51
|
Boggild S, Molgaard S, Glerup S, Nyengaard JR. Highly segregated localization of the functionally related vps10p receptors sortilin and SorCS2 during neurodevelopment. J Comp Neurol 2018; 526:1267-1286. [PMID: 29405286 DOI: 10.1002/cne.24403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Nervous system development is a precisely orchestrated series of events requiring a multitude of intrinsic and extrinsic cues. Sortilin and SorCS2 are members of the Vps10p receptor family with complementary influence on some of these cues including the neurotrophins (NTs). However, the developmental time points where sortilin and SorCS2 exert their activities in conjunction or independently still remain unclear. In this study we present the characterization of the spatiotemporal expression pattern of sortilin and SorCS2 in the developing murine nervous system. Sortilin is highly expressed in the fetal nervous system with expression localized to distinct cell populations. Expression was high in neurons of the cortical plate and developing allocortex, as well as subpallial structures. Furthermore, the neuroepithelium lining the ventricles and the choroid plexus showed high expression of sortilin, together with the developing retina, spinal ganglia, and sympathetic ganglia. In contrast, SorCS2 was confined in a marked degree to the thalamus and, at E13.5, the floor plate from midbrain rostrally to spinal cord caudally. SorCS2 was also found in the ventricular zones of the ventral hippocampus and nucleus accumbens areas, in the meninges and in Schwann cells. Hence, sortilin and SorCS2 are extensively present in several distinct anatomical areas in the developing nervous system and are rarely co-expressed. Possible functions of sortilin and SorCS2 pertain to NT signaling, axon guidance and beyond. The present data will form the basis for hypotheses and study designs for unravelling the functions of sortilin and SorCS2 during the establishment of neuronal structures and connections.
Collapse
Affiliation(s)
- Simon Boggild
- Department of Clinical Medicine, Aarhus University, MIND Centre, Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus C, 8000, Denmark.,MIND Centre, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus C, 8000, Denmark
| | - Simon Molgaard
- Department of Clinical Medicine, Aarhus University, MIND Centre, Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus C, 8000, Denmark.,MIND Centre, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus C, 8000, Denmark
| | - Simon Glerup
- MIND Centre, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus C, 8000, Denmark
| | - Jens Randel Nyengaard
- Department of Clinical Medicine, Aarhus University, MIND Centre, Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus C, 8000, Denmark.,Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
52
|
BDNF effects on dendritic spine morphology and hippocampal function. Cell Tissue Res 2018; 373:729-741. [DOI: 10.1007/s00441-017-2782-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
|
53
|
Subkhangulova A, Malik AR, Hermey G, Popp O, Dittmar G, Rathjen T, Poy MN, Stumpf A, Beed PS, Schmitz D, Breiderhoff T, Willnow TE. SORCS1 and SORCS3 control energy balance and orexigenic peptide production. EMBO Rep 2018; 19:embr.201744810. [PMID: 29440124 PMCID: PMC5891432 DOI: 10.15252/embr.201744810] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/20/2022] Open
Abstract
SORCS1 and SORCS3 are two related sorting receptors expressed in neurons of the arcuate nucleus of the hypothalamus. Using mouse models with individual or dual receptor deficiencies, we document a previously unknown function of these receptors in central control of metabolism. Specifically, SORCS1 and SORCS3 act as intracellular trafficking receptors for tropomyosin-related kinase B to attenuate signaling by brain-derived neurotrophic factor, a potent regulator of energy homeostasis. Loss of the joint action of SORCS1 and SORCS3 in mutant mice results in excessive production of the orexigenic neuropeptide agouti-related peptide and in a state of chronic energy excess characterized by enhanced food intake, decreased locomotor activity, diminished usage of lipids as metabolic fuel, and increased adiposity, albeit at overall reduced body weight. Our findings highlight a novel concept in regulation of the melanocortin system and the role played by trafficking receptors SORCS1 and SORCS3 in this process.
Collapse
Affiliation(s)
| | - Anna R Malik
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Popp
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Gunnar Dittmar
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Thomas Rathjen
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Matthew N Poy
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Alexander Stumpf
- Neuroscience Research Center, Charité - University Medicine, Berlin, Germany
| | - Prateep Sanker Beed
- Neuroscience Research Center, Charité - University Medicine, Berlin, Germany
| | - Dietmar Schmitz
- Neuroscience Research Center, Charité - University Medicine, Berlin, Germany
| | | | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany .,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
54
|
Drug Targets in Neurotrophin Signaling in the Central and Peripheral Nervous System. Mol Neurobiol 2018; 55:6939-6955. [PMID: 29372544 DOI: 10.1007/s12035-018-0885-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Neurotrophins are a family of proteins that play an important role in the regulation of the growth, survival, and differentiation of neurons in the central and peripheral nervous system. Neurotrophins were earlier characterized by their role in early development, growth, maintenance, and the plasticity of the nervous system during development, but recent findings also indicate their complex role during normal physiology in both neuronal and non-neuronal tissues. Therefore, it is important to recognize a deficiency in the expression of neurotrophins, a major factor driving the debilitating features of several neurologic and psychiatric diseases/disorders. On the other hand, overexpression of neurotrophins is well known to play a critical role in pathogenesis of chronic pain and afferent sensitization, underlying conditions such as lower urinary tract symptoms (LUTS)/disorders and osteoarthritis. The existence of a redundant receptor system of high-and low-affinity receptors accounts for the diverse, often antagonistic, effects of neurotrophins in neurons and non-neuronal tissues in a spatial and temporal manner. In addition, studies looking at bladder dysfunction because of conditions such as spinal cord injury and diabetes mellitus have found alterations in the levels of these neurotrophins in the bladder, as well as in sensory afferent neurons, which further opens a new avenue for therapeutic targets. In this review, we will discuss the characteristics and roles of key neurotrophins and their involvement in the central and periphery nervous system in both normal and diseased conditions.
Collapse
|
55
|
Investigation of Mature BDNF and proBDNF Signaling in a Rat Photothrombotic Ischemic Model. Neurochem Res 2018; 43:637-649. [DOI: 10.1007/s11064-017-2464-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/11/2017] [Accepted: 12/29/2017] [Indexed: 12/19/2022]
|
56
|
Zhang Z, Jiang W, Yang H, Lin Q, Qin X. The miR-182/SORT1 axis regulates vascular smooth muscle cell calcification in vitro and in vivo. Exp Cell Res 2018; 362:324-331. [DOI: 10.1016/j.yexcr.2017.11.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 01/20/2023]
|
57
|
Cui Y, Yang Z, Teasdale RD. The functional roles of retromer in Parkinson's disease. FEBS Lett 2017; 592:1096-1112. [DOI: 10.1002/1873-3468.12931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Yi Cui
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Brisbane Australia
| | - Zhe Yang
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Brisbane Australia
| | - Rohan D. Teasdale
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Brisbane Australia
| |
Collapse
|
58
|
Januliene D, Andersen JL, Nielsen JA, Quistgaard EM, Hansen M, Strandbygaard D, Moeller A, Petersen CM, Madsen P, Thirup SS. Acidic Environment Induces Dimerization and Ligand Binding Site Collapse in the Vps10p Domain of Sortilin. Structure 2017; 25:1809-1819.e3. [DOI: 10.1016/j.str.2017.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/21/2017] [Accepted: 09/25/2017] [Indexed: 12/30/2022]
|
59
|
Sakaguchi S, Uchiyama K. Novel amplification mechanism of prions through disrupting sortilin-mediated trafficking. Prion 2017; 11:398-404. [PMID: 29099278 DOI: 10.1080/19336896.2017.1391435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Conformational conversion of the cellular prion protein, PrPC, into the abnormally folded isoform of prion protein, PrPSc, which leads to marked accumulation of PrPSc in brains, is a key pathogenic event in prion diseases, a group of fatal neurodegenerative disorders caused by prions. However, the exact mechanism of PrPSc accumulation in prion-infected neurons remains unknown. We recently reported a novel cellular mechanism to support PrPSc accumulation in prion-infected neurons, in which PrPSc itself promotes its accumulation by evading the cellular inhibitory mechanism, which is newly identified in our recent study. We showed that the VPS10P sorting receptor sortilin negatively regulates PrPSc accumulation in prion-infected neurons, by interacting with PrPC and PrPSc and trafficking them to lysosomes for degradation. However, PrPSc stimulated lysosomal degradation of sortilin, disrupting the sortilin-mediated degradation of PrPC and PrPSc and eventually evoking further accumulation of PrPSc in prion-infected neurons. These findings suggest a positive feedback amplification mechanism for PrPSc accumulation in prion-infected neurons.
Collapse
Affiliation(s)
- Suehiro Sakaguchi
- a Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University , Tokushima , Japan
| | - Keiji Uchiyama
- a Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University , Tokushima , Japan
| |
Collapse
|
60
|
Terenzio M, Schiavo G, Fainzilber M. Compartmentalized Signaling in Neurons: From Cell Biology to Neuroscience. Neuron 2017; 96:667-679. [PMID: 29096079 DOI: 10.1016/j.neuron.2017.10.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/27/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022]
Abstract
Neurons are the largest known cells, with complex and highly polarized morphologies. As such, neuronal signaling is highly compartmentalized, requiring sophisticated transfer mechanisms to convey and integrate information within and between sub-neuronal compartments. Here, we survey different modes of compartmentalized signaling in neurons, highlighting examples wherein the fundamental cell biological processes of protein synthesis and degradation, membrane trafficking, and organelle transport are employed to enable the encoding and integration of information, locally and globally within a neuron. Comparisons to other cell types indicate that neurons accentuate widely shared mechanisms, providing invaluable models for the compartmentalization and transfer mechanisms required and used by most eukaryotic cells.
Collapse
Affiliation(s)
- Marco Terenzio
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, UK; Discoveries Centre for Regenerative and Precision Medicine at UCL, London WC1N 3BG, UK; UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
61
|
Sun T, Li Y, Li T, Ma H, Guo Y, Jiang X, Hou M, Huang S, Chen Z. JIP1 and JIP3 cooperate to mediate TrkB anterograde axonal transport by activating kinesin-1. Cell Mol Life Sci 2017; 74:4027-4044. [PMID: 28638935 PMCID: PMC11107601 DOI: 10.1007/s00018-017-2568-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 11/28/2022]
Abstract
Long-range anterograde axonal transport of TrkB is important for neurons to exert appropriate BDNF responses. TrkB anterograde axonal delivery is mediated by kinesin-1, which associates with TrkB via the adaptor protein JIP3 or the Slp1/Rab27B/CRMP-2 protein complex. However, little is known about the activation mechanisms of TrkB-loaded kinesin-1. Here, we show that JIP1 mediates TrkB anterograde axonal transport using JIP1 knockout mice, sciatic nerve ligation analysis and live imaging. Next, we proved that JIP1 and JIP3 cooperate to mediate TrkB anterograde axonal transport. Finally, microtubule-binding and microfluidic chamber assays revealed that JIP1 and JIP3 cooperate to relieve kinesin-1 autoinhibition, which depends on the binding of JIP1 to kinesin-1 heavy chain (KHC) and light chain (KLC) and the binding of JIP3 to KLC and is essential for TrkB anterograde axonal transport and BDNF-induced TrkB retrograde signal. These findings could deepen our understanding of the regulation mechanism underlying TrkB anterograde axonal transport and provide a novel kinesin-1 autoinhibition-relieving model.
Collapse
Affiliation(s)
- Tao Sun
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yuan Li
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Ting Li
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Huixian Ma
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yunyun Guo
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Xingyu Jiang
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Ming Hou
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Shuhong Huang
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Zheyu Chen
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
62
|
Al-Akhrass H, Naves T, Vincent F, Magnaudeix A, Durand K, Bertin F, Melloni B, Jauberteau MO, Lalloué F. Sortilin limits EGFR signaling by promoting its internalization in lung cancer. Nat Commun 2017; 8:1182. [PMID: 29084952 PMCID: PMC5662760 DOI: 10.1038/s41467-017-01172-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 08/24/2017] [Indexed: 01/27/2023] Open
Abstract
Tyrosine kinase receptors such as the epidermal growth factor receptor (EGFR) transduce information from the microenvironment into the cell and activate homeostatic signaling pathways. Internalization and degradation of EGFR after ligand binding limits the intensity of proliferative signaling, thereby helping to maintain cell integrity. In cancer cells, deregulation of EGFR trafficking has a variety of effects on tumor progression. Here we report that sortilin is a key regulator of EGFR internalization. Loss of sortilin in tumor cells promoted cell proliferation by sustaining EGFR signaling at the cell surface, ultimately accelerating tumor growth. In lung cancer patients, sortilin expression decreased with increased pathologic grade, and expression of sortilin was strongly correlated with survival, especially in patients with high EGFR expression. Sortilin is therefore a regulator of EGFR intracellular trafficking that promotes receptor internalization and limits signaling, which in turn impacts tumor growth.
Collapse
Affiliation(s)
- Hussein Al-Akhrass
- EA3842 Homéostasie Cellulaire et Pathologies and Chaire de Pneumologie Expérimentale, Université de Limoges, Faculté de Médecine, 2 Rue du Dr. Raymond Marcland, 87025, Limoges CEDEX, France
| | - Thomas Naves
- EA3842 Homéostasie Cellulaire et Pathologies and Chaire de Pneumologie Expérimentale, Université de Limoges, Faculté de Médecine, 2 Rue du Dr. Raymond Marcland, 87025, Limoges CEDEX, France.
| | - François Vincent
- EA3842 Homéostasie Cellulaire et Pathologies and Chaire de Pneumologie Expérimentale, Université de Limoges, Faculté de Médecine, 2 Rue du Dr. Raymond Marcland, 87025, Limoges CEDEX, France.,Service de Pathologie Respiratoire, Centre Hospitalier et Universitaire de Limoges, 87042, Limoges CEDEX, France
| | - Amandine Magnaudeix
- EA3842 Homéostasie Cellulaire et Pathologies and Chaire de Pneumologie Expérimentale, Université de Limoges, Faculté de Médecine, 2 Rue du Dr. Raymond Marcland, 87025, Limoges CEDEX, France
| | - Karine Durand
- EA3842 Homéostasie Cellulaire et Pathologies and Chaire de Pneumologie Expérimentale, Université de Limoges, Faculté de Médecine, 2 Rue du Dr. Raymond Marcland, 87025, Limoges CEDEX, France.,Service d'Anatomie Pathologique, Centre Hospitalier et Universitaire de Limoges, 87042, Limoges CEDEX, France
| | - François Bertin
- Service de Chirurgie Thoracique et Cardio-vasculaire, Centre Hospitalier et Universitaire de Limoges, 87042, Limoges CEDEX, France
| | - Boris Melloni
- Service de Pathologie Respiratoire, Centre Hospitalier et Universitaire de Limoges, 87042, Limoges CEDEX, France
| | - Marie-Odile Jauberteau
- EA3842 Homéostasie Cellulaire et Pathologies and Chaire de Pneumologie Expérimentale, Université de Limoges, Faculté de Médecine, 2 Rue du Dr. Raymond Marcland, 87025, Limoges CEDEX, France.,Service d'Immunologie, Centre Hospitalier et Universitaire de Limoges, 87042, Limoges CEDEX, France
| | - Fabrice Lalloué
- EA3842 Homéostasie Cellulaire et Pathologies and Chaire de Pneumologie Expérimentale, Université de Limoges, Faculté de Médecine, 2 Rue du Dr. Raymond Marcland, 87025, Limoges CEDEX, France
| |
Collapse
|
63
|
Malik I, Christensen S, Stavenhagen JB, Dietz GPH. Development of a Cell-Based Assay to Assess Binding of the proNGF Prodomain to Sortilin. Cell Mol Neurobiol 2017; 38:827-840. [PMID: 29067536 PMCID: PMC5882628 DOI: 10.1007/s10571-017-0558-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/09/2017] [Indexed: 01/14/2023]
Abstract
Sortilin was first identified based on its activity as part of intracellular protein sorting machinery. Recently, it was discovered that sortilin also acts as a cell surface receptor for the propeptide form of nerve growth factor (proNGF), progranulin, and neurotensin. The interaction of sortilin to these neurotrophic ligands is linked to diseases of the nervous system that lead to neurodegeneration and neuropathic pain. Blocking of the interaction of sortilin to these ligands may prevent or slow the progress of these nervous system disorders. In vitro screening assays for blocking compounds or peptides are part of the standard set of tools for drug discovery. However, assays for sortilin biology are not readily available to determine if the selected blocking agent inhibits sortilin activity on the surface of cells. We have developed a sortilin specific cell based assay to identify compounds that specifically block interaction between sortilin and proNGF prodomain. The assay system records both the presence of sortilin on the cell surface and the interaction with the pro domain of NGF. Fluorescent images of the sortilin expressing cells are analyzed for the presence of pro domain of NGF. Sortilin-positive and sortilin-negative cells within one well are concomitantly and automatically analyzed. Sortilin—pro domain interaction can be blocked dose dependently by neurotensin and synthetic compounds. The assay will facilitate the discovery of entities interfering with the binding of sortilin to the NGF pro domain. This assay can be modified to screen for inhibitors of the binding of ligands to other complex cell surface receptors.
Collapse
Affiliation(s)
- Ibrahim Malik
- Department Neurodegeneration, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Søren Christensen
- Department Neurodegeneration, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | | | - Gunnar P H Dietz
- Department Neurodegeneration, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark.
| |
Collapse
|
64
|
Yamashita N, Joshi R, Zhang S, Zhang ZY, Kuruvilla R. Phospho-Regulation of Soma-to-Axon Transcytosis of Neurotrophin Receptors. Dev Cell 2017; 42:626-639.e5. [PMID: 28919207 DOI: 10.1016/j.devcel.2017.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/07/2017] [Accepted: 08/11/2017] [Indexed: 01/12/2023]
Abstract
Axonal targeting of signaling receptors is essential for neuronal responses to extracellular cues. Here, we report that retrograde signaling by target-derived nerve growth factor (NGF) is necessary for soma-to-axon transcytosis of TrkA receptors in sympathetic neurons, and we define the molecular underpinnings of this positive feedback regulation that enhances neuronal sensitivity to trophic factors. Activated TrkA receptors are retrogradely transported in signaling endosomes from distal axons to cell bodies, where they are inserted on soma surfaces and promote phosphorylation of resident naive receptors, resulting in their internalization. Endocytosed TrkA receptors are then dephosphorylated by PTP1B, an ER-resident protein tyrosine phosphatase, prior to axonal transport. PTP1B inactivation prevents TrkA exit from soma and causes receptor degradation, suggesting a "gatekeeper" mechanism that ensures targeting of inactive receptors to axons to engage with ligand. In mice, PTP1B deletion reduces axonal TrkA levels and attenuates neuron survival and target innervation under limiting NGF (NGF+/-) conditions.
Collapse
Affiliation(s)
- Naoya Yamashita
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA
| | - Rajshri Joshi
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA
| | - Sheng Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, Robert E. Heine Pharmacy Building, Room 202A, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, Robert E. Heine Pharmacy Building, Room 202A, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
65
|
Choo M, Miyazaki T, Yamazaki M, Kawamura M, Nakazawa T, Zhang J, Tanimura A, Uesaka N, Watanabe M, Sakimura K, Kano M. Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum. Nat Commun 2017; 8:195. [PMID: 28775326 PMCID: PMC5543168 DOI: 10.1038/s41467-017-00260-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 06/14/2017] [Indexed: 12/31/2022] Open
Abstract
Elimination of early-formed redundant synapses during postnatal development is essential for functional neural circuit formation. Purkinje cells (PCs) in the neonatal cerebellum are innervated by multiple climbing fibers (CFs). A single CF is strengthened whereas the other CFs are eliminated in each PC dependent on postsynaptic activity in PC, but the underlying mechanisms are largely unknown. Here, we report that brain-derived neurotrophic factor (BDNF) from PC facilitates CF synapse elimination. By PC-specific deletion of BDNF combined with knockdown of BDNF receptors in CF, we show that BDNF acts retrogradely on TrkB in CFs, and facilitates elimination of CF synapses from PC somata during the third postnatal week. We also show that BDNF shares signaling pathway with metabotropic glutamate receptor 1, a key molecule that triggers a canonical pathway for CF synapse elimination. These results indicate that unlike other synapses, BDNF mediates punishment signal for synapse elimination in the developing cerebellum. During development, synapses are selectively strengthened or eliminated by activity-dependent competition. Here, the authors show that BDNF-TrkB retrograde signaling is a “punishment” signal that leads to elimination of climbing fiber-onto-Purkinje cell synapses in the developing cerebellum.
Collapse
Affiliation(s)
- Myeongjeong Choo
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Taisuke Miyazaki
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Meiko Kawamura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Takanobu Nakazawa
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Jianling Zhang
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Asami Tanimura
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
66
|
Affiliation(s)
- Franziska Denk
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Stephen B. McMahon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
67
|
Uchiyama K, Tomita M, Yano M, Chida J, Hara H, Das NR, Nykjaer A, Sakaguchi S. Prions amplify through degradation of the VPS10P sorting receptor sortilin. PLoS Pathog 2017; 13:e1006470. [PMID: 28665987 PMCID: PMC5509376 DOI: 10.1371/journal.ppat.1006470] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 07/13/2017] [Accepted: 06/14/2017] [Indexed: 01/09/2023] Open
Abstract
Prion diseases are a group of fatal neurodegenerative disorders caused by prions, which consist mainly of the abnormally folded isoform of prion protein, PrPSc. A pivotal pathogenic event in prion disease is progressive accumulation of prions, or PrPSc, in brains through constitutive conformational conversion of the cellular prion protein, PrPC, into PrPSc. However, the cellular mechanism by which PrPSc is progressively accumulated in prion-infected neurons remains unknown. Here, we show that PrPSc is progressively accumulated in prion-infected cells through degradation of the VPS10P sorting receptor sortilin. We first show that sortilin interacts with PrPC and PrPSc and sorts them to lysosomes for degradation. Consistently, sortilin-knockdown increased PrPSc accumulation in prion-infected cells. In contrast, overexpression of sortilin reduced PrPSc accumulation in prion-infected cells. These results indicate that sortilin negatively regulates PrPSc accumulation in prion-infected cells. The negative role of sortilin in PrPSc accumulation was further confirmed in sortilin-knockout mice infected with prions. The infected mice had accelerated prion disease with early accumulation of PrPSc in their brains. Interestingly, sortilin was reduced in prion-infected cells and mouse brains. Treatment of prion-infected cells with lysosomal inhibitors, but not proteasomal inhibitors, increased the levels of sortilin. Moreover, sortilin was reduced following PrPSc becoming detectable in cells after infection with prions. These results indicate that PrPSc accumulation stimulates sortilin degradation in lysosomes. Taken together, these results show that PrPSc accumulation of itself could impair the sortilin-mediated sorting of PrPC and PrPSc to lysosomes for degradation by stimulating lysosomal degradation of sortilin, eventually leading to progressive accumulation of PrPSc in prion-infected cells. Once prions consisting mainly of PrPSc infect hosts, they constitutively propagate in their brains. Progressive production of PrPSc through the constitutive conformational conversion of PrPC into PrPSc underlies prion propagation. However, the mechanism enabling progressive production of PrPSc in prion-infected cells remains unknown. We here found that the VPS10P sorting receptor sortilin is involved in degradation of PrPC and PrPSc in infected cells by binding to both molecules and subsequently trafficking them to the lysosomal protein degradation pathway. Interestingly, we also found that degradation of sortilin was stimulated in lysosomes in prion-infected cells possibly as a result of the sortilin-PrPC or -PrPSc complexes being trafficked to lysosomes. Our findings indicate that PrPSc itself impairs the sortilin-mediated degradation of PrPC and PrPSc by stimulating degradation of sortilin in lysosomes. This eventually results in progressive production of PrPSc in prion-infected cells by increasing the opportunity of PrPC to convert into PrPSc and by accumulating the already produced PrPSc. This mechanism was confirmed in sortilin-KO mice infected with prions. The mice had exacerbated prion disease with earlier accumulation of PrPSc in their brains.
Collapse
Affiliation(s)
- Keiji Uchiyama
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
- * E-mail: (SS); (KU)
| | - Mitsuru Tomita
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
- Student Laboratory, Faculty of Medicine, Tokushima University, Tokushima, Japan
| | - Masashi Yano
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Junji Chida
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Hideyuki Hara
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Nandita Rani Das
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Anders Nykjaer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
- * E-mail: (SS); (KU)
| |
Collapse
|
68
|
Canu N, Amadoro G, Triaca V, Latina V, Sposato V, Corsetti V, Severini C, Ciotti MT, Calissano P. The Intersection of NGF/TrkA Signaling and Amyloid Precursor Protein Processing in Alzheimer's Disease Neuropathology. Int J Mol Sci 2017. [PMID: 28632177 PMCID: PMC5486140 DOI: 10.3390/ijms18061319] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Dysfunction of nerve growth factor (NGF) and its high-affinity Tropomyosin receptor kinase A (TrkA) receptor has been suggested to contribute to the selective degeneration of basal forebrain cholinergic neurons (BFCN) associated with the progressive cognitive decline in Alzheimer's disease (AD). The aim of this review is to describe our progress in elucidating the molecular mechanisms underlying the dynamic interplay between NGF/TrkA signaling and amyloid precursor protein (APP) metabolism within the context of AD neuropathology. This is mainly based on the finding that TrkA receptor binding to APP depends on a minimal stretch of ~20 amino acids located in the juxtamembrane/extracellular domain of APP that carries the α- and β-secretase cleavage sites. Here, we provide evidence that: (i) NGF could be one of the “routing” proteins responsible for modulating the metabolism of APP from amyloidogenic towards non-amyloidogenic processing via binding to the TrkA receptor; (ii) the loss of NGF/TrkA signaling could be linked to sporadic AD contributing to the classical hallmarks of the neuropathology, such as synaptic loss, β-amyloid peptide (Aβ) deposition and tau abnormalities. These findings will hopefully help to design therapeutic strategies for AD treatment aimed at preserving cholinergic function and anti-amyloidogenic activity of the physiological NGF/TrkA pathway in the septo-hippocampal system.
Collapse
Affiliation(s)
- Nadia Canu
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00137 Rome, Italy.
- Institute of Cellular Biology and Neurobiology, National Council of Research Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology, National Research Council (CNR) Rome, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Viviana Triaca
- Institute of Cellular Biology and Neurobiology, National Council of Research Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Valentina Latina
- Institute of Translational Pharmacology, National Research Council (CNR) Rome, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Valentina Sposato
- European Brain Research Institute Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Veronica Corsetti
- European Brain Research Institute Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Cinzia Severini
- Institute of Cellular Biology and Neurobiology, National Council of Research Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Maria Teresa Ciotti
- Institute of Cellular Biology and Neurobiology, National Council of Research Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Pietro Calissano
- European Brain Research Institute Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| |
Collapse
|
69
|
Ma Q, Yang J, Milner TA, Vonsattel JPG, Palko ME, Tessarollo L, Hempstead BL. SorCS2-mediated NR2A trafficking regulates motor deficits in Huntington's disease. JCI Insight 2017; 2:88995. [PMID: 28469074 PMCID: PMC5414556 DOI: 10.1172/jci.insight.88995] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 03/30/2017] [Indexed: 12/14/2022] Open
Abstract
Motor dysfunction is a prominent and disabling feature of Huntington's disease (HD), but the molecular mechanisms that dictate its onset and progression are unknown. The N-methyl-D-aspartate receptor 2A (NR2A) subunit regulates motor skill development and synaptic plasticity in medium spiny neurons (MSNs) of the striatum, cells that are most severely impacted by HD. Here, we document reduced NR2A receptor subunits on the dendritic membranes and at the synapses of MSNs in zQ175 mice that model HD. We identify that SorCS2, a vacuolar protein sorting 10 protein-domain (VPS10P-domain) receptor, interacts with VPS35, a core component of retromer, thereby regulating surface trafficking of NR2A in MSNs. In the zQ175 striatum, SorCS2 is markedly decreased in an age- and allele-dependent manner. Notably, SorCS2 selectively interacts with mutant huntingtin (mtHTT), but not WT huntingtin (wtHTT), and is mislocalized to perinuclear clusters in striatal neurons of human HD patients and zQ175 mice. Genetic deficiency of SorCS2 accelerates the onset and exacerbates the motor coordination deficit of zQ175 mice. Together, our results identify SorCS2 as an interacting protein of mtHTT and demonstrate that impaired SorCS2-mediated NR2A subunit trafficking to dendritic surface of MSNs is, to our knowledge, a novel mechanism contributing to motor coordination deficits of HD.
Collapse
Affiliation(s)
- Qian Ma
- Graduate Program of Neuroscience
| | - Jianmin Yang
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| | - Jean-Paul G. Vonsattel
- The New York Brain Bank/Taub Institute Columbia University, Children’s Hospital, New York, New York, USA
| | - Mary Ellen Palko
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, Maryland, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, Maryland, USA
| | - Barbara L. Hempstead
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
70
|
Abstract
In the last few years, exciting properties have emerged regarding the activation, signaling, mechanisms of action, and therapeutic targeting of the two types of neurotrophin receptors: the p75NTR with its intracellular and extracellular peptides, the Trks, their precursors and their complexes. This review summarizes these new developments, with particular focus on neurodegenerative diseases. Based on the evolving knowledge, innovative concepts have been formulated regarding the pathogenesis of these diseases, especially the Alzheimer's and two other, the Parkinson's and Huntington's diseases. The medical progresses include original procedures of diagnosis, started from studies in mice and now investigated for human application, based on innovative classes of receptor agonists and blockers. In parallel, comprehensive studies have been and are being carried out for the development of drugs. The relevance of these studies is based on the limitations of the therapies employed until recently, especially for the treatment of Alzheimer's patients. Starting from well known drugs, previously employed for non-neurodegenerative diseases, the ongoing progress has lead to the development of small molecules that cross rapidly the blood-brain barrier. Among these molecules the most promising are specific blockers of the p75NTR receptor. Additional drugs, that activate Trk receptors, were shown effective against synaptic loss and memory deficits. In the near future such approaches, coordinated with treatments with monoclonal antibodies and with developments in the microRNA field, are expected to improve the therapy of neurodegenerative diseases, and may be relevant also for other human disease conditions.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- Department of Neuroscience, Vita-Salute San Raffaele University and Scientific Institute San Raffaele, via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
71
|
Barford K, Deppmann C, Winckler B. The neurotrophin receptor signaling endosome: Where trafficking meets signaling. Dev Neurobiol 2017; 77:405-418. [PMID: 27503831 DOI: 10.1002/dneu.22427] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/05/2016] [Accepted: 08/04/2016] [Indexed: 11/08/2022]
Abstract
Neurons are the largest cells in the body and form subcellular compartments such as axons and dendrites. During both development and adulthood building blocks must be continually trafficked long distances to maintain the different regions of the neuron. Beyond building blocks, signaling complexes are also transported, allowing for example, axons to communicate with the soma. The critical roles of signaling via ligand-receptor complexes is perhaps best illustrated in the context of development, where they are known to regulate polarization, survival, axon outgrowth, dendrite development, and synapse formation. However, knowing 'when' and 'how much' signaling is occurring does not provide the complete story. The location of signaling has a significant impact on the functional outcomes. There are therefore complex and functionally important trafficking mechanisms in place to control the precise spatial and temporal aspects of many signal transduction events. In turn, many of these signaling events affect trafficking mechanisms, setting up an intricate connection between trafficking and signaling. In this review we will use neurotrophin receptors, specifically TrkA and TrkB, to illustrate the cell biology underlying the links between trafficking and signaling. Briefly, we will discuss the concepts of how trafficking and signaling are intimately linked for functional and diverse signaling outputs, and how the same protein can play different roles for the same receptor depending on its localization. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017.
Collapse
Affiliation(s)
- Kelly Barford
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908
| | - Christopher Deppmann
- Department of Biology, University of Virginia, Physical Life Sciences Building (PLSB), 90 Geldard Drive, Charlottesville, Virginia, 22903
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908
| |
Collapse
|
72
|
Canu N, Pagano I, La Rosa LR, Pellegrino M, Ciotti MT, Mercanti D, Moretti F, Sposato V, Triaca V, Petrella C, Maruyama IN, Levi A, Calissano P. Association of TrkA and APP Is Promoted by NGF and Reduced by Cell Death-Promoting Agents. Front Mol Neurosci 2017; 10:15. [PMID: 28197073 PMCID: PMC5281621 DOI: 10.3389/fnmol.2017.00015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/11/2017] [Indexed: 12/31/2022] Open
Abstract
The amyloid precursor protein (APP) interacts with the tropomyosin receptor kinase A (TrkA) in normal rat, mouse, and human brain tissue but not in Alzheimer's disease (AD) brain tissue. However, it has not been reported whether the two proteins interact directly, and if so, which domains are involved. Clarifying these points will increase our understanding of the role and regulation of the TrkA/APP interaction in normal brain functioning as well as in AD. Here we addressed these questions using bimolecular fluorescence complementation (BiFC) and the proximity ligation assay (PLA). We demonstrated that exogenously expressed APP and TrkA associate through their juxtamembrane/transmembrane domains, to form a complex that localizes mainly to the plasma membrane, endoplasmic reticulum (ER) and Golgi. Formation of the complex was inhibited by p75NTR, ShcC and Mint-2. Importantly, we demonstrated that the association between endogenous APP and TrkA in primary septal neurons were modified by NGF, or by drugs that either inhibit ER-to-Golgi transport or perturb microtubules and microfilaments. Interestingly, several agents that induce cell death [amyloid β (Aβ)-peptide, staurosporine and rapamycin], albeit via different mechanisms, all caused dissociation of APP/TrkA complexes and increased production of C-terminal fragment (β-CTF) APP fragment. These findings open new perspectives for investigating the interplay between these proteins during neurodegeneration and AD.
Collapse
Affiliation(s)
- Nadia Canu
- Department of System Medicine, University of Rome "Tor Vergata"Rome, Italy; Institute of Cellular Biology and Neurobiology, National Council of Research of RomeRome, Italy
| | - Ilaria Pagano
- Institute of Cellular Biology and Neurobiology, National Council of Research of Rome Rome, Italy
| | - Luca Rosario La Rosa
- Institute of Cellular Biology and Neurobiology, National Council of Research of Rome Rome, Italy
| | - Marsha Pellegrino
- Institute of Cellular Biology and Neurobiology, National Council of Research of Rome Rome, Italy
| | - Maria Teresa Ciotti
- Institute of Cellular Biology and Neurobiology, National Council of Research of Rome Rome, Italy
| | - Delio Mercanti
- Institute of Cellular Biology and Neurobiology, National Council of Research of Rome Rome, Italy
| | - Fabiola Moretti
- Institute of Cellular Biology and Neurobiology, National Council of Research of Rome Rome, Italy
| | - Valentina Sposato
- Institute of Cellular Biology and Neurobiology, National Council of Research of RomeRome, Italy; European Brain Research InstituteRome, Italy
| | - Viviana Triaca
- Institute of Cellular Biology and Neurobiology, National Council of Research of RomeRome, Italy; European Brain Research InstituteRome, Italy
| | - Carla Petrella
- Institute of Cellular Biology and Neurobiology, National Council of Research of Rome Rome, Italy
| | - Ichiro N Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University Okinawa, Japan
| | - Andrea Levi
- Institute of Cellular Biology and Neurobiology, National Council of Research of Rome Rome, Italy
| | - Pietro Calissano
- European Brain Research InstituteRome, Italy; Institute of Cellular Biology and Neurobiology, National Council of Research of RomeRome, Italy
| |
Collapse
|
73
|
Abstract
Protein secretion mediated by the secretory transport pathway is an important cellular process in eukaryotic cells. In the conventional secretory transport pathway, newly synthesized proteins pass through several endomembrane compartments en route to their specific destinations. Transport of secretory proteins between different compartments is shuttled by small, membrane-enclosed vesicles. To ensure the fidelity of transport, eukaryotic cells employ elaborate molecular machineries to accurately sort newly synthesized proteins into specific transport vesicles and precisely deliver these transport vesicles to distinct acceptor compartments. In this review, we summarize the molecular machineries that regulate each step of vesicular transport in the secretory transport pathway in yeast and animal cells.
Collapse
Affiliation(s)
- Yusong Guo
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Feng Yang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiao Tang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
74
|
Higuero AM, Díez-Revuelta N, Abad-Rodríguez J. The sugar code in neuronal physiology. Histochem Cell Biol 2016; 147:257-267. [PMID: 27999993 DOI: 10.1007/s00418-016-1519-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Carbohydrate-related interactions are necessary for the correct development and function of the nervous system. As we illustrate with several examples, those interactions are controlled by carbohydrate-modifying enzymes and by carbohydrate-binding proteins that regulate a plethora of complex axonal processes. Among others, glycan-related proteins as sialidase Neu3 or galectins-1, -3, and -4 play central roles in the determination of axonal fate, axon growth, guidance and regeneration, as well as in polarized axonal glycoprotein transport. In addition, myelination is also highly dependent on glycans, and the stabilization of myelin architecture requires the interaction of the myelin-associated glycoprotein (siglec-4) with gangliosides in the axonal membrane. The roles of glycans in neuroscience are far from being completely understood, though the cases presented here underscore the importance and potential of carbohydrates to establish with precision key molecular mechanisms of the physiology of the nervous system. New specific applications in diagnosis as well as the definition of new molecular targets to treat neurological diseases related to lectins and/or glycans are envisioned in the future.
Collapse
Affiliation(s)
- Alonso M Higuero
- Membrane Biology and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain.
| |
Collapse
|
75
|
Glerup S, Bolcho U, Mølgaard S, Bøggild S, Vaegter CB, Smith AH, Nieto-Gonzalez JL, Ovesen PL, Pedersen LF, Fjorback AN, Kjolby M, Login H, Holm MM, Andersen OM, Nyengaard JR, Willnow TE, Jensen K, Nykjaer A. SorCS2 is required for BDNF-dependent plasticity in the hippocampus. Mol Psychiatry 2016; 21:1740-1751. [PMID: 27457814 DOI: 10.1038/mp.2016.108] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 04/06/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022]
Abstract
SorCS2 is a member of the Vps10p-domain receptor gene family receptors with critical roles in the control of neuronal viability and function. Several genetic studies have suggested SORCS2 to confer risk of bipolar disorder, schizophrenia and attention deficit-hyperactivity disorder. Here we report that hippocampal N-methyl-d-aspartate receptor-dependent synaptic plasticity is eliminated in SorCS2-deficient mice. This defect was traced to the ability of SorCS2 to form complexes with the neurotrophin receptor p75NTR, required for pro-brain-derived neurotrophic factor (BDNF) to induce long-term depression, and with the BDNF receptor tyrosine kinase TrkB to elicit long-term potentiation. Although the interaction with p75NTR was static, SorCS2 bound to TrkB in an activity-dependent manner to facilitate its translocation to postsynaptic densities for synaptic tagging and maintenance of synaptic potentiation. Neurons lacking SorCS2 failed to respond to BDNF by TrkB autophosphorylation, and activation of downstream signaling cascades, impacting neurite outgrowth and spine formation. Accordingly, Sorcs2-/- mice displayed impaired formation of long-term memory, increased risk taking and stimulus seeking behavior, enhanced susceptibility to stress and impaired prepulse inhibition. Our results identify SorCS2 as an indispensable coreceptor for p75NTR and TrkB in hippocampal neurons and suggest SORCS2 as the link between proBDNF/BDNF signaling and mental disorders.
Collapse
Affiliation(s)
- S Glerup
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - U Bolcho
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - S Mølgaard
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - S Bøggild
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - C B Vaegter
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - A H Smith
- Yale School of Medicine, Interdepartmental Neuroscience Program and Medical Scientist Training Program, New Haven, CT, USA
- Department of Psychiatry, VAT CT Healthcare Center, and Yale School of Medicine, New Haven, CT, USA
| | | | - P L Ovesen
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - L F Pedersen
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - A N Fjorback
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - M Kjolby
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - H Login
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - M M Holm
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - O M Andersen
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - J R Nyengaard
- MIND Center, Stereology and Electron Microscopy Laboratory, Aarhus University, Aarhus C, Denmark
| | - T E Willnow
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - K Jensen
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - A Nykjaer
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
76
|
Janssens J, Lu D, Ni B, Chadwick W, Siddiqui S, Azmi A, Etienne H, Jushaj A, van Gastel J, Martin B, Maudsley S. Development of Precision Small-Molecule Proneurotrophic Therapies for Neurodegenerative Diseases. VITAMINS AND HORMONES 2016; 104:263-311. [PMID: 28215298 DOI: 10.1016/bs.vh.2016.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Age-related neurodegenerative diseases, such as Alzheimer's disease, will represent one of the largest future burdens on worldwide healthcare systems due to the increasing proportion of elderly in our society. As deficiencies in neurotrophins are implicated in the pathogenesis of many age-related neurodegenerative disorders, it is reasonable to consider that global neurotrophin resistance may also become a major healthcare threat. Central nervous system networks are effectively maintained through aging by neuroprotective and neuroplasticity signaling mechanisms which are predominantly controlled by neurotrophin receptor signaling. Neurotrophin receptors are single pass receptor tyrosine kinases that form dimeric structures upon ligand binding to initiate cellular signaling events that control many protective and plasticity-related pathways. Declining functionality of the neurotrophin ligand-receptor system is considered one of the hallmarks of neuropathological aging. Therefore, it is imperative to develop effective therapeutic strategies to contend with this significant issue. While the therapeutic applications of cognate ligands for neurotrophin receptors are limited, the development of nonpeptidergic, small-molecule ligands can overcome these limitations, and productively regulate this important receptor system with beneficial effects. Using our advanced knowledge of the high-dimensionality complexity of receptor systems, the future generation of precision medicines targeting these systems will be an attainable goal.
Collapse
Affiliation(s)
- J Janssens
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium
| | - D Lu
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States
| | - B Ni
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States
| | - W Chadwick
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States
| | - S Siddiqui
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States
| | - A Azmi
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium
| | - H Etienne
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium
| | - A Jushaj
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium
| | - J van Gastel
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium
| | - B Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States
| | - S Maudsley
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium; Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States.
| |
Collapse
|
77
|
Norman BH, McDermott JS. Targeting the Nerve Growth Factor (NGF) Pathway in Drug Discovery. Potential Applications to New Therapies for Chronic Pain. J Med Chem 2016; 60:66-88. [DOI: 10.1021/acs.jmedchem.6b00964] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bryan H. Norman
- Discovery Chemistry
Research and Technologies and ‡Neurophysiology, Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, Lilly
Corporate Center, Indiana 46285, United States
| | - Jeff S. McDermott
- Discovery Chemistry
Research and Technologies and ‡Neurophysiology, Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, Lilly
Corporate Center, Indiana 46285, United States
| |
Collapse
|
78
|
Campbell C, Beug S, Nickerson PEB, Peng J, Mazerolle C, Bassett EA, Ringuette R, Jama FA, Morales C, Christ A, Wallace VA. Sortilin regulates sorting and secretion of Sonic hedgehog. J Cell Sci 2016; 129:3832-3844. [PMID: 27632999 DOI: 10.1242/jcs.183541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 08/26/2016] [Indexed: 01/03/2023] Open
Abstract
Sonic Hedgehog (Shh) is a secreted morphogen that is an essential regulator of patterning and growth. The Shh full-length protein undergoes autocleavage in the endoplasmic reticulum to generate the biologically active N-terminal fragment (ShhN), which is destined for secretion. We identified sortilin (Sort1), a member of the VPS10P-domain receptor family, as a new Shh trafficking receptor. We demonstrate that Sort-Shh interact by performing coimmunoprecipitation and proximity ligation assays in transfected cells and that they colocalize at the Golgi. Sort1 overexpression causes re-distribution of ShhN and, to a lesser extent, of full-length Shh to the Golgi and reduces Shh secretion. We show loss of Sort1 can partially rescue Hedgehog-associated patterning defects in a mouse model that is deficient in Shh processing, and we show that Sort1 levels negatively regulate anterograde Shh transport in axons in vitro and Hedgehog-dependent axon-glial interactions in vivo Taken together, we conclude that Shh and Sort1 can interact at the level of the Golgi and that Sort1 directs Shh away from the pathways that promote its secretion.
Collapse
Affiliation(s)
- Charles Campbell
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Shawn Beug
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Philip E B Nickerson
- Vision Science Division, Krembil Research Institute, University Health Network and Department of Ophthalmology and Vision Sciences, University of Toronto, 60 Leonard Street, Toronto ON M5T 2S8
| | - Jimmy Peng
- Department of Biology, McGill University, 1205 Ave Docteur Penfield Room W4/8, Montreal, Quebec, Canada H3A 1B1 Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montréal, Quebec, Canada H2W 1R7
| | - Chantal Mazerolle
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Erin A Bassett
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Randy Ringuette
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Fadumo A Jama
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Carlos Morales
- Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montréal, Quebec, Canada H3A 0C7
| | - Annabel Christ
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Valerie A Wallace
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5 Vision Science Division, Krembil Research Institute, University Health Network and Department of Ophthalmology and Vision Sciences, University of Toronto, 60 Leonard Street, Toronto ON M5T 2S8
| |
Collapse
|
79
|
Josephy-Hernandez S, Jmaeff S, Pirvulescu I, Aboulkassim T, Saragovi HU. Neurotrophin receptor agonists and antagonists as therapeutic agents: An evolving paradigm. Neurobiol Dis 2016; 97:139-155. [PMID: 27546056 DOI: 10.1016/j.nbd.2016.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are prevalent, complex and devastating conditions, with very limited treatment options currently available. While they manifest in many forms, there are commonalities that link them together. In this review, we will focus on neurotrophins - a family of related factors involved in neuronal development and maintenance. Neurodegenerative diseases often present with a neurotrophin imbalance, in which there may be decreases in trophic signaling through Trk receptors for example, and/or increases in pro-apoptotic activity through p75. Clinical trials with neurotrophins have continuously failed due to their poor pharmacological properties as well as the unavoidable activation of p75. Thus, there is a need for drugs without such setbacks. Small molecule neurotrophin mimetics are favorable options since they can selectively activate Trks or inactivate p75. In this review, we will initially present a brief outline of how these molecules are synthesized and their mechanisms of action; followed by an update in the current state of neurotrophins and small molecules in major neurodegenerative diseases. Although there has been significant progress in the development of potential therapeutics, more studies are needed to establish clear mechanisms of action and target specificity in order to transition from animal models to the assessment of safety and use in humans.
Collapse
Affiliation(s)
- Sylvia Josephy-Hernandez
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Sean Jmaeff
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Iulia Pirvulescu
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Tahar Aboulkassim
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - H Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
80
|
Ito K, Enomoto H. Retrograde transport of neurotrophic factor signaling: implications in neuronal development and pathogenesis. J Biochem 2016; 160:77-85. [DOI: 10.1093/jb/mvw037] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/21/2016] [Indexed: 12/25/2022] Open
|
81
|
Chopin V, Lagadec C, Toillon RA, Le Bourhis X. Neurotrophin signaling in cancer stem cells. Cell Mol Life Sci 2016; 73:1859-70. [PMID: 26883804 PMCID: PMC11108437 DOI: 10.1007/s00018-016-2156-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/06/2016] [Accepted: 02/04/2016] [Indexed: 12/26/2022]
Abstract
Cancer stem cells (CSCs), are thought to be at the origin of tumor development and resistance to therapies. Thus, a better understanding of the molecular mechanisms involved in the control of CSC stemness is essential to the design of more effective therapies for cancer patients. Cancer cell stemness and the subsequent expansion of CSCs are regulated by micro-environmental signals including neurotrophins. Over the years, the roles of neurotrophins in tumor development have been well established and regularly reviewed. Especially, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are reported to stimulate tumor cell proliferation, survival, migration and/or invasion, and favors tumor angiogenesis. More recently, neurotrophins have been reported to regulate CSCs. This review briefly presents neurotrophins and their receptors, summarizes their roles in different cancers, and discusses the emerging evidence of neurotrophins-induced enrichment of CSCs as well as the involved signaling pathways.
Collapse
Affiliation(s)
- Valérie Chopin
- CPAC, Cell Plasticity and Cancer, Univ. Lille, INSERM U908, F-59 000, Villeneuve d'Ascq, France
- University of Picardie Jules Verne, 80000, Amiens, France
| | - Chann Lagadec
- CPAC, Cell Plasticity and Cancer, Univ. Lille, INSERM U908, F-59 000, Villeneuve d'Ascq, France
| | - Robert-Alain Toillon
- CPAC, Cell Plasticity and Cancer, Univ. Lille, INSERM U908, F-59 000, Villeneuve d'Ascq, France
| | - Xuefen Le Bourhis
- CPAC, Cell Plasticity and Cancer, Univ. Lille, INSERM U908, F-59 000, Villeneuve d'Ascq, France.
| |
Collapse
|
82
|
Boggild S, Molgaard S, Glerup S, Nyengaard JR. Spatiotemporal patterns of sortilin and SorCS2 localization during organ development. BMC Cell Biol 2016; 17:8. [PMID: 26964886 PMCID: PMC4785631 DOI: 10.1186/s12860-016-0085-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/03/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sortilin and SorCS2 are part of the Vps10p receptor family. They have both been studied in nervous tissue with several important functions revealed, while their expression and possible functions in developing peripheral tissue remain poorly understood. Here we deliver a thorough characterization of the prenatal localization of sortilin and SorCS2 in mouse peripheral tissue. RESULTS Sortilin is highly expressed in epithelial tissues of the developing lung, nasal cavity, kidney, pancreas, salivary gland and developing intrahepatic bile ducts. Furthermore tissues such as the thyroid gland, developing cartilage and ossifying bone also show high expression of sortilin together with cell types such as megakaryocytes in the liver. SorCS2 is primarily expressed in mesodermally derived tissues such as striated muscle, adipose tissue, ossifying bone and general connective tissue throughout the body, as well as in lung epithelia. Furthermore, the adrenal gland and liver show high expression of SorCS2 in embryos 13.5 days old. CONCLUSIONS The possible functions relating to the expression patterns of Sortilin and SorCS2 in development are numerous and hopefully this paper will help to generate new hypotheses to further our understanding of the Vps10p receptor family.
Collapse
Affiliation(s)
- Simon Boggild
- MIND Centre, Stereology and Electron Microscopy Laboratory, Aarhus University, 8000 C, Aarhus, Denmark. .,MIND Centre, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000 C, Aarhus, Denmark.
| | - Simon Molgaard
- MIND Centre, Stereology and Electron Microscopy Laboratory, Aarhus University, 8000 C, Aarhus, Denmark.,MIND Centre, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000 C, Aarhus, Denmark
| | - Simon Glerup
- MIND Centre, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000 C, Aarhus, Denmark
| | - Jens Randel Nyengaard
- MIND Centre, Stereology and Electron Microscopy Laboratory, Aarhus University, 8000 C, Aarhus, Denmark.,Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, 8000 C, Aarhus, Denmark
| |
Collapse
|
83
|
Goettsch C, Hutcheson JD, Aikawa M, Iwata H, Pham T, Nykjaer A, Kjolby M, Rogers M, Michel T, Shibasaki M, Hagita S, Kramann R, Rader DJ, Libby P, Singh SA, Aikawa E. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles. J Clin Invest 2016; 126:1323-36. [PMID: 26950419 DOI: 10.1172/jci80851] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/21/2016] [Indexed: 12/23/2022] Open
Abstract
Vascular calcification is a common feature of major cardiovascular diseases. Extracellular vesicles participate in the formation of microcalcifications that are implicated in atherosclerotic plaque rupture; however, the mechanisms that regulate formation of calcifying extracellular vesicles remain obscure. Here, we have demonstrated that sortilin is a key regulator of smooth muscle cell (SMC) calcification via its recruitment to extracellular vesicles. Sortilin localized to calcifying vessels in human and mouse atheromata and participated in formation of microcalcifications in SMC culture. Sortilin regulated the loading of the calcification protein tissue nonspecific alkaline phosphatase (TNAP) into extracellular vesicles, thereby conferring its calcification potential. Furthermore, SMC calcification required Rab11-dependent trafficking and FAM20C/casein kinase 2-dependent C-terminal phosphorylation of sortilin. In a murine model, Sort1-deficiency reduced arterial calcification but did not affect bone mineralization. Additionally, transfer of sortilin-deficient BM cells to irradiated atherosclerotic mice did not affect vascular calcification, indicating a primary role of SMC-derived sortilin. Together, the results of this study identify sortilin phosphorylation as a potential therapeutic target for ectopic calcification/microcalcification and may clarify the mechanism that underlies the genetic association between the SORT1 gene locus and coronary artery calcification.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/metabolism
- Alkaline Phosphatase/biosynthesis
- Alkaline Phosphatase/genetics
- Animals
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Casein Kinase I/genetics
- Casein Kinase I/metabolism
- Casein Kinase II/metabolism
- Cell-Derived Microparticles/genetics
- Cell-Derived Microparticles/metabolism
- Cells, Cultured
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Humans
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phosphorylation
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Protein Transport
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- rab GTP-Binding Proteins/genetics
- rab GTP-Binding Proteins/metabolism
Collapse
|
84
|
Jung B, Padula D, Burtscher I, Landerer C, Lutter D, Theis F, Messias AC, Geerlof A, Sattler M, Kremmer E, Boldt K, Ueffing M, Lickert H. Pitchfork and Gprasp2 Target Smoothened to the Primary Cilium for Hedgehog Pathway Activation. PLoS One 2016; 11:e0149477. [PMID: 26901434 PMCID: PMC4763541 DOI: 10.1371/journal.pone.0149477] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/31/2016] [Indexed: 01/14/2023] Open
Abstract
The seven-transmembrane receptor Smoothened (Smo) activates all Hedgehog (Hh) signaling by translocation into the primary cilia (PC), but how this is regulated is not well understood. Here we show that Pitchfork (Pifo) and the G protein-coupled receptor associated sorting protein 2 (Gprasp2) are essential components of an Hh induced ciliary targeting complex able to regulate Smo translocation to the PC. Depletion of Pifo or Gprasp2 leads to failure of Smo translocation to the PC and lack of Hh target gene activation. Together, our results identify a novel protein complex that is regulated by Hh signaling and required for Smo ciliary trafficking and Hh pathway activation.
Collapse
Affiliation(s)
- Bomi Jung
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, München-Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Daniela Padula
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, München-Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, München-Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Cedric Landerer
- Institute of Computational Biology, Helmholtz Zentrum München, München-Neuherberg, Germany
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville TN 37996, United States of America
| | - Dominik Lutter
- Institute of Computational Biology, Helmholtz Zentrum München, München-Neuherberg, Germany
- Institute of Diabetes and Adipositas, Helmholtz Zentrum München, München-Neuherberg, Germany
| | - Fabian Theis
- Institute of Computational Biology, Helmholtz Zentrum München, München-Neuherberg, Germany
| | - Ana C. Messias
- Institute of Structural Biology, Helmholtz Zentrum München, München-Neuherberg, Germany
- Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Zentrum München, München-Neuherberg, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, München-Neuherberg, Germany
- Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Zentrum München, München-Neuherberg, Germany
| | - Karsten Boldt
- Department of Protein Science, Helmholtz Zentrum München, München-Neuherberg, Germany
- Centre of Ophthalmology, Institute for Ophthalmology Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Marius Ueffing
- Department of Protein Science, Helmholtz Zentrum München, München-Neuherberg, Germany
- Centre of Ophthalmology, Institute for Ophthalmology Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, München-Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
- * E-mail:
| |
Collapse
|
85
|
Nakazawa T, Hashimoto R, Sakoori K, Sugaya Y, Tanimura A, Hashimotodani Y, Ohi K, Yamamori H, Yasuda Y, Umeda-Yano S, Kiyama Y, Konno K, Inoue T, Yokoyama K, Inoue T, Numata S, Ohnuma T, Iwata N, Ozaki N, Hashimoto H, Watanabe M, Manabe T, Yamamoto T, Takeda M, Kano M. Emerging roles of ARHGAP33 in intracellular trafficking of TrkB and pathophysiology of neuropsychiatric disorders. Nat Commun 2016; 7:10594. [PMID: 26839058 PMCID: PMC4742909 DOI: 10.1038/ncomms10594] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Intracellular trafficking of receptor proteins is essential for neurons to detect various extracellular factors during the formation and refinement of neural circuits. However, the precise mechanisms underlying the trafficking of neurotrophin receptors to synapses remain elusive. Here, we demonstrate that a brain-enriched sorting nexin, ARHGAP33, is a new type of regulator for the intracellular trafficking of TrkB, a high-affinity receptor for brain-derived neurotrophic factor. ARHGAP33 knockout (KO) mice exhibit reduced expression of synaptic TrkB, impaired spine development and neuropsychiatric disorder-related behavioural abnormalities. These deficits are rescued by specific pharmacological enhancement of TrkB signalling in ARHGAP33 KO mice. Mechanistically, ARHGAP33 interacts with SORT1 to cooperatively regulate TrkB trafficking. Human ARHGAP33 is associated with brain phenotypes and reduced SORT1 expression is found in patients with schizophrenia. We propose that ARHGAP33/SORT1-mediated TrkB trafficking is essential for synapse development and that the dysfunction of this mechanism may be a new molecular pathology of neuropsychiatric disorders. The molecular mechanisms of neurotrophin receptor trafficking are only partially understood. Here the authors show that ARHGAP33 interacts with SORT1 to regulate TrkB trafficking, the dysfunction of which impairs synapse development and leads to schizophrenia-related behavioural abnormalities in mice.
Collapse
Affiliation(s)
- Takanobu Nakazawa
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.,Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Japan
| | - Ryota Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan
| | - Kazuto Sakoori
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Sugaya
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Asami Tanimura
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Hashimotodani
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazutaka Ohi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.,Department of Molecular Neuropsychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Satomi Umeda-Yano
- Department of Molecular Neuropsychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Yuji Kiyama
- Division of Neuronal Network, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Takeshi Inoue
- Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kazumasa Yokoyama
- Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Shusuke Numata
- Department of Psychiatry, Course of Integrated Brain Sciences, School of Medicine, University of Tokushima, Tokushima 770-8503, Japan
| | - Tohru Ohnuma
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo 113-0033, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Hitoshi Hashimoto
- iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan.,Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Toshiya Manabe
- Division of Neuronal Network, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tadashi Yamamoto
- Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son 904-0495, Japan
| | - Masatoshi Takeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
86
|
De Nadai T, Marchetti L, Di Rienzo C, Calvello M, Signore G, Di Matteo P, Gobbo F, Turturro S, Meucci S, Viegi A, Beltram F, Luin S, Cattaneo A. Precursor and mature NGF live tracking: one versus many at a time in the axons. Sci Rep 2016; 6:20272. [PMID: 26829890 PMCID: PMC4735336 DOI: 10.1038/srep20272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/14/2015] [Indexed: 12/11/2022] Open
Abstract
The classical view of nerve growth factor (NGF) action in the nervous system is linked to its retrograde axonal transport. However, almost nothing is known on the trafficking properties of its unprocessed precursor proNGF, characterized by different and generally opposite biological functions with respect to its mature counterpart. Here we developed a strategy to fluorolabel both purified precursor and mature neurotrophins (NTs) with a controlled stoichiometry and insertion site. Using a single particle tracking approach, we characterized the axonal transport of proNGF versus mature NGF in living dorsal root ganglion neurons grown in compartmentalized microfluidic devices. We demonstrate that proNGF is retrogradely transported as NGF, but with a lower flux and a different distribution of numbers of neurotrophins per vesicle. Moreover, exploiting a dual-color labelling technique, we analysed the transport of both NT forms when simultaneously administered to the axon tips.
Collapse
Affiliation(s)
- Teresa De Nadai
- BioSNS Laboratory, Scuola Normale Superiore and Istituto di Neuroscienze - CNR, Pisa, Italy
| | - Laura Marchetti
- BioSNS Laboratory, Scuola Normale Superiore and Istituto di Neuroscienze - CNR, Pisa, Italy.,NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy
| | - Carmine Di Rienzo
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy.,Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12-56127 Pisa, Italy
| | | | - Giovanni Signore
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12-56127 Pisa, Italy
| | - Pierluigi Di Matteo
- BioSNS Laboratory, Scuola Normale Superiore and Istituto di Neuroscienze - CNR, Pisa, Italy
| | - Francesco Gobbo
- BioSNS Laboratory, Scuola Normale Superiore and Istituto di Neuroscienze - CNR, Pisa, Italy
| | | | - Sandro Meucci
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy.,Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12-56127 Pisa, Italy
| | - Alessandro Viegi
- BioSNS Laboratory, Scuola Normale Superiore and Istituto di Neuroscienze - CNR, Pisa, Italy
| | - Fabio Beltram
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy.,Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12-56127 Pisa, Italy
| | - Stefano Luin
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy
| | - Antonino Cattaneo
- BioSNS Laboratory, Scuola Normale Superiore and Istituto di Neuroscienze - CNR, Pisa, Italy
| |
Collapse
|
87
|
Zanardini R, Ciani M, Benussi L, Ghidoni R. Molecular Pathways Bridging Frontotemporal Lobar Degeneration and Psychiatric Disorders. Front Aging Neurosci 2016; 8:10. [PMID: 26869919 PMCID: PMC4740789 DOI: 10.3389/fnagi.2016.00010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/12/2016] [Indexed: 12/12/2022] Open
Abstract
The overlap of symptoms between neurodegenerative and psychiatric diseases has been reported. Neuropsychiatric alterations are commonly observed in dementia, especially in the behavioral variant of frontotemporal dementia (bvFTD), which is the most common clinical FTD subtype. At the same time, psychiatric disorders, like schizophrenia (SCZ), can display symptoms of dementia, including features of frontal dysfunction with relative sparing of memory. In the present review, we discuss common molecular features in these pathologies with a special focus on FTD. Molecules like Brain Derived Neurotrophic Factor (BDNF) and progranulin are linked to the pathophysiology of both neurodegenerative and psychiatric diseases. In these brain-associated illnesses, the presence of disease-associated variants in BDNF and progranulin (GRN) genes cause a reduction of circulating proteins levels, through alterations in proteins expression or secretion. For these reasons, we believe that prevention and therapy of psychiatric and neurological disorders could be achieved enhancing both BDNF and progranulin levels thanks to drug discovery efforts.
Collapse
Affiliation(s)
- Roberta Zanardini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio, Fatebenefratelli Brescia, Italy
| | - Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio, Fatebenefratelli Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio, Fatebenefratelli Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio, Fatebenefratelli Brescia, Italy
| |
Collapse
|
88
|
Gürgör P, Pallesen LT, Johnsen L, Ulrichsen M, de Jong IEM, Vaegter CB. Neuronal death in the dorsal root ganglion after sciatic nerve injury does not depend on sortilin. Neuroscience 2016; 319:1-8. [PMID: 26812033 DOI: 10.1016/j.neuroscience.2016.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 01/20/2023]
Abstract
Injury to the sciatic nerve induces loss of sensory neurons in the affected dorsal root ganglia (DRGs). Previous studies have suggested the involvement of the neurotrophin receptors p75 neurotrophin receptor (p75(NTR)) and sortilin, proposing that sensory neuron subpopulations undergo proneurotrophin-induced apoptosis in a similar manner to what can be observed in the CNS following injury. To further investigate this hypothesis we induced sciatic nerve injury in sortilin-deficient mice, thereby preventing apoptotic signaling of proneurotrophins via the sortilin-p75(NTR) receptor complex. Using an unbiased stereological approach we found that loss of sortilin did not prevent the injury-induced loss of DRG neurons. This result demonstrates that previous findings linking p75(NTR) and proneurotrophins to loss of sensory neurons need to involve sortilin-independent pathways and suggests that proneurotrophins may elicit different functions in the CNS and PNS.
Collapse
Affiliation(s)
- P Gürgör
- The Lundbeck Foundation Research Center Mind, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus DK-8000, Denmark
| | - L T Pallesen
- The Lundbeck Foundation Research Center Mind, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus DK-8000, Denmark
| | - L Johnsen
- The Lundbeck Foundation Research Center Mind, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus DK-8000, Denmark
| | - M Ulrichsen
- The Lundbeck Foundation Research Center Mind, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus DK-8000, Denmark
| | - I E M de Jong
- H. Lundbeck A/S, Division of Neurodegeneration, Ottiliavej 9, Valby DK-2500, Denmark
| | - C B Vaegter
- The Lundbeck Foundation Research Center Mind, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus DK-8000, Denmark.
| |
Collapse
|
89
|
Wilson CM, Naves T, Al Akhrass H, Vincent F, Melloni B, Bonnaud F, Lalloué F, Jauberteau MO. A new role under sortilin's belt in cancer. Commun Integr Biol 2016; 9:e1130192. [PMID: 27066187 PMCID: PMC4802778 DOI: 10.1080/19420889.2015.1130192] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 12/22/2022] Open
Abstract
The neurotensin receptor-3 also known as sortilin was the first member of the small family of vacuolar protein sorting 10 protein domain (Vps10p) discovered two decades ago in the human brain. The expression of sortilin is not confined to the nervous system but sortilin is ubiquitously expressed in many tissues. Sortilin has multiple roles in the cell as a receptor or a co-receptor, in protein transport of many interacting partners to the plasma membrane, to the endocytic pathway and to the lysosomes for protein degradation. Sortilin could be considered as the cells own shuttle system. In many human diseases including neurological diseases and cancer, sortilin expression has been shown to be deregulated. In addition, some studies have highlighted that the extracellular domain of sortilin is shedded into the culture media by an unknown mechanism. Sortilin can be released in exosomes and appears to control some mechanisms of exosome biogenesis. In lung cancer cells, sortilin can associate with two receptor tyrosine kinase receptors called the TES complex found in exosomes. Exosomes carrying the TES complex can convey a microenvironment control through the activation of ErbB signaling pathways and the release of angiogenic factors. Deregulation of sortilin function is now emerging to be implicated in four major human diseases- cardiovascular disease, Type 2 diabetes mellitus, Alzheimer disease and cancer.
Collapse
Affiliation(s)
- Cornelia M Wilson
- EA3842 Homéostasie cellulaire et pathologies and Chaire de Pneumologie Expérimentale, Faculté de Médecine, Université de Limoges, Limoges, France; University of Liverpool, Institute of Translational Medicine, Department of Molecular & Clinical Cancer Medicine, Liverpool, UK
| | - Thomas Naves
- EA3842 Homéostasie cellulaire et pathologies and Chaire de Pneumologie Expérimentale, Faculté de Médecine, Université de Limoges , Limoges, France
| | - Hussein Al Akhrass
- EA3842 Homéostasie cellulaire et pathologies and Chaire de Pneumologie Expérimentale, Faculté de Médecine, Université de Limoges , Limoges, France
| | - François Vincent
- EA3842 Homéostasie cellulaire et pathologies and Chaire de Pneumologie Expérimentale, Faculté de Médecine, Université de Limoges, Limoges, France; Service de Pathologie Respiratoire, Center Hospitalier et Universitaire de Limoges, Limoges, France
| | - Boris Melloni
- Service de Pathologie Respiratoire, Center Hospitalier et Universitaire de Limoges , Limoges, France
| | - François Bonnaud
- Service de Pathologie Respiratoire, Center Hospitalier et Universitaire de Limoges , Limoges, France
| | - Fabrice Lalloué
- EA3842 Homéostasie cellulaire et pathologies and Chaire de Pneumologie Expérimentale, Faculté de Médecine, Université de Limoges , Limoges, France
| | - Marie-Odile Jauberteau
- EA3842 Homéostasie cellulaire et pathologies and Chaire de Pneumologie Expérimentale, Faculté de Médecine, Université de Limoges , Limoges, France
| |
Collapse
|
90
|
Lu X, Meima ME, Nelson JK, Sorrentino V, Loregger A, Scheij S, Dekkers DHW, Mulder MT, Demmers JAA, M-Dallinga-Thie G, Zelcer N, Danser AHJ. Identification of the (Pro)renin Receptor as a Novel Regulator of Low-Density Lipoprotein Metabolism. Circ Res 2015; 118:222-9. [PMID: 26582775 DOI: 10.1161/circresaha.115.306799] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 11/18/2015] [Indexed: 01/16/2023]
Abstract
RATIONALE The (pro)renin receptor ([P]RR) interacts with (pro)renin at concentrations that are >1000× higher than observed under (patho)physiological conditions. Recent studies have identified renin-angiotensin system-independent functions for (P)RR related to its association with the vacuolar H(+)-ATPase. OBJECTIVE To uncover renin-angiotensin system-independent functions of the (P)RR. METHODS AND RESULTS We used a proteomics-based approach to purify and identify (P)RR-interacting proteins. This resulted in identification of sortilin-1 (SORT1) as a high-confidence (P)RR-interacting protein, a finding which was confirmed by coimmunoprecipitation of endogenous (P)RR and SORT1. Functionally, silencing (P)RR expression in hepatocytes decreased SORT1 and low-density lipoprotein (LDL) receptor protein abundance and, as a consequence, resulted in severely attenuated cellular LDL uptake. In contrast to LDL, endocytosis of epidermal growth factor or transferrin remained unaffected by silencing of the (P)RR. Importantly, reduction of LDL receptor and SORT1 protein abundance occurred in the absence of changes in their corresponding transcript level. Consistent with a post-transcriptional event, degradation of the LDL receptor induced by (P)RR silencing could be reversed by lysosomotropic agents, such as bafilomycin A1. CONCLUSIONS Our study identifies a renin-angiotensin system-independent function for the (P)RR in the regulation of LDL metabolism by controlling the levels of SORT1 and LDL receptor.
Collapse
Affiliation(s)
- Xifeng Lu
- From the Astra Zeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Medical Center, Shenzhen University, Shenzhen, China (X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (X.L., M.E.M., M.T.M., A.H.J.D.) and Proteomics Center (D.H.W.D., J.A.A.D.), Erasmus Medical Center, Rotterdam, The Netherlands; and Department of Medical Biochemistry (X.L., J.K.N., V.S., A.L., S.S., N.Z.) and Laboratory of Experimental Vascular Medicine (G.M.D-.T.), Academic Medical Center, Amsterdam, The Netherlands
| | - Marcel E Meima
- From the Astra Zeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Medical Center, Shenzhen University, Shenzhen, China (X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (X.L., M.E.M., M.T.M., A.H.J.D.) and Proteomics Center (D.H.W.D., J.A.A.D.), Erasmus Medical Center, Rotterdam, The Netherlands; and Department of Medical Biochemistry (X.L., J.K.N., V.S., A.L., S.S., N.Z.) and Laboratory of Experimental Vascular Medicine (G.M.D-.T.), Academic Medical Center, Amsterdam, The Netherlands
| | - Jessica K Nelson
- From the Astra Zeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Medical Center, Shenzhen University, Shenzhen, China (X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (X.L., M.E.M., M.T.M., A.H.J.D.) and Proteomics Center (D.H.W.D., J.A.A.D.), Erasmus Medical Center, Rotterdam, The Netherlands; and Department of Medical Biochemistry (X.L., J.K.N., V.S., A.L., S.S., N.Z.) and Laboratory of Experimental Vascular Medicine (G.M.D-.T.), Academic Medical Center, Amsterdam, The Netherlands
| | - Vincenzo Sorrentino
- From the Astra Zeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Medical Center, Shenzhen University, Shenzhen, China (X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (X.L., M.E.M., M.T.M., A.H.J.D.) and Proteomics Center (D.H.W.D., J.A.A.D.), Erasmus Medical Center, Rotterdam, The Netherlands; and Department of Medical Biochemistry (X.L., J.K.N., V.S., A.L., S.S., N.Z.) and Laboratory of Experimental Vascular Medicine (G.M.D-.T.), Academic Medical Center, Amsterdam, The Netherlands
| | - Anke Loregger
- From the Astra Zeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Medical Center, Shenzhen University, Shenzhen, China (X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (X.L., M.E.M., M.T.M., A.H.J.D.) and Proteomics Center (D.H.W.D., J.A.A.D.), Erasmus Medical Center, Rotterdam, The Netherlands; and Department of Medical Biochemistry (X.L., J.K.N., V.S., A.L., S.S., N.Z.) and Laboratory of Experimental Vascular Medicine (G.M.D-.T.), Academic Medical Center, Amsterdam, The Netherlands
| | - Saskia Scheij
- From the Astra Zeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Medical Center, Shenzhen University, Shenzhen, China (X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (X.L., M.E.M., M.T.M., A.H.J.D.) and Proteomics Center (D.H.W.D., J.A.A.D.), Erasmus Medical Center, Rotterdam, The Netherlands; and Department of Medical Biochemistry (X.L., J.K.N., V.S., A.L., S.S., N.Z.) and Laboratory of Experimental Vascular Medicine (G.M.D-.T.), Academic Medical Center, Amsterdam, The Netherlands
| | - Dick H W Dekkers
- From the Astra Zeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Medical Center, Shenzhen University, Shenzhen, China (X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (X.L., M.E.M., M.T.M., A.H.J.D.) and Proteomics Center (D.H.W.D., J.A.A.D.), Erasmus Medical Center, Rotterdam, The Netherlands; and Department of Medical Biochemistry (X.L., J.K.N., V.S., A.L., S.S., N.Z.) and Laboratory of Experimental Vascular Medicine (G.M.D-.T.), Academic Medical Center, Amsterdam, The Netherlands
| | - Monique T Mulder
- From the Astra Zeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Medical Center, Shenzhen University, Shenzhen, China (X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (X.L., M.E.M., M.T.M., A.H.J.D.) and Proteomics Center (D.H.W.D., J.A.A.D.), Erasmus Medical Center, Rotterdam, The Netherlands; and Department of Medical Biochemistry (X.L., J.K.N., V.S., A.L., S.S., N.Z.) and Laboratory of Experimental Vascular Medicine (G.M.D-.T.), Academic Medical Center, Amsterdam, The Netherlands
| | - Jeroen A A Demmers
- From the Astra Zeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Medical Center, Shenzhen University, Shenzhen, China (X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (X.L., M.E.M., M.T.M., A.H.J.D.) and Proteomics Center (D.H.W.D., J.A.A.D.), Erasmus Medical Center, Rotterdam, The Netherlands; and Department of Medical Biochemistry (X.L., J.K.N., V.S., A.L., S.S., N.Z.) and Laboratory of Experimental Vascular Medicine (G.M.D-.T.), Academic Medical Center, Amsterdam, The Netherlands
| | - Geesje M-Dallinga-Thie
- From the Astra Zeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Medical Center, Shenzhen University, Shenzhen, China (X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (X.L., M.E.M., M.T.M., A.H.J.D.) and Proteomics Center (D.H.W.D., J.A.A.D.), Erasmus Medical Center, Rotterdam, The Netherlands; and Department of Medical Biochemistry (X.L., J.K.N., V.S., A.L., S.S., N.Z.) and Laboratory of Experimental Vascular Medicine (G.M.D-.T.), Academic Medical Center, Amsterdam, The Netherlands
| | - Noam Zelcer
- From the Astra Zeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Medical Center, Shenzhen University, Shenzhen, China (X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (X.L., M.E.M., M.T.M., A.H.J.D.) and Proteomics Center (D.H.W.D., J.A.A.D.), Erasmus Medical Center, Rotterdam, The Netherlands; and Department of Medical Biochemistry (X.L., J.K.N., V.S., A.L., S.S., N.Z.) and Laboratory of Experimental Vascular Medicine (G.M.D-.T.), Academic Medical Center, Amsterdam, The Netherlands.
| | - A H Jan Danser
- From the Astra Zeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Medical Center, Shenzhen University, Shenzhen, China (X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (X.L., M.E.M., M.T.M., A.H.J.D.) and Proteomics Center (D.H.W.D., J.A.A.D.), Erasmus Medical Center, Rotterdam, The Netherlands; and Department of Medical Biochemistry (X.L., J.K.N., V.S., A.L., S.S., N.Z.) and Laboratory of Experimental Vascular Medicine (G.M.D-.T.), Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
91
|
Increased serum levels of sortilin are associated with depression and correlated with BDNF and VEGF. Transl Psychiatry 2015; 5:e677. [PMID: 26556286 PMCID: PMC5068760 DOI: 10.1038/tp.2015.167] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/17/2015] [Accepted: 09/19/2015] [Indexed: 12/25/2022] Open
Abstract
Neurotrophic factors have been investigated in relation to depression. The aim of the present study was to widen this focus to sortilin, a receptor involved in neurotrophic signalling. The serum sortilin level was investigated in 152 individuals with depression and 216 control individuals, and eight genetic markers located within the SORT1 gene were successfully analysed for association with depression. Genotyping was performed using the Sequenom MassARRAY platform. All the individuals returned a questionnaire and participated in a semi-structured diagnostic interview. Sortilin levels were measured by immunoassay, and potential determinants of the serum sortilin level were assessed by generalized linear models. Serum levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) were measured in previous studies. We identified a significant increase of serum sortilin levels in depressed individuals compared with controls (P=0.0002) and significant positive correlation between serum sortilin levels and the corresponding levels of BDNF and VEGF. None of the genotyped SNPs were associated with depression. Additional analyses showed that the serum sortilin level was influenced by several other factors. Alcohol intake and body mass index, as well as depression, serum BDNF and serum VEGF were identified as predictors of serum sortilin levels in our final multivariate model. In conclusion, the results suggest a role of circulating sortilin in depression which may relate to altered activity of neurotrophic factors.
Collapse
|
92
|
Tomellini E, Touil Y, Lagadec C, Julien S, Ostyn P, Ziental-Gelus N, Meignan S, Lengrand J, Adriaenssens E, Polakowska R, Le Bourhis X. Nerve growth factor and proNGF simultaneously promote symmetric self-renewal, quiescence, and epithelial to mesenchymal transition to enlarge the breast cancer stem cell compartment. Stem Cells 2015; 33:342-53. [PMID: 25286822 DOI: 10.1002/stem.1849] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/01/2014] [Indexed: 12/31/2022]
Abstract
The discovery of cancer stem cells (CSCs) fundamentally advanced our understanding of the mechanisms governing breast cancer development. However, the stimuli that control breast CSC self-renewal and differentiation have still not been fully detailed. We previously showed that nerve growth factor (NGF) and its precursor proNGF can stimulate breast cancer cell growth and invasion in an autocrine manner. In this study, we investigated the effects of NGF and proNGF on the breast CSC compartment and found that NGF or proNGF enrich for CSCs in several breast cancer cell lines. This enrichment appeared to be achieved by increasing the number of symmetric divisions of quiescent/slow-proliferating CSCs. Interestingly, in vitro NGF pretreatment of MCF-7 luminal breast cancer cells promoted epithelial to mesenchymal transition in tumors of severe combined immunodeficient mice. Furthermore, p75(NTR), the common receptor for both neurotrophins and proneurotrophins, mediated breast CSC self-renewal by regulating the expression of pluripotency transcription factors. Our data indicate, for the first time, that the NGF/proNGF/p75(NTR) axis plays a critical role in regulating breast CSC self-renewal and plasticity.
Collapse
Affiliation(s)
- Elisa Tomellini
- Inserm U908, Villeneuve d'Ascq, France; Université Lille 1, Villeneuve d'Ascq, France; Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
Neurotrophins (NTs) belong to a family of trophic factors that regulate the survival, growth and programmed cell death of neurons. In mammals, there are four structurally and functionally related NT proteins, viz. nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 and neurotrophin 4. Most research on NTs to date has focussed on the effects of NGF and BDNF signalling via their respective cognate high affinity neurotrophic tyrosine kinase viz TrkA and TrkB receptors. Apart from the key physiologic roles of NGF and BDNF in peripheral and central nervous system function, NGF and BDNF signalling via TrkA and TrkB receptors respectively have been implicated in mechanisms underpinning neuropathic pain. Additionally, NGF and BDNF signalling via the low-affinity pan neurotrophin receptor at 75 kDa (p75NTR) may also contribute to the pathobiology of neuropathic pain. In this review, we critically assess the role of neurotrophins signalling via their cognate high affinity receptors as well as the low affinity p75NTR in the pathophysiology of peripheral neuropathic and central neuropathic pain. We also identify knowledge gaps to guide future research aimed at generating novel insight on how to optimally modulate NT signalling for discovery of novel therapeutics to improve neuropathic pain relief.
Collapse
|
94
|
Abstract
To characterize the role of neurotrophin receptors on macrophages, we investigated the ability of nerve growth factor (NGF) and its precursor, proNGF, to regulate human macrophage phenotype. The p75 neurotrophin receptor (p75(NTR)) and TrkA were concentrated within overlapping domains on membrane ruffles. NGF stimulation of macrophages increased membrane ruffling, calcium spiking, phagocytosis and growth factor secretion. In contrast, proNGF induced podosome formation, increased migration, suppressed calcium spikes and increased neurotoxin secretion. These results demonstrate opposing roles of NGF and proNGF in macrophage regulation providing new avenues for pharmacological intervention during neuroinflammation.
Collapse
|
95
|
Abad-Rodríguez J, Díez-Revuelta N. Axon glycoprotein routing in nerve polarity, function, and repair. Trends Biochem Sci 2015; 40:385-96. [PMID: 25936977 DOI: 10.1016/j.tibs.2015.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/13/2015] [Accepted: 03/31/2015] [Indexed: 02/04/2023]
Abstract
Nervous system function relies on the capacity of neurons to organize specialized domains for impulse reception or transmission. Such a polarized architecture relies on highly discriminatory and efficient mechanisms for the transport and targeting of required molecules to their functional positions. Glycans play a central role in polarized traffic based on their extraordinary capacity to encrypt bio-information. Glycan-based interactions exquisitely regulate cargo selection, trafficking, and targeting to the axon membrane. This generates segregated functional domains, where basal nerve processes such as axon growth, synaptic activity, or myelination take place. Deciphering the details of the glycan structures and carbohydrate-binding molecules that underlie these mechanisms improves our knowledge of nerve physiology and defines novel specific approaches for neurological treatments.
Collapse
Affiliation(s)
- José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain.
| | - Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| |
Collapse
|
96
|
Barbosa DJ, Capela JP, de Lourdes Bastos M, Carvalho F. In vitro models for neurotoxicology research. Toxicol Res (Camb) 2015; 4:801-842. [DOI: 10.1039/c4tx00043a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The nervous system has a highly complex organization, including many cell types with multiple functions, with an intricate anatomy and unique structural and functional characteristics; the study of its (dys)functionality following exposure to xenobiotics, neurotoxicology, constitutes an important issue in neurosciences.
Collapse
Affiliation(s)
- Daniel José Barbosa
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - João Paulo Capela
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Maria de Lourdes Bastos
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Félix Carvalho
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| |
Collapse
|
97
|
O'Kelly I. Endocytosis as a mode to regulate functional expression of two-pore domain potassium (K₂p) channels. Pflugers Arch 2014; 467:1133-42. [PMID: 25413469 PMCID: PMC4428836 DOI: 10.1007/s00424-014-1641-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 11/06/2022]
Abstract
Two-pore domain potassium (K2P) channels are implicated in an array of physiological and pathophysiological roles. As a result of their biophysical properties, these channels produce a background leak K+ current which has a direct effect on cellular membrane potential and activity. The regulation of potassium leak from cells through K2P channels is of critical importance to cell function, development and survival. Controlling the cell surface expression of these channels is one mode to regulate their function and is achieved through a balance between regulated channel delivery to and retrieval from the cell surface. Here, we explore the modes of retrieval of K2P channels from the plasma membrane and observe that K2P channels are endocytosed in both a clathrin-mediated and clathrin-independent manner. K2P channels use a variety of pathways and show altered internalisation and sorting in response to external cues. These pathways working in concert, equip the cell with a range of approaches to maintain steady state levels of channels and to respond rapidly should changes in channel density be required.
Collapse
Affiliation(s)
- Ita O'Kelly
- Human Development and Health, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK, I.M.O'
| |
Collapse
|
98
|
Marlin MC, Li G. Biogenesis and function of the NGF/TrkA signaling endosome. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 314:239-57. [PMID: 25619719 DOI: 10.1016/bs.ircmb.2014.10.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Target-derived neurotrophin nerve growth factor (NGF) and its receptor TrkA are well known for retrograde signaling to promote survival and innervation of sympathetic and sensory neurons. In recent years, the signaling endosome model has been used to describe the sustained NGF/TrkA retrograde signaling as a process of endocytosis and retrograde transport of NGF/TrkA-containing endosomes from the axon terminal to the cell body for activation of NGF-inducible gene expression responsible for neuronal survival and development. Here, we review the biogenesis and function of NGF, TrkA, and the signaling endosome and discuss possible roles of Rab GTPases in the biogenesis and trafficking of signaling endosomes.
Collapse
Affiliation(s)
- M Caleb Marlin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
99
|
The role of the retromer complex in aging-related neurodegeneration: a molecular and genomic review. Mol Genet Genomics 2014; 290:413-27. [PMID: 25332075 DOI: 10.1007/s00438-014-0939-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
The retromer coat complex is a vital component of the intracellular trafficking mechanism sorting cargo from the endosomes to the trans-Golgi network or to the cell surface. In recent years, genes encoding components of the retromer coat complex and members of the vacuolar protein sorting 10 (Vps10) family of receptors, which play pleiotropic functions in protein trafficking and intracellular/intercellular signaling in neuronal and non-neuronal cells and are primary cargos of the retromer complex, have been implicated as genetic risk factors for sporadic and autosomal dominant forms of several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and frontotemporal lobar degeneration. In addition to their functions in protein trafficking, the members of the Vps10 receptor family (sortilin, SorL1, SorCS1, SorCS2, and SorCS3) modulate neurotrophic signaling pathways. Both sortilin and SorCS2 act as cell surface receptors to mediate acute responses to proneurotrophins. In addition, sortilin can modulate the intracellular response to brain-derived neurotrophic factor (BDNF) by direct control of BDNF levels and regulating anterograde trafficking of Trk receptors to the synapse. This review article summarizes the emerging data from this rapidly growing field of intracellular trafficking signaling in the pathogenesis of neurodegeneration.
Collapse
|
100
|
Affiliation(s)
- Yusong Guo
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3200;
| | - Daniel W. Sirkis
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3200;
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3200;
| |
Collapse
|