolic abnormalities in high-fat diet-induced obese mice. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2015.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
81
|
Zhang X, Tian Y, Zhang H, Kavishwar A, Lynes M, Brownell AL, Sun H, Tseng YH, Moore A, Ran C. Curcumin analogues as selective fluorescence imaging probes for brown adipose tissue and monitoring browning. Sci Rep 2015; 5:13116. [PMID: 26269357 PMCID: PMC4534785 DOI: 10.1038/srep13116] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 07/16/2015] [Indexed: 01/10/2023] Open
Abstract
Manipulation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT) can be promising new approaches to counter metabolic disorder diseases in humans. Imaging probes that could consistently monitor BAT mass and browning of WAT are highly desirable. In the course of our imaging probe screening, we found that BAT could be imaged with curcumin analogues in mice. However, the poor BAT selectivity over WAT and short emissions of the lead probes promoted further lead optimization. Limited uptake mechanism studies suggested that CD36/FAT (fatty acid transporter) probably contributed to the facilitated uptake of the probes. By increasing the stereo-hindrance of the lead compound, we designed CRANAD-29 to extend the emission and increase the facilitated uptake, thus increasing its BAT selectivity. Our data demonstrated that CRANAD-29 had significantly improved selectivity for BAT over WAT, and could be used for imaging BAT mass change in a streptozotocin-induced diabetic mouse model, as well as for monitoring BAT activation under cold exposure. In addition, CRANAD-29 could be used for monitoring the browning of subcutaneous WAT (sWAT) induced by β3-adrenoceptor agonist CL-316, 243.
Collapse
Affiliation(s)
- Xueli Zhang
- 1] Molecular Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA [2] School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China [3] Department of pharmacy, ZhongDa Hospital, Southeast University, Nanjing 210009, China
| | - Yanli Tian
- 1] Molecular Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA [2] Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Hongbin Zhang
- Joslin Diabetes Center, Harvard Medical School, and Harvard Stem Cell Institute, Boston, MA 02215
| | - Amol Kavishwar
- Molecular Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Matthew Lynes
- Joslin Diabetes Center, Harvard Medical School, and Harvard Stem Cell Institute, Boston, MA 02215
| | - Anna-Liisa Brownell
- Molecular Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Hongbin Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, and Harvard Stem Cell Institute, Boston, MA 02215
| | - Anna Moore
- Molecular Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Chongzhao Ran
- Molecular Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| |
Collapse
|
82
|
Lizunov VA, Stenkula KG, Blank PS, Troy A, Lee JP, Skarulis MC, Cushman SW, Zimmerberg J. Human adipose cells in vitro are either refractory or responsive to insulin, reflecting host metabolic state. PLoS One 2015; 10:e0119291. [PMID: 25768970 PMCID: PMC4359092 DOI: 10.1371/journal.pone.0119291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/12/2015] [Indexed: 01/14/2023] Open
Abstract
While intercellular communication processes are frequently characterized by switch-like transitions, the endocrine system, including the adipose tissue response to insulin, has been characterized by graded responses. Yet here individual cells from adipose tissue biopsies are best described by a switch-like transition between the basal and insulin-stimulated states for the trafficking of the glucose transporter GLUT4. Two statistically-defined populations best describe the observed cellular heterogeneity, representing the fractions of refractive and responsive adipose cells. Furthermore, subjects exhibiting high systemic insulin sensitivity indices (SI) have high fractions of responsive adipose cells in vitro, while subjects exhibiting decreasing SI have increasing fractions of refractory cells in vitro. Thus, a two-component model best describes the relationship between cellular refractory fraction and subject SI. Since isolated cells exhibit these different response characteristics in the presence of constant culture conditions and milieu, we suggest that a physiological switching mechanism at the adipose cellular level ultimately drives systemic SI.
Collapse
Affiliation(s)
- Vladimir A. Lizunov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Karin G. Stenkula
- Experimental Diabetes, Metabolism, and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
- Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Paul S. Blank
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Aaron Troy
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Jo-Ping Lee
- Experimental Diabetes, Metabolism, and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Monica C. Skarulis
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Samuel W. Cushman
- Experimental Diabetes, Metabolism, and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Joshua Zimmerberg
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
83
|
Di Gioia M, Zanoni I. Toll-like receptor co-receptors as master regulators of the immune response. Mol Immunol 2015; 63:143-52. [DOI: 10.1016/j.molimm.2014.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/24/2014] [Accepted: 05/25/2014] [Indexed: 12/12/2022]
|
84
|
Sárvári AK, Doan-Xuan QM, Bacsó Z, Csomós I, Balajthy Z, Fésüs L. Interaction of differentiated human adipocytes with macrophages leads to trogocytosis and selective IL-6 secretion. Cell Death Dis 2015; 6:e1613. [PMID: 25611388 PMCID: PMC4669775 DOI: 10.1038/cddis.2014.579] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/07/2014] [Accepted: 11/27/2014] [Indexed: 02/06/2023]
Abstract
Obesity leads to adipose tissue inflammation that is characterized by increased release of proinflammatory molecules and the recruitment of activated immune cells. Although macrophages are present in the highest number among the immune cells in obese adipose tissue, not much is known about their direct interaction with adipocytes. We have introduced an ex vivo experimental system to characterize the cellular interactions and the profile of secreted cytokines in cocultures of macrophages and human adipocytes differentiated from either mesenchymal stem cells or a preadipocyte cell line. As observed by time-lapse microscopy, flow, and laser-scanning cytometry, macrophages phagocytosed bites of adipocytes (trogocytosis), which led to their de novo, phagocytosis and NF-κB-dependent synthesis, then release of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1. IL-6 secretion was not accompanied by secretion of other proinflammatory cytokines, such as tumor necrosis factor (TNF)-α and IL-8, except MCP-1. LPS-induced release of TNF-α, IL-8 and MCP-1 was decreased in the presence of the differentiated adipocytes but the IL-6 level did not subside suggesting that phagocytosis-dependent IL-6 secretion may have significant regulatory function in the inflamed adipose tissue.
Collapse
Affiliation(s)
- A K Sárvári
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Q-M Doan-Xuan
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary
| | - Z Bacsó
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary
| | - I Csomós
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary
| | - Z Balajthy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - L Fésüs
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
85
|
Tharp KM, Stahl A. Bioengineering Beige Adipose Tissue Therapeutics. Front Endocrinol (Lausanne) 2015; 6:164. [PMID: 26539163 PMCID: PMC4611961 DOI: 10.3389/fendo.2015.00164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023] Open
Abstract
Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and their potential for the metabolic therapies.
Collapse
Affiliation(s)
- Kevin M. Tharp
- Program in Metabolic Biology, Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Andreas Stahl
- Program in Metabolic Biology, Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA, USA
- *Correspondence: Andreas Stahl,
| |
Collapse
|
86
|
Liu F, Hu Q, Li B, Manaenko A, Chen Y, Tang J, Guo Z, Tang J, Zhang JH. Recombinant milk fat globule-EGF factor-8 reduces oxidative stress via integrin β3/nuclear factor erythroid 2-related factor 2/heme oxygenase pathway in subarachnoid hemorrhage rats. Stroke 2014; 45:3691-7. [PMID: 25342030 DOI: 10.1161/strokeaha.114.006635] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Milk fat globule-EGF factor-8 (MFGE8) has been reported to be neuroprotective in ischemic stroke. However, the effects of MFGE8 in early brain injury after subarachnoid hemorrhage (SAH) have not been investigated. We investigated the role of MFGE8 in early brain injury and the potential mechanisms in antioxidation after SAH. METHODS Two dosages (1 μg and 3.3 μg) of recombinant human MFGE8 were injected intracerebroventricularly at 1.5 hours after SAH. SAH grades, neurological scores, and brain water content were measured at 24 and 72 hours. For mechanistic study, MFGE8 siRNA, integrin β3 siRNA, and heme oxygenase (HO) inhibitor SnPP IX were used for intervention. The oxidative stress and expression of MFGE8, integrin β3, HO-1, extracellular signal-regulated kinase, and nuclear factor erythroid 2-related factor 2 were measured by Western blots 24 hours after SAH. RESULTS The expression of MFGE8 and HO-1 increased and peaked 24 hours after SAH. Administration of recombinant human MFGE8 decreased brain water content and improved neurological functions both at 24 hours and at 72 hours after SAH. Recombinant human MFGE8 reduced oxidative stress and enhanced the expression of extracellular signal-regulated kinase, nuclear factor erythroid 2-related factor 2, and HO-1; and the effects were abolished by integrin β3 siRNA and HO inhibitor SnPP IX. CONCLUSIONS Recombinant MFGE8 attenuated oxidative stress that may be mediated by integrin β3/nuclear factor erythroid 2-related factor 2/HO pathway after SAH. Recombinant MFGE8 may serve as an alternative treatment to ameliorate early brain injury for SAH patients.
Collapse
Affiliation(s)
- Fei Liu
- From the Department of Physiology and Pharmacology (F.L., Q.H., B.L., A.M., Y.C., Junjia Tang, Z.G., Jiping Tang, J.H.Z.) and Department of Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, Loma Linda, CA; and Department of Neurosurgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China (F.L.)
| | - Qin Hu
- From the Department of Physiology and Pharmacology (F.L., Q.H., B.L., A.M., Y.C., Junjia Tang, Z.G., Jiping Tang, J.H.Z.) and Department of Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, Loma Linda, CA; and Department of Neurosurgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China (F.L.)
| | - Bo Li
- From the Department of Physiology and Pharmacology (F.L., Q.H., B.L., A.M., Y.C., Junjia Tang, Z.G., Jiping Tang, J.H.Z.) and Department of Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, Loma Linda, CA; and Department of Neurosurgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China (F.L.)
| | - Anatol Manaenko
- From the Department of Physiology and Pharmacology (F.L., Q.H., B.L., A.M., Y.C., Junjia Tang, Z.G., Jiping Tang, J.H.Z.) and Department of Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, Loma Linda, CA; and Department of Neurosurgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China (F.L.)
| | - Yujie Chen
- From the Department of Physiology and Pharmacology (F.L., Q.H., B.L., A.M., Y.C., Junjia Tang, Z.G., Jiping Tang, J.H.Z.) and Department of Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, Loma Linda, CA; and Department of Neurosurgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China (F.L.)
| | - Junjia Tang
- From the Department of Physiology and Pharmacology (F.L., Q.H., B.L., A.M., Y.C., Junjia Tang, Z.G., Jiping Tang, J.H.Z.) and Department of Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, Loma Linda, CA; and Department of Neurosurgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China (F.L.)
| | - Zongduo Guo
- From the Department of Physiology and Pharmacology (F.L., Q.H., B.L., A.M., Y.C., Junjia Tang, Z.G., Jiping Tang, J.H.Z.) and Department of Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, Loma Linda, CA; and Department of Neurosurgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China (F.L.)
| | - Jiping Tang
- From the Department of Physiology and Pharmacology (F.L., Q.H., B.L., A.M., Y.C., Junjia Tang, Z.G., Jiping Tang, J.H.Z.) and Department of Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, Loma Linda, CA; and Department of Neurosurgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China (F.L.)
| | - John H Zhang
- From the Department of Physiology and Pharmacology (F.L., Q.H., B.L., A.M., Y.C., Junjia Tang, Z.G., Jiping Tang, J.H.Z.) and Department of Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, Loma Linda, CA; and Department of Neurosurgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China (F.L.).
| |
Collapse
|
87
|
Consumption of clarified grapefruit juice ameliorates high-fat diet induced insulin resistance and weight gain in mice. PLoS One 2014; 9:e108408. [PMID: 25296035 PMCID: PMC4189915 DOI: 10.1371/journal.pone.0108408] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 08/20/2014] [Indexed: 02/07/2023] Open
Abstract
To determine the metabolic effects of grapefruit juice consumption we established a model in which C57Bl/6 mice drank 25–50% sweetened GFJ, clarified of larger insoluble particles by centrifugation (cGFJ), ad libitum as their sole source of liquid or isocaloric and sweetened water. cGFJ and control groups consumed similar amounts of liquids and calories. Mice fed a high-fat diet and cGFJ experienced a 18.4% decrease in weight, a 13–17% decrease in fasting blood glucose, a three-fold decrease in fasting serum insulin, and a 38% decrease in liver triacylglycerol values, compared to controls. Mice fed a low-fat diet that drank cGFJ experienced a two-fold decrease in fasting insulin, but not the other outcomes observed with the high-fat diet. cGFJ consumption decreased blood glucose to a similar extent as the commonly used anti-diabetic drug metformin. Introduction of cGFJ after onset of diet-induced obesity also reduced weight and blood glucose. A bioactive compound in cGFJ, naringin, reduced blood glucose and improved insulin tolerance, but did not ameliorate weight gain. These data from a well-controlled animal study indicate that GFJ contains more than one health-promoting neutraceutical, and warrant further studies of GFJ effects in the context of obesity and/or the western diet.
Collapse
|
88
|
Hajishengallis G. MFG-E8, a novel homeostatic regulator of osteoclastogenesis. INFLAMMATION AND CELL SIGNALING 2014; 1:e285. [PMID: 26052544 DOI: 10.14800/ics.285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although the glycoprotein MFG-E8 (milk fat globule-epidermal growth factor-factor 8) has been investigated extensively as an anti-inflammatory and homeostatic molecule, a possible role in bone homeostasis and disease was not addressed until recently. Our group has now shown that MFG-E8 is expressed by human and mouse osteoclasts and regulates their differentiation and function (Abe et al., J Immunol 2014;193:1383-1391). Whereas genetic deficiency or antibody-mediated neutralization of MFG-E8 enhances osteoclastogenesis and promotes inflammation-induced bone loss in mice, local administration of recombinant MFG-E8 blocks bone loss. These findings establish MFG-E8 as a novel homeostatic regulator of osteoclastogenesis and suggest that MFG-E8 could be exploited therapeutically to treat disorders associated with inflammatory bone loss, such as periodontitis and rheumatoid arthritis.
Collapse
Affiliation(s)
- George Hajishengallis
- University of Pennsylvania, School of Dental Medicine, Department of Microbiology, Philadelphia, PA 19104, USA
| |
Collapse
|
89
|
Szondy Z, Garabuczi E, Joós G, Tsay GJ, Sarang Z. Impaired clearance of apoptotic cells in chronic inflammatory diseases: therapeutic implications. Front Immunol 2014; 5:354. [PMID: 25136342 PMCID: PMC4117929 DOI: 10.3389/fimmu.2014.00354] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/09/2014] [Indexed: 12/14/2022] Open
Abstract
In healthy individuals, billions of cells die by apoptosis every day. Removal of the dead cells by phagocytosis (a process called efferocytosis) must be efficient to prevent secondary necrosis and the consequent release of pro-inflammatory cell contents that damages the tissue environment and provokes autoimmunity. In addition, detection and removal of apoptotic cells generally induces an anti-inflammatory response. As a consequence improper clearance of apoptotic cells, being the result of either genetic anomalies and/or a persistent disease state, contributes to the establishment and progression of a number of human chronic inflammatory diseases such as autoimmune and neurological disorders, inflammatory lung diseases, obesity, type 2 diabetes, or atherosclerosis. During the past decade, our knowledge about the mechanism of efferocytosis has significantly increased, providing therapeutic targets through which impaired phagocytosis of apoptotic cells and the consequent inflammation could be influenced in these diseases.
Collapse
Affiliation(s)
- Zsuzsa Szondy
- Department of Dental Biochemistry, Faculty of Dentistry, University of Debrecen , Debrecen , Hungary
| | - Eva Garabuczi
- Department of Dental Biochemistry, Faculty of Dentistry, University of Debrecen , Debrecen , Hungary
| | - Gergely Joós
- Department of Dental Biochemistry, Faculty of Dentistry, University of Debrecen , Debrecen , Hungary
| | - Gregory J Tsay
- Department of Internal Medicine, Faculty of Medicine, Chung Shan Medical University Hospital , Taichung , Taiwan
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen , Debrecen , Hungary
| |
Collapse
|
90
|
Abe T, Shin J, Hosur K, Udey MC, Chavakis T, Hajishengallis G. Regulation of osteoclast homeostasis and inflammatory bone loss by MFG-E8. THE JOURNAL OF IMMUNOLOGY 2014; 193:1383-91. [PMID: 24958900 DOI: 10.4049/jimmunol.1400970] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The glycoprotein milk fat globule-epidermal growth factor factor 8 (MFG-E8) is expressed in several tissues and mediates diverse homeostatic functions. However, whether it plays a role in bone homeostasis has not been established. In this study, we show for the first time, to our knowledge, that osteoclasts express and are regulated by MFG-E8. Bone marrow-derived osteoclast precursors from MFG-E8-deficient (Mfge8(-/-)) mice underwent increased receptor activator of NF-κB ligand-induced osteoclastogenesis, leading to enhanced resorption pit formation compared with wild-type controls. Consistently, exogenously added MFG-E8 inhibited receptor activator of NF-κB ligand-induced osteoclastogenesis from mouse or human osteoclast precursors. Upon induction of experimental periodontitis, an oral inflammatory disease characterized by loss of bone support of the dentition, Mfge8(-/-) mice exhibited higher numbers of osteoclasts and more bone loss than did wild-type controls. Accordingly, local microinjection of anti-MFG-E8 mAb exacerbated periodontal bone loss in wild-type mice. Conversely, microinjection of MFG-E8 inhibited bone loss in experimental mouse periodontitis. In comparison with wild-type controls, Mfge8(-/-) mice also experienced >60% more naturally occurring chronic periodontal bone loss. In conclusion, MFG-E8 is a novel homeostatic regulator of osteoclasts that could be exploited therapeutically to treat periodontitis and perhaps other immunological disorders associated with inflammatory bone loss.
Collapse
Affiliation(s)
- Toshiharu Abe
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jieun Shin
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kavita Hosur
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Mark C Udey
- Center for Cancer Research, Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Triantafyllos Chavakis
- Department of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, Dresden University of Technology, 01307 Dresden, Germany; and Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Dresden University of Technology, 01307 Dresden, Germany
| | - George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|