51
|
Korede V, Nagalingam N, Penha FM, van der Linden N, Padding JT, Hartkamp R, Eral HB. A Review of Laser-Induced Crystallization from Solution. CRYSTAL GROWTH & DESIGN 2023; 23:3873-3916. [PMID: 37159656 PMCID: PMC10161235 DOI: 10.1021/acs.cgd.2c01526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Indexed: 05/11/2023]
Abstract
Crystallization abounds in nature and industrial practice. A plethora of indispensable products ranging from agrochemicals and pharmaceuticals to battery materials are produced in crystalline form in industrial practice. Yet, our control over the crystallization process across scales, from molecular to macroscopic, is far from complete. This bottleneck not only hinders our ability to engineer the properties of crystalline products essential for maintaining our quality of life but also hampers progress toward a sustainable circular economy in resource recovery. In recent years, approaches leveraging light fields have emerged as promising alternatives to manipulate crystallization. In this review article, we classify laser-induced crystallization approaches where light-material interactions are utilized to influence crystallization phenomena according to proposed underlying mechanisms and experimental setups. We discuss nonphotochemical laser-induced nucleation, high-intensity laser-induced nucleation, laser trapping-induced crystallization, and indirect methods in detail. Throughout the review, we highlight connections among these separately evolving subfields to encourage the interdisciplinary exchange of ideas.
Collapse
Affiliation(s)
- Vikram Korede
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Nagaraj Nagalingam
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Frederico Marques Penha
- Department
of Chemical Engineering, KTH Royal Institute
of Technology, Teknikringen
42, 114-28 Stockholm, Sweden
| | - Noah van der Linden
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Johan T. Padding
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Remco Hartkamp
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Huseyin Burak Eral
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
52
|
Kollipara PS, Chen Z, Zheng Y. Optical Manipulation Heats up: Present and Future of Optothermal Manipulation. ACS NANO 2023; 17:7051-7063. [PMID: 37022087 PMCID: PMC10197158 DOI: 10.1021/acsnano.3c00536] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Optothermal manipulation is a versatile technique that combines optical and thermal forces to control synthetic micro-/nanoparticles and biological entities. This emerging technique overcomes the limitations of traditional optical tweezers, including high laser power, photon and thermal damage to fragile objects, and the requirement of refractive-index contrast between target objects and the surrounding solvents. In this perspective, we discuss how the rich opto-thermo-fluidic multiphysics leads to a variety of working mechanisms and modes of optothermal manipulation in both liquid and solid media, underpinning a broad range of applications in biology, nanotechnology, and robotics. Moreover, we highlight current experimental and modeling challenges in the pursuit of optothermal manipulation and propose future directions and solutions to the challenges.
Collapse
Affiliation(s)
- Pavana Siddhartha Kollipara
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States
| | - Zhihan Chen
- Materials Science and Engineering program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science and Engineering program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
53
|
Wang M, Zhang J, Adijiang A, Zhao X, Tan M, Xu X, Zhang S, Zhang W, Zhang X, Wang H, Xiang D. Plasmon-Assisted Trapping of Single Molecules in Nanogap. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3230. [PMID: 37110065 PMCID: PMC10144347 DOI: 10.3390/ma16083230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
The manipulation of single molecules has attracted extensive attention because of their promising applications in chemical, biological, medical, and materials sciences. Optical trapping of single molecules at room temperature, a critical approach to manipulating the single molecule, still faces great challenges due to the Brownian motions of molecules, weak optical gradient forces of laser, and limited characterization approaches. Here, we put forward localized surface plasmon (LSP)-assisted trapping of single molecules by utilizing scanning tunneling microscope break junction (STM-BJ) techniques, which could provide adjustable plasmonic nanogap and characterize the formation of molecular junction due to plasmonic trapping. We find that the plasmon-assisted trapping of single molecules in the nanogap, revealed by the conductance measurement, strongly depends on the molecular length and the experimental environments, i.e., plasmon could obviously promote the trapping of longer alkane-based molecules but is almost incapable of acting on shorter molecules in solutions. In contrast, the plasmon-assisted trapping of molecules can be ignored when the molecules are self-assembled (SAM) on a substrate independent of the molecular length.
Collapse
Affiliation(s)
- Maoning Wang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Jieyi Zhang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Adila Adijiang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Xueyan Zhao
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Min Tan
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Xiaona Xu
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Surong Zhang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Wei Zhang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Xinyue Zhang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Haoyu Wang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Dong Xiang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| |
Collapse
|
54
|
Shukri MA, Thabit FM. Calculation of the optical forces exerted on a nano-dielectric sphere induced by a pulsed Laguerre-Gaussian beam. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:645-651. [PMID: 37132955 DOI: 10.1364/josaa.482482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Theoretically, we investigated the optical force exerted on a nano-dielectric sphere illuminated by a pulsed Laguerre-Gaussian beam. In the frame of the dipole approximation, analytical expressions for the optical force were derived. Based on these analytical expressions, the effects of pulse duration τ and beam mode order (l,p) on the optical force were studied. It is recognized that the optical force values and the trapping regions are remarkably affected by changing pulse duration and mode parameters. Our results show good agreement with the results obtained by other authors for the use of a continuous Laguerre-Gaussian beam and pulsed Gaussian beam.
Collapse
|
55
|
Kim J, Martin OJF. Trap-and-Track for Characterizing Surfactants at Interfaces. Molecules 2023; 28:molecules28062859. [PMID: 36985832 PMCID: PMC10058797 DOI: 10.3390/molecules28062859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Understanding the behavior of surfactants at interfaces is crucial for many applications in materials science and chemistry. Optical tweezers combined with trajectory analysis can become a powerful tool for investigating surfactant characteristics. In this study, we perform trap-and-track analysis to compare the behavior of cetyltrimethylammonium bromide (CTAB) and cetyltrimethylammonium chloride (CTAC) at water-glass interfaces. We use optical tweezers to trap a gold nanoparticle and statistically analyze the particle's movement in response to various surfactant concentrations, evidencing the rearrangement of surfactants adsorbed on glass surfaces. Our results show that counterions have a significant effect on surfactant behavior at the interface. The greater binding affinity of bromide ions to CTA+ micelle surfaces reduces the repulsion among surfactant head groups and enhances the mobility of micelles adsorbed on the interface. Our study provides valuable insights into the behavior of surfactants at interfaces and highlights the potential of optical tweezers for surfactant research. The development of this trap-and-track approach can have important implications for various applications, including drug delivery and nanomaterials.
Collapse
Affiliation(s)
- Jeonghyeon Kim
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Olivier J F Martin
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
56
|
Magazzù A, Marcuello C. Investigation of Soft Matter Nanomechanics by Atomic Force Microscopy and Optical Tweezers: A Comprehensive Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:963. [PMID: 36985857 PMCID: PMC10053849 DOI: 10.3390/nano13060963] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 05/17/2023]
Abstract
Soft matter exhibits a multitude of intrinsic physico-chemical attributes. Their mechanical properties are crucial characteristics to define their performance. In this context, the rigidity of these systems under exerted load forces is covered by the field of biomechanics. Moreover, cellular transduction processes which are involved in health and disease conditions are significantly affected by exogenous biomechanical actions. In this framework, atomic force microscopy (AFM) and optical tweezers (OT) can play an important role to determine the biomechanical parameters of the investigated systems at the single-molecule level. This review aims to fully comprehend the interplay between mechanical forces and soft matter systems. In particular, we outline the capabilities of AFM and OT compared to other classical bulk techniques to determine nanomechanical parameters such as Young's modulus. We also provide some recent examples of nanomechanical measurements performed using AFM and OT in hydrogels, biopolymers and cellular systems, among others. We expect the present manuscript will aid potential readers and stakeholders to fully understand the potential applications of AFM and OT to soft matter systems.
Collapse
Affiliation(s)
- Alessandro Magazzù
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, 98158 Mesina, Italy
- NLHT-Lab, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
57
|
Da A, Chu Y, Krach J, Liu Y, Park Y, Lee SE. Optical Penetration of Shape-Controlled Metallic Nanosensors across Membrane Barriers. SENSORS (BASEL, SWITZERLAND) 2023; 23:2824. [PMID: 36905027 PMCID: PMC10007193 DOI: 10.3390/s23052824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Precise nanostructure geometry that enables the optical biomolecular delivery of nanosensors to the living intracellular environment is highly desirable for precision biological and clinical therapies. However, the optical delivery through membrane barriers utilizing nanosensors remains difficult due to a lack of design guidelines to avoid inherent conflict between optical force and photothermal heat generation in metallic nanosensors during the process. Here, we present a numerical study reporting significantly enhanced optical penetration of nanosensors by engineering nanostructure geometry with minimized photothermal heating generation for penetrating across membrane barriers. We show that by varying the nanosensor geometry, penetration depths can be maximized while heat generated during the penetration process can be minimized. We demonstrate the effect of lateral stress induced by an angularly rotating nanosensor on a membrane barrier by theoretical analysis. Furthermore, we show that by varying the nanosensor geometry, maximized local stress fields at the nanoparticle-membrane interface enhanced the optical penetration process by four-fold. Owing to the high efficiency and stability, we anticipate that precise optical penetration of nanosensors to specific intracellular locations will be beneficial for biological and therapeutic applications.
Collapse
Affiliation(s)
- Ancheng Da
- Department of Electrical & Computer Engineering, Biomedical Engineering, Biointerfaces Institute, Applied Physics, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yanan Chu
- Department of Electrical & Computer Engineering, Biomedical Engineering, Biointerfaces Institute, Applied Physics, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jacob Krach
- Department of Electrical & Computer Engineering, Biomedical Engineering, Biointerfaces Institute, Applied Physics, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yunbo Liu
- Department of Electrical & Computer Engineering, Biomedical Engineering, Biointerfaces Institute, Applied Physics, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Younggeun Park
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Somin Eunice Lee
- Department of Electrical & Computer Engineering, Biomedical Engineering, Biointerfaces Institute, Applied Physics, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
58
|
Basics of Optical Force. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2023. [DOI: 10.1016/j.jphotochemrev.2023.100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
59
|
Gong J, Zhang S, Duan G, Qi L, Yang Y. Optical force exerted on the two dimensional transition-metal dichalcogenide coated dielectric particle by Gaussian beam. Heliyon 2023; 9:e14314. [PMID: 36938475 PMCID: PMC10015242 DOI: 10.1016/j.heliyon.2023.e14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Two-dimensional transition-metal dichalcogenide (TMDC) exhibits a series of distinctive optical and electrical characteristics, which make it has a good application prospect in the field of optical manipulation. Based on the Mie theory, we investigate the radiation force exerted on the TMDC wrapped dielectric particle by Gaussian wave. Theoretical calculations show that the optical force spectra exhibit two resonant peaks in the visible region, which are generated by the interband exciton transitions in TMDC. Magnitude and morphology of the excitonic peaks could be modulated effectively by tuning the number of coated TMDC layers. Furthermore, the excitonic peaks transform significantly with particle size due to the variation of coupling strength between the dielectric particle and TMDC coating. The investigation provides potential applications in optical manipulations and light-matter interactions.
Collapse
Affiliation(s)
- Jingrui Gong
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Shuo Zhang
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Gaoyan Duan
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Limei Qi
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yang Yang
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
- Corresponding author.
| |
Collapse
|
60
|
Riccardi M, Martin OJF. Electromagnetic Forces and Torques: From Dielectrophoresis to Optical Tweezers. Chem Rev 2023; 123:1680-1711. [PMID: 36719985 PMCID: PMC9951227 DOI: 10.1021/acs.chemrev.2c00576] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 02/02/2023]
Abstract
Electromagnetic forces and torques enable many key technologies, including optical tweezers or dielectrophoresis. Interestingly, both techniques rely on the same physical process: the interaction of an oscillating electric field with a particle of matter. This work provides a unified framework to understand this interaction both when considering fields oscillating at low frequencies─dielectrophoresis─and high frequencies─optical tweezers. We draw useful parallels between these two techniques, discuss the different and often unstated assumptions they are based upon, and illustrate key applications in the fields of physical and analytical chemistry, biosensing, and colloidal science.
Collapse
Affiliation(s)
- Marco Riccardi
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), EPFL-STI-NAM, Station 11, CH-1015Lausanne, Switzerland
| | - Olivier J. F. Martin
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), EPFL-STI-NAM, Station 11, CH-1015Lausanne, Switzerland
| |
Collapse
|
61
|
Haghizadeh A, Iftikhar M, Dandpat SS, Simpson T. Looking at Biomolecular Interactions through the Lens of Correlated Fluorescence Microscopy and Optical Tweezers. Int J Mol Sci 2023; 24:2668. [PMID: 36768987 PMCID: PMC9916863 DOI: 10.3390/ijms24032668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Understanding complex biological events at the molecular level paves the path to determine mechanistic processes across the timescale necessary for breakthrough discoveries. While various conventional biophysical methods provide some information for understanding biological systems, they often lack a complete picture of the molecular-level details of such dynamic processes. Studies at the single-molecule level have emerged to provide crucial missing links to understanding complex and dynamic pathways in biological systems, which are often superseded by bulk biophysical and biochemical studies. Latest developments in techniques combining single-molecule manipulation tools such as optical tweezers and visualization tools such as fluorescence or label-free microscopy have enabled the investigation of complex and dynamic biomolecular interactions at the single-molecule level. In this review, we present recent advances using correlated single-molecule manipulation and visualization-based approaches to obtain a more advanced understanding of the pathways for fundamental biological processes, and how this combination technique is facilitating research in the dynamic single-molecule (DSM), cell biology, and nanomaterials fields.
Collapse
|
62
|
Bronte Ciriza D, Magazzù A, Callegari A, Barbosa G, Neves AAR, Iatì MA, Volpe G, Maragò OM. Faster and More Accurate Geometrical-Optics Optical Force Calculation Using Neural Networks. ACS PHOTONICS 2023; 10:234-241. [PMID: 36691426 PMCID: PMC9853855 DOI: 10.1021/acsphotonics.2c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 06/17/2023]
Abstract
Optical forces are often calculated by discretizing the trapping light beam into a set of rays and using geometrical optics to compute the exchange of momentum. However, the number of rays sets a trade-off between calculation speed and accuracy. Here, we show that using neural networks permits overcoming this limitation, obtaining not only faster but also more accurate simulations. We demonstrate this using an optically trapped spherical particle for which we obtain an analytical solution to use as ground truth. Then, we take advantage of the acceleration provided by neural networks to study the dynamics of ellipsoidal particles in a double trap, which would be computationally impossible otherwise.
Collapse
Affiliation(s)
| | | | - Agnese Callegari
- Department
of Physics, University of Gothenburg, SE-41296Gothenburg, Sweden
| | - Gunther Barbosa
- Universidade
Federal do ABC, Av. dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil
| | - Antonio A. R. Neves
- Universidade
Federal do ABC, Av. dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil
| | | | - Giovanni Volpe
- Department
of Physics, University of Gothenburg, SE-41296Gothenburg, Sweden
| | - Onofrio M. Maragò
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, I-98158Messina, Italy
| |
Collapse
|
63
|
Tognato R, Jones PH. Ray Optics Model for Optical Trapping of Biconcave Red Blood Cells. MICROMACHINES 2022; 14:mi14010083. [PMID: 36677144 PMCID: PMC9867239 DOI: 10.3390/mi14010083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 05/28/2023]
Abstract
Red blood cells (RBCs) or erythrocytes are essential for oxygenating the peripherical tissue in the human body. Impairment of their physical properties may lead to severe diseases. Optical tweezers have in experiments been shown to be a powerful tool for assessing the biochemical and biophysical properties of RBCs. Despite this success there has been little theoretical work investigating of the stability of erythrocytes in optical tweezers. In this paper we report a numerical study of the trapping of RBCs in the healthy, native biconcave disk conformation in optical tweezers using the ray optics approximation. We study trapping using both single- and dual-beam optical tweezers and show that the complex biconcave shape of the RBC is a significant factor in determining the optical forces and torques on the cell, and ultimately the equilibrium configuration of the RBC within the trap. We also numerically demonstrate how the addition of a third or even fourth trapping laser beam can be used to control the cell orientation in the optical trap. The present investigation sheds light on the trapping mechanism of healthy erythrocytes and can be exploited by experimentalist to envisage new experiments.
Collapse
|
64
|
Peng M, Luo H, Xiong W, Kuang T, Chen X, Han X, Xiao G, Tan Z. Enhanced optical trapping of ZrO 2@TiO 2 photonic force probe with broadened solvent compatibility. OPTICS EXPRESS 2022; 30:46060-46069. [PMID: 36558569 DOI: 10.1364/oe.474927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Optical trapping and manipulating nanoparticles are essential tools for interrogating biomedicine at the limits of space and time. Typically, silica or polystyrene microspheres are used as photonic force probes. However, adapting those probes to organic solvents is an ongoing challenge due to the limited solvent compatibility and low refractive index mismatch. Here we report on the optical force enhancement and solvent compatibility that utilizes ZrO2@TiO2 core-shell nanoparticles. We experimentally demonstrate that the 450-nm-diameter ZrO2@TiO2 core-shell nanoparticles achieve the lateral and axial trap stiffness up to 0.45 pN µm-1 mW-1 and 0.43 pN µm-1 mW-1 in water, showing more than fivefold and ninefold improvement on the ordinary SiO2 particle of the same size. In addition, ZrO2@TiO2 core-shell nanoparticles can realize stable three-dimensional trapping in both polyethylene glycol and glucose solutions. This optical trapping enhancement property, coupled with solvent compatibility, expands the range of feasible optical trapping experiments and will pave the way toward more advanced biological applications.
Collapse
|
65
|
Son T, Moon G, Lee C, Xi P, Kim D. Super-resolved three-dimensional near-field mapping by defocused imaging and tracking of fluorescent emitters. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4805-4819. [PMID: 39634753 PMCID: PMC11501887 DOI: 10.1515/nanoph-2022-0546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/14/2022] [Indexed: 12/07/2024]
Abstract
Near-field optics is essential in many nanotechnology applications, such as implementing sensitive biosensing and imaging systems with extreme precision. Understanding optical near-fields at the nanoscale has so attracted the considerable research interest, which use a variety of analytical approaches, most notably near-field scanning microscopy. Here, we show defocused point localization mapped accumulation (DePLOMA), which can overcome many weaknesses of conventional analytical methods. DePLOMA is based on imaging fluorescence emitters at an out-of-focal plane. The acquisition, collection, and accumulation of the position and fluorescence intensity of emitters moving above nanostructures can generate three-dimensional near-field maps of light distribution. The idea enables super-resolution liquid-phase measurements, as demonstrated by reconstruction of near-field created by nanoslits with a resolution determined by emitter size. We employed fluorescent emitters with a radius of 50 and 100 nm for confirmation. The axial resolution was found to be enhanced by more than 6 times above that of diffraction-limited confocal laser scanning microscopy when DePLOMA was used.
Collapse
Affiliation(s)
- Taehwang Son
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Gwiyeong Moon
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Changhun Lee
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
66
|
Kamizaki LP, Bonança MVS, Muniz SR. Performance of optimal linear-response processes in driven Brownian motion far from equilibrium. Phys Rev E 2022; 106:064123. [PMID: 36671193 DOI: 10.1103/physreve.106.064123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Considering the paradigmatic driven Brownian motion, we perform extensive numerical analysis on the performance of optimal linear-response processes far from equilibrium. We focus on the overdamped regime where exact optimal processes are known analytically and most experiments operate. This allows us to compare the optimal processes obtained in linear response and address their relevance to experiments using realistic parameter values from experiments with optical tweezers. Our results help assess the accuracy of perturbative methods in calculating the irreversible work for cases where the exact solution might be difficult to access. For that, we present a performance metric comparing the approximate optimal solution to the exact one. Our main result is that optimal linear-response processes can perform surprisingly well, even far from where they were expected.
Collapse
Affiliation(s)
- Lucas P Kamizaki
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo, Brazil.,Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | - Marcus V S Bonança
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo, Brazil
| | - Sérgio R Muniz
- Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
67
|
Chai Z, Childress A, Busnaina AA. Directed Assembly of Nanomaterials for Making Nanoscale Devices and Structures: Mechanisms and Applications. ACS NANO 2022; 16:17641-17686. [PMID: 36269234 PMCID: PMC9706815 DOI: 10.1021/acsnano.2c07910] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/06/2022] [Indexed: 05/19/2023]
Abstract
Nanofabrication has been utilized to manufacture one-, two-, and three-dimensional functional nanostructures for applications such as electronics, sensors, and photonic devices. Although conventional silicon-based nanofabrication (top-down approach) has developed into a technique with extremely high precision and integration density, nanofabrication based on directed assembly (bottom-up approach) is attracting more interest recently owing to its low cost and the advantages of additive manufacturing. Directed assembly is a process that utilizes external fields to directly interact with nanoelements (nanoparticles, 2D nanomaterials, nanotubes, nanowires, etc.) and drive the nanoelements to site-selectively assemble in patterned areas on substrates to form functional structures. Directed assembly processes can be divided into four different categories depending on the external fields: electric field-directed assembly, fluidic flow-directed assembly, magnetic field-directed assembly, and optical field-directed assembly. In this review, we summarize recent progress utilizing these four processes and address how these directed assembly processes harness the external fields, the underlying mechanism of how the external fields interact with the nanoelements, and the advantages and drawbacks of utilizing each method. Finally, we discuss applications made using directed assembly and provide a perspective on the future developments and challenges.
Collapse
Affiliation(s)
- Zhimin Chai
- State
Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing100084, China
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| | - Anthony Childress
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| | - Ahmed A. Busnaina
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| |
Collapse
|
68
|
Wang X, Zhang Y, Yu J, Xie X, Deng R, Min C, Yuan X. Plasmonic-Thermoelectric Nanotweezers for Immersive SERS Mapping. ACS NANO 2022; 16:18621-18629. [PMID: 36255059 DOI: 10.1021/acsnano.2c07103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) technology usually uses metallic nanoparticles to enhance Raman scattering signals, thereby significantly adding to molecule-level recognition and detection. However, realization of nanometer-scaled SERS imaging in liquid environments is extremely difficult due to the requirements of both precise scanning of single metallic nanoparticle and high enhancement field and thus has never been achieved before. To overcome this obstacle, we demonstrate an immersive nanometer-scaled SERS mapping technology, based on dynamic scanning of a single metallic nanoparticle with a plasmonic-thermoelectric nanotweezers system. The technology offers greater stability in the plasmonic trapping of gold nanoparticles at relative low power, as well as generating higher electric fields in the gap region. Through its dynamics, two-dimensional nanometer-scaled SERS imaging is achieved successfully. In regard to in liquid environments, this technology provides a mapping method for label-free imaging of ultrathin materials, structures, and biological samples.
Collapse
Affiliation(s)
- Xianyou Wang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
| | - Yuquan Zhang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Jiahao Yu
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Xi Xie
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Ruping Deng
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Changjun Min
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
69
|
Abbassi MA, Mehrany K. Self-induced backaction in optical waveguides. OPTICS EXPRESS 2022; 30:42967-42981. [PMID: 36523006 DOI: 10.1364/oe.469326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/09/2022] [Indexed: 06/17/2023]
Abstract
In this paper, we study the backaction effect on the force exerted upon Rayleigh particles in guided structures. We show that the backaction becomes stronger as the group velocity of the guided modes is decreased, which is not unexpected since the fall of group velocity increases the interaction time between the particle and the electromagnetic field. Interestingly, the sign of the group velocity affects the pushing and pulling nature of the exerted electromagnetic force. We specifically investigate the case of a single mode optical waveguide both in the propagating and evanescent regimes, and show that the backaction enables us to enhance the ratio of the potential depth to the trapping intensity, and thereby can be a beneficial tool for nondestructive trapping of small nanoparticles. We further show that backaction can induce some resonances in the optical force in the evanescent regime. These resonances can be employed for sorting of nanoparticles.
Collapse
|
70
|
Zhu M, Fu S, Man Z. Linear and angular momentum properties induced by radial- and azimuthal-variant polarized beams in a strongly focused optical system. OPTICS EXPRESS 2022; 30:41048-41060. [PMID: 36366590 DOI: 10.1364/oe.468511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Optical linear and angular momenta have attracted tremendous research interest in recent years. In this paper we theoretically investigate the electromagnetic fields and linear and angular momentum properties of tightly focused radial- and azimuthal-variant vector input beams. Calculations show that a uniform 3D optical cage can be achieved when the optical degree of freedom of polarization in the radial direction is introduced. Furthermore, the distributions of linear and angular momenta in the focal volume are revealed. Moreover, we numerically investigate the gradient, scattering, and total forces as well as spin and orbital torques on a Rayleigh particle generated by the optical cage. It is found that there are two equilibrium positions before and after the focal plane, both of which can achieve stable 3D particles capture. Most importantly, the longitudinal spin and orbital torques show the same patterns but in opposite directions in the two equilibrium positions, thus, the unwinding of the double helix can be expected to be achieved by virtue of this special optical torque.
Collapse
|
71
|
Observation of high-order imaginary Poynting momentum optomechanics in structured light. Proc Natl Acad Sci U S A 2022; 119:e2209721119. [PMID: 36279457 PMCID: PMC9636969 DOI: 10.1073/pnas.2209721119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Optical forces on small particles are conventionally produced from the intensity or phase gradient of light. Harnessing the imaginary Poynting momentum (IPM) of light to generate nontrivial forces would unlock the full potential of optical manipulation techniques, but so far, it is demonstrated only for dipolar magnetoelectric particles. Here, we show that the IPM can be coupled to the force via the interplay of multipoles higher than dipoles, giving rise to high-order IPM forces that can be exerted on a large variety of Mie particles. The high-order concept and theory can be extended to the well-known optical gradient force and radiation pressure, and may inspire new insights for studying the interaction of matter with other classic waves, such as acoustics. The imaginary Poynting momentum (IPM) of light has been captivated as an unusual origin of optical forces. However, the IPM force is predicted only for dipolar magnetoelectric particles that are hardly used in optical manipulation experiments. Here, we report a whole family of high-order IPM forces for not only magnetoelectric but also generic Mie particles, assisted with their excited higher multipoles within. Such optomechanical manifestations derive from a nonlocal contribution of the IPM to the optical force, which can be remarkable even when the incident IPM is small. We observe the high-order optomechanics in a structured light beam, which, despite carrying no angular momentum, is able to set normal microparticles into continuous rotation. Our results provide unambiguous evidence of the ponderomotive nature of the IPM, expand the classification of optical forces, and open new possibilities for levitated optomechanics and micromanipulations.
Collapse
|
72
|
Rezaei S, Azami D, Kheirandish F, Hassanzadeh A. Radiation forces on a Mie particle in the evanescent field of a resonance waveguide structure. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:2054-2062. [PMID: 36520702 DOI: 10.1364/josaa.470145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
Evanescent waves of a guided mode carry both momentum and energy, which enables them to move small objects located on a waveguide surface. This optical force can be used for optical near-field manipulation, arrangement, and acceleration of particles. In this paper, using arbitrary beam theory, the optical force on a dielectric particle in the evanescent wave of a resonance waveguiding structure is investigated. Using Maxwell's equations and applying the boundary conditions, all the field components and a generalized dispersion relation are obtained. An expression for the evanescent field is derived in terms of the spherical wave functions. Cartesian components of the radiation force are analytically formulated and numerically evaluated by ignoring the multiple scattering that occurs between the sphere and plane surface of the structure. Our numerical data show that both the horizontal and vertical force components and the forward particle velocity are enhanced significantly in the proposed resonance structure compared to those reported for three-layer conventional waveguides. Exerting stronger force on macro- and nanoparticles can be very useful to perform advanced experiments in solutions with high viscosity and experiments on biological cells. In addition, this resonance planar structure can be mounted on an inverted optical microscope stage for imaging the motion of nanoparticles especially when the particle collides and interacts with objects.
Collapse
|
73
|
Qiu G, Du Y, Guo Y, Meng Y, Gai Z, Zhang M, Wang J, deMello A. Plasmofluidic-Based Near-Field Optical Trapping of Dielectric Nano-Objects Using Gold Nanoislands Sensor Chips. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47409-47419. [PMID: 36240070 DOI: 10.1021/acsami.2c12651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Near-field optical manipulation has been widely used for guiding and trapping nanoscale objects close to an optical-active interface. This near-field manipulation opens opportunities for next-generation biosensing with the capability of large-area trapping and in situ detection. In this article, we used the finite element method (FEM) to analyze the motion mechanism of nano-objects (50-500 nm) in the near-field optics, especially localized surface plasmon resonance (LSPR). The size-dependent optical forces and hydrodynamic forces of subwavelength nanoparticles (<500 nm) in different hydrodynamic velocity fields were calculated. When the strength of the local electric field was increased, LSPR with two-dimensional gold nanoislands (AuNIs) showed improved capability for manipulating nano-objects near the vicinity of the AuNI interface. Through the experiments of in situ interferometric testing 50-500 nm nano-objects with constant number concentration or volume fraction, it was confirmed that the local plasmonic near-field was able to trap the dielectric polystyrene beads smaller than 200 nm. The plasmofluidic system was further verified by testing biological nanovesicles such as exosomes (40-200 nm) and high- and low-density lipoproteins (10-200 nm). This concept of direct dielectric nano-objects manipulation enables large-scale parallel trapping and dynamic sensing of biological nanovesicles without the need of molecular binding tethers or labeling.
Collapse
Affiliation(s)
- Guangyu Qiu
- Institute for Environmental Engineering, ETH Zürich, Stefano-Franscini-Platz 3, CH-8093Zürich, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai200240, China
| | - Ying Du
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg1, CH-8093Zürich, Switzerland
- College of Science, Zhejiang University of Technology, Hangzhou310023, China
| | - Yujia Guo
- College of Science, Zhejiang University of Technology, Hangzhou310023, China
| | - Yingchao Meng
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg1, CH-8093Zürich, Switzerland
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zürich, Zürich8091, Switzerland
| | - Ming Zhang
- College of Science, Zhejiang University of Technology, Hangzhou310023, China
| | - Jing Wang
- Institute for Environmental Engineering, ETH Zürich, Stefano-Franscini-Platz 3, CH-8093Zürich, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
| | - Andrew deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg1, CH-8093Zürich, Switzerland
| |
Collapse
|
74
|
Sun R, Qiu S, Han F, Liu Z, Cai W, Liu T, Ren Y. Direction-sensitive rotational speed measurement based on the rotational Doppler effect of cylindrical vector beams. APPLIED OPTICS 2022; 61:7917-7924. [PMID: 36255912 DOI: 10.1364/ao.471059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
The Doppler effect has inspired numerous applications since its discovery, initially enabling measurement of the relative velocity between a moving object and a wave source. In recent years, it has been found that scalar vortex beams with orbital angular momenta can produce the rotational Doppler effect, which can be used to measure the rotational speeds of rotating objects. However, in practice, only the absolute value of the rotational Doppler frequency shift can be obtained, and it is difficult to distinguish the direction of the object directly by a single measurement. This difficulty can be solved by using cylindrical vector beams with spatially varying polarization states. The cylindrical vector beam is formed by coaxial superposition of two vortex beams with opposite orbital angular momenta and orthogonal polarization states. By using two different polarization channels, the rotation direction can be directly recognized according to the relative phase difference between the two channels. In this paper, the scattering point model is employed to analyze the rotational Doppler effect of cylindrical vector beams, and a variety of cylindrical vector beams are generated by using vortex half-wave plates. The scheme can realize measurement of the rotational speed and direction simultaneously, and the system has simple construction, high accuracy of angular velocity measurement, and accurate direction identification.
Collapse
|
75
|
Ferrari H, Zapata-Rodríguez CJ, Cuevas M. Giant terahertz pulling force within an evanescent field induced by asymmetric wave coupling into radiative and bound modes. OPTICS LETTERS 2022; 47:4500-4503. [PMID: 36048689 DOI: 10.1364/ol.460202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Manipulation of nano-scale objects by engineering the electromagnetic waves in the environment medium is pivotal for several particle handling techniques using optical resonators, waveguiding, and plasmonic devices. In this Letter, we theoretically demonstrate the possibility of engineering a compact and tunable plasmon-based terahertz (THz) tweezer using a graphene monolayer that is deposited on a high-index dielectric substrate. When a nanoparticle located in a vacuum in the vicinity of the graphene monolayer is illuminated under total internal reflection, as light is launched from the substrate, such a device is shown to be capable of inducing an enhanced rotating dipole in the nanoparticle thus enabling asymmetric, directional near-field coupling into the graphene plasmon mode and the radiative modes in the substrate. As a result of the total momentum conservation, the net force exerted on the particle points in a direction opposite to the pushing scattering force of the exciting evanescent field. Our results can contribute to novel realizations of photonic devices based on polarization-dependent interactions between nanoparticles and electromagnetic mode fields.
Collapse
|
76
|
Liu K, Ding H, Li S, Niu Y, Zeng Y, Zhang J, Du X, Gu Z. 3D printing colloidal crystal microstructures via sacrificial-scaffold-mediated two-photon lithography. Nat Commun 2022; 13:4563. [PMID: 35931721 PMCID: PMC9355982 DOI: 10.1038/s41467-022-32317-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
The orderly arrangement of nanomaterials’ tiny units at the nanometer-scale accounts for a substantial part of their remarkable properties. Maintaining this orderness and meanwhile endowing the nanomaterials with highly precise and free-designed 3D micro architectures will open an exciting prospect for various novel applications. In this paper, we developed a sacrificial-scaffold-mediated two-photon lithography (TPL) strategy that enables the fabrication of complex 3D colloidal crystal microstructures with orderly-arranged nanoparticles inside. We show that, with the help of a degradable hydrogel scaffold, the disturbance effect of the femtosecond laser to the nanoparticle self-assembling could be overcome. Therefore, hydrogel-state and solid-state colloidal crystal microstructures with diverse compositions, free-designed geometries and variable structural colors could be easily fabricated. This enables the possibility to create novel colloidal crystal microsensing systems that have not been achieved before. Colloidal crystals are widely applied in the fabrication of optoelectronic devices, but realizing freedom of design, such as in 3D printing, in colloidal crystal fabrication remains challenging. Here, the authors demonstrate a sacrificial-scaffold-mediated two-photon lithography strategy that enables the fabrication of complex 3D colloidal crystal microstructures with orderly arranged nanoparticles in the bulk.
Collapse
Affiliation(s)
- Keliang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haibo Ding
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Sen Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yanfang Niu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yi Zeng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Junning Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xin Du
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
77
|
Lu D, Retama JR, Marin R, Marqués MI, Calderón OG, Melle S, Haro-González P, Jaque D. Thermoresponsive Polymeric Nanolenses Magnify the Thermal Sensitivity of Single Upconverting Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202452. [PMID: 35908155 DOI: 10.1002/smll.202202452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Lanthanide-based upconverting nanoparticles (UCNPs) are trustworthy workhorses in luminescent nanothermometry. The use of UCNPs-based nanothermometers has enabled the determination of the thermal properties of cell membranes and monitoring of in vivo thermal therapies in real time. However, UCNPs boast low thermal sensitivity and brightness, which, along with the difficulty in controlling individual UCNP remotely, make them less than ideal nanothermometers at the single-particle level. In this work, it is shown how these problems can be elegantly solved using a thermoresponsive polymeric coating. Upon decorating the surface of NaYF4 :Er3+ ,Yb3+ UCNPs with poly(N-isopropylacrylamide) (PNIPAM), a >10-fold enhancement in optical forces is observed, allowing stable trapping and manipulation of a single UCNP in the physiological temperature range (20-45 °C). This optical force improvement is accompanied by a significant enhancement of the thermal sensitivity- a maximum value of 8% °C+1 at 32 °C induced by the collapse of PNIPAM. Numerical simulations reveal that the enhancement in thermal sensitivity mainly stems from the high-refractive-index polymeric coating that behaves as a nanolens of high numerical aperture. The results in this work demonstrate how UCNP nanothermometers can be further improved by an adequate surface decoration and open a new avenue toward highly sensitive single-particle nanothermometry.
Collapse
Affiliation(s)
- Dasheng Lu
- Nanomaterials for Bioimaging Group (NanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid, 28034, Spain
| | - Jorge Rubio Retama
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid, 28034, Spain
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Plaza de Ramón y Cajal, s/n, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Riccardo Marin
- Nanomaterials for Bioimaging Group (NanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid, 28034, Spain
| | - Manuel I Marqués
- Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Departamento de Física de Materiales and IFIMAC, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Oscar G Calderón
- Departamento de Óptica, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, 28037, Spain
| | - Sonia Melle
- Departamento de Óptica, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, 28037, Spain
| | - Patricia Haro-González
- Nanomaterials for Bioimaging Group (NanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (NanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid, 28034, Spain
| |
Collapse
|
78
|
Shen Y, Weitz DA, Forde NR, Shayegan M. Line optical tweezers as controllable micromachines: techniques and emerging trends. SOFT MATTER 2022; 18:5359-5365. [PMID: 35819100 DOI: 10.1039/d2sm00259k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the past three decades, the technology of optical tweezers has made significant contributions in various scientific areas, including optics, photonics, and nanosciences. Breakthroughs include manipulating particles in both static and dynamic ways, particle sorting, and constructing controllable micromachines. Advances in shaping and controlling the laser beam profile enable control over the position and location of the trap, which has many possible applications. A line optical tweezer (LOT) can be created by rapidly moving a spot optical tweezer using a tool such as a galvanometer mirror or an acousto-optic modulator. By manipulating the intensity profile along the beam line to be asymmetric or non-uniform, the technique can be adapted to various specific applications. Among the many exciting applications of line optical tweezers, in this work, we discuss in detail applications of LOT, including probing colloidal interactions, transporting and sorting of colloidal microspheres, self-propelled motions, trapping anisotropic particles, exploring colloidal interactions at fluid-fluid interfaces, and building optical thermal ratchets. We further discuss prospective applications in each of these areas of soft matter, including polymeric and biological soft materials.
Collapse
Affiliation(s)
- Yinan Shen
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | - David A Weitz
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, Canada
| | - Marjan Shayegan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
79
|
Ding H, Chen Z, Kollipara PS, Liu Y, Kim Y, Huang S, Zheng Y. Programmable Multimodal Optothermal Manipulation of Synthetic Particles and Biological Cells. ACS NANO 2022; 16:10878-10889. [PMID: 35816157 PMCID: PMC9901196 DOI: 10.1021/acsnano.2c03111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Optical manipulation of tiny objects has benefited many research areas ranging from physics to biology to micro/nanorobotics. However, limited manipulation modes, intense lasers with complex optics, and applicability to limited materials and geometries of objects restrict the broader uses of conventional optical tweezers. Herein, we develop an optothermal platform that enables the versatile manipulation of synthetic micro/nanoparticles and live cells using an ultralow-power laser beam and a simple optical setup. Five working modes (i.e., printing, tweezing, rotating, rolling, and shooting) have been achieved and can be switched on demand through computer programming. By incorporating a feedback control system into the platform, we realize programmable multimodal control of micro/nanoparticles, enabling autonomous micro/nanorobots in complex environments. Moreover, we demonstrate in situ three-dimensional single-cell surface characterizations through the multimodal optothermal manipulation of live cells. This programmable multimodal optothermal platform will contribute to diverse fundamental studies and applications in cellular biology, nanotechnology, robotics, and photonics.
Collapse
Affiliation(s)
- Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhihan Chen
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pavana Siddhartha Kollipara
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yaoran Liu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Youngsun Kim
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Suichu Huang
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, 92 Xidazhijie St., Harbin 15001, China
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
80
|
Zhang L, Liu B, Wang C, Xin C, Li R, Wang D, Xu L, Fan S, Zhang J, Zhang C, Hu Y, Li J, Wu D, Zhang L, Chu J. Functional Shape-Morphing Microarchitectures Fabricated by Dynamic Holographically Shifted Femtosecond Multifoci. NANO LETTERS 2022; 22:5277-5286. [PMID: 35728002 DOI: 10.1021/acs.nanolett.2c01178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Functional microdevices based on responsive hydrogel show great promise in targeted delivery and biomedical analysis. Among state-of-the-art techniques for manufacturing hydrogel-based microarchitectures, femtosecond laser two-photon polymerization distinguishes itself by high designability and precision, but the point-by-point writing scheme requires mechanical apparatuses to support focus scanning. In this work, by predesigning holograms combined with lens phase modulation, multiple femtosecond laser spots are holographically generated and shifted for prototyping of three-dimensional shape-morphing structures without any moving equipment in the construction process. The microcage array is rapidly fabricated for high-performance target capturing enabled by switching environmental pH. Moreover, the built scaffolds can serve as arrayed analytical platforms for observing cell behaviors in normal or changeable living spaces or revealing the anticancer effects of loaded drugs. The proposed approach opens a new path for facile and flexible manufacturing of hydrogel-based functional microstructures with great versatility in micro-object manipulation.
Collapse
Affiliation(s)
- Leran Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Bingrui Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Chaowei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Chen Xin
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Rui Li
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dawei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Liqun Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Shengying Fan
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Juan Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Chenchu Zhang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Yanlei Hu
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiawen Li
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dong Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jiaru Chu
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
81
|
Abstract
Plasmonic and dielectric tweezers represent a common paradigm for an innovative and efficient optical trapping at the micro/nanoscale. Plasmonic configurations provide subwavelength mode confinement, resulting in very high optical forces, at the expense of a higher thermal effect, that could undermine the biological sample under test. On the contrary, dielectric configurations show limited optical forces values but overcome the thermal challenge. Achieving efficient optical trapping without affecting the sample temperature is still demanding. Here, we propose the design of a silicon (Si)-based dielectric nanobowtie dimer, made by two tip-to-tip triangle semiconductor elements. The combination of the conservation of the normal component of the electric displacement and the tangential component of the electric field, with a consequent large energy field confinement in the trapping site, ensures optical forces of about 27 fN with a power of 6 mW/µm2. The trapping of a virus with a diameter of 100 nm is demonstrated with numerical simulations, calculating a stability S = 1, and a stiffness k = 0.33 fN/nm, within a footprint of 0.96 µm2, preserving the temperature of the sample (temperature variation of 0.3 K).
Collapse
|
82
|
Chen Z, Cai Z, Liu W, Yan Z. Optical trapping and manipulation for single-particle spectroscopy and microscopy. J Chem Phys 2022; 157:050901. [DOI: 10.1063/5.0086328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Optical tweezers can control the position and orientation of individual colloidal particles in solution. Such control is often desirable but challenging for single-particle spectroscopy and microscopy, especially at the nanoscale. Functional nanoparticles that are optically trapped and manipulated in a three-dimensional (3D) space can serve as freestanding nanoprobes, which provide unique prospects of sensing and mapping the surrounding environment of the nanoparticles and studying their interactions with biological systems. In this perspective, we will first describe the optical forces underlying the optical trapping and manipulation of microscopic particles, then review the combinations and applications of different spectroscopy and microscopy techniques with optical tweezers. Finally, we will discuss the challenges of performing spectroscopy and microscopy on single nanoparticles with optical tweezers, the possible routes to address these challenges, and the new opportunities that will arise.
Collapse
Affiliation(s)
- Zhenzhen Chen
- The University of North Carolina at Chapel Hill, United States of America
| | - Zhewei Cai
- Clarkson University, United States of America
| | - Wenbo Liu
- The University of North Carolina at Chapel Hill, United States of America
| | - Zijie Yan
- University of North Carolina at Chapel Hill, United States of America
| |
Collapse
|
83
|
Yang H, Mei Z, Li Z, Liu H, Deng H, Xiao G, Li J, Luo Y, Yuan L. Integrated Multifunctional Graphene Discs 2D Plasmonic Optical Tweezers for Manipulating Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1769. [PMID: 35630991 PMCID: PMC9144160 DOI: 10.3390/nano12101769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
Optical tweezers are key tools to trap and manipulate nanoparticles in a non-invasive way, and have been widely used in the biological and medical fields. We present an integrated multifunctional 2D plasmonic optical tweezer consisting of an array of graphene discs and the substrate circuit. The substrate circuit allows us to apply a bias voltage to configure the Fermi energy of graphene discs independently. Our work is based on numerical simulation of the finite element method. Numerical results show that the optical force is generated due to the localized surface plasmonic resonance (LSPR) mode of the graphene discs with Fermi Energy Ef = 0.6 eV under incident intensity I = 1 mW/μm2, which has a very low incident intensity compared to other plasmonic tweezers systems. The optical forces on the nanoparticles can be controlled by modulating the position of LSPR excitation. Controlling the position of LSPR excitation by bias voltage gates to configure the Fermi energy of graphene disks, the nanoparticles can be dynamically transported to arbitrary positions in the 2D plane. Our work is integrated and has multiple functions, which can be applied to trap, transport, sort, and fuse nanoparticles independently. It has potential applications in many fields, such as lab-on-a-chip, nano assembly, enhanced Raman sensing, etc.
Collapse
Affiliation(s)
- Hongyan Yang
- College of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (H.Y.); (Z.M.); (Z.L.); (H.L.); (H.D.); (L.Y.)
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Ziyang Mei
- College of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (H.Y.); (Z.M.); (Z.L.); (H.L.); (H.D.); (L.Y.)
| | - Zhenkai Li
- College of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (H.Y.); (Z.M.); (Z.L.); (H.L.); (H.D.); (L.Y.)
| | - Houquan Liu
- College of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (H.Y.); (Z.M.); (Z.L.); (H.L.); (H.D.); (L.Y.)
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Hongchang Deng
- College of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (H.Y.); (Z.M.); (Z.L.); (H.L.); (H.D.); (L.Y.)
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Gongli Xiao
- Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jianqing Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Macau University of Science and Technology, Macau 999078, China;
| | - Yunhan Luo
- College of Science & Engineering, Jinan University, Guangzhou 510632, China;
| | - Libo Yuan
- College of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (H.Y.); (Z.M.); (Z.L.); (H.L.); (H.D.); (L.Y.)
| |
Collapse
|
84
|
Kotsifaki DG, Nic Chormaic S. The role of temperature-induced effects generated by plasmonic nanostructures on particle delivery and manipulation: a review. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:2199-2218. [PMID: 39678096 PMCID: PMC11636517 DOI: 10.1515/nanoph-2022-0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/17/2024]
Abstract
Plasmonic optical tweezers that stem from the need to trap and manipulate ever smaller particles using non-invasive optical forces, have made significant contributions to precise particle motion control at the nanoscale. In addition to the optical forces, other effects have been explored for particle manipulation. For instance, the plasmonic heat delivery mechanism generates micro- and nanoscale optothermal hydrodynamic effects, such as natural fluid convection, Marangoni fluid convection and thermophoretic effects that influence the motion of a wide range of particles from dielectric to biomolecules. In this review, a discussion of optothermal effects generated by heated plasmonic nanostructures is presented with a specific focus on applications to optical trapping and particle manipulation. It provides a discussion on the existing challenges of optothermal mechanisms generated by plasmonic optical tweezers and comments on their future opportunities in life sciences.
Collapse
Affiliation(s)
- Domna G. Kotsifaki
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-San, Okinawa, Japan
- Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan, Jiangsu, China
| | - Síle Nic Chormaic
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-San, Okinawa, Japan
| |
Collapse
|
85
|
Wu X, Ehehalt R, Razinskas G, Feichtner T, Qin J, Hecht B. Light-driven microdrones. NATURE NANOTECHNOLOGY 2022; 17:477-484. [PMID: 35449413 DOI: 10.1038/s41565-022-01099-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
When photons interact with matter, forces and torques occur due to the transfer of linear and angular momentum, respectively. The resulting accelerations are small for macroscopic objects but become substantial for microscopic objects with small masses and moments of inertia, rendering photon recoil very attractive to propel micro- and nano-objects. However, until now, using light to control object motion in two or three dimensions in all three or six degrees of freedom has remained an unsolved challenge. Here we demonstrate light-driven microdrones (size roughly 2 μm and mass roughly 2 pg) in an aqueous environment that can be manoeuvred in two dimensions in all three independent degrees of freedom (two translational and one rotational) using two overlapping unfocused light fields of 830 and 980 nm wavelength. To actuate the microdrones independent of their orientation, we use up to four individually addressable chiral plasmonic nanoantennas acting as nanomotors that resonantly scatter the circular polarization components of the driving light into well-defined directions. The microdrones are manoeuvred by only adjusting the optical power for each motor (the power of each circular polarization component of each wavelength). The actuation concept is therefore similar to that of macroscopic multirotor drones. As a result, we demonstrate manual steering of the microdrones along complex paths. Since all degrees of freedom can be addressed independently and directly, feedback control loops may be used to counteract Brownian motion. We posit that the microdrones can find applications in transport and release of cargos, nanomanipulation, and local probing and sensing of nano and mesoscale objects.
Collapse
Affiliation(s)
- Xiaofei Wu
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany.
- Leibniz Institute of Photonic Technology, Jena, Germany.
| | - Raphael Ehehalt
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany
| | - Gary Razinskas
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Thorsten Feichtner
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany
| | - Jin Qin
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany
| | - Bert Hecht
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
86
|
Shakoor A, Gao W, Zhao L, Jiang Z, Sun D. Advanced tools and methods for single-cell surgery. MICROSYSTEMS & NANOENGINEERING 2022; 8:47. [PMID: 35502330 PMCID: PMC9054775 DOI: 10.1038/s41378-022-00376-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Highly precise micromanipulation tools that can manipulate and interrogate cell organelles and components must be developed to support the rapid development of new cell-based medical therapies, thereby facilitating in-depth understanding of cell dynamics, cell component functions, and disease mechanisms. This paper presents a literature review on micro/nanomanipulation tools and their control methods for single-cell surgery. Micromanipulation methods specifically based on laser, microneedle, and untethered micro/nanotools are presented in detail. The limitations of these techniques are also discussed. The biological significance and clinical applications of single-cell surgery are also addressed in this paper.
Collapse
Affiliation(s)
- Adnan Shakoor
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Wendi Gao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
87
|
Abstract
Many light-based technologies have been developed to manipulate micro/nanoscale objects such as colloidal particles and biological cells for basic research and practical applications. While most approaches such as optical tweezers are best suited for manipulation of objects in fluidic environments, optical manipulation on solid substrates has recently gained research interest for its advantages in constructing, reconfiguring, or powering solid-state devices consisting of colloidal particles as building blocks. Here, we review recent progress in optical technologies that enable versatile manipulation and assembly of micro/nanoscale objects on solid substrates. Diverse technologies based on distinct physical mechanisms, including photophoresis, photochemical isomerization, optothermal phase transition, optothermally induced surface acoustic waves, and optothermal expansion, are discussed. We conclude this review with our perspectives on the opportunities, challenges, and future directions in optical manipulation and assembly on solid substrates.
Collapse
Affiliation(s)
- Jingang Li
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ali Alfares
- Paul M. Rady Department of Mechanical Engineering, The University of Colorado at Boulder, Boulder, CO 80303, USA
| | - Yuebing Zheng
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
88
|
Chen R, Fan F, Li C. Unraveling Charge-Separation Mechanisms in Photocatalyst Particles by Spatially Resolved Surface Photovoltage Techniques. Angew Chem Int Ed Engl 2022; 61:e202117567. [PMID: 35100475 DOI: 10.1002/anie.202117567] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/08/2022]
Abstract
The photocatalytic conversion of solar energy offers a potential route to renewable energy, and its efficiency relies on effective charge separation in nanostructured photocatalysts. Understanding the charge-separation mechanism is key to improving the photocatalytic performance and this has now been enabled by advances in the spatially resolved surface photovoltage (SRSPV) method. In this Review we highlight progress made by SRSPV in mapping charge distributions at the nanoscale and determining the driving forces of charge separation in heterogeneous photocatalyst particles. We discuss how charge separation arising from a built-in electric field, diffusion, and trapping can be exploited and optimized through photocatalyst design. We also highlight the importance of asymmetric engineering of photocatalysts for effective charge separation. Finally, we provide an outlook on further opportunities that arise from leveraging these insights to guide the rational design of photocatalysts and advance the imaging technique to expand the knowledge of charge separation.
Collapse
Affiliation(s)
- Ruotian Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| |
Collapse
|
89
|
Valagiannopoulos C. Nanotubes as sinks for quantum particles. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:580-586. [PMID: 35471380 DOI: 10.1364/josaa.449520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Nanotubes with proper thickness, size, and texture make ultra-efficient sinks for quantum particles traveling into specific background media. Several optimal semiconducting cylindrical layers are reported to achieve enhancement in the trapping of matter waves by two to three orders of magnitude. The identified shells can be used as pieces in quantum devices that involve the focusing of incident beams, spanning from charge pumps and superconducting capacitors to radiation pattern controllers and matter-wave lenses.
Collapse
|
90
|
Joby JP, Das S, Pinapati P, Rogez B, Baffou G, Tiwari DK, Cherukulappurath S. Optically-assisted thermophoretic reversible assembly of colloidal particles and E. coli using graphene oxide microstructures. Sci Rep 2022; 12:3657. [PMID: 35256647 PMCID: PMC8901786 DOI: 10.1038/s41598-022-07588-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/15/2022] [Indexed: 02/02/2023] Open
Abstract
Optically-assisted large-scale assembly of nanoparticles have been of recent interest owing to their potential in applications to assemble and manipulate colloidal particles and biological entities. In the recent years, plasmonic heating has been the most popular mechanism to achieve temperature hotspots needed for extended assembly and aggregation. In this work, we present an alternative route to achieving strong thermal gradients that can lead to non-equilibrium transport and assembly of matter. We utilize the excellent photothermal properties of graphene oxide to form a large-scale assembly of silica beads. The formation of the assembly using this scheme is rapid and reversible. Our experiments show that it is possible to aggregate silica beads (average size 385 nm) by illuminating thin graphene oxide microplatelet by a 785 nm laser at low intensities of the order of 50-100 µW/µm2. We further extend the study to trapping and photoablation of E. coli bacteria using graphene oxide. We attribute this aggregation process to optically driven thermophoretic forces. This scheme of large-scale assembly is promising for the study of assembly of matter under non-equilibrium processes, rapid concentration tool for spectroscopic studies such as surface-enhanced Raman scattering and for biological applications.
Collapse
Affiliation(s)
| | - Suman Das
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Praveenkumar Pinapati
- School of Physical and Applied Sciences, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Benoît Rogez
- Institut Fresnel, CNRS, Aix Marseille University, Centrale Marseille, Marseille, France
| | - Guillaume Baffou
- Institut Fresnel, CNRS, Aix Marseille University, Centrale Marseille, Marseille, France
| | - Dhermendra K Tiwari
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
| | - Sudhir Cherukulappurath
- School of Physical and Applied Sciences, Goa University, Taleigao Plateau, Goa, 403206, India.
| |
Collapse
|
91
|
Chen R, Fan F, Li C. Unraveling Charge‐Separation Mechanisms in Photocatalyst Particles by Spatially Resolved Surface Photovoltage Techniques. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ruotian Chen
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Fengtao Fan
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Can Li
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| |
Collapse
|
92
|
Abstract
Progress in optical manipulation has stimulated remarkable advances in a wide range of fields, including materials science, robotics, medical engineering, and nanotechnology. This Review focuses on an emerging class of optical manipulation techniques, termed heat-mediated optical manipulation. In comparison to conventional optical tweezers that rely on a tightly focused laser beam to trap objects, heat-mediated optical manipulation techniques exploit tailorable optothermo-matter interactions and rich mass transport dynamics to enable versatile control of matter of various compositions, shapes, and sizes. In addition to conventional tweezing, more distinct manipulation modes, including optothermal pulling, nudging, rotating, swimming, oscillating, and walking, have been demonstrated to enhance the functionalities using simple and low-power optics. We start with an introduction to basic physics involved in heat-mediated optical manipulation, highlighting major working mechanisms underpinning a variety of manipulation techniques. Next, we categorize the heat-mediated optical manipulation techniques based on different working mechanisms and discuss working modes, capabilities, and applications for each technique. We conclude this Review with our outlook on current challenges and future opportunities in this rapidly evolving field of heat-mediated optical manipulation.
Collapse
Affiliation(s)
- Zhihan Chen
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jingang Li
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
93
|
Fränzl M, Cichos F. Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows. Nat Commun 2022; 13:656. [PMID: 35115502 PMCID: PMC8813924 DOI: 10.1038/s41467-022-28212-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Manipulation of nano-objects at the microscale is of great technological importance for constructing new functional materials, manipulating tiny amounts of fluids, reconfiguring sensor systems, or detecting tiny concentrations of analytes in medical screening. Here, we show that hydrodynamic boundary flows enable the trapping and manipulation of nano-objects near surfaces. We trigger thermo-osmotic flows by modulating the van der Waals and double layer interactions at a gold-liquid interface with optically generated local temperature fields. The hydrodynamic flows, attractive van der Waals and repulsive double layer forces acting on the suspended nanoparticles enable precise nanoparticle positioning and guidance. A rapid multiplexing of flow fields permits the parallel manipulation of many nano-objects and the generation of complex flow fields. Our findings have direct implications for the field of plasmonic nanotweezers and other thermo-plasmonic trapping systems, paving the way for nanoscopic manipulation with boundary flows.
Collapse
Affiliation(s)
- Martin Fränzl
- Peter Debye Institute for Soft Matter Physics, Molecular Nanophotonics Group, Universität Leipzig, Linnéstr. 5, 04103, Leipzig, Germany
| | - Frank Cichos
- Peter Debye Institute for Soft Matter Physics, Molecular Nanophotonics Group, Universität Leipzig, Linnéstr. 5, 04103, Leipzig, Germany.
| |
Collapse
|
94
|
Xie Y, Liu X. Multifunctional manipulation of red blood cells using optical tweezers. JOURNAL OF BIOPHOTONICS 2022; 15:e202100315. [PMID: 34773382 DOI: 10.1002/jbio.202100315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Serving as natural vehicles to deliver oxygen throughout the whole body, red blood cells (RBCs) have been regarded as important indicators for biomedical analysis and clinical diagnosis. Various diseases can be induced due to the dysfunction of RBCs. Hence, a flexible tool is required to perform precise manipulation and quantitative characterization of their physiological mechanisms and viscoelastic properties. Optical tweezers have emerged as potential candidates due to their noncontact manipulation and femtonewton-precision measurements. This review aimed to highlight the recent advances in the multifunctional manipulation of RBCs using optical tweezers, including controllable deformation, dynamic stretching, RBC aggregation, blood separation and Raman characterization. Further, great attentions have been focused on the precise assembly of functional biophotonics devices with trapped RBCs, and a brief overview was offered for the growing interests to manipulate RBCs in vivo.
Collapse
Affiliation(s)
- Yanzheng Xie
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Xiaoshuai Liu
- Institute of Nanophotonics, Jinan University, Guangzhou, China
| |
Collapse
|
95
|
Violi IL, Martinez LP, Barella M, Zaza C, Chvátal L, Zemánek P, Gutiérrez MV, Paredes MY, Scarpettini AF, Olmos-Trigo J, Pais VR, Nóblega ID, Cortes E, Sáenz JJ, Bragas AV, Gargiulo J, Stefani FD. Challenges on optical printing of colloidal nanoparticles. J Chem Phys 2022; 156:034201. [DOI: 10.1063/5.0078454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ianina L. Violi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, CABA 2390, Argentina
- Instituto de Nanosistemas, UNSAM-CONICET, Ave. 25 de Mayo 1021, San Martín 1650, Argentina
| | - Luciana P. Martinez
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, CABA 2390, Argentina
| | - Mariano Barella
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, CABA 2390, Argentina
| | - Cecilia Zaza
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, CABA 2390, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes, CABA 2620, Argentina
| | - Lukáš Chvátal
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - Pavel Zemánek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - Marina V. Gutiérrez
- Grupo de Fotónica Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional, 2804 Campana, Argentina
| | - María Y. Paredes
- Grupo de Fotónica Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional, 2804 Campana, Argentina
| | - Alberto F. Scarpettini
- Grupo de Fotónica Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional, 2804 Campana, Argentina
| | - Jorge Olmos-Trigo
- Donostia International Physics Center (DIPC), Donostia-San Sebastián, País Vasco, Spain
| | - Valeria R. Pais
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes, CABA 2620, Argentina
| | - Iván Díaz Nóblega
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes, CABA 2620, Argentina
| | - Emiliano Cortes
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Juan José Sáenz
- Donostia International Physics Center (DIPC), Donostia-San Sebastián, País Vasco, Spain
| | - Andrea V. Bragas
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes, CABA 2620, Argentina
| | - Julian Gargiulo
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, CABA 2390, Argentina
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Fernando D. Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, CABA 2390, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes, CABA 2620, Argentina
| |
Collapse
|
96
|
Wei B, Gong S, Li R, Minin IV, Minin OV, Lin L. Optical Force on a Metal Nanorod Exerted by a Photonic Jet. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:251. [PMID: 35055268 PMCID: PMC8781982 DOI: 10.3390/nano12020251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/10/2022]
Abstract
In this article, we study the optical force exerted on nanorods. In recent years, the capture of micro-nanoparticles has been a frontier topic in optics. A Photonic Jet (PJ) is an emerging subwavelength beam with excellent application prospects. This paper studies the optical force exerted by photonic jets generated by a plane wave illuminating a Generalized Luneburg Lens (GLLs) on nanorods. In the framework of the dipole approximation, the optical force on the nanorods is studied. The electric field of the photonic jet is calculated by the open-source software package DDSCAT developed based on the Discrete Dipole Approximation (DDA). In this paper, the effects of the nanorods' orientation and dielectric constant on the transverse force Fx and longitudinal force Fy are analyzed. Numerical results show that the maximum value of the positive force and the negative force are equal and appear alternately at the position of the photonic jet. Therefore, to capture anisotropic nanoscale-geometries (nanorods), it is necessary to adjust the position of GLLs continuously. It is worth emphasizing that manipulations with nanorods will make it possible to create new materials at the nanoscale.
Collapse
Affiliation(s)
- Bojian Wei
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China; (B.W.); (S.G.)
| | - Shuhong Gong
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China; (B.W.); (S.G.)
| | - Renxian Li
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China; (B.W.); (S.G.)
- Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071, China
| | - Igor V. Minin
- School of Nondestructive testing, Tomsk Polytechnic University, 634050 Tomsk, Russia; (I.V.M.); (O.V.M.)
| | - Oleg V. Minin
- School of Nondestructive testing, Tomsk Polytechnic University, 634050 Tomsk, Russia; (I.V.M.); (O.V.M.)
| | - Leke Lin
- China Research Institute of Radiowave Propagation, Qingdao 266000, China;
| |
Collapse
|
97
|
Wu T, Chen X, Gong Z, Yan J, Guo J, Zhang Y, Li Y, Li B. Intracellular Thermal Probing Using Aggregated Fluorescent Nanodiamonds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103354. [PMID: 34813176 PMCID: PMC8787390 DOI: 10.1002/advs.202103354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/02/2021] [Indexed: 05/05/2023]
Abstract
Intracellular thermometry provides important information about the physiological activity of single cells and has been implemented using diverse temperature-sensitive materials as nanoprobes. However, measuring the temperature of specific organelles or subcellular structures is challenging because it requires precise positioning of the nanoprobes. Here, it is shown that dispersed fluorescent nanodiamonds (FNDs) endocytosed in living cells can be aggregated into microspheres using optical forces and used as intracellular temperature probes. The aggregation of the FNDs and electromagnetic resonance between individual nanodiamonds in the microspheres lead to a sevenfold intensity enhancement of 546-nm laser excitation. With the assistance of a scanning optical tweezing system, the FND microspheres can be precisely patterned and positioned within the cells. By measuring the fluorescence spectra of the microspheres, the temperatures at different locations within the cells are detected. The method provides an approach to the constructing and positioning of nanoprobes in an intracellular manner, which has potential applications in high-precision and flexible single-cell analysis.
Collapse
Affiliation(s)
- Tianli Wu
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Xixi Chen
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Zhiyong Gong
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Jiahao Yan
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Jinghui Guo
- Department of Physiology, School of MedicineJinan UniversityGuangzhou510632China
| | - Yao Zhang
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Yuchao Li
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Baojun Li
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| |
Collapse
|
98
|
Jin R, Xu Y, Dong ZG, Liu Y. Optical Pulling Forces Enabled by Hyperbolic Metamaterials. NANO LETTERS 2021; 21:10431-10437. [PMID: 34898220 DOI: 10.1021/acs.nanolett.1c03772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We propose a novel approach to generating optical pulling forces on a gold nanowire, which are placed inside or above a hyperbolic metamaterial and subjected to plane wave illumination. Two mechanisms are found to induce the optical pulling force, including the concave isofrequency contour of the hyperbolic metamaterial and the excitation of directional surface plasmon polaritons. We systematically study the optical forces under various conditions, including the wavelength, the angle of incidence of light, and the nanowire radius. It is shown that the optical pulling force enabled by hyperbolic metamaterials is broadband and insensitive to the angle of incidence. The mechanisms and results reported here open a new avenue to manipulating nanoscale objects.
Collapse
Affiliation(s)
| | | | - Zheng-Gao Dong
- Physics Department, Southeast University, Nanjing 211189, China
| | | |
Collapse
|
99
|
Tiwari S, Khandelwal U, Sharma V, Kumar GVP. Single Molecule Surface Enhanced Raman Scattering in a Single Gold Nanoparticle-Driven Thermoplasmonic Tweezer. J Phys Chem Lett 2021; 12:11910-11918. [PMID: 34878793 DOI: 10.1021/acs.jpclett.1c03450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Surface enhanced Raman scattering (SERS) is optically sensitive and chemically specific to detect single-molecule spectroscopic signatures. Facilitating this capability in optically trapped nanoparticles at low laser power remains a significant challenge. In this letter, we show single molecule SERS signatures in reversible assemblies of trapped plasmonic nanoparticles using a single laser excitation (633 nm). Importantly, this trap is facilitated by the thermoplasmonic field of a single gold nanoparticle dropcasted on a glass surface. We employ the bianalyte SERS technique to ascertain the single molecule statistical signatures and identify the critical parameters of the thermoplasmonic tweezer that provide this sensitivity. Furthermore, we show the utility of this low power (≈ 0.1 mW/μm2) tweezer platform to trap a single gold nanoparticle and transport assembly of nanoparticles. Given that our configuration is based on a dropcasted gold nanoparticle, we envisage its utility to create reconfigurable plasmonic metafluids in physiological and catalytic environments and to be potentially adapted as an in vivo plasmonic tweezer.
Collapse
Affiliation(s)
- Sunny Tiwari
- Department of Physics, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Utkarsh Khandelwal
- Department of Physics, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Vandana Sharma
- Department of Physics, Indian Institute of Science Education and Research, Pune, 411008, India
| | - G V Pavan Kumar
- Department of Physics, Indian Institute of Science Education and Research, Pune, 411008, India
| |
Collapse
|
100
|
Peng M, Luo H, Zhang Z, Kuang T, Chen D, Bai W, Chen Z, Yang J, Xiao G. Optical Pulling Using Chiral Metalens as a Photonic Probe. NANOMATERIALS 2021; 11:nano11123376. [PMID: 34947726 PMCID: PMC8707173 DOI: 10.3390/nano11123376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
Abstract
Optical pulling forces, which can pull objects in the source direction, have emerged as an intensively explored field in recent years. Conventionally, optical pulling forces exerted on objects can be achieved by tailoring the properties of an electromagnetic field, the surrounding environment, or the particles themselves. Recently, the idea of applying conventional lenses or prisms as photonic probes has been proposed to realize an optical pulling force. However, their sizes are far beyond the scope of optical manipulation. Here, we design a chiral metalens as the photonic probe to generate a robust optical pulling force. The induced pulling force exerted on the metalens, characterized by a broadband spectrum over 0.6 μm (from 1.517 to 2.117 μm) bandwidth, reached a maximum value of −83.76 pN/W. Moreover, under the illumination of incident light with different circular polarization states, the longitudinal optical force acting on the metalens showed a circular dichroism response. This means that the longitudinal optical force can be flexibly tuned from a pulling force to a pushing force by controlling the polarization of the incident light. This work could pave the way for a new advanced optical manipulation technique, with potential applications ranging from contactless wafer-scale fabrication to cell assembly and even course control for spacecraft.
Collapse
Affiliation(s)
- Miao Peng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (M.P.); (H.L.); (T.K.); (Z.C.)
| | - Hui Luo
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (M.P.); (H.L.); (T.K.); (Z.C.)
| | - Zhaojian Zhang
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China; (Z.Z.); (D.C.)
| | - Tengfang Kuang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (M.P.); (H.L.); (T.K.); (Z.C.)
| | - Dingbo Chen
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China; (Z.Z.); (D.C.)
| | - Wei Bai
- CETC Fenghua Information-Equipment Co., Ltd., Taiyuan 030000, China;
| | - Zhijie Chen
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (M.P.); (H.L.); (T.K.); (Z.C.)
| | - Junbo Yang
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China; (Z.Z.); (D.C.)
- Correspondence: (J.Y.); (G.X.); Tel.: +86-158-7406-2481 (J.Y.); +86-133-1952-3320 (G.X.)
| | - Guangzong Xiao
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (M.P.); (H.L.); (T.K.); (Z.C.)
- Correspondence: (J.Y.); (G.X.); Tel.: +86-158-7406-2481 (J.Y.); +86-133-1952-3320 (G.X.)
| |
Collapse
|