51
|
Qian Y, Cao Y, Deng B, Yang G, Li J, Xu R, Zhang D, Huang J, Rao Y. Sleep homeostasis regulated by 5HT2b receptor in a small subset of neurons in the dorsal fan-shaped body of drosophila. eLife 2017; 6:26519. [PMID: 28984573 PMCID: PMC5648528 DOI: 10.7554/elife.26519] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the molecular mechanisms underlying sleep homeostasis is limited. We have taken a systematic approach to study neural signaling by the transmitter 5-hydroxytryptamine (5-HT) in drosophila. We have generated knockout and knockin lines for Trh, the 5-HT synthesizing enzyme and all five 5-HT receptors, making it possible for us to determine their expression patterns and to investigate their functional roles. Loss of the Trh, 5HT1a or 5HT2b gene decreased sleep time whereas loss of the Trh or 5HT2b gene diminished sleep rebound after sleep deprivation. 5HT2b expression in a small subset of, probably a single pair of, neurons in the dorsal fan-shaped body (dFB) is functionally essential: elimination of the 5HT2b gene from these neurons led to loss of sleep homeostasis. Genetic ablation of 5HT2b neurons in the dFB decreased sleep and impaired sleep homeostasis. Our results have shown that serotonergic signaling in specific neurons is required for the regulation of sleep homeostasis.
Collapse
Affiliation(s)
- Yongjun Qian
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Biomembrane and Membrane Biology, PKU-IDG/McGovern Institute For Brain Research, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Yue Cao
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Biomembrane and Membrane Biology, PKU-IDG/McGovern Institute For Brain Research, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China
| | - Bowen Deng
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Biomembrane and Membrane Biology, PKU-IDG/McGovern Institute For Brain Research, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Guang Yang
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Biomembrane and Membrane Biology, PKU-IDG/McGovern Institute For Brain Research, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China
| | - Jiayun Li
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Biomembrane and Membrane Biology, PKU-IDG/McGovern Institute For Brain Research, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China
| | - Rui Xu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Dandan Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Juan Huang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yi Rao
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Biomembrane and Membrane Biology, PKU-IDG/McGovern Institute For Brain Research, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
52
|
Rogdi Defines GABAergic Control of a Wake-promoting Dopaminergic Pathway to Sustain Sleep in Drosophila. Sci Rep 2017; 7:11368. [PMID: 28900300 PMCID: PMC5595912 DOI: 10.1038/s41598-017-11941-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Kohlschutter-Tönz syndrome (KTS) is a rare genetic disorder with neurological dysfunctions including seizure and intellectual impairment. Mutations at the Rogdi locus have been linked to development of KTS, yet the underlying mechanisms remain elusive. Here we demonstrate that a Drosophila homolog of Rogdi acts as a novel sleep-promoting factor by supporting a specific subset of gamma-aminobutyric acid (GABA) transmission. Rogdi mutant flies displayed insomnia-like behaviors accompanied by sleep fragmentation and delay in sleep initiation. The sleep suppression phenotypes were rescued by sustaining GABAergic transmission primarily via metabotropic GABA receptors or by blocking wake-promoting dopaminergic pathways. Transgenic rescue further mapped GABAergic neurons as a cell-autonomous locus important for Rogdi-dependent sleep, implying metabotropic GABA transmission upstream of the dopaminergic inhibition of sleep. Consistently, an agonist specific to metabotropic but not ionotropic GABA receptors titrated the wake-promoting effects of dopaminergic neuron excitation. Taken together, these data provide the first genetic evidence that implicates Rogdi in sleep regulation via GABAergic control of dopaminergic signaling. Given the strong relevance of GABA to epilepsy, we propose that similar mechanisms might underlie the neural pathogenesis of Rogdi-associated KTS.
Collapse
|
53
|
Dove AE, Cook BL, Irgebay Z, Vecsey CG. Mechanisms of sleep plasticity due to sexual experience in Drosophila melanogaster. Physiol Behav 2017; 180:146-158. [PMID: 28851647 DOI: 10.1016/j.physbeh.2017.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 10/19/2022]
Abstract
Sleep can be altered by an organism's previous experience. For instance, female Drosophila melanogaster experience a post-mating reduction in daytime sleep that is purportedly mediated by sex peptide (SP), one of many seminal fluid proteins (SFPs) transferred from male to female during mating. In the present study, we first characterized this mating effect on sleep more fully, as it had previously only been tested in young flies under 12h light/12h dark conditions. We found that mating reduced sleep equivalently in 3-day-old or 14-day-old females, and could even occur in females who had been mated previously, suggesting that there is not a developmental critical period for the suppression of sleep by mating. In conditions of constant darkness, circadian rhythms were not affected by prior mating. In either constant darkness or constant light, the sleep reduction due to mating was no longer confined to the subjective day but could be observed throughout the 24-hour period. This suggests that the endogenous clock may dictate the timing of when the mating effect on sleep is expressed. We recently reported that genetic elimination of SP only partially blocked the post-mating female siesta sleep reduction, suggesting that the effect was unlikely to be governed solely by SP. We found here that the daytime sleep reduction was also reduced but not eliminated in females mated to mutant males lacking the vast majority of SFPs. This suggested that SFPs other than SP play a minimal role in the mating effect on sleep, and that additional non-SFP signals from the male might be involved. Males lacking sperm were able to induce a normal initial mating effect on female sleep, although the effect declined more rapidly in these females. This result indicated that neither the presence of sperm within the female reproductive tract nor female impregnation are required for the initial mating effect on sleep to occur, although sperm may serve to prolong the effect. Finally, we tested for contributions from other aspects of the mating experience. NorpA and eya2 mutants with disrupted vision showed normal mating effects on sleep. By separating males from females with a mesh, we found that visual and olfactory stimuli from male exposure, in the absence of physical contact, could not replicate the mating effect. Further, in ken/barbie male flies lacking external genitalia, courtship and physical contact without ejaculation were also unable to replicate the mating effect. These findings confirmed that the influence of mating on sleep does in fact require male/female contact including copulation, but may not be mediated exclusively by SP transfer.
Collapse
Affiliation(s)
- Abigail E Dove
- Biology Department, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, United States
| | - Brianne L Cook
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States
| | - Zhazira Irgebay
- Biology Department, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, United States
| | - Christopher G Vecsey
- Biology Department, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, United States; Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States.
| |
Collapse
|
54
|
Allada R, Cirelli C, Sehgal A. Molecular Mechanisms of Sleep Homeostasis in Flies and Mammals. Cold Spring Harb Perspect Biol 2017; 9:a027730. [PMID: 28432135 PMCID: PMC5538413 DOI: 10.1101/cshperspect.a027730] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sleep is homeostatically regulated with sleep pressure accumulating with the increasing duration of prior wakefulness. Yet, a clear understanding of the molecular components of the homeostat, as well as the molecular and cellular processes they sense and control to regulate sleep intensity and duration, remain a mystery. Here, we will discuss the cellular and molecular basis of sleep homeostasis, first focusing on the best homeostatic sleep marker in vertebrates, slow wave activity; second, moving to the molecular genetic analysis of sleep homeostasis in the fruit fly Drosophila; and, finally, discussing more systemic aspects of sleep homeostasis.
Collapse
Affiliation(s)
- Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, Ilinois 60208
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin 53719
| | - Amita Sehgal
- Department of Neuroscience, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
55
|
Circadian Rhythms and Sleep in Drosophila melanogaster. Genetics 2017; 205:1373-1397. [PMID: 28360128 DOI: 10.1534/genetics.115.185157] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
The advantages of the model organism Drosophila melanogaster, including low genetic redundancy, functional simplicity, and the ability to conduct large-scale genetic screens, have been essential for understanding the molecular nature of circadian (∼24 hr) rhythms, and continue to be valuable in discovering novel regulators of circadian rhythms and sleep. In this review, we discuss the current understanding of these interrelated biological processes in Drosophila and the wider implications of this research. Clock genes period and timeless were first discovered in large-scale Drosophila genetic screens developed in the 1970s. Feedback of period and timeless on their own transcription forms the core of the molecular clock, and accurately timed expression, localization, post-transcriptional modification, and function of these genes is thought to be critical for maintaining the circadian cycle. Regulators, including several phosphatases and kinases, act on different steps of this feedback loop to ensure strong and accurately timed rhythms. Approximately 150 neurons in the fly brain that contain the core components of the molecular clock act together to translate this intracellular cycling into rhythmic behavior. We discuss how different groups of clock neurons serve different functions in allowing clocks to entrain to environmental cues, driving behavioral outputs at different times of day, and allowing flexible behavioral responses in different environmental conditions. The neuropeptide PDF provides an important signal thought to synchronize clock neurons, although the details of how PDF accomplishes this function are still being explored. Secreted signals from clock neurons also influence rhythms in other tissues. SLEEP is, in part, regulated by the circadian clock, which ensures appropriate timing of sleep, but the amount and quality of sleep are also determined by other mechanisms that ensure a homeostatic balance between sleep and wake. Flies have been useful for identifying a large set of genes, molecules, and neuroanatomic loci important for regulating sleep amount. Conserved aspects of sleep regulation in flies and mammals include wake-promoting roles for catecholamine neurotransmitters and involvement of hypothalamus-like regions, although other neuroanatomic regions implicated in sleep in flies have less clear parallels. Sleep is also subject to regulation by factors such as food availability, stress, and social environment. We are beginning to understand how the identified molecules and neurons interact with each other, and with the environment, to regulate sleep. Drosophila researchers can also take advantage of increasing mechanistic understanding of other behaviors, such as learning and memory, courtship, and aggression, to understand how sleep loss impacts these behaviors. Flies thus remain a valuable tool for both discovery of novel molecules and deep mechanistic understanding of sleep and circadian rhythms.
Collapse
|
56
|
Eban-Rothschild A, Giardino WJ, de Lecea L. To sleep or not to sleep: neuronal and ecological insights. Curr Opin Neurobiol 2017; 44:132-138. [PMID: 28500869 DOI: 10.1016/j.conb.2017.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/07/2017] [Accepted: 04/20/2017] [Indexed: 12/13/2022]
Abstract
Daily, animals need to decide when to stop engaging in cognitive processes and behavioral responses to the environment, and go to sleep. The main processes regulating the daily organization of sleep and wakefulness are circadian rhythms and homeostatic sleep pressure. In addition, motivational processes such as food seeking and predator evasion can modulate sleep/wake behaviors. Here, we discuss the principal processes regulating the propensity to stay awake or go to sleep-focusing on neuronal and behavioral aspects. We first introduce the neuronal populations involved in sleep/wake regulation. Next, we describe the circadian and homeostatic drives for sleep. Then, we highlight studies demonstrating various effects of motivational processes on sleep/wake behaviors, and discuss possible neuronal mechanisms underlying their control.
Collapse
Affiliation(s)
- Ada Eban-Rothschild
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, Stanford, CA 94305, USA.
| | - William J Giardino
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, Stanford, CA 94305, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, Stanford, CA 94305, USA.
| |
Collapse
|
57
|
Genes and neural circuits for sleep of the fruit fly. Neurosci Res 2017; 118:82-91. [DOI: 10.1016/j.neures.2017.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023]
|
58
|
Miyazaki S, Liu CY, Hayashi Y. Sleep in vertebrate and invertebrate animals, and insights into the function and evolution of sleep. Neurosci Res 2017; 118:3-12. [DOI: 10.1016/j.neures.2017.04.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 10/24/2022]
|
59
|
Eban-Rothschild A, de Lecea L. Neuronal substrates for initiation, maintenance, and structural organization of sleep/wake states. F1000Res 2017; 6:212. [PMID: 28357049 PMCID: PMC5345773 DOI: 10.12688/f1000research.9677.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2017] [Indexed: 11/20/2022] Open
Abstract
Animals continuously alternate between sleep and wake states throughout their life. The daily organization of sleep and wakefulness is orchestrated by circadian, homeostatic, and motivational processes. Over the last decades, much progress has been made toward determining the neuronal populations involved in sleep/wake regulation. Here, we will discuss how the application of advanced
in vivo tools for cell type–specific manipulations now permits the functional interrogation of different features of sleep/wake state regulation: initiation, maintenance, and structural organization. We will specifically focus on recent studies examining the roles of wake-promoting neuronal populations.
Collapse
Affiliation(s)
- Ada Eban-Rothschild
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
60
|
Hyperarousal and Beyond: New Insights to the Pathophysiology of Insomnia Disorder through Functional Neuroimaging Studies. Brain Sci 2017; 7:brainsci7030023. [PMID: 28241468 PMCID: PMC5366822 DOI: 10.3390/brainsci7030023] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/09/2017] [Accepted: 02/16/2017] [Indexed: 01/04/2023] Open
Abstract
Neuroimaging studies have produced seemingly contradictory findings in regards to the pathophysiology of insomnia. Although most study results are interpreted from the perspective of a "hyperarousal" model, the aggregate findings from neuroimaging studies suggest a more complex model is needed. We provide a review of the major findings from neuroimaging studies, then discuss them in relation to a heuristic model of sleep-wake states that involves three major factors: wake drive, sleep drive, and level of conscious awareness. We propose that insomnia involves dysregulation in these factors, resulting in subtle dysregulation of sleep-wake states throughout the 24 h light/dark cycle.
Collapse
|
61
|
Abstract
Sleep is essential for health and cognition, but the molecular and neural mechanisms of sleep regulation are not well understood. We recently reported the identification of TARANIS (TARA) as a sleep-promoting factor that acts in a previously unknown arousal center in Drosophila. tara mutants exhibit a dose-dependent reduction in sleep amount of up to ∼60%. TARA and its mammalian homologs, the Trip-Br (Transcriptional Regulators Interacting with PHD zinc fingers and/or Bromodomains) family of proteins, are primarily known as transcriptional coregulators involved in cell cycle progression, and contain a conserved Cyclin-A (CycA) binding homology domain. We found that tara and CycA synergistically promote sleep, and CycA levels are reduced in tara mutants. Additional data demonstrated that Cyclin-dependent kinase 1 (Cdk1) antagonizes tara and CycA to promote wakefulness. Moreover, we identified a subset of CycA expressing neurons in the pars lateralis, a brain region proposed to be analogous to the mammalian hypothalamus, as an arousal center. In this Extra View article, we report further characterization of tara mutants and provide an extended discussion of our findings and future directions within the framework of a working model, in which a network of cell cycle genes, tara, CycA, and Cdk1, interact in an arousal center to regulate sleep.
Collapse
Affiliation(s)
- Dinis J S Afonso
- a Department of Neuroscience ; the Farber Institute for Neurosciences; and Kimmel Cancer Center; Thomas Jefferson University ; Philadelphia , PA USA.,b Life and Health Sciences Research Institute (ICVS); School of Health Sciences; University of Minho ; 4710-057 Braga , Portugal.,c ICVS/3B's; PT Government Associate Laboratory ; 4710-057 Braga/Guimarães ; Portugal
| | - Daniel R Machado
- a Department of Neuroscience ; the Farber Institute for Neurosciences; and Kimmel Cancer Center; Thomas Jefferson University ; Philadelphia , PA USA.,b Life and Health Sciences Research Institute (ICVS); School of Health Sciences; University of Minho ; 4710-057 Braga , Portugal.,c ICVS/3B's; PT Government Associate Laboratory ; 4710-057 Braga/Guimarães ; Portugal
| | - Kyunghee Koh
- a Department of Neuroscience ; the Farber Institute for Neurosciences; and Kimmel Cancer Center; Thomas Jefferson University ; Philadelphia , PA USA
| |
Collapse
|
62
|
Modulation of light-driven arousal by LIM-homeodomain transcription factor Apterous in large PDF-positive lateral neurons of the Drosophila brain. Sci Rep 2016; 6:37255. [PMID: 27853240 PMCID: PMC5112534 DOI: 10.1038/srep37255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/26/2016] [Indexed: 11/29/2022] Open
Abstract
Apterous (Ap), the best studied LIM-homeodomain transcription factor in Drosophila, cooperates with the cofactor Chip (Chi) to regulate transcription of specific target genes. Although Ap regulates various developmental processes, its function in the adult brain remains unclear. Here, we report that Ap and Chi in the neurons expressing PDF, a neuropeptide, play important roles in proper sleep/wake regulation in adult flies. PDF-expressing neurons consist of two neuronal clusters: small ventral-lateral neurons (s-LNvs) acting as the circadian pacemaker and large ventral-lateral neurons (l-LNvs) regulating light-driven arousal. We identified that Ap localizes to the nuclei of s-LNvs and l-LNvs. In light-dark (LD) cycles, RNAi knockdown or the targeted expression of dominant-negative forms of Ap or Chi in PDF-expressing neurons or l-LNvs promoted arousal. In contrast, in constant darkness, knockdown of Ap in PDF-expressing neurons did not promote arousal, indicating that a reduced Ap function in PDF-expressing neurons promotes light-driven arousal. Furthermore, Ap expression in l-LNvs showed daily rhythms (peaking at midnight), which are generated by a direct light-dependent mechanism rather than by the endogenous clock. These results raise the possibility that the daily oscillation of Ap expression in l-LNvs may contribute to the buffering of light-driven arousal in wild-type flies.
Collapse
|
63
|
Abstract
Sleep disorders in humans are increasingly appreciated to be not only widespread but also detrimental to multiple facets of physical and mental health. Recent work has begun to shed light on the mechanistic basis of sleep disorders like insomnia, restless legs syndrome, narcolepsy, and a host of others, but a more detailed genetic and molecular understanding of how sleep goes awry is lacking. Over the past 15 years, studies in Drosophila have yielded new insights into basic questions regarding sleep function and regulation. More recently, powerful genetic approaches in the fly have been applied toward studying primary human sleep disorders and other disease states associated with dysregulated sleep. In this review, we discuss the contribution of Drosophila to the landscape of sleep biology, examining not only fundamental advances in sleep neurobiology but also how flies have begun to inform pathological sleep states in humans.
Collapse
|
64
|
Guo F, Yu J, Jung HJ, Abruzzi KC, Luo W, Griffith LC, Rosbash M. Circadian neuron feedback controls the Drosophila sleep--activity profile. Nature 2016; 536:292-7. [PMID: 27479324 PMCID: PMC5247284 DOI: 10.1038/nature19097] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023]
Abstract
Little is known about the ability of Drosophila circadian neurons to promote sleep. Here we show, using optogenetic manipulation and video recording, that a subset of dorsal clock neurons (DN1s) are potent sleep-promoting cells that release glutamate to directly inhibit key pacemaker neurons. The pacemakers promote morning arousal by activating these DN1s, implying that a late-day feedback circuit drives midday siesta and night-time sleep. To investigate more plastic aspects of the sleep program, we used a calcium assay to monitor and compare the real-time activity of DN1 neurons in freely behaving males and females. Our results revealed that DN1 neurons were more active in males than in females, consistent with the finding that male flies sleep more during the day. DN1 activity is also enhanced by elevated temperature, consistent with the ability of higher temperatures to increase sleep. These new approaches indicate that DN1s have a major effect on the fly sleep-wake profile and integrate environmental information with the circadian molecular program.
Collapse
|
65
|
Evolution, Expression, and Function of Nonneuronal Ligand-Gated Chloride Channels in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2016; 6:2003-12. [PMID: 27172217 PMCID: PMC4938653 DOI: 10.1534/g3.116.029546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ligand-gated chloride channels have established roles in inhibitory neurotransmission in the nervous systems of vertebrates and invertebrates. Paradoxically, expression databases in Drosophila melanogaster have revealed that three uncharacterized ligand-gated chloride channel subunits, CG7589, CG6927, and CG11340, are highly expressed in nonneuronal tissues. Furthermore, subunit copy number varies between insects, with some orders containing one ortholog, whereas other lineages exhibit copy number increases. Here, we show that the Dipteran lineage has undergone two gene duplications followed by expression-based functional differentiation. We used promoter-GFP expression analysis, RNA-sequencing, and in situ hybridization to examine cell type and tissue-specific localization of the three D. melanogaster subunits. CG6927 is expressed in the nurse cells of the ovaries. CG7589 is expressed in multiple tissues including the salivary gland, ejaculatory duct, malpighian tubules, and early midgut. CG11340 is found in malpighian tubules and the copper cell region of the midgut. Overexpression of CG11340 increased sensitivity to dietary copper, and RNAi and ends-out knockout of CG11340 resulted in copper tolerance, providing evidence for a specific nonneuronal role for this subunit in D. melanogaster Ligand-gated chloride channels are important insecticide targets and here we highlight copy number and functional divergence in insect lineages, raising the potential that order-specific receptors could be isolated within an effective class of insecticide targets.
Collapse
|
66
|
Abstract
UNLABELLED Drosophila melanogaster's large lateral ventral neurons (lLNvs) are part of both the circadian and sleep-arousal neuronal circuits. In the past, electrophysiological analysis revealed that lLNvs fire action potentials (APs) in bursting or tonic modes and that the proportion of neurons firing in those specific patterns varies circadianly. Here, we provide evidence that lLNvs fire in bursts both during the day and at night and that the frequency of bursting is what is modulated in a circadian fashion. Moreover, we show that lLNvs AP firing is not only under cell autonomous control, but is also modulated by the network, and in the process we develop a novel preparation to assess this. We demonstrate that lLNv bursting mode relies on a cholinergic input because application of nicotinic acetylcholine receptor antagonists impairs this firing pattern. Finally, we found that bursting of lLNvs depends on an input from visual circuits that includes the cholinergic L2 monopolar neurons from the lamina. Our work sheds light on the physiological properties of lLNvs and on a neuronal circuit that may provide visual information to these important arousal neurons. SIGNIFICANCE STATEMENT Circadian rhythms are important for organisms to be able to anticipate daily changes in environmental conditions to adjust physiology and behavior accordingly. These rhythms depend on an endogenous mechanism that operates in dedicated neurons. In the fruit fly, the large lateral ventral neurons (lLNvs) are part of both the circadian and sleep-arousal neuronal circuits. Here, we provide new details about the firing properties of these neurons and demonstrate that they depend, not only on cell-autonomous mechanisms, but also on a specific neurotransmitter derived from visual circuits. Our work sheds light on the physiological properties of lLNvs and on a neuronal circuit that may provide visual information to these important arousal neurons.
Collapse
|
67
|
Hong KB, Park Y, Suh HJ. Sleep-promoting effects of a GABA/5-HTP mixture: Behavioral changes and neuromodulation in an invertebrate model. Life Sci 2016; 150:42-9. [PMID: 26921634 DOI: 10.1016/j.lfs.2016.02.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 11/25/2022]
Abstract
AIMS This study was to investigate the sleep promoting effects of combined γ-aminobutyric acid (GABA) and 5-hydroxytryptophan (5-HTP), by examining neuronal processes governing mRNA level alterations, as well as assessing neuromodulator concentrations, in a fruit fly model. MAIN METHODS Behavioral assays were applied to investigate subjective nighttime activity, sleep episodes, and total duration of subjective nighttime sleep of two amino acids and GABA/5-HTP mixture with caffeine treated flies. Also, real-time PCR and HPLC analysis were applied to analyze the signaling pathway. KEY FINDINGS Subjective nighttime activity and sleep patterns of individual flies significantly decreased with 1% GABA treatment in conjunction with 0.1% 5-HTP treatment (p<0.001). Furthermore, GABA/5-HTP mixture resulted in significant differences between groups related to sleep patterns (40%, p<0.017) and significantly induced subjective nighttime sleep in the awake model (p<0.003). These results related to transcript levels of the GABAB receptor (GABAB-R1) and serotonin receptor (5-HT1A), compared to the control group. In addition, GABA/5-HTP mixture significantly increased GABA levels 1h and 12h following treatment (2.1 fold and 1.2 fold higher than the control, respectively) and also increased 5-HTP levels (0 h: 1.01 μg/protein, 12h: 3.45 μg/protein). SIGNIFICANCE In this regard, we successfully demonstrated that using a GABA/5-HTP mixture modulates subjective nighttime activity, sleep episodes, and total duration of subjective nighttime sleep to a greater extent than single administration of each amino acid, and that this modulation occurs via GABAergic and serotonergic signaling.
Collapse
Affiliation(s)
- Ki-Bae Hong
- Department of Public Health Sciences, Korea University, Seoul 136-713, Republic of Korea
| | - Yooheon Park
- Dongguk University Research Institute of Biotechnology, Goyang 10326, Republic of Korea.
| | - Hyung Joo Suh
- Department of Public Health Sciences, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
68
|
Sitaraman D, Aso Y, Jin X, Chen N, Felix M, Rubin GM, Nitabach MN. Propagation of Homeostatic Sleep Signals by Segregated Synaptic Microcircuits of the Drosophila Mushroom Body. Curr Biol 2015; 25:2915-27. [PMID: 26455303 DOI: 10.1016/j.cub.2015.09.017] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/12/2015] [Accepted: 09/04/2015] [Indexed: 12/17/2022]
Abstract
The Drosophila mushroom body (MB) is a key associative memory center that has also been implicated in the control of sleep. However, the identity of MB neurons underlying homeostatic sleep regulation, as well as the types of sleep signals generated by specific classes of MB neurons, has remained poorly understood. We recently identified two MB output neuron (MBON) classes whose axons convey sleep control signals from the MB to converge in the same downstream target region: a cholinergic sleep-promoting MBON class and a glutamatergic wake-promoting MBON class. Here, we deploy a combination of neurogenetic, behavioral, and physiological approaches to identify and mechanistically dissect sleep-controlling circuits of the MB. Our studies reveal the existence of two segregated excitatory synaptic microcircuits that propagate homeostatic sleep information from different populations of intrinsic MB "Kenyon cells" (KCs) to specific sleep-regulating MBONs: sleep-promoting KCs increase sleep by preferentially activating the cholinergic MBONs, while wake-promoting KCs decrease sleep by preferentially activating the glutamatergic MBONs. Importantly, activity of the sleep-promoting MB microcircuit is increased by sleep deprivation and is necessary for homeostatic rebound sleep (i.e., the increased sleep that occurs after, and in compensation for, sleep lost during deprivation). These studies reveal for the first time specific functional connections between subsets of KCs and particular MBONs and establish the identity of synaptic microcircuits underlying transmission of homeostatic sleep signals in the MB.
Collapse
Affiliation(s)
- Divya Sitaraman
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Xin Jin
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Nan Chen
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Mario Felix
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
69
|
Petruccelli E, Lansdon P, Kitamoto T. Exaggerated Nighttime Sleep and Defective Sleep Homeostasis in a Drosophila Knock-In Model of Human Epilepsy. PLoS One 2015; 10:e0137758. [PMID: 26361221 PMCID: PMC4567262 DOI: 10.1371/journal.pone.0137758] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/20/2015] [Indexed: 01/17/2023] Open
Abstract
Despite an established link between epilepsy and sleep behavior, it remains unclear how specific epileptogenic mutations affect sleep and subsequently influence seizure susceptibility. Recently, Sun et al. (2012) created a fly knock-in model of human generalized epilepsy with febrile seizures plus (GEFS+), a wide-spectrum disorder characterized by fever-associated seizing in childhood and lifelong affliction. GEFS+ flies carry a disease-causing mutation in their voltage-gated sodium channel (VGSC) gene and display semidominant heat-induced seizing, likely due to reduced GABAergic inhibitory activity at high temperature. Here, we show that at room temperature the GEFS+ mutation dominantly modifies sleep, with mutants exhibiting rapid sleep onset at dusk and increased nighttime sleep as compared to controls. These characteristics of GEFS+ sleep were observed regardless of sex, mating status, and genetic background. GEFS+ mutant sleep phenotypes were more resistant to pharmacologic reduction of GABA transmission by carbamazepine (CBZ) than controls, and were mitigated by reducing GABAA receptor expression specifically in wake-promoting pigment dispersing factor (PDF) neurons. These findings are consistent with increased GABAergic transmission to PDF neurons being mainly responsible for the enhanced nighttime sleep of GEFS+ mutants. Additionally, analyses under other light conditions suggested that the GEFS+ mutation led to reduced buffering of behavioral responses to light on and off stimuli, which contributed to characteristic GEFS+ sleep phenotypes. We further found that GEFS+ mutants had normal circadian rhythms in free-running dark conditions. Interestingly, the mutants lacked a homeostatic rebound following mechanical sleep deprivation, and whereas deprivation treatment increased heat-induced seizure susceptibility in control flies, it unexpectedly reduced seizure activity in GEFS+ mutants. Our study has revealed the sleep architecture of a Drosophila VGSC mutant that harbors a human GEFS+ mutation, and provided unique insight into the relationship between sleep and epilepsy.
Collapse
Affiliation(s)
- Emily Petruccelli
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, IA, United States of America
| | - Patrick Lansdon
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, IA, United States of America
| | - Toshihiro Kitamoto
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, IA, United States of America
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
- * E-mail:
| |
Collapse
|
70
|
Perry T, Somers J, Yang YT, Batterham P. Expression of insect α6-like nicotinic acetylcholine receptors in Drosophila melanogaster highlights a high level of conservation of the receptor:spinosyn interaction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 64:106-115. [PMID: 25747008 DOI: 10.1016/j.ibmb.2015.01.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
Insecticide research has often relied on model species for elucidating the resistance mechanisms present in the targeted pests. The accuracy and applicability of extrapolations of these laboratory findings to field conditions varies but, for target site resistance, conserved mechanisms are generally the rule rather than the exception (Perry et al., 2011). The spinosyn class of insecticides appear to fit this paradigm and are a pest control option with many uses in both crop and animal protection. Resistance to spinosyns has been identified in both laboratory-selected and field-collected pest insects. Studies using the model insect, Drosophila melanogaster, have identified the nicotinic acetylcholine receptor subunit, Dα6 as an important target of the insecticide spinosad (Perry et al., 2007; Watson et al., 2010). Field-isolated resistant strains of several agricultural pest insects provide evidence that resistance cases are often associated with mutations in orthologues to Dα6 (Baxter et al., 2010; Puinean et al., 2013). The expression of these receptors is difficult in heterologous systems. In order to examine the biology of the Dα6 receptor subunit further, we used Drosophila as a model and developed an in vivo rescue system. This allowed us to express four different isoforms of Dα6 and show that each is able to rescue the response to spinosad. Regulatory sequences upstream of the Dα6 gene able to rescue the resistance phenotype were identified. Expression of other D. melanogaster subunits revealed that the rescue phenotype appears to be Dα6 specific. We also demonstrate that expression of pest insect orthologues of Dα6 from a variety of species are capable of rescuing the spinosad response phenotype, verifying the relevance of this receptor to resistance monitoring in the field. In the absence of a robust heterologous expression system, this study presents an in vivo model that will be useful in analysing many other aspects of these receptors and their biology.
Collapse
Affiliation(s)
- Trent Perry
- Bio21 Institute - Genetics Department, The University of Melbourne, Parkville, 3010 Victoria, Australia.
| | - Jason Somers
- Bio21 Institute - Genetics Department, The University of Melbourne, Parkville, 3010 Victoria, Australia.
| | - Ying Ting Yang
- Bio21 Institute - Genetics Department, The University of Melbourne, Parkville, 3010 Victoria, Australia.
| | - Philip Batterham
- Bio21 Institute - Genetics Department, The University of Melbourne, Parkville, 3010 Victoria, Australia.
| |
Collapse
|
71
|
Xu G, Wu SF, Wu YS, Gu GX, Fang Q, Ye GY. De novo assembly and characterization of central nervous system transcriptome reveals neurotransmitter signaling systems in the rice striped stem borer, Chilo suppressalis. BMC Genomics 2015; 16:525. [PMID: 26173787 PMCID: PMC4501067 DOI: 10.1186/s12864-015-1742-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/30/2015] [Indexed: 01/27/2023] Open
Abstract
Background Neurotransmitter signaling systems play crucial roles in multiple physiological and behavioral processes in insects. Genome wide analyses of de novo transcriptome sequencing and gene specific expression profiling provide rich resources for studying neurotransmitter signaling pathways. The rice striped stem borer, Chilo suppressalis is a destructive rice pest in China and other Asian countries. The characterization of genes involved in neurotransmitter biosynthesis and transport could identify potential targets for disruption of the neurochemical communication and for crop protection. Results Here we report de novo sequencing of the C. suppressalis central nervous system transcriptome, identification and expression profiles of genes putatively involved in neurotransmitter biosynthesis, packaging, and recycling/degradation. A total of 54,411 unigenes were obtained from the transcriptome analysis. Among these unigenes, we have identified 32 unigenes (31 are full length genes), which encode 21 enzymes and 11 transporters putatively associated with biogenic aminergic signaling, acetylcholinergic signaling, glutamatergic signaling and GABAergic signaling. RT-PCR and qRT-PCR results indicated that 12 enzymes were highly expressed in the central nervous system and all the transporters were expressed at significantly high levels in the central nervous system. In addition, the transcript abundances of enzymes and transporters in the central nervous system were validated by qRT-PCR. The high expression levels of these genes suggest their important roles in the central nervous system. Conclusions Our study identified genes potentially involved in neurotransmitter biosynthesis and transport in C. suppressalis and these genes could serve as targets to interfere with neurotransmitter production. This study presents an opportunity for the development of specific and environmentally safe insecticides for pest control. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1742-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gang Xu
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Shun-Fan Wu
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China. .,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ya-Su Wu
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Gui-Xiang Gu
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qi Fang
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
72
|
Donelson NC, Sanyal S. Use of Drosophila in the investigation of sleep disorders. Exp Neurol 2015; 274:72-9. [PMID: 26160555 DOI: 10.1016/j.expneurol.2015.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 12/24/2022]
Abstract
Genetic underpinnings for sleep disorders in humans remain poorly identified, investigated and understood. This is due to the inherent complexity of sleep and a disruption of normal sleep parameters in a number of neurological disorders. On the other hand, there have been steady and remarkable developments in the investigation of sleep using model organisms such as Drosophila. These studies have illuminated conserved genetic pathways, neural circuits and intra-cellular signaling modules in the regulation of sleep. Additionally, work in model systems is beginning to clarify the role of the circadian clock and basal sleep need in this process. There have also been initial efforts to directly model sleep disorders in flies in a few instances where a genetic basis has been suspected. Here, we discuss the opportunities and limitations of studying sleep disorders in Drosophila and propose that a greater convergence of basic sleep research in model organisms and human genetics should catalyze better understanding of sleep disorders and generate viable therapeutic options.
Collapse
Affiliation(s)
- Nathan C Donelson
- Neurology Research, 115 Broadway, Bio 6 Building, Biogen, Cambridge, MA 02142, USA
| | - Subhabrata Sanyal
- Neurology Research, 115 Broadway, Bio 6 Building, Biogen, Cambridge, MA 02142, USA.
| |
Collapse
|
73
|
Maguire SE, Rhoades S, Chen WF, Sengupta A, Yue Z, Lim JC, Mitchell CH, Weljie AM, Sehgal A. Independent Effects of γ-Aminobutyric Acid Transaminase (GABAT) on Metabolic and Sleep Homeostasis. J Biol Chem 2015; 290:20407-16. [PMID: 26124278 DOI: 10.1074/jbc.m114.602276] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Indexed: 12/18/2022] Open
Abstract
Breakdown of the major sleep-promoting neurotransmitter, γ-aminobutyric acid (GABA), in the GABA shunt generates catabolites that may enter the tricarboxylic acid cycle, but it is unknown whether catabolic by-products of the GABA shunt actually support metabolic homeostasis. In Drosophila, the loss of the specific enzyme that degrades GABA, GABA transaminase (GABAT), increases sleep, and we show here that it also affects metabolism such that flies lacking GABAT fail to survive on carbohydrate media. Expression of GABAT in neurons or glia rescues this phenotype, indicating a general metabolic function for this enzyme in the brain. As GABA degradation produces two catabolic products, glutamate and succinic semialdehyde, we sought to determine which was responsible for the metabolic phenotype. Through genetic and pharmacological experiments, we determined that glutamate, rather than succinic semialdehyde, accounts for the metabolic phenotype of gabat mutants. This is supported by biochemical measurements of catabolites in wild-type and mutant animals. Using in vitro labeling assays, we found that inhibition of GABAT affects energetic pathways. Interestingly, we also observed that gaba mutants display a general disruption in bioenergetics as measured by altered levels of tricarboxylic acid cycle intermediates, NAD(+)/NADH, and ATP levels. Finally, we report that the effects of GABAT on sleep do not depend upon glutamate, indicating that GABAT regulates metabolic and sleep homeostasis through independent mechanisms. These data indicate a role of the GABA shunt in the development of metabolic risk and suggest that neurological disorders caused by altered glutamate or GABA may be associated with metabolic disruption.
Collapse
Affiliation(s)
| | - Seth Rhoades
- the Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5158
| | - Wen-Feng Chen
- the Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789, and
| | - Arjun Sengupta
- the Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5158
| | - Zhifeng Yue
- the Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789, and
| | - Jason C Lim
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Claire H Mitchell
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, Physiology, Perelman School of Medicine, and
| | - Aalim M Weljie
- the Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5158
| | - Amita Sehgal
- From the Departments of Neuroscience and the Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789, and the Department of Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6064
| |
Collapse
|
74
|
Afonso DJS, Liu D, Machado DR, Pan H, Jepson JEC, Rogulja D, Koh K. TARANIS Functions with Cyclin A and Cdk1 in a Novel Arousal Center to Control Sleep in Drosophila. Curr Biol 2015; 25:1717-26. [PMID: 26096977 DOI: 10.1016/j.cub.2015.05.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/20/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022]
Abstract
Sleep is an essential and conserved behavior whose regulation at the molecular and anatomical level remains to be elucidated. Here, we identify TARANIS (TARA), a Drosophila homolog of the Trip-Br (SERTAD) family of transcriptional coregulators, as a molecule that is required for normal sleep patterns. Through a forward-genetic screen, we isolated tara as a novel sleep gene associated with a marked reduction in sleep amount. Targeted knockdown of tara suggests that it functions in cholinergic neurons to promote sleep. tara encodes a conserved cell-cycle protein that contains a Cyclin A (CycA)-binding homology domain. TARA regulates CycA protein levels and genetically and physically interacts with CycA to promote sleep. Furthermore, decreased levels of Cyclin-dependent kinase 1 (Cdk1), a kinase partner of CycA, rescue the short-sleeping phenotype of tara and CycA mutants, while increased Cdk1 activity mimics the tara and CycA phenotypes, suggesting that Cdk1 mediates the role of TARA and CycA in sleep regulation. Finally, we describe a novel wake-promoting role for a cluster of ∼14 CycA-expressing neurons in the pars lateralis (PL), previously proposed to be analogous to the mammalian hypothalamus. We propose that TARANIS controls sleep amount by regulating CycA protein levels and inhibiting Cdk1 activity in a novel arousal center.
Collapse
Affiliation(s)
- Dinis J S Afonso
- Department of Neuroscience, Farber Institute for Neurosciences and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Die Liu
- Department of Neuroscience, Farber Institute for Neurosciences and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Daniel R Machado
- Department of Neuroscience, Farber Institute for Neurosciences and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Huihui Pan
- Department of Neuroscience, Farber Institute for Neurosciences and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - James E C Jepson
- Department of Neuroscience, Farber Institute for Neurosciences and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Dragana Rogulja
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kyunghee Koh
- Department of Neuroscience, Farber Institute for Neurosciences and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
75
|
Zordan MA, Sandrelli F. Circadian Clock Dysfunction and Psychiatric Disease: Could Fruit Flies have a Say? Front Neurol 2015; 6:80. [PMID: 25941512 PMCID: PMC4403521 DOI: 10.3389/fneur.2015.00080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/24/2015] [Indexed: 12/15/2022] Open
Abstract
There is evidence of a link between the circadian system and psychiatric diseases. Studies in humans and mammals suggest that environmental and/or genetic disruption of the circadian system leads to an increased liability to psychiatric disease. Disruption of clock genes and/or the clock network might be related to the etiology of these pathologies; also, some genes, known for their circadian clock functions, might be associated to mental illnesses through clock-independent pleiotropy. Here, we examine the features which we believe make Drosophila melanogaster a model apt to study the role of the circadian clock in psychiatric disease. Despite differences in the organization of the clock system, the molecular architecture of the Drosophila and mammalian circadian oscillators are comparable and many components are evolutionarily related. In addition, Drosophila has a rather complex nervous system, which shares much at the cell and neurobiological level with humans, i.e., a tripartite brain, the main neurotransmitter systems, and behavioral traits: circadian behavior, learning and memory, motivation, addiction, social behavior. There is evidence that the Drosophila brain shares some homologies with the vertebrate cerebellum, basal ganglia, and hypothalamus-pituitary-adrenal axis, the dysfunctions of which have been tied to mental illness. We discuss Drosophila in comparison to mammals with reference to the: organization of the brain and neurotransmitter systems; architecture of the circadian clock; clock-controlled behaviors. We sum up current knowledge on behavioral endophenotypes, which are amenable to modeling in flies, such as defects involving sleep, cognition, or social interactions, and discuss the relationship of the circadian system to these traits. Finally, we consider if Drosophila could be a valuable asset to understand the relationship between circadian clock malfunction and psychiatric disease.
Collapse
Affiliation(s)
- Mauro Agostino Zordan
- Department of Biology, University of Padova, Padova, Italy
- Cognitive Neuroscience Center, University of Padova, Padova, Italy
| | | |
Collapse
|
76
|
Sleep- and wake-dependent changes in neuronal activity and reactivity demonstrated in fly neurons using in vivo calcium imaging. Proc Natl Acad Sci U S A 2015; 112:4785-90. [PMID: 25825756 DOI: 10.1073/pnas.1419603112] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sleep in Drosophila shares many features with mammalian sleep, but it remains unknown whether spontaneous and evoked activity of individual neurons change with the sleep/wake cycle in flies as they do in mammals. Here we used calcium imaging to assess how the Kenyon cells in the fly mushroom bodies change their activity and reactivity to stimuli during sleep, wake, and after short or long sleep deprivation. As before, sleep was defined as a period of immobility of >5 min associated with a reduced behavioral response to a stimulus. We found that calcium levels in Kenyon cells decline when flies fall asleep and increase when they wake up. Moreover, calcium transients in response to two different stimuli are larger in awake flies than in sleeping flies. The activity of Kenyon cells is also affected by sleep/wake history: in awake flies, more cells are spontaneously active and responding to stimuli if the last several hours (5-8 h) before imaging were spent awake rather than asleep. By contrast, long wake (≥29 h) reduces both baseline and evoked neural activity and decreases the ability of neurons to respond consistently to the same repeated stimulus. The latter finding may underlie some of the negative effects of sleep deprivation on cognitive performance and is consistent with the occurrence of local sleep during wake as described in behaving rats. Thus, calcium imaging uncovers new similarities between fly and mammalian sleep: fly neurons are more active and reactive in wake than in sleep, and their activity tracks sleep/wake history.
Collapse
|
77
|
A neuron-glia interaction involving GABA transaminase contributes to sleep loss in sleepless mutants. Mol Psychiatry 2015; 20:240-51. [PMID: 24637426 PMCID: PMC4168011 DOI: 10.1038/mp.2014.11] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 11/25/2022]
Abstract
Sleep is an essential process and yet mechanisms underlying it are not well understood. Loss of the Drosophila quiver/sleepless (qvr/sss) gene increases neuronal excitability and diminishes daily sleep, providing an excellent model for exploring the underpinnings of sleep regulation. Here, we used a proteomic approach to identify proteins altered in sss brains. We report that loss of sleepless post-transcriptionally elevates the CG7433 protein, a mitochondrial γ-aminobutyric acid transaminase (GABAT), and reduces GABA in fly brains. Loss of GABAT increases daily sleep and improves sleep consolidation, indicating that GABAT promotes wakefulness. Importantly, disruption of the GABAT gene completely suppresses the sleep phenotype of sss mutants, demonstrating that GABAT is required for loss of sleep in sss mutants. While SSS acts in distinct populations of neurons, GABAT acts in glia to reduce sleep in sss flies. Our results identify a novel mechanism of interaction between neurons and glia that is important for the regulation of sleep.
Collapse
|
78
|
Haynes PR, Christmann BL, Griffith LC. A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster. eLife 2015; 4:e03868. [PMID: 25564731 PMCID: PMC4305081 DOI: 10.7554/elife.03868] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/07/2015] [Indexed: 12/17/2022] Open
Abstract
Sleep promotes memory consolidation in humans and many other species, but the physiological and anatomical relationships between sleep and memory remain unclear. Here, we show the dorsal paired medial (DPM) neurons, which are required for memory consolidation in Drosophila, are sleep-promoting inhibitory neurons. DPMs increase sleep via release of GABA onto wake-promoting mushroom body (MB) α'/β' neurons. Functional imaging demonstrates that DPM activation evokes robust increases in chloride in MB neurons, but is unable to cause detectable increases in calcium or cAMP. Downregulation of α'/β' GABAA and GABABR3 receptors results in sleep loss, suggesting these receptors are the sleep-relevant targets of DPM-mediated inhibition. Regulation of sleep by neurons necessary for consolidation suggests that these brain processes may be functionally interrelated via their shared anatomy. These findings have important implications for the mechanistic relationship between sleep and memory consolidation, arguing for a significant role of inhibitory neurotransmission in regulating these processes.
Collapse
Affiliation(s)
- Paula R Haynes
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Bethany L Christmann
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Leslie C Griffith
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| |
Collapse
|
79
|
Abstract
Brain glial cells, in particular astrocytes and microglia, secrete signaling molecules that regulate glia-glia or glia-neuron communication and synaptic activity. While much is known about roles of glial cells in nervous system development, we are only beginning to understand the physiological functions of such cells in the adult brain. Studies in vertebrate and invertebrate models, in particular mice and Drosophila, have revealed roles of glia-neuron communication in the modulation of complex behavior. This chapter emphasizes recent evidence from studies of rodents and Drosophila that highlight the importance of glial cells and similarities or differences in the neural circuits regulating circadian rhythms and sleep in the two models. The chapter discusses cellular, molecular, and genetic approaches that have been useful in these models for understanding how glia-neuron communication contributes to the regulation of rhythmic behavior.
Collapse
Affiliation(s)
- F Rob Jackson
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
| | - Fanny S Ng
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Sukanya Sengupta
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Samantha You
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Yanmei Huang
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
80
|
Abstract
The power of Drosophila melanogaster as a model organism lies in its ability to be used for large-scale genetic screens with the capacity to uncover the genetic basis of biological processes. In particular, genetic screens for circadian behavior, which have been performed since 1971, allowed researchers to make groundbreaking discoveries on multiple levels: they discovered that there is a genetic basis for circadian behavior, they identified the so-called core clock genes that govern this process, and they started to paint a detailed picture of the molecular functions of these clock genes and their encoded proteins. Since the discovery that fruit flies sleep in 2000, researchers have successfully been using genetic screening to elucidate the many questions surrounding this basic animal behavior. In this chapter, we briefly recall the history of circadian rhythm and sleep screens and then move on to describe techniques currently employed for mutagenesis and genetic screening in the field. The emphasis lies on comparing the newer approaches of transgenic RNA interference (RNAi) to classical forms of mutagenesis, in particular in their application to circadian behavior and sleep. We discuss the different screening approaches in light of the literature and published and unpublished sleep and rhythm screens utilizing ethyl methanesulfonate mutagenesis and transgenic RNAi from our lab.
Collapse
Affiliation(s)
- Sofia Axelrod
- Laboratory of Genetics, The Rockefeller University, New York, USA
| | - Lino Saez
- Laboratory of Genetics, The Rockefeller University, New York, USA
| | - Michael W Young
- Laboratory of Genetics, The Rockefeller University, New York, USA.
| |
Collapse
|
81
|
Kunst M, Tso MCF, Ghosh DD, Herzog ED, Nitabach MN. Rhythmic control of activity and sleep by class B1 GPCRs. Crit Rev Biochem Mol Biol 2014; 50:18-30. [PMID: 25410535 DOI: 10.3109/10409238.2014.985815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Members of the class B1 family of G-protein coupled receptors (GPCRs) whose ligands are neuropeptides have been implicated in regulation of circadian rhythms and sleep in diverse metazoan clades. This review discusses the cellular and molecular mechanisms by which class B1 GPCRs, especially the mammalian VPAC2 receptor and its functional homologue PDFR in Drosophila and C. elegans, regulate arousal and daily rhythms of sleep and wake. There are remarkable parallels in the cellular and molecular roles played by class B1 intercellular signaling pathways in coordinating arousal and circadian timekeeping across multiple cells and tissues in these very different genetic model organisms.
Collapse
Affiliation(s)
- Michael Kunst
- Department of Cellular and Molecular Physiology, Yale University School of Medicine , New Haven, CT , USA and
| | | | | | | | | |
Collapse
|
82
|
Kunst M, Hughes ME, Raccuglia D, Felix M, Li M, Barnett G, Duah J, Nitabach MN. Calcitonin gene-related peptide neurons mediate sleep-specific circadian output in Drosophila. Curr Biol 2014; 24:2652-64. [PMID: 25455031 DOI: 10.1016/j.cub.2014.09.077] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 09/05/2014] [Accepted: 09/26/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Imbalances in amount and timing of sleep are harmful to physical and mental health. Therefore, the study of the underlying mechanisms is of great biological importance. Proper timing and amount of sleep are regulated by both the circadian clock and homeostatic sleep drive. However, very little is known about the cellular and molecular mechanisms by which the circadian clock regulates sleep. In this study, we describe a novel role for diuretic hormone 31 (DH31), the fly homolog of the vertebrate neuropeptide calcitonin gene-related peptide, as a circadian wake-promoting signal that awakens the fly in anticipation of dawn. RESULTS Analysis of loss-of-function and gain-of-function Drosophila mutants demonstrates that DH31 suppresses sleep late at night. DH31 is expressed by a subset of dorsal circadian clock neurons that also express the receptor for the circadian neuropeptide pigment-dispersing factor (PDF). PDF secreted by the ventral pacemaker subset of circadian clock neurons acts on PDF receptors in the DH31-expressing dorsal clock neurons to increase DH31 secretion before dawn. Activation of PDF receptors in DH31-positive DN1 specifically affects sleep and has no effect on circadian rhythms, thus constituting a dedicated locus for circadian regulation of sleep. CONCLUSIONS We identified a novel signaling molecule (DH31) as part of a neuropeptide relay mechanism for circadian control of sleep. Our results indicate that outputs of the clock controlling sleep and locomotor rhythms are mediated via distinct neuronal pathways.
Collapse
Affiliation(s)
- Michael Kunst
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Michael E Hughes
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Davide Raccuglia
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Mario Felix
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Michael Li
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Gregory Barnett
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Janelle Duah
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
83
|
Oh Y, Yoon SE, Zhang Q, Chae HS, Daubnerová I, Shafer OT, Choe J, Kim YJ. A homeostatic sleep-stabilizing pathway in Drosophila composed of the sex peptide receptor and its ligand, the myoinhibitory peptide. PLoS Biol 2014; 12:e1001974. [PMID: 25333796 PMCID: PMC4204809 DOI: 10.1371/journal.pbio.1001974] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 09/11/2014] [Indexed: 12/22/2022] Open
Abstract
Sleep, a reversible quiescent state found in both invertebrate and vertebrate animals, disconnects animals from their environment and is highly regulated for coordination with wakeful activities, such as reproduction. The fruit fly, Drosophila melanogaster, has proven to be a valuable model for studying the regulation of sleep by circadian clock and homeostatic mechanisms. Here, we demonstrate that the sex peptide receptor (SPR) of Drosophila, known for its role in female reproduction, is also important in stabilizing sleep in both males and females. Mutants lacking either the SPR or its central ligand, myoinhibitory peptide (MIP), fall asleep normally, but have difficulty in maintaining a sleep-like state. Our analyses have mapped the SPR sleep function to pigment dispersing factor (pdf) neurons, an arousal center in the insect brain. MIP downregulates intracellular cAMP levels in pdf neurons through the SPR. MIP is released centrally before and during night-time sleep, when the sleep drive is elevated. Sleep deprivation during the night facilitates MIP secretion from specific brain neurons innervating pdf neurons. Moreover, flies lacking either SPR or MIP cannot recover sleep after the night-time sleep deprivation. These results delineate a central neuropeptide circuit that stabilizes the sleep state by feeding a slow-acting inhibitory input into the arousal system and plays an important role in sleep homeostasis.
Collapse
Affiliation(s)
- Yangkyun Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sung-Eun Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Qi Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hyo-Seok Chae
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Ivana Daubnerová
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Orie T. Shafer
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Joonho Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- * E-mail: (JC); (Y-JK)
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
- * E-mail: (JC); (Y-JK)
| |
Collapse
|
84
|
May AC, Fleischer W, Kletke O, Haas HL, Sergeeva OA. Benzodiazepine-site pharmacology on GABAA receptors in histaminergic neurons. Br J Pharmacol 2014; 170:222-32. [PMID: 23799902 DOI: 10.1111/bph.12280] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE The histaminergic tuberomamillary nucleus (TMN) of the posterior hypothalamus controls the cognitive aspects of vigilance which is reduced by common sedatives and anxiolytics. The receptors targeted by these drugs in histaminergic neurons are unknown. TMN neurons express nine different subunits of the GABAA receptor (GABAA R) with three α- (α1, α2 and α5) and two γ- (γ1, γ 2) subunits, which confer different pharmacologies of the benzodiazepine-binding site. EXPERIMENTAL APPROACH We investigated the actions of zolpidem, midazolam, diazepam, chlordiazepoxide, flumazenil (Ro15-1788) and methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM) in TMN neurons using mouse genetics, electrophysiological and molecular biological methods. KEY RESULTS We find the sensitivity of GABAA R to zolpidem, midazolam and DMCM significantly reduced in TMN neurons from γ2F77I mice, but modulatory activities of diazepam, chlordiazepoxide and flumazenil not affected. Potencies and efficacies of these compounds are in line with the dominance of α2- and α1-subunit containing receptors associated with γ2- or γ1-subunits. Functional expression of the γ1-subunit is supported by siRNA-based knock-down experiments in γ2F77I mice. CONCLUSIONS AND IMPLICATIONS GABAA R of TMN neurons respond to a variety of common sedatives with a high affinity binding site (γ2F77I) involved. The γ1-subunit likely contributes to the action of common sedatives in TMN neurons. This study is relevant for understanding the role of neuronal histamine and benzodiazepines in disorders of sleep and metabolism.
Collapse
Affiliation(s)
- A C May
- Department of Neurophysiology, Medical Faculty, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
85
|
Singh K, Ju JY, Walsh MB, DiIorio MA, Hart AC. Deep conservation of genes required for both Drosphila melanogaster and Caenorhabditis elegans sleep includes a role for dopaminergic signaling. Sleep 2014; 37:1439-51. [PMID: 25142568 DOI: 10.5665/sleep.3990] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Cross-species conservation of sleep-like behaviors predicts the presence of conserved molecular mechanisms underlying sleep. However, limited experimental evidence of conservation exists. Here, this prediction is tested directly. MEASUREMENTS AND RESULTS During lethargus, Caenorhabditis elegans spontaneously sleep in short bouts that are interspersed with bouts of spontaneous locomotion. We identified 26 genes required for Drosophila melanogaster sleep. Twenty orthologous C. elegans genes were selected based on similarity. Their effect on C. elegans sleep and arousal during the last larval lethargus was assessed. The 20 most similar genes altered both the quantity of sleep and arousal thresholds. In 18 cases, the direction of change was concordant with Drosophila studies published previously. Additionally, we delineated a conserved genetic pathway by which dopamine regulates sleep and arousal. In C. elegans neurons, G-alpha S, adenylyl cyclase, and protein kinase A act downstream of D1 dopamine receptors to regulate these behaviors. Finally, a quantitative analysis of genes examined herein revealed that C. elegans arousal thresholds were directly correlated with amount of sleep during lethargus. However, bout duration varies little and was not correlated with arousal thresholds. CONCLUSIONS The comprehensive analysis presented here suggests that conserved genes and pathways are required for sleep in invertebrates and, likely, across the entire animal kingdom. The genetic pathway delineated in this study implicates G-alpha S and previously known genes downstream of dopamine signaling in sleep. Quantitative analysis of various components of quiescence suggests that interdependent or identical cellular and molecular mechanisms are likely to regulate both arousal and sleep entry.
Collapse
|
86
|
Gmeiner F, Kołodziejczyk A, Yoshii T, Rieger D, Nässel DR, Helfrich-Förster C. GABA(B) receptors play an essential role in maintaining sleep during the second half of the night in Drosophila melanogaster. ACTA ACUST UNITED AC 2014; 216:3837-43. [PMID: 24068350 DOI: 10.1242/jeb.085563] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
GABAergic signalling is important for normal sleep in humans and flies. Here we advance the current understanding of GABAergic modulation of daily sleep patterns by focusing on the role of slow metabotropic GABAB receptors in the fruit fly Drosophila melanogaster. We asked whether GABAB-R2 receptors are regulatory elements in sleep regulation in addition to the already identified fast ionotropic Rdl GABAA receptors. By immunocytochemical and reporter-based techniques we show that the pigment dispersing factor (PDF)-positive ventrolateral clock neurons (LNv) express GABAB-R2 receptors. Downregulation of GABAB-R2 receptors in the large PDF neurons (l-LNv) by RNAi reduced sleep maintenance in the second half of the night, whereas sleep latency at the beginning of the night that was previously shown to depend on ionotropic Rdl GABAA receptors remained unaltered. Our results confirm the role of the l-LNv neurons as an important part of the sleep circuit in D. melanogaster and also identify the GABAB-R2 receptors as the thus far missing component in GABA-signalling that is essential for sleep maintenance. Despite the significant effects on sleep, we did not observe any changes in circadian behaviour in flies with downregulated GABAB-R2 receptors, indicating that the regulation of sleep maintenance via l-LNv neurons is independent of their function in the circadian clock circuit.
Collapse
Affiliation(s)
- Florian Gmeiner
- Department of Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| | | | | | | | | | | |
Collapse
|
87
|
Liu S, Lamaze A, Liu Q, Tabuchi M, Yang Y, Fowler M, Bharadwaj R, Zhang J, Bedont J, Blackshaw S, Lloyd TE, Montell C, Sehgal A, Koh K, Wu MN. WIDE AWAKE mediates the circadian timing of sleep onset. Neuron 2014; 82:151-66. [PMID: 24631345 PMCID: PMC3982794 DOI: 10.1016/j.neuron.2014.01.040] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2014] [Indexed: 12/18/2022]
Abstract
How the circadian clock regulates the timing of sleep is poorly understood. Here, we identify a Drosophila mutant, wide awake (wake), that exhibits a marked delay in sleep onset at dusk. Loss of WAKE in a set of arousal-promoting clock neurons, the large ventrolateral neurons (l-LNvs), impairs sleep onset. WAKE levels cycle, peaking near dusk, and the expression of WAKE in l-LNvs is Clock dependent. Strikingly, Clock and cycle mutants also exhibit a profound delay in sleep onset, which can be rescued by restoring WAKE expression in LNvs. WAKE interacts with the GABAA receptor Resistant to Dieldrin (RDL), upregulating its levels and promoting its localization to the plasma membrane. In wake mutant l-LNvs, GABA sensitivity is decreased and excitability is increased at dusk. We propose that WAKE acts as a clock output molecule specifically for sleep, inhibiting LNvs at dusk to promote the transition from wake to sleep.
Collapse
Affiliation(s)
- Sha Liu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Angelique Lamaze
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Qili Liu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Masashi Tabuchi
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Yong Yang
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Melissa Fowler
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Rajnish Bharadwaj
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Julia Zhang
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Joseph Bedont
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Amita Sehgal
- Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyunghee Koh
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21287, USA.
| |
Collapse
|
88
|
SLEEPLESS is a bifunctional regulator of excitability and cholinergic synaptic transmission. Curr Biol 2014; 24:621-9. [PMID: 24613312 DOI: 10.1016/j.cub.2014.02.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/15/2014] [Accepted: 02/11/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Although sleep is conserved throughout evolution, the molecular basis of its control is still largely a mystery. We previously showed that the quiver/sleepless (qvr/sss) gene encodes a membrane-tethered protein that is required for normal sleep in Drosophila. SLEEPLESS (SSS) protein functions, at least in part, by upregulating the levels and open probability of Shaker (Sh) potassium channels to suppress neuronal excitability and enable sleep. Consistent with this proposed mechanism, loss-of-function mutations in Sh phenocopy qvr/sss-null mutants. However, sleep is more genetically modifiable in Sh than in qvr/sss mutants, suggesting that SSS may regulate additional molecules to influence sleep. RESULTS Here we show that SSS also antagonizes nicotinic acetylcholine receptors (nAChRs) to reduce synaptic transmission and promote sleep. Mimicking this antagonism with the nAChR inhibitor mecamylamine or by RNAi knockdown of specific nAChR subunits is sufficient to restore sleep to qvr/sss mutants. Regulation of nAChR activity by SSS occurs posttranscriptionally, since the levels of nAChR mRNAs are unchanged in qvr/sss mutants. Regulation of nAChR activity by SSS may in fact be direct, since SSS forms a stable complex with and antagonizes nAChR function in transfected cells. Intriguingly, lynx1, a mammalian homolog of SSS, can partially restore normal sleep to qvr/sss mutants, and lynx1 can form stable complexes with Shaker-type channels and nAChRs. CONCLUSIONS Together, our data point to an evolutionarily conserved, bifunctional role for SSS and its homologs in controlling excitability and synaptic transmission in fundamental processes of the nervous system such as sleep.
Collapse
|
89
|
Yi W, Zhang Y, Tian Y, Guo J, Li Y, Guo A. A subset of cholinergic mushroom body neurons requires Go signaling to regulate sleep in Drosophila. Sleep 2013; 36:1809-21. [PMID: 24293755 DOI: 10.5665/sleep.3206] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
STUDY OBJECTIVES Identifying the neurochemistry and neural circuitry of sleep regulation is critical for understanding sleep and various sleep disorders. Fruit flies display sleep-like behavior, sharing essential features with sleep of vertebrate. In the fruit fly's central brain, the mushroom body (MB) has been highlighted as a sleep center; however, its neurochemical nature remains unclear, and whether it promotes sleep or wake is still a topic of controversy. DESIGN We used a video recording system to accurately monitor the locomotor activity and sleep status. Gene expression was temporally and regionally manipulated by heat induction and the Gal4/UAS system. MEASUREMENTS AND RESULTS We found that expressing pertussis toxin (PTX) in the MB by c309-Gal4 to block Go activity led to unique sleep defects as dramatic sleep increase in daytime and fragmented sleep in nighttime. We narrowed down the c309-Gal4 expressing brain regions to the MB α/β core neurons that are responsible for the Go-mediated sleep effects. Using genetic tools of neurotransmitter-specific Gal80 and RNA interference approach to suppress acetylcholine signal, we demonstrated that these MB α/β core neurons were cholinergic and sleep-promoting neurons, supporting that Go mediates an inhibitory signal. Interestingly, we found that adjacent MB α/β neurons were also cholinergic but wake-promoting neurons, in which Go signal was also required. CONCLUSION Our findings in fruit flies characterized a group of sleep-promoting neurons surrounded by a group of wake-promoting neurons. The two groups of neurons are both cholinergic and use Go inhibitory signal to regulate sleep.
Collapse
Affiliation(s)
- Wei Yi
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
90
|
Abstract
Sleep is an essential and evolutionarily conserved behavior that is closely related to synaptic function. However, whether neuroligins (Nlgs), which are cell adhesion molecules involved in synapse formation and synaptic transmission, are involved in sleep is not clear. Here, we show that Drosophila Nlg4 (DNlg4) is highly expressed in large ventral lateral clock neurons (l-LNvs) and that l-LNv-derived DNlg4 is essential for sleep regulation. GABA transmission is impaired in mutant l-LNv, and sleep defects in dnlg4 mutant flies can be rescued by genetic manipulation of GABA transmission. Furthermore, dnlg4 mutant flies exhibit a severe reduction in GABAA receptor RDL clustering, and DNlg4 associates with RDLs in vivo. These results demonstrate that DNlg4 regulates sleep through modulating GABA transmission in l-LNvs, which provides the first known link between a synaptic adhesion molecule and sleep in Drosophila.
Collapse
|
91
|
Female contact modulates male aggression via a sexually dimorphic GABAergic circuit in Drosophila. Nat Neurosci 2013; 17:81-8. [PMID: 24241395 PMCID: PMC3995170 DOI: 10.1038/nn.3581] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/23/2013] [Indexed: 12/17/2022]
Abstract
Intraspecific male-male aggression, which is important for sexual selection, is regulated by environment, experience and internal states through largely undefined molecular and cellular mechanisms. To understand the basic neural pathway underlying the modulation of this innate behavior, we established a behavioral assay in Drosophila melanogaster and investigated the relationship between sexual experience and aggression. In the presence of mating partners, adult male flies exhibited elevated levels of aggression, which was largely suppressed by prior exposure to females via a sexually dimorphic neural mechanism. The suppression involved the ability of male flies to detect females by contact chemosensation through the pheromone-sensing ion channel ppk29 and was mediated by male-specific GABAergic neurons acting on the GABAA receptor RDL in target cells. Silencing or activating this circuit led to dis-inhibition or elimination of sex-related aggression, respectively. We propose that the GABAergic inhibition represents a critical cellular mechanism that enables prior experience to modulate aggression.
Collapse
|
92
|
Shang Y, Donelson NC, Vecsey CG, Guo F, Rosbash M, Griffith LC. Short neuropeptide F is a sleep-promoting inhibitory modulator. Neuron 2013; 80:171-83. [PMID: 24094110 DOI: 10.1016/j.neuron.2013.07.029] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2013] [Indexed: 01/10/2023]
Abstract
To advance the understanding of sleep regulation, we screened for sleep-promoting cells and identified neurons expressing neuropeptide Y-like short neuropeptide F (sNPF). Sleep induction by sNPF meets all relevant criteria. Rebound sleep following sleep deprivation is reduced by activation of sNPF neurons, and flies experience negative sleep rebound upon cessation of sNPF neuronal stimulation, indicating that sNPF provides an important signal to the sleep homeostat. Only a subset of sNPF-expressing neurons, which includes the small ventrolateral clock neurons, is sleep promoting. Their release of sNPF increases sleep consolidation in part by suppressing the activity of wake-promoting large ventrolateral clock neurons, and suppression of neuronal firing may be the general response to sNPF receptor activation. sNPF acutely increases sleep without altering feeding behavior, which it affects only on a much longer time scale. The profound effect of sNPF on sleep indicates that it is an important sleep-promoting molecule.
Collapse
Affiliation(s)
- Yuhua Shang
- National Center for Behavioral Genomics and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | | | |
Collapse
|
93
|
He C, Yang Y, Zhang M, Price JL, Zhao Z. Regulation of sleep by neuropeptide Y-like system in Drosophila melanogaster. PLoS One 2013; 8:e74237. [PMID: 24040211 PMCID: PMC3770577 DOI: 10.1371/journal.pone.0074237] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/31/2013] [Indexed: 02/05/2023] Open
Abstract
Sleep is important for maintenance of normal physiology in animals. In mammals, neuropeptide Y (NPY), a homolog of Drosophila neuropeptide F (NPF), is involved in sleep regulation, with different effects in human and rat. However, the function of NPF on sleep in Drosophila melanogaster has not yet been described. In this study, we investigated the effects of NPF and its receptor-neuropeptide F receptor (NPFR1) on Drosophila sleep. Male flies over-expressing NPF or NPFR1 exhibited increased sleep during the nighttime. Further analysis demonstrated that sleep episode duration during nighttime was greatly increased and sleep latency was significantly reduced, indicating that NPF and NPFR1 promote sleep quality, and their action on sleep is not because of an impact of the NPF signal system on development. Moreover, the homeostatic regulation of flies after sleep deprivation was disrupted by altered NPF signaling, since sleep deprivation decreased transcription of NPF in control flies, and there were less sleep loss during sleep deprivation and less sleep gain after sleep deprivation in flies overexpressing NPF and NPFR1 than in control flies, suggesting that NPF system auto-regulation plays an important role in sleep homeostasis. However, these effects did not occur in females, suggesting a sex-dependent regulatory function in sleep for NPF and NPFR1. NPF in D1 brain neurons showed male-specific expression, providing the cellular locus for male-specific regulation of sleep by NPF and NPFR1. This study brings a new understanding into sleep studies of a sexually dimorphic regulatory mode in female and male flies.
Collapse
Affiliation(s)
- Chunxia He
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, P. R. China
| | - Yunyan Yang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, P. R. China
| | - Mingming Zhang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, P. R. China
| | - Jeffrey L. Price
- University of Missouri-Kansas City, Kansas City, Missouri, United States of America
- * E-mail:
| | - Zhangwu Zhao
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
94
|
Remnant EJ, Good RT, Schmidt JM, Lumb C, Robin C, Daborn PJ, Batterham P. Gene duplication in the major insecticide target site, Rdl, in Drosophila melanogaster. Proc Natl Acad Sci U S A 2013; 110:14705-10. [PMID: 23959864 PMCID: PMC3767507 DOI: 10.1073/pnas.1311341110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Resistance to Dieldrin gene, Rdl, encodes a GABA-gated chloride channel subunit that is targeted by cyclodiene and phenylpyrazole insecticides. The gene was first characterized in Drosophila melanogaster by genetic mapping of resistance to the cyclodiene dieldrin. The 4,000-fold resistance observed was due to a single amino acid replacement, Ala(301) to Ser. The equivalent change was subsequently identified in Rdl orthologs of a large range of resistant insect species. Here, we report identification of a duplication at the Rdl locus in D. melanogaster. The 113-kb duplication contains one WT copy of Rdl and a second copy with two point mutations: an Ala(301) to Ser resistance mutation and Met(360) to Ile replacement. Individuals with this duplication exhibit intermediate dieldrin resistance compared with single copy Ser(301) homozygotes, reduced temperature sensitivity, and altered RNA editing associated with the resistant allele. Ectopic recombination between Roo transposable elements is involved in generating this genomic rearrangement. The duplication phenotypes were confirmed by construction of a transgenic, artificial duplication integrating the 55.7-kb Rdl locus with a Ser(301) change into an Ala(301) background. Gene duplications can contribute significantly to the evolution of insecticide resistance, most commonly by increasing the amount of gene product produced. Here however, duplication of the Rdl target site creates permanent heterozygosity, providing unique potential for adaptive mutations to accrue in one copy, without abolishing the endogenous role of an essential gene.
Collapse
Affiliation(s)
- Emily J Remnant
- Department of Genetics and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| | | | | | | | | | | | | |
Collapse
|
95
|
Affiliation(s)
- Philip R. Gehrman
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Suite 670, Philadelphia PA 19104, 215-746-3578
| | - Cory Pfeiffenberger
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Translational Research Laboratories, Suite 2100, 125 South 31st Street, Philadelphia, PA 19104-3403, (215) 746-4801
| | - Enda Byrne
- Queensland Brain Institute, Upland Road, University of Queensland, St.Lucia, QLD 4072, +61 7 3346 6300
| |
Collapse
|
96
|
Abstract
Sleep is an important physiological state, but its function and regulation remain elusive. In Drosophila melanogaster, a useful model organism for studying sleep, forward genetic screens have identified important sleep-modulating genes and pathways; however, the results of such screens may be limited by developmental abnormalities or lethality associated with mutation of certain genes. To circumvent these limitations, we used a small-molecule screen to identify sleep-modulating genes and pathways. We administered 1280 pharmacologically active small molecules to adult flies and monitored their sleep. We found that administration of reserpine, a small-molecule inhibitor of the vesicular monoamine transporter (VMAT) that repackages monoamines into presynaptic vesicles, resulted in an increase in sleep. Supporting the idea that VMAT is the sleep-relevant target of reserpine, we found that VMAT-null mutants have an increased sleep phenotype, as well as an increased arousal threshold and resistance to the effects of reserpine. However, although the VMAT mutants are consistently resistant to reserpine, other aspects of their sleep phenotype are dependent on genetic background. These findings indicate that small-molecule screens can be used effectively to identify sleep-modulating genes whose phenotypes may be suppressed in traditional genetic screens. Mutations affecting single monoamine pathways did not affect reserpine sensitivity, suggesting that effects of VMAT/reserpine on sleep are mediated by multiple monoamines. Overall, we identify VMAT as an important regulator of sleep in Drosophila and demonstrate that small-molecule screens provide an effective approach to identify genes and pathways that impact adult Drosophila behavior.
Collapse
|
97
|
Rihel J, Schier AF. Sites of action of sleep and wake drugs: insights from model organisms. Curr Opin Neurobiol 2013; 23:831-40. [PMID: 23706898 DOI: 10.1016/j.conb.2013.04.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 01/21/2023]
Abstract
Small molecules have been used since antiquity to regulate our sleep. Despite the explosion of diverse drugs to treat problems of too much or too little sleep, the detailed mechanisms of action and especially the neuronal targets by which these compounds alter human behavioural states are not well understood. Research efforts in model systems such as mouse, zebrafish and fruit fly are combining conditional genetics and optogenetics with pharmacology to map the effects of sleep-promoting drugs onto neural circuits. Recent studies raise the possibility that many small molecules alter sleep and wake via specific sets of critical neurons rather than through the global modulation of multiple brain targets. These findings also uncover novel brain areas as sleep/wake regulators and indicate that the development of circuit-selective drugs might alleviate sleep disorders with fewer side effects.
Collapse
Affiliation(s)
- Jason Rihel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
98
|
Potdar S, Sheeba V. Lessons From Sleeping Flies: Insights fromDrosophila melanogasteron the Neuronal Circuitry and Importance of Sleep. J Neurogenet 2013; 27:23-42. [DOI: 10.3109/01677063.2013.791692] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
99
|
Pírez N, Christmann BL, Griffith LC. Daily rhythms in locomotor circuits in Drosophila involve PDF. J Neurophysiol 2013; 110:700-8. [PMID: 23678016 DOI: 10.1152/jn.00126.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The neuropeptide pigment-dispersing factor (PDF) has been studied extensively in Drosophila, and its role in circadian time-keeping has been firmly established. The role of PDF outside of the clock circuit, however, is poorly understood. A recent study suggested that PDF may act on the ellipsoid body (EB) to link the clock and sleep/activity circuits. We performed whole brain optical imaging with the fluorescence resonance energy transfer (FRET)-based cAMP sensor Epac1-camps expressed under control of the pdfR promoter to address how the clock and sleep deprivation affect the physiology of these cells. Basal cAMP levels in EB were regulated both by PDF and synaptic inputs that are controlled by the circadian clock. Acute application of PDF to the brain caused a significant, and PDF-receptor-dependent, increase in cAMP in EB cells. Application of TTX to block circuit-mediated effects of PDF increased the morning response but not the response at night, implying the existence of a temporally regulated, PDF-stimulated input that blocks cAMP generation. ACh produced both direct (TTX-insensitive) and indirect (TTX-sensitive) increases in cAMP during the day but was totally TTX-insensitive at night, indicating that ACh-stimulated inputs to the EB are suppressed at night. Sleep deprivation did not affect the cAMP responses of these cells to either PDF or ACh. These results suggest a novel role for PDF as a modulator of activity outside of the clock circuit. By elucidating the mechanisms by which the neuropeptide PDF act on its target cells, our work contributes to our understating of how the central clock coordinates activity and sleep.
Collapse
Affiliation(s)
- Nicolás Pírez
- Volen Center for Complex Systems and National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, MA 02454-9110, USA
| | | | | |
Collapse
|
100
|
Kuehn C, Duch C. Putative excitatory and putative inhibitory inputs are localised in different dendritic domains in a Drosophila flight motoneuron. Eur J Neurosci 2013; 37:860-75. [PMID: 23279094 PMCID: PMC3604049 DOI: 10.1111/ejn.12104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 12/24/2022]
Abstract
Input-output computations of individual neurons may be affected by the three-dimensional structure of their dendrites and by the location of input synapses on specific parts of their dendrites. However, only a few examples exist of dendritic architecture which can be related to behaviorally relevant computations of a neuron. By combining genetic, immunohistochemical and confocal laser scanning methods this study estimates the location of the spike-initiating zone and the dendritic distribution patterns of putative synaptic inputs on an individually identified Drosophila flight motorneuron, MN5. MN5 is a monopolar neuron with > 4,000 dendritic branches. The site of spike initiation was estimated by mapping sodium channel immunolabel onto geometric reconstructions of MN5. Maps of putative excitatory cholinergic and of putative inhibitory GABAergic inputs on MN5 dendrites were created by charting tagged Dα7 nicotinic acetylcholine receptors and Rdl GABAA receptors onto MN5 dendritic surface reconstructions. Although these methods provide only an estimate of putative input synapse distributions, the data indicate that inhibitory and excitatory synapses were located preferentially on different dendritic domains of MN5 and, thus, computed mostly separately. Most putative inhibitory inputs were close to spike initiation, which was consistent with sharp inhibition, as predicted previously based on recordings of motoneuron firing patterns during flight. By contrast, highest densities of putative excitatory inputs at more distant dendritic regions were consistent with the prediction that, in response to different power demands during flight, tonic excitatory drive to flight motoneuron dendrites must be smoothly translated into different tonic firing frequencies.
Collapse
Affiliation(s)
- Claudia Kuehn
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | |
Collapse
|