51
|
Zhang J, Xu S. High aggressiveness of papillary thyroid cancer: from clinical evidence to regulatory cellular networks. Cell Death Discov 2024; 10:378. [PMID: 39187514 PMCID: PMC11347646 DOI: 10.1038/s41420-024-02157-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
The global incidence of thyroid cancer has increased over recent decades. Papillary thyroid cancer (PTC) is the most common type of thyroid cancer and accounts for nearly 90% of all cases. Typically, PTC has a good prognosis. However, some PTC variants exhibit more aggressive behaviour, which significantly increases the risk of postoperative recurrence. Over the past decade, the high metastatic potential of PTC has drawn the attention of many researchers and these studies have provided useful molecular markers for improved diagnosis, risk stratification and clinical approaches. The aim of this review is to discuss the progress in epidemiology, metastatic features, risk factors and molecular mechanisms associated with PTC aggressiveness. We present a detailed picture showing that epithelial-to-mesenchymal transition, cancer metabolic reprogramming, alterations in important signalling pathways, epigenetic aberrations and the tumour microenvironment are crucial drivers of PTC metastasis. Further research is needed to more fully elucidate the pathogenesis and biological behaviour underlying the aggressiveness of PTC.
Collapse
Affiliation(s)
- Junsi Zhang
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Sunwang Xu
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Thyroid and Breast Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, Fuzhou, China.
| |
Collapse
|
52
|
Fan Y, Zheng X, Xu T, Li P, Zhang Y, Ran Y, Wei T. A bibliometric analysis of follicular thyroid carcinoma: Current situation, hot spots, and global trends. Asian J Surg 2024:S1015-9584(24)01644-0. [PMID: 39117545 DOI: 10.1016/j.asjsur.2024.07.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Follicular thyroid carcinoma (FTC), the second most prevalent thyroid cancer after papillary thyroid cancer (PTC), tends to metastasize distantly, leading to poorer outcomes. Despite substantial research, a holistic bibliometric analysis of FTC literature is lacking. This study aims to fill this gap by employing bibliometric methods to track FTC research evolution. METHODS English FTC publications were systematically gathered from the Web of Science. Bibliometric analysis, using R, VOSviewer, CiteSpace, and Excel, synthesized data and explored global research trends and topics. RESULTS From 2000 to 2023, 9086 authors from 1953 institutions across 75 countries contributed to 1776 papers in 491 academic journals on FTC. The last two decades have witnessed a steady increase in publications related to FTC, with the United States leading in terms of publication volume. The United States dominated both in publications and citations, with the National Cancer Institute and Sheue-Yann Cheng as leading contributors. The journal 'Thyroid' featured the most publications, while the 'Journal of Clinical Endocrinology and Metabolism' ranked highest in citation frequency. Research focused on gene expression analysis and preoperative diagnostics, with recent trends shifting toward prognosis management and machine learning due to advances in medical technology and increased health awareness. CONCLUSION This comprehensive bibliometric analysis has mapped the landscape of FTC research, highlighting key contributors, institutions, and thematic trends. Current discourse predominantly revolves around genetic analysis, prognostic determinants, and preoperative diagnostics in FTC. This foundational work guides future FTC research, providing insights into its evolution.
Collapse
Affiliation(s)
- Yuanyuan Fan
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xun Zheng
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tianfeng Xu
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Pengyu Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yujie Zhang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhao Ran
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
53
|
Moma CA, Barreto IS, Assumpção LVM, Zantut-Wittmann DE. Predominance of CD4+ T cells in metastatic cervical lymph nodes in papillary thyroid carcinoma. Endocr Connect 2024; 13:e240135. [PMID: 38913547 PMCID: PMC11301539 DOI: 10.1530/ec-24-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024]
Abstract
Background Papillary thyroid carcinoma has become increasingly prevalent over the years. Avoiding unnecessary treatments and the risk of complications is essential, as well as understanding the mechanisms of tumor progression and the conditions that indicate a worse prognosis. Assessment of the tumor microenvironment can allow us understand how the immune system organizes itself to contain neoplastic progression. Methods We compared characteristics related to the lymphocytic subpopulations in the thyroid tumor microenvironment and lymph nodes in two groups, with and without lymph node metastatic involvement. Results Of the 400 cases followed up at a thyroid cancer reference service, 32 were selected, of which, 13 cases did not present lymph node metastasis (N0 group) and 19 had lymph node involvement (N1 group). Clinical data were collected, and immunohistochemical reactions were performed for markers CD4, CD8, FoxP3, CD25, and CD20 in lymph nodes and peritumoral infiltrate. We found that the N1 group had larger tumor sizes, higher risk staging, higher frequency of extrathyroidal extension, shorter disease-free times, and higher expression of CD4+ T lymphocytes in lymph nodes; however, there was no difference in the expression of other markers or in the pattern of lymphocyte distribution in the lymph node. Conclusion In cervical lymph nodes, the higher frequency of CD4+ T lymphocytes is related to the presence of metastasis. However, there were no differences in lymphocytic subpopulations in the thyroid tumor microenvironment. The absence of changes in unaffected lymph nodes could not predict any tumor behavior.
Collapse
Affiliation(s)
- Camila Aparecida Moma
- Endocrinology Division, Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Icléia Siqueira Barreto
- Department of Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Ligia Vera Montali Assumpção
- Endocrinology Division, Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Denise Engelbrecht Zantut-Wittmann
- Endocrinology Division, Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
54
|
Gopalan V, Deshpande SG, Zade AA, Tote D, Rajendran R, Durge S, Bhargava A. Advances in the Diagnosis and Treatment of Follicular Thyroid Carcinoma: A Comprehensive Review. Cureus 2024; 16:e66186. [PMID: 39233966 PMCID: PMC11374138 DOI: 10.7759/cureus.66186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Follicular thyroid carcinoma (FTC) is the second most common type of thyroid cancer, presenting unique diagnostic and therapeutic challenges. This review provides a comprehensive analysis of the recent advancements in the diagnosis and treatment of FTC, emphasizing the significance of these developments in improving patient outcomes. We discuss the evolution of diagnostic techniques, including advancements in imaging modalities, fine needle aspiration biopsy, and molecular diagnostics, which have enhanced the accuracy of FTC detection and differentiation from benign conditions. The review also evaluates current treatment strategies, including surgical interventions, radioactive iodine therapy, and targeted therapies, examining their effectiveness and impact on patient prognosis. Additionally, we address ongoing challenges in FTC management, such as variability in treatment guidelines and disparities in care. Finally, the review explores emerging therapies and future research directions, highlighting innovations that may further optimize FTC management. By synthesizing current knowledge and identifying future research opportunities, this review aims to contribute to refining diagnostic and therapeutic approaches for FTC.
Collapse
Affiliation(s)
- Vasundara Gopalan
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Swati G Deshpande
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anup A Zade
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Darshana Tote
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Rahul Rajendran
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shubham Durge
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Abhilasha Bhargava
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
55
|
Zhu F, Shen Y, Zhu L, Chen L, Li F, Xie X, Wu Y. The Effect of Hemithyroidectomy in Papillary Thyroid Carcinoma with an Exclusive Involvement of the Recurrent Laryngeal Nerve: A Retrospective Study with a Propensity Score-Matched Analysis. Curr Oncol 2024; 31:3603-3614. [PMID: 38920748 PMCID: PMC11203164 DOI: 10.3390/curroncol31060265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Involvement of the recurrent laryngeal nerve (RLN) in papillary thyroid carcinoma (PTC) is an important prognostic factor and is associated with a higher risk of recurrence. This study aimed to retrospectively analyze the outcomes of patients treated with hemithyroidectomy (HT) in PTC patients with an exclusive RLN invasion who could not tolerate staged surgery, did not wish to undergo another operation, or had other reasons. METHODS A retrospective review was conducted on 163 patients with PTC and exclusive RLN involvement at our institution between 2013 and 2019. Patients were divided into a total thyroidectomy (TT) group and HT group. The clinicopathologic factors and prognostic outcomes were compared between the two groups. A propensity score-matched analysis was carried out to reduce selection bias, with the following covariates: gender, age, tumor size, multifocality, central lymph node metastasis (CLNM), and RLN resection. The Kaplan-Meier method was used for a comparison of recurrence outcomes. RESULTS In the baseline data of the 163 PTC patients, tumor size (p < 0.001), multifocality (p = 0.011), CLNM (p < 0.001), and RLN resection (p < 0.008) in the TT and HT groups differed significantly, whereas age and gender did not differ between the two groups. The TT group reported significantly higher temporary and permanent hypoparathyroidism than the HT group (p < 0.001 and p = 0.042, respectively). With 72-month median follow-up, 11 (6.7%) patients developed recurrence. After propensity score matching, 24 patients with HT and 43 patients with TT were included. Recurrence-free survival (RFS) in the matched samples showed no difference between the TT and HT groups (p = 0.092). CONCLUSION Our results indicate that HT may be a feasible treatment for PTC patients with exclusive RLN involvement in specific circumstances without significantly increasing the risk of recurrence. Performing a thorough preoperative examination is crucial to exclude multifocal tumors and lymph node metastasis before undergoing HT.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yijun Wu
- The Department of Thyroid Surgery, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China; (F.Z.); (Y.S.); (L.Z.); (L.C.); (F.L.); (X.X.)
| |
Collapse
|
56
|
Ferrari SM, Ragusa F, Elia G, Mazzi V, Balestri E, Botrini C, Rugani L, Patrizio A, Piaggi S, La Motta C, Ulisse S, Virili C, Antonelli A, Fallahi P. Antineoplastic Effect of ALK Inhibitor Crizotinib in Primary Human Anaplastic Thyroid Cancer Cells with STRN-ALK Fusion In Vitro. Int J Mol Sci 2024; 25:6734. [PMID: 38928438 PMCID: PMC11203609 DOI: 10.3390/ijms25126734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Anaplastic thyroid cancer (ATC) is one of the deadliest human cancers and represents <2% of thyroid carcinomas. A therapeutic target for ATC is represented by anaplastic lymphoma kinase (ALK) rearrangements, involved in tumor growth. Crizotinib is an oral small-molecule tyrosine kinase inhibitor of the ALK, MET, and ROS1 kinases, approved in ALK-positive non-small cell lung cancer. Until now, the effect of crizotinib in "primary human ATC cells" (pATCs) with transforming striatin (STRN)-ALK fusion has not been reported in the literature. In this study, we aimed to obtain pATCs with STRN-ALK in vitro and evaluate the in vitro antineoplastic action of crizotinib. Thyroid surgical samples were obtained from 12 ATC patients and 6 controls (who had undergone parathyroidectomy). A total of 10/12 pATC cultures were obtained, 2 of which with transforming STRN-ALK fusion (17%). Crizotinib inhibited proliferation, migration, and invasion and increased apoptosis in 3/10 pATC cultures (2 of which with/1 without STRN-ALK), particularly in those with STRN-ALK. Moreover, crizotinib significantly inhibited the proliferation of AF cells (a continuous cell line obtained from primary ATC cells). In conclusion, the antineoplastic activity of crizotinib has been shown in human pATCs (with STRN-ALK) in preclinical studies in vitro, opening the way to future clinical evaluation in these patients.
Collapse
Affiliation(s)
| | - Francesca Ragusa
- Department of Surgery, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (V.M.); (E.B.); (C.B.); (L.R.); (A.A.)
| | - Giusy Elia
- Department of Surgery, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (V.M.); (E.B.); (C.B.); (L.R.); (A.A.)
| | - Valeria Mazzi
- Department of Surgery, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (V.M.); (E.B.); (C.B.); (L.R.); (A.A.)
| | - Eugenia Balestri
- Department of Surgery, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (V.M.); (E.B.); (C.B.); (L.R.); (A.A.)
| | - Chiara Botrini
- Department of Surgery, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (V.M.); (E.B.); (C.B.); (L.R.); (A.A.)
| | - Licia Rugani
- Department of Surgery, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (V.M.); (E.B.); (C.B.); (L.R.); (A.A.)
| | - Armando Patrizio
- Department of Emergency Medicine, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy;
| | - Simona Piaggi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.P.); (P.F.)
| | | | - Salvatore Ulisse
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Camilla Virili
- Department of Medico-Surgical Sciences and Biotechnologies, Endocrinology Section, “Sapienza” University of Rome, 04100 Latina, Italy;
| | - Alessandro Antonelli
- Department of Surgery, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (V.M.); (E.B.); (C.B.); (L.R.); (A.A.)
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.P.); (P.F.)
| |
Collapse
|
57
|
Hu Y, Xue C, Ren S, Dong L, Gao J, Li X. Association between vitamin D status and thyroid cancer: a meta-analysis. Front Nutr 2024; 11:1423305. [PMID: 38962442 PMCID: PMC11221265 DOI: 10.3389/fnut.2024.1423305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
Background Cumulative evidence has suggested that vitamin D deficiency is related with an increased susceptibility to various types of cancers. However, the association between vitamin D and thyroid cancer (TC) has remained to be unknown. Thus, there has been an urgent need for a meta-analysis to summarize existing evidence on vitamin D levels and the risk of TC. Objective This meta-analysis aimed to figure out the association between vitamin D level and the risk of TC. Methods A systematic search was performed for eligible articles on the association between vitamin D and TC based on PubMed, Embase, Web of Science, Cochrane, and ClinicalTrials.gov. Outcomes were the vitamin D level of cases with TC and the incidence of vitamin D deficiency in cases with TC comparing with the controls. The effect measures included standardized mean difference (SMD), ratio of means (RoM), and odds ratio (OR). A dose-response meta-analysis was performed to assess the correlation between vitamin D level and the risk of TC. Subgroup analyses and meta-regressions were conducted to explore the source of heterogeneity. And publication bias was evaluated through Begg's and Egger's tests. Results Results of the meta-analysis revealed lower levels of vitamin D in TC cases comparing with those in control [SMD = -0.25, 95% CI: (-0.38, -0.12); RoM = 0.87, 95% CI: (0.81, 0.94)] and the levels of 1,25 (OH)D in cases with TC were also lower than controls [SMD = -0.49, 95% CI: (-0.80, -0.19); RoM = 0.90, 95% CI: (0.85, 0.96)]. And vitamin D deficiency was associated with the increased risk of TC [OR = 1.49, 95% CI: (1.23, 1.80)]. Additionally, results from the dose-response meta-analysis showed that there is a 6% increase in the risk of TC for each 10 ng/ml decrease in 25 (OH)D levels [OR = 0.94; 95% CI: (0.89, 0.99)]. Conclusions Individuals with TC had lower levels of vitamin D compared to controls, and vitamin D deficiency was correlated with an increase risk of TC. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=504417, identifier: CRD42024504417.
Collapse
Affiliation(s)
- Yue Hu
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Qi-Huang Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chongxiang Xue
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Shumeng Ren
- Qi-Huang Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lishuo Dong
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiaqi Gao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Guang'anmen Hospital, School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuyang Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
58
|
Kang N, Zhao Z, Wang Z, Ning J, Wang H, Zhang W, Ruan X, Gao M, Zheng X. METTL3 regulates thyroid cancer differentiation and chemosensitivity by modulating PAX8. Int J Biol Sci 2024; 20:3426-3441. [PMID: 38993572 PMCID: PMC11234206 DOI: 10.7150/ijbs.84797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Background: Thyroid cancer (TC) is a common endocrine cancer with a favourable prognosis. However, poor patient prognosis due to TC dedifferentiation is becoming an urgent challenge. Recently, methyltransferase-like 3 (METTL3)-mediated N6 -methyladenosine (m6A) modification has been demonstrated to play an important role in the occurrence and progression of various cancers and a tumour suppressor role in TC. However, the mechanism of METTL3 in TC remains unclear. Methods: The correlation between METTL3 and prognosis in TC patients was evaluated by immunohistochemistry. Mettl3fl/flBrafV600ETPO-cre TC mouse models and RNA-seq were used to investigate the underlying molecular mechanism, which was further validated by in vitro experiments. The target gene of METTL3 was identified, and the complete m6A modification process was described. The phenomenon of low expression of METTL3 in TC was explained by identifying miRNAs that regulate METTL3. Results: We observed that METTL3 expression was negatively associated with tumour progression and poor prognosis in TC. Mechanistically, silencing METTL3 promoted the progression and dedifferentiation of papillary thyroid carcinoma (PTC) both in vivo and in vitro. Moreover, overexpressing METTL3 promoted the sensitivity of PTC and anaplastic thyroid cancer (ATC) cells to chemotherapeutic drugs and iodine-131 (131I) administration. Overall, the METTL3/PAX8/YTHDC1 axis has been revealed to play a pivotal role in repressing tumour occurrence, and is antagonized by miR-493-5p.
Collapse
Affiliation(s)
- Ning Kang
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zewei Zhao
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhongyu Wang
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Junya Ning
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Huijuan Wang
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wei Zhang
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xianhui Ruan
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ming Gao
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Department of Breast and Thyroid Surgery, Tianjin Union Medical Center, No. 190 Jieyuan Road, Hongqiao District, Tianjin 300121, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
59
|
Xiang L, Zhao JH, Tang Y, Tan JW, Li LB, Gong C. Prognostic prediction of patients having classical papillary thyroid carcinoma with a 4 mRNA-based risk model. Medicine (Baltimore) 2024; 103:e38472. [PMID: 38847736 PMCID: PMC11155612 DOI: 10.1097/md.0000000000038472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/15/2024] [Indexed: 06/10/2024] Open
Abstract
The dysregulation of protein-coding genes involved in various biological functions is closely associated with the progression of thyroid cancer. This study aimed to investigate the effects of dysregulated gene expressions on the prognosis of classical papillary thyroid carcinoma (cPTC). Using expression profiling datasets from the Cancer Genome Atlas (TCGA) database, we performed differential expression analysis to identify differentially expressed genes (DEGs). Cox regression and Kaplan-Meier analysis were used to identify DEGs, which were used to construct a risk model to predict the prognosis of cPTC patients. Functional enrichment analysis unveiled the potential significance of co-expressed protein-encoding genes in tumors. We identified 4 DEGs (SALL3, PPBP, MYH1, and SYNDIG1), which were used to construct a risk model to predict the prognosis of cPTC patients. These 4 genes were independent of clinical parameters and could be functional in cPTC carcinogenesis. Furthermore, PPBP exhibited a strong correlation with poorer overall survival (OS) in the advanced stage of the disease. This study suggests that the 4-gene signature could be an independent prognostic biomarker to improve prognosis prediction in cPTC patients older than 46.
Collapse
Affiliation(s)
- Lin Xiang
- Department of Otolaryngology-Head and Neck Surgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China
| | - Jun-Hui Zhao
- Department of Otolaryngology-Head and Neck Surgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China
| | - Yao Tang
- Department of Otolaryngology-Head and Neck Surgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China
| | - Jun-Wu Tan
- Department of Otolaryngology-Head and Neck Surgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China
| | - Liang-Bo Li
- Department of Otolaryngology-Head and Neck Surgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China
| | - Cheng Gong
- Department of Otolaryngology-Head and Neck Surgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China
| |
Collapse
|
60
|
Soeratman AR, Kartini D, Andinata B, Harahap AS, Sudarsono NC. Lymph Node Metastasis in Papillary Thyroid Carcinoma, A Study of BRAF V600E and TERT Promoter Mutations. Asian Pac J Cancer Prev 2024; 25:2043-2049. [PMID: 38918666 PMCID: PMC11382857 DOI: 10.31557/apjcp.2024.25.6.2043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVE This study was designed to determine the role of BRAF V600E and TERT mutations in the incidence of neck lymph node (LN) metastasis in patients with papillary thyroid carcinoma (PTC). METHODS This was a cross-sectional study, involving PTC patients at Dr. Cipto Mangunkusumo Hospital, Jakarta. Data were obtained retrospectively based on medical records, except for BRAF V600E and TERT promoter mutations. Tumor tissue specimens of PTC's patients were transferred to the Integrated Laboratory of Faculty of Medicine, Universitas Indonesia. BRAF gene multiplication was performed with KOD One PCR Master Mix (Toyobo KMM-201), while TERT gene multiplication was performed with PCR Master Mix. Data analysis was performed with SPSS version 20. The data were analyzed using univariate and bivariate analysis with the Chi-Square test. RESULT 42 PTC patients were included in the study; 19 (45%) had BRAF mutation, 20 (48%) had TERT mutation, and 20 (48%) had LN metastases. BRAF V600E mutation was associated with LN metastasis [p<0.001, OR = 25.33 (95% CI 4.92 - 130.34)], while TERT mutation was not. Patients with BRAF+ and TERT- mutations were 18.00 times (95% CI 2.01 - 161.05) more likely to develop LN metastasis than patients with BRAF- and TERT-. Furthermore, the presence of TERT mutation along with BRAF mutation increased the risk to 60.00 (95% CI 4.72 - 763.04) higher than patients with BRAF- and TERT-. CONCLUSION BRAF mutation was associated with LN metastasis in PTC patients, but not TERT mutations. However, the presence of TERT mutation in PTC's patients with BRAF mutation increased the risk of LN metastasis.
Collapse
Affiliation(s)
- Alif Rizky Soeratman
- Surgical Oncology Division, Department of Surgery, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
- Department of Surgical Oncology, Dharmais National Cancer Center Hospital, Jakarta, Indonesia
| | - Diani Kartini
- Surgical Oncology Division, Department of Surgery, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
- Department of Surgical Oncology, Dharmais National Cancer Center Hospital, Jakarta, Indonesia
| | - Bob Andinata
- Department of Surgical Oncology, Dharmais National Cancer Center Hospital, Jakarta, Indonesia
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Agnes Stephanie Harahap
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Anatomical Pathology, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Nani Cahyani Sudarsono
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Community Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
61
|
Kalfert D, Ludvikova M, Pesta M, Hakala T, Dostalova L, Grundmannova H, Windrichova J, Houfkova K, Knizkova T, Ludvik J, Polivka J, Kholova I. BRAF mutation, selected miRNAs and genes expression in primary papillary thyroid carcinomas and local lymph node metastases. Pathol Res Pract 2024; 258:155319. [PMID: 38696857 DOI: 10.1016/j.prp.2024.155319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024]
Abstract
Mutations in cancer-related genes are now known to be accompanied by epigenetic events in carcinogenesis by modification of the regulatory pathways and expression of genes involved in the pathobiology. Such cancer-related mutations, miRNAs and gene expression may be promising molecular markers of the most common papillary thyroid carcinoma (PTC). However, there are limited data on their relationships. The aim of this study was to analyse the interactions between BRAF mutations, selected microRNAs (miR-21, miR-34a, miR-146b, and miR-9) and the expression of selected genes (LGALS3, NKX2-1, TACSTD2, TPO) involved in the pathogenesis of PTC. The study cohort included 60 primary papillary thyroid carcinomas (PTC) that were classified as classical (PTC/C; n=50) and invasive follicular variant (PTC/F; n=10), and 40 paired lymph node metastases (LNM). BRAF mutation status in primary and recurrent/persistent papillary thyroid carcinomas was determined. The mutation results were compared both between primary and metastatic cancer tissue, and between BRAF mutation status and selected genes and miRNA expression in primary PTC. Furthermore, miRNAs and gene expression were compared between primary PTCs and non-neoplastic tissue, and local lymph node metastatic tumor, respectively. All studied markers showed several significant mutual interactions and contexts. In conclusion, to the best our knowledge, this is the first integrated study of BRAF mutational status, the expression levels of mRNAs of selected genes and miRNAs in primary PTC, and paired LNM.
Collapse
Affiliation(s)
- David Kalfert
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Motol, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marie Ludvikova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen 32300, Czech Republic.
| | - Martin Pesta
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen 32300, Czech Republic
| | - Tommi Hakala
- The Wellbeing Services County of Pirkanmaa, Department of Surgery, Tampere University Hospital, Tampere, Finland
| | - Lucie Dostalova
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Motol, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Grundmannova
- Laboratory of Immunoanalysis, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Jindra Windrichova
- Laboratory of Immunoanalysis, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Katerina Houfkova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen 32300, Czech Republic
| | - Tereza Knizkova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen 32300, Czech Republic
| | - Jaroslav Ludvik
- Department of Imaging Methods, University Hospital Pilsen, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jiri Polivka
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ivana Kholova
- Pathology, Fimlab Laboratories, Tampere, Finland and Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| |
Collapse
|
62
|
Hernandez-Prera JC. Molecular Pathology of Thyroid Tumors: Old Problems and New Concepts. Clin Lab Med 2024; 44:305-324. [PMID: 38821646 DOI: 10.1016/j.cll.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The molecular signatures of many thyroid tumors have been uncovered. These discoveries have translated into clinical practice and are changing diagnostic and tumor classification paradigms. Here, the findings of recent studies are presented with special emphasis on how molecular insights are impacting the understating of RAS mutant thyroid nodules, Hürthel cell neoplasms, and unusual thyroid tumors, such as hyalinizing trabecular tumor, secretory carcinoma of the thyroid, and sclerosing mucoepidermoid carcinoma with eosinophilia. In addition, the utility of detecting actionable molecular alterations by immunohistochemistry in advanced and aggressive thyroid cancer is also discussed.
Collapse
Affiliation(s)
- Juan C Hernandez-Prera
- Department of Pathology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, USA.
| |
Collapse
|
63
|
Ju SH, Song M, Lim JY, Kang YE, Yi HS, Shong M. Metabolic Reprogramming in Thyroid Cancer. Endocrinol Metab (Seoul) 2024; 39:425-444. [PMID: 38853437 PMCID: PMC11220218 DOI: 10.3803/enm.2023.1802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 06/11/2024] Open
Abstract
Thyroid cancer is a common endocrine malignancy with increasing incidence globally. Although most cases can be treated effectively, some cases are more aggressive and have a higher risk of mortality. Inhibiting RET and BRAF kinases has emerged as a potential therapeutic strategy for the treatment of thyroid cancer, particularly in cases of advanced or aggressive disease. However, the development of resistance mechanisms may limit the efficacy of these kinase inhibitors. Therefore, developing precise strategies to target thyroid cancer cell metabolism and overcome resistance is a critical area of research for advancing thyroid cancer treatment. In the field of cancer therapeutics, researchers have explored combinatorial strategies involving dual metabolic inhibition and metabolic inhibitors in combination with targeted therapy, chemotherapy, and immunotherapy to overcome the challenge of metabolic plasticity. This review highlights the need for new therapeutic approaches for thyroid cancer and discusses promising metabolic inhibitors targeting thyroid cancer. It also discusses the challenges posed by metabolic plasticity in the development of effective strategies for targeting cancer cell metabolism and explores the potential advantages of combined metabolic targeting.
Collapse
Affiliation(s)
- Sang-Hyeon Ju
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Minchul Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Joung Youl Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Minho Shong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
64
|
Gotnayer Lilian L, Nahmias Y, Yazbek Grobman G, Friedlander L, Aranovich D, Yoel U, Vidavsky N. The interplay between crystallinity and the levels of Zn and carbonate in synthetic microcalcifications directs thyroid cell malignancy. J Mater Chem B 2024; 12:4509-4520. [PMID: 38647022 DOI: 10.1039/d3tb02256k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
One of the key challenges in diagnosing thyroid cancer lies in the substantial percentage of indeterminate diagnoses of thyroid nodules that have undergone ultrasound-guided fine-needle aspiration (FNA) biopsy for cytological evaluation. This delays the definitive diagnosis and treatment plans. We recently demonstrated that hydroxyapatite microcalcifications (MCs) aspirated from thyroid nodules may aid nodule diagnosis based on their composition. In particular, Zn-enriched MCs have emerged as potential cancer biomarkers. However, a pertinent question remains: is the elevated Zn content within MCs a consequence of cancer, or do the Zn-enriched MCs encourage tumorigenesis? To address this, we treated the human thyroid cancer cell line MDA-T32 with synthetic MC analogs comprising hydroxyapatite crystals with varied pathologically relevant Zn fractions and assessed the cellular response. The MC analogs exhibited an irregular surface morphology similar to FNA MCs observed in cancerous thyroid nodules. These MC analogs displayed an inverse relationship between Zn fraction and crystallinity, as shown by X-ray diffractometry. The zeta potential of the non-Zn-bearing hydroxyapatite crystals was negative, which decreased once Zn was incorporated into the crystal. The MC analogs were not cytotoxic. The cellular response to exposure to these crystals was evaluated in terms of cell migration, proliferation, the tendency of the cells to form multicellular spheroids, and the expression of cancer markers. Our findings suggest that, if thyroid MCs play a role in promoting cancerous behavior in vivo, it is likely a result of the interplay of crystallinity with Zn and carbonate fractions in MCs.
Collapse
Affiliation(s)
- Lotem Gotnayer Lilian
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Yarden Nahmias
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Gabriel Yazbek Grobman
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Lonia Friedlander
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dina Aranovich
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Uri Yoel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Endocrinology, Soroka University Medical Center, Beer Sheva, Israel
| | - Netta Vidavsky
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
65
|
van Kinschot CMJ, Oudijk L, van Noord C, Korevaar TIM, van Nederveen FH, Peeters RP, van Kemenade FJ, Visser WE. Predictors of treatment response in lymphogenic metastasized papillary thyroid cancer: a histopathological study. Eur J Endocrinol 2024; 190:374-381. [PMID: 38652802 DOI: 10.1093/ejendo/lvae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Lymph node metastases in papillary thyroid cancer (PTC) increase the risk for persistent and recurrent disease. Data on the predictive value of histopathological features of lymph node metastases, however, are inconsistent. The aim of this study was to evaluate the prognostic significance of known and new histopathological features of lymph node metastases in a well-defined cohort of PTC patients with clinically evident lymph node metastases. METHODS A total of 1042 lymph node metastases, derived from 129 PTC patients, were reexamined according to a predefined protocol and evaluated for diameter, extranodal extension, cystic changes, necrosis, calcifications, and the proportion of the lymph node taken up by tumor cells. Predictors for a failure to achieve a complete biochemical and structural response to treatment were determined. RESULTS The presence of more than 5 lymph node metastases was the only independent predictor for a failure to achieve a complete response to treatment (odds ratio [OR] 3.39 [95% CI, 1.57-7.33], P < .05). Diameter nor any of the other evaluated lymph node features were significantly associated with the response to treatment. CONCLUSIONS Detailed reexamination of lymph nodes revealed that only the presence of more than 5 lymph node metastases was an independent predictor of failure to achieve a complete response to treatment. No predictive value was found for other histopathological features, including the diameter of the lymph node metastases. These findings have the potential to improve risk stratification in patients with PTC and clinically evident lymph node metastases.
Collapse
Affiliation(s)
- Caroline M J van Kinschot
- Department of Internal Medicine, Maasstad Hospital, 3079 DZ Rotterdam, The Netherlands
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Lindsey Oudijk
- Academic Center for Thyroid Diseases, Department of Pathology, Erasmus Medical Center, 3079 DZ Rotterdam, The Netherlands
| | - Charlotte van Noord
- Department of Internal Medicine, Maasstad Hospital, 3079 DZ Rotterdam, The Netherlands
| | - Tim I M Korevaar
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | | | - Robin P Peeters
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Folkert J van Kemenade
- Academic Center for Thyroid Diseases, Department of Pathology, Erasmus Medical Center, 3079 DZ Rotterdam, The Netherlands
| | - W Edward Visser
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
66
|
Ma L, Gao L, Hu Y, Li X, Liu C, Ji J, Shi X, Pan A, An Y, Luo N, Xia Y, Jiang Y. Feasibility of whole-exome sequencing in fine-needle aspiration specimens of papillary thyroid microcarcinoma for the identification of novel gene mutations. Clin Genet 2024; 105:567-572. [PMID: 38326996 DOI: 10.1111/cge.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/07/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
Genetic profiling is important for assisting the management of papillary thyroid microcarcinoma (PTMC). Although whole-exome sequencing (WES) of surgically resected PTMC tissue has been performed and revealed potential prognostic biomarkers, its application in PTMC fine-needle aspiration (FNA) specimens has not been explored. This study aimed to evaluate the feasibility of WES using FNA specimens of PTMC. Five PTMC patients were enrolled with clinical characteristics gathered. Fine aspiration cytology needle (23 gauges) was used to collect FNA biopsy with ultrasound guidance. WES analysis of FNA specimens from five PTMC patients and matched blood samples was performed. The WES of FNA samples yielded an average sequencing depth of 281× and average coverage of 99.5%. We identified 534 somatic single-nucleotide variants and 13 indels in total, and per sample, we found a mean of 24 exonic mutations, which affected a total of 120 genes. In the PTMC FNA samples, the most frequently mutated genes were BRAF and ANKRD18B, and the four driver genes were BRAF, AFF3, SRCAP, and EGFR. We also identified several germline cancer predisposing gene mutations. The results suggest that WES of FNA specimens is feasible for PTMC and can identify novel genetic mutations.
Collapse
Affiliation(s)
- Liyuan Ma
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luying Gao
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya Hu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyi Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunhao Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Ji
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinlong Shi
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aonan Pan
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuang An
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nengwen Luo
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Xia
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxin Jiang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
67
|
Liu J, Ma R, Chen S, Lai Y, Liu G. Anoikis patterns via machine learning strategy and experimental verification exhibit distinct prognostic and immune landscapes in melanoma. Clin Transl Oncol 2024; 26:1170-1186. [PMID: 37989822 DOI: 10.1007/s12094-023-03336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Anoikis is a cell death programmed to eliminate dysfunctional or damaged cells induced by detachment from the extracellular matrix. Utilizing an anoikis-based risk stratification is anticipated to understand melanoma's prognostic and immune landscapes comprehensively. METHODS Differential expression genes (DEGs) were analyzed between melanoma and normal skin tissues in The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression data sets. Next, least absolute shrinkage and selection operator, support vector machine-recursive feature elimination algorithm, and univariate and multivariate Cox analyses on the 308 DEGs were performed to build the prognostic signature in the TCGA-melanoma data set. Finally, the signature was validated in GSE65904 and GSE22155 data sets. NOTCH3, PIK3R2, and SOD2 were validated in our clinical samples by immunohistochemistry. RESULTS The prognostic model for melanoma patients was developed utilizing ten hub anoikis-related genes. The overall survival (OS) of patients in the high-risk subgroup, which was classified by the optimal cutoff value, was remarkably shorter in the TCGA-melanoma, GSE65904, and GSE22155 data sets. Low-risk patients exhibited low immune cell infiltration and high expression of immunophenoscores and immune checkpoints. They also demonstrated increased sensitivity to various drugs, including dasatinib and dabrafenib. NOTCH3, PIK3R2, and SOD2 were notably associated with OS by univariate Cox analysis in the GSE65904 data set. The clinical melanoma samples showed remarkably higher protein expressions of NOTCH3 (P = 0.003) and PIK3R2 (P = 0.009) than the para-melanoma samples, while the SOD2 protein expression remained unchanged. CONCLUSIONS In this study, we successfully established a prognostic anoikis-connected signature using machine learning. This model may aid in evaluating patient prognosis, clinical characteristics, and immune treatment modalities for melanoma.
Collapse
Affiliation(s)
- Jinfang Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, China
| | - Rong Ma
- School of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Siyuan Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, China
| | - Yongxian Lai
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, No. 1278 Baode Road, Shanghai, China.
| | - Guangpeng Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, China.
| |
Collapse
|
68
|
Sun H, Chang Z, Li H, Tang Y, Liu Y, Qiao L, Feng G, Huang R, Han D, Yin DT. Multi-omics analysis-based macrophage differentiation-associated papillary thyroid cancer patient classifier. Transl Oncol 2024; 43:101889. [PMID: 38382228 PMCID: PMC10900934 DOI: 10.1016/j.tranon.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/02/2024] [Accepted: 01/21/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND The reclassification of Papillary Thyroid Carcinoma (PTC) is an area of research that warrants attention. The connection between thyroid cancer, inflammation, and immune responses necessitates considering the mechanisms of differential prognosis of thyroid tumors from an immunological perspective. Given the high adaptability of macrophages to environmental stimuli, focusing on the differentiation characteristics of macrophages might offer a novel approach to address the issues related to PTC subtyping. METHODS Single-cell RNA sequencing data of medullary cells infiltrated by papillary thyroid carcinoma obtained from public databases was subjected to dimensionality reduction clustering analysis. The RunUMAP and FindAllMarkers functions were utilized to identify the gene expression matrix of different clusters. Cell differentiation trajectory analysis was conducted using the Monocle R package. A complex regulatory network for the classification of Immune status and Macrophage differentiation-associated Papillary Thyroid Cancer Classification (IMPTCC) was constructed through quantitative multi-omics analysis. Immunohistochemistry (IHC) staining was utilized for pathological histology validation. RESULTS Through the integration of single-cell RNA and bulk sequencing data combined with multi-omics analysis, we identified crucial transcription factors, immune cells/immune functions, and signaling pathways. Based on this, regulatory networks for three IMPTCC clusters were established. CONCLUSION Based on the co-expression network analysis results, we identified three subtypes of IMPTCC: Immune-Suppressive Macrophage differentiation-associated Papillary Thyroid Carcinoma Classification (ISMPTCC), Immune-Neutral Macrophage differentiation-associated Papillary Thyroid Carcinoma Classification (INMPTCC), and Immune-Activated Macrophage differentiation-associated Papillary Thyroid Carcinoma Classification (IAMPTCC). Each subtype exhibits distinct metabolic, immune, and regulatory characteristics corresponding to different states of macrophage differentiation.
Collapse
Affiliation(s)
- Hanlin Sun
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Hongqiang Li
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Yifeng Tang
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Yihao Liu
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Lixue Qiao
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Guicheng Feng
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Runzhi Huang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China.
| | - Dongyan Han
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - De-Tao Yin
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China; Engineering Research Center of Multidisciplinary Diagnosis and Treatment of Thyroid Cancer of Henan Province, Zhengzhou 450052, Henan, PR China; Key Medicine Laboratory of Thyroid Cancer of Henan Province, Zhengzhou 450052, Henan, PR China.
| |
Collapse
|
69
|
Gong Z, Xue L, Vlantis AC, van Hasselt CA, Chan JYK, Fang J, Wang R, Yang Y, Li D, Zeng X, Tong MCF, Chen GG. Brusatol attenuated proliferation and invasion induced by KRAS in differentiated thyroid cancer through inhibiting Nrf2. J Endocrinol Invest 2024; 47:1271-1280. [PMID: 38062319 DOI: 10.1007/s40618-023-02248-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 04/23/2024]
Abstract
BACKGROUND Poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) can be developed from differentiated thyroid cancer, and this dedifferentiated transformation leads to poor prognosis and high mortality. The role of Nrf2 in the dedifferentiation of differentiated thyroid cancer (DTC) induced by KRAS remains unclear. METHODS AND MATERIALS In this study, two DTC cell lines, BCPAP and WRO, were used to evaluate the function of Nrf2 in the dedifferentiation caused by wild-type KRAS (KRAS-WT) and G12V point mutation KRAS (KRAS-G12V). RESULTS The overexpression of KRAS-WT and KRAS-G12V increased the proliferative and invasive ability of BCPAP and WRO cells. Aggressive morphology was observed in KRAS-WT and KRAS-G12V overexpressed WRO cells. These results suggested that overexpression of KRAS-WT or KRAS-G12V may induce dedifferentiation in DTC cells. The expression of Nrf2 was increased by KRAS-WT and KRAS-G12V in DTC cells. In addition, compared with normal thyroid tissues, the expression of Nrf2 protein was considerably higher in thyroid cancer tissues on immunohistochemistry (IHC) staining, and the increased expression of Nrf2 indicated a poor prognosis of thyroid cancer. These results indicated that Nrf2 is the KRAS downstream molecule in thyroid cancer. Functional studies showed that the Nrf2 inhibitor Brusatol counteracted the proliferative and invasive abilities induced by KRAS-WT and KRAS-G12V in BCPAP and WRO cells. In addition, the xenograft assay further confirmed that Brusatol inhibits tumor growth induced by KRAS-WT and KRAS-G12V. CONCLUSION Collectively, this study suggests that Nrf2 could be a promising therapeutic target in KRAS-mediated dedifferentiation of thyroid cancer.
Collapse
Affiliation(s)
- Z Gong
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - L Xue
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - A C Vlantis
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - C A van Hasselt
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - J Y K Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - J Fang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China
| | - R Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China
| | - Y Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China
| | - D Li
- Shenzhen Key Laboratory of ENT, Institute of ENT and Longgang ENT Hospital, Shenzhen, Guangdong, China
| | - X Zeng
- Shenzhen Key Laboratory of ENT, Institute of ENT and Longgang ENT Hospital, Shenzhen, Guangdong, China
| | - M C F Tong
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - G G Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
70
|
Mu Z, Zhang X, Sun D, Sun Y, Shi C, Ju G, Kai Z, Huang L, Chen L, Liang J, Lin Y. Characterizing Genetic Alterations Related to Radioiodine Avidity in Metastatic Thyroid Cancer. J Clin Endocrinol Metab 2024; 109:1231-1240. [PMID: 38060243 PMCID: PMC11031230 DOI: 10.1210/clinem/dgad697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/31/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
CONTEXT Patients with differentiated thyroid cancer (DTC) with distant metastasis (DM) are usually not recognized as radioactive iodine (RAI)-refractory DTC in a timely manner. The elucidation of genetic features related to RAI uptake patterns may shed light on the early recognition of RAI-refractory DTC. OBJECTIVE This work aimed to elucidate the underlying molecular features behind different RAI uptake patterns. METHODS A total of 214 patients with DM-DTC were retrospectively included in the analysis. RAI uptake patterns were defined as initially RAI refractory (I-RAIR) and initially RAI avid (I-RAIA) according to the first post-treatment scan, then I-RAIA was further divided into continually RAIA (C-RAIA), partly RAIR (P-RAIR), and gradually RAIR (G-RAIR) according to subsequent scans. The molecular subtype groups-BRAFV600E mutated, RAS mutated, fusions, and others-were classified according to main driver genes status. RESULTS BRAF, TERT promoter, and TP53 mutations are more frequently detected in the I-RAIR pattern while RET fusions and RAS mutations are more frequent in the I-RAIA pattern. A late-hit mutation including TERT, TP53, or PIK3CA is more common in I-RAIR than that in I-RAIA (50.0% vs 26.9%, P = .001), particularly for those with RAS mutations in the I-RAIR group, always accompanied by TERT promoter. Isolated RET fusions accounts for 10% of I-RAIR. When compared among driver gene groups, BRAFV600E-mutated tumors have a higher rate of the I-RAIR pattern (64.4%) than RAS-mutated (4.5%, P < .001) and fusion-positive (20.7%, P < .001) tumors. In I-RAIA subgroups, BRAFV600E-mutated tumors have lower prevalence of the C-RAIA pattern than those with RAS mutation or fusions. CONCLUSION Patients with the I-RAIR pattern predominantly featured mutations of the BRAF and/or TERT promoter, of which RAS mutations were usually accompanied by late-hit mutations, while fusions mostly occurred alone.
Collapse
Affiliation(s)
- Zhuanzhuan Mu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Xin Zhang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Di Sun
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yuqing Sun
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Cong Shi
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Gaoda Ju
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Beijing, 100730, China
- Department of Medical Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Department of Oncology, Peking University International Hospital, Peking University, Beijing, 102206, China
| | - Zhentian Kai
- Department of Bioinformatics, Zhejiang Shaoxing Topgen Biomedical Technology Co., Ltd, Shanghai, 201321, China
| | - Lisha Huang
- Department of Medicine, Zhejiang Shaoxing Topgen Biomedical Technology Co., Ltd, Shanghai, 201321, China
| | - Libo Chen
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Jun Liang
- Department of Medical Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Department of Oncology, Peking University International Hospital, Peking University, Beijing, 102206, China
| | - Yansong Lin
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Beijing, 100730, China
| |
Collapse
|
71
|
Zhang R, Gui Z, Zhao J, Zhao L. BCL9 is a Risk Factor of Neck Lymph Nodes Metastasis and Correlated with Immune Cell Infiltration in Papillary Thyroid Carcinoma. Int J Gen Med 2024; 17:1451-1466. [PMID: 38645401 PMCID: PMC11032164 DOI: 10.2147/ijgm.s455846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Purpose B-cell lymphoma 9 (BCL9), a key transcription co-activator of the Wnt pathway, contributed to tumor progression and metastasis in various tumors, whereas, the role of BCL9 in papillary thyroid cancer (PTC) has not been investigated. Methods We acquired PTC gene expression data from The Cancer Genome Atlas (TCGA) database. Fifty-nine PTC tissues were applied to validate the clinical significance of BCL9. Cell experiments were applied to investigate the role of BCL9. Bioinformatics analysis was employed to investigate the biological functions of BCL9. Results We found that BCL9 was higher expressed (P < 0.05) and an independent risk factor for lymph node metastasis (OR = 3.770, P = 0.025), as well as associated with poorer progression-free survival (PFS) (P = 0.049) in PTC. BCL9 knockdown inhibited proliferation and invasion of PTC cells. BCL9 was positively associated with the key genes of Wnt/β-catenin and MAPK pathway by co-expression analysis. GO, KEGG and GSEA analysis showed BCL9 might participated in PPAR, cAMP, and focal adhesion pathway. CIBERSORT analysis found BCL9 was negatively associated with CD8+ T cells and NK cell infiltration and positively with PD-L1 expression. Conclusion Therefore, BCL9 was associated with lymph node metastasis and shorter PFS of PTC, due to promotion of PTC cell proliferation and invasion, activation of Wnt/β-catenin and MAPK pathway, inhibition of CD8+ T and NK cell infiltration, and promotion of PD-L1 expression.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Wuhan, 430030, People’s Republic of China
| | - Zhengwei Gui
- Department of Thyroid and Breast Surgery, Tongji Hospital Affiliated with Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Jianguo Zhao
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Wuhan, 430030, People’s Republic of China
| | - Lu Zhao
- Department of Thyroid and Breast Surgery, Tongji Hospital Affiliated with Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
72
|
Jin X, Yin Z, Li X, Guo H, Wang B, Zhang S, Li Y. TIM3 activates the ERK1/2 pathway to promote invasion and migration of thyroid tumors. PLoS One 2024; 19:e0297695. [PMID: 38568917 PMCID: PMC10990238 DOI: 10.1371/journal.pone.0297695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/10/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND This study aims to study the possible action mechanism of T-cell immunoglobulin and mucin domain 3 (TIM3) on the migratory and invasive abilities of thyroid carcinoma (TC) cells. METHODS GSE104005 and GSE138198 datasets were downloaded from the GEO database for identifying differentially expressed genes (DEGs). Functional enrichment analysis and protein-protein interaction (PPI) analysis were performed on the common DEGs in GSE104005 and GSE138198 datasets. Subsequently, in order to understand the effect of a common DEG (TIM3) on TC cells, we performed in vitro experiments using FRO cells. The migratory and invasive abilities of FRO cells were detected by wound scratch assay and Transwell assay. Proteins expression levels of the phosphorylated (p)-extracellular signal-regulated kinase (ERK)1/2, matrix metalloproteinase-2 (MMP-2) and MMP-9 were determined via Western blotting after ERK1/2 inhibition in TIM3-NC group and TIM3-mimic group. RESULTS 316 common DEGs were identified in GSE104005 and GSE138198 datasets. These DEGs were involved in the biological process of ERK1 and ERK2 cascade. TIM3 was significantly up-regulated in TC. In vitro cell experiments showed that TIM3 could promote migration and invasion of TC cells. Moreover, TIM3 may affect the migration, invasive abilities of TC cells by activating the ERK1/2 pathway. CONCLUSION The above results indicate that TIM3 may affect the migratory and invasive of TC cells by activating the ERK1/2 pathway.
Collapse
Affiliation(s)
- Xiao Jin
- Department of Thyroid and Breast Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhibo Yin
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoyu Li
- Department of Thyroid and Breast Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hao Guo
- Department of Thyroid and Breast Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bo Wang
- Department of Thyroid and Breast Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shanshan Zhang
- Department of Thyroid and Breast Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Li
- The Third Department of External Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
73
|
Sun M, Zhao B, Chen T, Yao L, Li X, Hu S, Chen C, Gao X, Tang C. Novel molecular typing reveals the risk of recurrence in patients with early-stage papillary thyroid cancer. Thyroid Res 2024; 17:7. [PMID: 38556856 PMCID: PMC10983671 DOI: 10.1186/s13044-024-00193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is an indolent disease with a favorable prognosis but characterized by a high recurrence rate. We aimed to improve precise stratification of recurrence risk in PTC patients with early stage using multi-gene signatures. PATIENTS AND METHODS The present study was performed using data from The Cancer Genome Atlas (TCGA) and multi-center datasets. Unsupervised consensus clustering was used to obtain the optimal molecular subtypes and least absolute shrinkage and selection operator (LASSO) analysis was performed to identify potential genes for the construction of recurrence signature. Kaplan-Meier survival analysis and the log-rank test was used to detect survival differences. Harrells concordance index (C-index) was used to assess the performance of the DNA damage repair (DDR) recurrence signature. RESULTS Through screening 8 candidate gene sets, the entire cohort was successfully stratified into two recurrence-related molecular subtypes based on DDR genes: DDR-high subtype and DDR-low subtype. The recurrence rate of DDR-high subtype was significantly lower than DDR-low subtype [HR = 0.288 (95%CI, 0.084-0.986), P = 0.047]. Further, a two-gene DDR recurrence signature was constructed, including PER1 and EME2. The high-risk group showed a significantly worse recurrence-free survival (RFS) than the low-risk group [HR = 10.647 (95%CI, 1.363-83.197), P = 0.024]. The multi-center data demonstrated that proportion of patients with low expression of PER1 and EME2 was higher in the recurrence group than those in the non-recurrence group. CONCLUSIONS These findings could help accurately and reliably identify PTC patients with high risk of recurrence so that they could receive more radical and aggressive treatment strategies and more rigorous surveillance practices.
Collapse
Affiliation(s)
- Mingyu Sun
- Department of Breast Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China
| | - Bingqing Zhao
- Department of Plastic and Reconstructive Surgery, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, 300100, China
| | - Tao Chen
- The Xuzhou Clinical College of Xuzhou Medical University, Jiangsu, 221009, China
| | - Lijun Yao
- Department of Oncology, Suzhou Ninth People's Hospital, Suzhou, 215200, China
| | - Xiaoxin Li
- Department of Pathology, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China
| | - Shaojun Hu
- Department of Oncology, Suzhou Ninth People's Hospital, Suzhou, 215200, China
| | - Chengling Chen
- Department of Breast Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China.
| | - Xinbao Gao
- Department of Surgery for Vascular Thyroid and Hernia, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China.
| | - Chuangang Tang
- Department of Breast Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China.
| |
Collapse
|
74
|
Golozar M, Motlagh AV, Mahdevar M, Peymani M, InanlooRahatloo K, Ghaedi K. TBX15 and SDHB expression changes in colorectal cancer serve as potential prognostic biomarkers. Exp Mol Pathol 2024; 136:104890. [PMID: 38378070 DOI: 10.1016/j.yexmp.2024.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/07/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Alterations in the expression of certain genes could be associated with both patient mortality rates and drug resistance. This study aimed to identify genes in colorectal cancer (CRC) that potentially serve as hub genes influencing patient survival rates. RNA-Seq data were downloaded from the cancer genome atlas database, and differential expression analysis was performed between tumors and healthy controls. Through the utilization of univariate and multivariate Cox regression analyses, in combination with the MCODE clustering module, the genes whose expression changes were related to survival rate and the hub genes related to them were identified. The mortality risk model was computed using the hub genes. CRC samples and the RT-qPCR method were utilized to confirm the outcomes. PharmacoGx data were employed to link the expression of potential genes to medication resistance and sensitivity. The results revealed the discovery of seven hub genes, which emerged as independent prognostic markers. These included HOXC6, HOXC13, HOXC8, and TBX15, which were associated with poor prognosis and overexpression, as well as SDHB, COX5A, and UQCRC1, linked to favorable prognosis and downregulation. Applying the risk model developed with the mentioned genes revealed a markedly higher incidence of deceased patients in the high-risk group compared to the low-risk group. RT-qPCR results indicated a decrease in SDHB expression and an elevation in TBX15 levels in cancer samples relative to adjacent healthy tissue. Also, PharmacoGx data indicated that the expression level of SDHB was correlated with drug sensitivity to Crizotinib and Dovitinib. Our findings highlight the potential association between alterations in the expression of genes such as HOXC6, HOXC13, HOXC8, TBX15, SDHB, COX5A, and UQCRC1 and increased mortality rates in CRC patients. As revealed by the PPI network, these genes exhibited the most connections with other genes linked to survival.
Collapse
Affiliation(s)
- Melika Golozar
- Kish International Campus, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ali Valipour Motlagh
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 8165131378, Iran
| | - Mohammad Mahdevar
- Genius Gene, Genetics and Biotechnology Company, Tehran, Iran; Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Kolsoum InanlooRahatloo
- Kish International Campus, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
75
|
Chen Y, Xiao X, Hu G, Liu R, Xue J. Antitumor activity of extracellular signal-regulated kinases 1/2 inhibitor BVD-523 (ulixertinib) on thyroid cancer cells. J Cancer Res Ther 2024; 20:570-577. [PMID: 38687926 DOI: 10.4103/jcrt.jcrt_1504_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/31/2023] [Indexed: 05/02/2024]
Abstract
OBJECTIVE This study aimed to investigate BVD-523 (ulixertinib), an adenosine triphosphate (ATP)-dependent extracellular signal-regulated kinases 1/2 inhibitor, for its antitumor potential in thyroid cancer. MATERIALS AND METHODS Ten thyroid cancer cell lines known to carry mitogen-activated protein kinase (MAPK)-activated mutations, including v-Raf murine sarcoma viral oncogene homolog B (BRAF) and rat sarcoma virus (RAS) mutations, were examined. Cells were exposed to a 10-fold concentration gradient ranging from 0 to 3000 nM for 5 days. The half-inhibitory concentration was determined using the Cell Counting Kit-8 assay. Following BVD-523 treatment, cell cycle analysis was conducted using flow cytometry. In addition, the impact of BVD-523 on extracellular signal-regulated kinase (ERK)- dependent ribosomal S6 kinase (RSK) activation and the expression of cell cycle markers were assessed through western blot analysis. RESULTS BVD-523 significantly inhibited thyroid cancer cell proliferation and induced G1/S cell cycle arrest dose-dependently. Notably, cell lines carrying MAPK mutations, especially those with the BRAF V600E mutation, exhibited heightened sensitivity to BVD-523's antitumor effects. Furthermore, BVD-523 suppressed cyclin D1 and phosphorylated retinoblastoma protein expression, and it robustly increased p27 levels in an RSK-independent manner. CONCLUSION This study reveals the potent antitumor activity of BVD-523 against thyroid cancer cells bearing MAPK-activating mutations, offering promise for treating aggressive forms of thyroid cancer.
Collapse
Affiliation(s)
- Yulu Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi Xiao
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guanghui Hu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rengyun Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junyu Xue
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
76
|
Gong Z, Xue L, Li H, Fan S, van Hasselt CA, Li D, Zeng X, Tong MCF, Chen GG. Targeting Nrf2 to treat thyroid cancer. Biomed Pharmacother 2024; 173:116324. [PMID: 38422655 DOI: 10.1016/j.biopha.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Oxidative stress (OS) is recognized as a contributing factor in the development and progression of thyroid cancer. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor involved in against OS generated by excessive reactive oxygen species (ROS). It governs the expression of a wide array of genes implicated in detoxification and antioxidant pathways. However, studies have demonstrated that the sustained activation of Nrf2 can contribute to tumor progression and drug resistance in cancers. The expression of Nrf2 was notably elevated in papillary thyroid cancer tissues compared to normal tissues, indicating that Nrf2 may play an oncogenic role in the development of papillary thyroid cancer. Nrf2 and its downstream targets are involved in the progression of thyroid cancer by impacting the prognosis and ferroptosis. Furthermore, the inhibition of Nrf2 can increase the sensitivity of target therapy in thyroid cancer. Therefore, Nrf2 appears to be a potential therapeutic target for the treatment of thyroid cancer. This review summarized current data on Nrf2 expression in thyroid cancer, discussed the function of Nrf2 in thyroid cancer, and analyzed various strategies to inhibit Nrf2.
Collapse
Affiliation(s)
- Zhongqin Gong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Lingbin Xue
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - Huangcan Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Simiao Fan
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Charles Andrew van Hasselt
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Dongcai Li
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - Xianhai Zeng
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - Michael Chi Fai Tong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China.
| | - George Gong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China.
| |
Collapse
|
77
|
Liu J, Miao X, Yao J, Wan Z, Yang X, Tian W. Investigating the clinical role and prognostic value of genes related to insulin-like growth factor signaling pathway in thyroid cancer. Aging (Albany NY) 2024; 16:2934-2952. [PMID: 38329437 PMCID: PMC10911384 DOI: 10.18632/aging.205524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024]
Abstract
BACKGROUND Thyroid cancer (THCA) is the most common endocrine malignancy having a female predominance. The insulin-like growth factor (IGF) pathway contributed to the unregulated cell proliferation in multiple malignancies. We aimed to explore the IGF-related signature for THCA prognosis. METHOD The TCGA-THCA dataset was collected from the Cancer Genome Atlas (TCGA) for screening of key prognostic genes. The limma R package was applied for differentially expressed genes (DEGs) and the clusterProfiler R package was used for the Gene Ontology (GO) and KEGG analysis of DEGs. Then, the un/multivariate and least absolute shrinkage and selection operator (Lasso) Cox regression analysis was used for the establishment of RiskScore model. Receiver Operating Characteristic (ROC) analysis was used to verify the model's predictive performance. CIBERSORT and MCP-counter algorithms were applied for immune infiltration analysis. Finally, we analyzed the mutation features and the correlation between the RiskScore and cancer hallmark pathway by using the GSEA. RESULT We obtained 5 key RiskScore model genes for patient's risk stratification from the 721 DEGs. ROC analysis indicated that our model is an ideal classifier, the high-risk patients are associated with the poor prognosis, immune infiltration, high tumor mutation burden (TMB), stronger cancer stemness and stronger correlation with the typical cancer-activation pathways. A nomogram combined with multiple clinical features was developed and exhibited excellent performance upon long-term survival quantitative prediction. CONCLUSIONS We constructed an excellent prognostic model RiskScore based on IGF-related signature and concluded that the IGF signal pathway may become a reliable prognostic phenotype in THCA intervention.
Collapse
Affiliation(s)
- Junyan Liu
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Xin Miao
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Jing Yao
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Zheng Wan
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Xiaodong Yang
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Wen Tian
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| |
Collapse
|
78
|
Smith ER, Frye CC, Pandian TK, Gillanders WE, Olson JA, Brown TC, Jasim S. Molecular characteristics of isthmus papillary thyroid cancers: Supporting evidence for unfavorable clinical behavior. Am J Surg 2024; 228:146-150. [PMID: 37805303 DOI: 10.1016/j.amjsurg.2023.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/06/2023] [Accepted: 09/05/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Previous studies demonstrate isthmus thyroid nodules are more likely to be malignant than lobar nodules. Additional data suggest that isthmus papillary thyroid cancers (PTCs) are more aggressive than lobar PTCs. We hypothesize that isthmus PTCs have a more unfavorable molecular profile. METHODS The Cancer Genome Atlas (TCGA) database was queried to analyze clinical, mutation and gene expression data of isthmus PTCs compared to non-isthmus PTCs. RESULTS We analyzed characteristics of 472 PTCs, including 19 isthmus PTCs. There were no significant differences between isthmus and non-isthmus PTC demographic and clinical variables or the frequency of RAS family, fusion driver, TERT, and tumor suppressor gene mutations. There was a trend towards increased BRAF mutations (68% vs 55%, p = 0.28). A more aggressive gene expression profile was observed in isthmus PTC compared to lobar/multifocal PTC with differences in ERK score (19.4 vs 7.71, p < 0.05) and TDS score (-0.58 vs 0.02, p < 0.05). CONCLUSIONS These results provide a possible molecular explanation for the more aggressive behavior reported in isthmus PTCs.
Collapse
Affiliation(s)
- Eileen R Smith
- Section of Surgical Oncology, Department of Surgery, Washington University, 660 South Euclid Ave., Saint Louis, Missouri 63110, USA.
| | - C Corbin Frye
- Section of Surgical Oncology, Department of Surgery, Washington University, 660 South Euclid Ave., Saint Louis, Missouri 63110, USA
| | - T K Pandian
- Section of Surgical Oncology, Department of Surgery, Washington University, 660 South Euclid Ave., Saint Louis, Missouri 63110, USA
| | - William E Gillanders
- Section of Surgical Oncology, Department of Surgery, Washington University, 660 South Euclid Ave., Saint Louis, Missouri 63110, USA
| | - John A Olson
- Section of Surgical Oncology, Department of Surgery, Washington University, 660 South Euclid Ave., Saint Louis, Missouri 63110, USA
| | - Taylor C Brown
- Section of Surgical Oncology, Department of Surgery, Washington University, 660 South Euclid Ave., Saint Louis, Missouri 63110, USA
| | - Sina Jasim
- Division of Endocrinology, Metabolism and Lipid Research, John T. Milliken Department of Internal Medicine, Washington University, 660 South Euclid Ave., Saint Louis, Missouri 63110, USA
| |
Collapse
|
79
|
Tous C, Muñoz-Redondo C, Gavilán A, Bravo-Gil N, Baco-Antón F, Navarro-González E, Antiñolo G, Borrego S. Delving into the Role of lncRNAs in Papillary Thyroid Cancer: Upregulation of LINC00887 Promotes Cell Proliferation, Growth and Invasion. Int J Mol Sci 2024; 25:1587. [PMID: 38338866 PMCID: PMC10855357 DOI: 10.3390/ijms25031587] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common histological category of thyroid cancer. In recent years, there has been an increasing number of studies on lncRNAs in PTC. Long intergenic non-protein coding RNA 887 (LINC00887) is a critical oncogene in developing other cancers. LINC00887 is upregulated in PTC samples but its role in PTC is currently unclear. This study aimed to investigate the impact the disruption of LINC00887 expression has on PTC progression. We performed a CRISPR/Cas9 strategy for the truncation of LINC00887 in BCPAP and TPC1 cell lines. Functional assays showed that LINC00887 knockdown in both TPC1 and BCPAP cells reduced cell proliferation, colony formation and migration, delayed the cell cycle, and increased apoptosis. These results strengthened the role of LINC00887 in cancer and showed for the first time that this lncRNA could be a potential oncogene in PTC, acting as a tumor promoter. Modulation of the immune system may be one of the etiopathogenic mechanisms of LINC00887 in PTC, as shown by the observed influence of this lncRNA on PD-L1 expression. In addition, the biological pathways of LINC00887 identified to date, such as EMT, the Wnt/β-catenin signaling pathway or the FRMD6-Hippo signaling pathway may also be relevant regulatory mechanisms operating in PTC.
Collapse
Affiliation(s)
- Cristina Tous
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Carmen Muñoz-Redondo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Angela Gavilán
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Nereida Bravo-Gil
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Fátima Baco-Antón
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Elena Navarro-González
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
- Department of Endocrinology and Nutrition, University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| |
Collapse
|
80
|
Ju G, Sun Y, Wang H, Zhang X, Mu Z, Sun D, Huang L, Lin R, Xing T, Cheng W, Liang J, Lin YS. Fusion Oncogenes in Patients With Locally Advanced or Distant Metastatic Differentiated Thyroid Cancer. J Clin Endocrinol Metab 2024; 109:505-515. [PMID: 37622214 PMCID: PMC10795910 DOI: 10.1210/clinem/dgad500] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
CONTEXT Fusion oncogenes are involved in the underlying pathology of advanced differentiated thyroid cancer (DTC), and even the cause of radioactive iodine (RAI)-refractoriness. OBJECTIVE We aimed to investigation between fusion oncogenes and clinicopathological characteristics involving a large-scale cohort of patients with advanced DTC. METHODS We collected 278 tumor samples from patients with locally advanced (N1b or T4) or distant metastatic DTC. Targeted next-generation sequencing with a 26-gene ThyroLead panel was performed on these samples. RESULTS Fusion oncogenes accounted for 29.86% of the samples (72 rearrangement during transfection (RET) fusions, 7 neurotrophic tropomyosin receptor kinase (NTRK) fusions, 4 anaplastic lymphoma kinase (ALK) fusions) and occurred more frequently in pediatric patients than in their adult counterparts (P = .003, OR 2.411, 95% CI 1.329-4.311) in our cohort. DTCs with fusion oncogenes appeared to have a more advanced American Joint Committee on Cancer (AJCC)_N and AJCC_M stage (P = .0002, OR 15.47, 95% CI 2.54-160.9, and P = .016, OR 2.35, 95% CI 1.18-4.81) than those without. DTCs with fusion oncogenes were associated with pediatric radioactive iodine (RAI) refractoriness compared with those without fusion oncogenes (P = .017, OR 4.85, 95% CI 1.29-15.19). However, in adult DTCs, those with fusion oncogenes were less likely to be associated with RAI refractoriness than those without (P = .029, OR 0.50, 95% CI 0.27-0.95), owing to a high occurrence of the TERT mutation, which was the most prominent genetic risk factor for RAI refractoriness in multivariate logistic regression analysis (P < .001, OR 7.36, 95% CI 3.14-17.27). CONCLUSION Fusion oncogenes were more prevalent in pediatric DTCs than in their adult counterparts and were associated with pediatric RAI refractoriness, while in adult DTCs, TERT mutation was the dominant genetic contributor to RAI refractoriness rather than fusion oncogenes.
Collapse
Affiliation(s)
- Gaoda Ju
- Department of Medical Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
- Department of Oncology, Peking University International Hospital, Peking University, Beijing, 102206, China
| | - Yuqing Sun
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Hao Wang
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266011, China
| | - Xin Zhang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Zhuanzhuan Mu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Di Sun
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Lisha Huang
- Department of Medical, Zhejiang Shaoxing Topgen Biomedical Technology Co., Ltd., Shanghai, 201321, China
| | - Ruijue Lin
- Department of Technology, Zhejiang Topgen Clinical Laboratory Co., Ltd., Huzhou, 201914, China
| | - Tao Xing
- Department of Medical Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Wuying Cheng
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Jun Liang
- Department of Medical Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Department of Oncology, Peking University International Hospital, Peking University, Beijing, 102206, China
| | - Yan-Song Lin
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| |
Collapse
|
81
|
Li Z, Ying Y, Zeng X, Liu J, Xie Y, Deng Z, Hu Z, Yang J. DNMT1/DNMT3a-mediated promoter hypermethylation and transcription activation of ICAM5 augments thyroid carcinoma progression. Funct Integr Genomics 2024; 24:12. [PMID: 38228798 DOI: 10.1007/s10142-024-01293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
Promoter methylation is one of the most studied epigenetic modifications and it is highly relevant to the onset and progression of thyroid carcinoma (THCA). This study investigates the promoter methylation and expression pattern of intercellular adhesion molecule 5 (ICAM5) in THCA. CpG islands with aberrant methylation pattern in THCA, and the expression profiles of the corresponding genes in THCA, were analyzed using bioinformatics. ICAM5 was suggested to have a hypermethylation status, and it was highly expressed in THCA tissues and cells. Its overexpression promoted proliferation, mobility, and tumorigenic activity of THCA cells. As for the downstream signaling, ICAM5 was found to activate the MAPK/ERK and MAPK/JNK signaling pathways. Either inhibition of ERK or JNK blocked the oncogenic effects of ICAM5. DNA methyltransferases 1 (DNMT1) and DNMT3a were found to induce promoter hypermethylation of ICAM5 in THCA cells. Knockdown of DNMT1 or DNMT3a decreased the ICAM5 expression and suppressed malignant properties of THCA cells in vitro and in vivo, which were, however, restored by further artificial ICAM5 overexpression. Collectively, this study reveals that DNMT1 and DNMT3a mediates promoter hypermethylation and transcription activation of ICAM5 in THCA, which promotes malignant progression of THCA through the MAPK signaling pathway.
Collapse
Affiliation(s)
- Zanbin Li
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Yong Ying
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xiangtai Zeng
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Jiafeng Liu
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Yang Xie
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Zefu Deng
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Zhiqiang Hu
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Junjie Yang
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China.
| |
Collapse
|
82
|
da Silva Queiroz JP, Pupin B, Bhattacharjee TT, Uno M, Chammas R, Vamondes Kulcsar MA, de Azevedo Canevari R. Expression data of FOS and JUN genes and FTIR spectra provide diagnosis of thyroid carcinoma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123305. [PMID: 37660502 DOI: 10.1016/j.saa.2023.123305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
We explore the feasibility of using FOS and JUN gene expression and ATR-FTIR for diagnosis of thyroid cancer. For the study, 38 samples (6 non-neoplastic (NN), 10 papillary thyroid carcinoma (PTC), 7 follicular thyroid carcinoma (FTC), and 15 benign tumors (BT) were subjected to RNA extraction followed by quantitative real time PCR (qRT-PCR) and 30 samples (5 NN, 9 PTC, 5 FTC, and 11 BT) were used for Attenuated Total Reflectance - Fourier Transform Infrared (ATR-FTIR) followed by multivariate analysis. Of the above, 20 samples were used for both gene expression and ATR-FTIR studies. We found FOS and JUN expression in malignant tumor samples to be significantly lower than NN and benign. ATR-FIR after multivariate analysis could identify the difficult to diagnose FTC with 93 % efficiency. Overall, results suggest the diagnostic potential of molecular biology techniques combined with ATR-FTIR spectroscopy in differentiated thyroid carcinomas (PTC and FTC) and BT.
Collapse
Affiliation(s)
- João Paulo da Silva Queiroz
- Laboratório de Biologia Molecular do Câncer, Universidade do Vale do Paraíba, UNIVAP, Instituto de Pesquisa e Desenvolvimento, Avenida Shishima Hifumi 2911, Urbanova, São José dos Campos, 12244-000 São Paulo, SP, Brazil
| | - Breno Pupin
- Laboratório de Biologia Molecular do Câncer, Universidade do Vale do Paraíba, UNIVAP, Instituto de Pesquisa e Desenvolvimento, Avenida Shishima Hifumi 2911, Urbanova, São José dos Campos, 12244-000 São Paulo, SP, Brazil
| | | | - Miyuki Uno
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Avenida Dr. Arnaldo 251, Cerqueira César, São Paulo 01246-000, São Paulo, Brazil
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Avenida Dr. Arnaldo 251, Cerqueira César, São Paulo 01246-000, São Paulo, Brazil
| | - Marco Aurélio Vamondes Kulcsar
- Serviço de Cirurgia de cabeça e Pescoço, Instituto do Câncer do Estado de São Paulo - ICESP, Av. Doutor Arnaldo, 251, Cerqueira César, CEP 01246-000 São Paulo, SP, Brazil
| | - Renata de Azevedo Canevari
- Laboratório de Biologia Molecular do Câncer, Universidade do Vale do Paraíba, UNIVAP, Instituto de Pesquisa e Desenvolvimento, Avenida Shishima Hifumi 2911, Urbanova, São José dos Campos, 12244-000 São Paulo, SP, Brazil.
| |
Collapse
|
83
|
Yang TH, Hung SH, Cheng YF, Chen CS, Lin HC. Association of thyroid cancer with human papillomavirus infections. Sci Rep 2024; 14:431. [PMID: 38172564 PMCID: PMC10764736 DOI: 10.1038/s41598-023-49123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
While Human Papillomavirus (HPV) particles have been detected in a small proportion of benign thyroid nodules or thyroid cancer cases, a role of HPV in these thyroid conditions has not been established. This study aims to investigate the association of HPV infection with thyroid cancer (TC) using a nationwide population-based study. We retrieved data for this case-control study from Taiwan's Longitudinal Health Insurance Database 2010. The study sample included 3062 patients with TC and 9186 propensity-scored matched controls. We employed multivariate logistic regression models to quantitatively evaluate the association of TC with HPV infections after taking age, sex, monthly income, geographic location and urbanization level of the patient's residence, diabetes, hypertension, and hyperlipidemia into considerations. Chi-squared test revealed that there was a significant difference in the prevalence of prior HPV infections between patients with TC and controls (15.3% vs. 7.6%, p < 0.001). The adjusted odds ratio of prior HPV infections for patients with TC was 2.199 (95% CI = 1.939-2.492) relative to controls. The adjusted ORs of prior HPV infections for patients with TC was similar for males and females. Our research suggests a significant link between HPV infection and the development of TC.
Collapse
Affiliation(s)
- Tzong-Hann Yang
- Department of Otorhinolaryngology, Taipei City Hospital, Taipei, Taiwan
- Department of Speech, Language and Audiology, National Taipei University of Nursing and Health, Taipei, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center of General Education, University of Taipei, Taipei, Taiwan
- Research Center of Data Science on Healthcare Industry, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Shih-Han Hung
- Department of Otolaryngology, School of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Department of Otolaryngology, Wan Fang Hospital, Taipei, 110, Taiwan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chin-Shyan Chen
- Research Center of Data Science on Healthcare Industry, College of Management, Taipei Medical University, Taipei, Taiwan.
- Department of Economics, National Taipei University, New Taipei City, Taiwan.
| | - Herng-Ching Lin
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei, Taiwan
- Research Center of Sleep Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
84
|
Bandoh N, Goto T, Kato Y, Kubota A, Sakaue S, Takeda R, Hayashi S, Hayashi M, Baba S, Yamaguchi-Isochi T, Nishihara H, Kamada H. BRAF V600E mutation co-existing with oncogenic mutations is associated with aggressive clinicopathologic features and poor prognosis in papillary thyroid carcinoma. Asian J Surg 2024; 47:413-419. [PMID: 37752023 DOI: 10.1016/j.asjsur.2023.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND The aim of this study was to evaluate the correlation among mutations in cancer-related genes, clinicopathologic features, and clinical outcome in classical papillary thyroid carcinoma (PTC). PATIENTS AND METHODS A total of 130 patients with classical PTC who underwent curative surgery between April 2012 and June 2023 at Hokuto Hospital were included. Mutations in targeted regions of 160 cancer-related genes were detected by next-generation sequencing (NGS)-based cancer panel testing. RESULTS The BRAF V600E mutation was detected in 108 (83.1%) of 130 PTC patients. Among the 108 patients with the BRAF V600E mutation, other co-existing oncogenic mutations were found in 12 (9.2%) patients. When we divided into 3 groups of no mutations, BRAF V600E mutation alone, and BRAF V600E and other oncogenic mutations, significant differences were observed in terms of tracheal invasion (P = 0.0024), and bilateral neck lymph node metastasis (P = 0.0047). Kaplan-Meier analysis of overall survival (OS) revealed patients with BRAF V600E and other oncogenic mutations had significantly poorer survival than those with BRAF V600E mutation alone (P = 0.0026). Multivariate cox proportional hazard analysis revealed BRAF V600E and other oncogenic mutations was an independent prognostic factor for OS (HR: 10.559; 95%CI: 1.007-110.656, P = 0.0493). CONCLUSIONS The BRAF V600E mutation co-existing with other oncogenic mutations but not the BRAF V600E mutation alone was associated with aggressive clinicopathologic features, resulting in poor prognosis in patients with classical PTC. Detection of oncogenic mutations using NGS-based cancer panel testing could enhance understanding of the clinical features of classical PTC.
Collapse
Affiliation(s)
- Nobuyuki Bandoh
- Department of Otolaryngology-Head and Neck Surgery, Hokuto Hospital, Inadacho Kisen 7-5, Obihiro, Hokkaido, 080-0833, Japan.
| | - Takashi Goto
- Department of Otolaryngology-Head and Neck Surgery, Hokuto Hospital, Inadacho Kisen 7-5, Obihiro, Hokkaido, 080-0833, Japan
| | - Yasutaka Kato
- Department of Biology and Genetics, Laboratory of Cancer Medical Science, Hokuto Hospital, Inadacho Kisen 7-5, Obihiro, Hokkaido, 080-0833, Japan
| | - Akinobu Kubota
- Department of Otolaryngology-Head and Neck Surgery, Hokuto Hospital, Inadacho Kisen 7-5, Obihiro, Hokkaido, 080-0833, Japan; Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan
| | - Shota Sakaue
- Department of Otolaryngology-Head and Neck Surgery, Hokuto Hospital, Inadacho Kisen 7-5, Obihiro, Hokkaido, 080-0833, Japan; Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan
| | - Ryuhei Takeda
- Department of Otolaryngology-Head and Neck Surgery, Hokuto Hospital, Inadacho Kisen 7-5, Obihiro, Hokkaido, 080-0833, Japan; Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan
| | - Shuto Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Hokuto Hospital, Inadacho Kisen 7-5, Obihiro, Hokkaido, 080-0833, Japan; Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan
| | - Misaki Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Hokuto Hospital, Inadacho Kisen 7-5, Obihiro, Hokkaido, 080-0833, Japan; Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan
| | - Shogo Baba
- Department of Biology and Genetics, Laboratory of Cancer Medical Science, Hokuto Hospital, Inadacho Kisen 7-5, Obihiro, Hokkaido, 080-0833, Japan
| | - Tomomi Yamaguchi-Isochi
- Department of Biology and Genetics, Laboratory of Cancer Medical Science, Hokuto Hospital, Inadacho Kisen 7-5, Obihiro, Hokkaido, 080-0833, Japan
| | - Hiroshi Nishihara
- Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hajime Kamada
- Department of Neurosurgery, Hokuto Hospital, Inadacho Kisen 7-5, Obihiro, Hokkaido, 080-0833, Japan
| |
Collapse
|
85
|
Liu L, Wu F, Zhang X, Li X. PIWIL1 Promotes Malignant Progression of Papillary Thyroid Carcinoma by Inducing EVA1A Expression. Curr Cancer Drug Targets 2024; 24:192-203. [PMID: 37403394 DOI: 10.2174/1568009623666230703140510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid cancer. Previous studies have reported on the ectopic expression of P-element-induced wimpy testis ligand 1 (PIWIL1) in various human cancers, but its role in PTC progression has not been investigated. METHODS In this study, we measured the expression levels of PIWIL1 and Eva-1 homolog A (EVA1A) in PTC using qPCR and WB. We performed a viability assay to evaluate PTC cell proliferation and used flow cytometry to investigate apoptosis. Moreover, we conducted a Transwell invasion assay to quantify cell invasion and assessed PTC growth in vivo using xenograft tumor models. RESULTS Our findings showed PIWIL1 to be highly expressed in PTC and promote cell proliferation, cell cycle activity, and cell invasion, while suppressing apoptosis. Additionally, PIWIL1 accelerated tumor growth in PTC xenografts by modulating the EVA1A expression. CONCLUSION Our study suggests that PIWIL1 contributes to the progression of PTC through EVA1A signaling, indicating its potential role as a therapeutic target for PTC. These results provide valuable insights into PIWIL1 function and may lead to more effective treatments for PTC.
Collapse
Affiliation(s)
- Lianyong Liu
- Department of Endocrinology and Metabolism, Punan Hospital, Pudong New Area, Shanghai 200125, China
| | - Fengying Wu
- Nursing Department, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai 201599, China
| | - Xiaoying Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiangqi Li
- Department of Endocrinology and Metabolism, Gongli Hospital, Naval Medical University, Shanghai 200135, China
| |
Collapse
|
86
|
Shen H, Zhu R, Liu Y, Hong Y, Ge J, Xuan J, Niu W, Yu X, Qin JJ, Li Q. Radioiodine-refractory differentiated thyroid cancer: Molecular mechanisms and therapeutic strategies for radioiodine resistance. Drug Resist Updat 2024; 72:101013. [PMID: 38041877 DOI: 10.1016/j.drup.2023.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 12/04/2023]
Abstract
Radioiodine-refractory differentiated thyroid cancer (RAIR-DTC) is difficult to treat with radioactive iodine because of the absence of the sodium iodide transporter in the basement membrane of thyroid follicular cells for iodine uptake. This is usually due to the mutation or rearrangement of genes and the aberrant activation of signal pathways, which result in abnormal expression of thyroid-specific genes, leading to resistance of differentiated thyroid cancer cells to radioiodine therapy. Therefore, inhibiting the proliferation and growth of RAIR-DTC with multikinase inhibitors and other drugs or restoring its differentiation and then carrying out radioiodine therapy have become the first-line treatment strategies and main research directions. The drugs that regulate these kinases or signaling pathways have been studied in clinical and preclinical settings. In this review, we summarized the major gene mutations, gene rearrangements and abnormal activation of signaling pathways that led to radioiodine resistance of RAIR-DTC, as well as the medicine that have been tested in clinical and preclinical trials.
Collapse
Affiliation(s)
- Huize Shen
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Rui Zhu
- Department of stomatology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Yanyang Liu
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yangjian Hong
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiaming Ge
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jie Xuan
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenyuan Niu
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xuefei Yu
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Qinglin Li
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
87
|
Chen J, Bhandari A, Hirachan S, Lv S, Mainali S, Zheng C, Hao R. A Specificity Protein 1 assists the Progression of the Papillary Thyroid Cell Line by Initiating NECTIN4. Endocr Metab Immune Disord Drug Targets 2024; 24:789-797. [PMID: 37056066 DOI: 10.2174/1871530323666230413134611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 04/15/2023]
Abstract
AIMS Papillary thyroid cancer (PTC) is one of the subtypes of thyroid cancer with increasing incidence worldwide, but the molecular mechanism is still unclear. BACKGROUND Papillary thyroid cancer (PTC) is one of the subtypes of thyroid cancer with increasing incidence worldwide, but the molecular mechanism is still unclear. Studies have indicated that nectin cell adhesion molecule 4 (NECTIN4) was an oncogene and played an important role in the development and progression of PTC. Meanwhile, specificity protein 1 (SP1) expresses many important oncogenes and tumor suppressor genes. However, the relationship between NECTIN4 and SP1 in regulating PTC growth is unclear. OBJECTIVE In the present study, reverse transcription PCR was utilized to detect the mRNA expression of NECTIN4 and SP1 in thyroid cancer cell lines and normal thyroid cell lines. Chromatin immunoprecipitation assays and luciferase reporter assays were used to study whether SP1 could bind to the promoter region of NECTIN4 and activate its transcription. The biological functions of SP1 correlated with NECTIN4 were also performed in TPC-1 and KTC1 cell lines. METHODS The study revealed that the mRNA expression level of SP1 and NECTIN-4 showed a positive correlation and were upregulated in PTC cell lines. Moreover, the results of ChIP and luciferase reporter assays showed that SP1 could bind to the NECTIN4 promoter regions and activate the transcriptional level of NECTIN4. RESULTS The experiments in vitro showed that SP1 could promote cell proliferation, colony formation, migration, and invasion by regulating NECTIN4 in PTC cells. CONCLUSION In conclusion, our study, for the first time, demonstrated that SP1 could control the transcriptional regulation of NECTIN4 and accelerate the growth of PTC, which may provide a new potential therapeutic target for PTC patients.
Collapse
Affiliation(s)
- Jie Chen
- Department of Operating Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Adheesh Bhandari
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Department of Surgery, Breast and Thyroid Unit, Primera Hospital, Kathmandu, Nepal
| | - Suzita Hirachan
- Department of General Surgery, Breast and Thyroid Unit, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Shihui Lv
- Department of Operating Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Sumnima Mainali
- Department of Obstetrics and Gynecology, Kulhudhuffushi Regional Hospital, Kulhudhuffushi, Maldives
| | - Chen Zheng
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Rutian Hao
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| |
Collapse
|
88
|
Cortas C, Charalambous H. Tyrosine Kinase Inhibitors for Radioactive Iodine Refractory Differentiated Thyroid Cancer. Life (Basel) 2023; 14:22. [PMID: 38255638 PMCID: PMC10817256 DOI: 10.3390/life14010022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
Patients with differentiated thyroid cancer usually present with early-stage disease and undergo surgery followed by adjuvant radioactive iodine ablation, resulting in excellent clinical outcomes and prognosis. However, a minority of patients relapse with metastatic disease, and eventually develop radioactive iodine refractory disease (RAIR). In the past there were limited and ineffective options for systemic therapy for RAIR, but over the last ten to fifteen years the emergence of tyrosine kinase inhibitors (TKIs) has provided important new avenues of treatment for these patients, that are the focus of this review. Currently, Lenvatinib and Sorafenib, multitargeted TKIs, represent the standard first-line systemic treatment options for RAIR thyroid carcinoma, while Cabozantinib is the standard second-line treatment option. Furthermore, targeted therapies for patients with specific targetable molecular abnormalities include Latrectinib or Entrectinib for patients with NTRK gene fusions and Selpercatinib or Pralsetinib for patients with RET gene fusions. Dabrafenib plus Trametinib currently only have tumor agnostic approval in the USA for patients with BRAF V600E mutations, including thyroid cancer. Redifferentiation therapy is an area of active research, with promising initial results, while immunotherapy studies with checkpoint inhibitors in combination with tyrosine kinase inhibitors are underway.
Collapse
Affiliation(s)
| | - Haris Charalambous
- Medical Oncology Department, Bank of Cyprus Oncology Centre, Nicosia 2006, Cyprus;
| |
Collapse
|
89
|
Cao S, Yin Y, Hu H, Hong S, He W, Lv W, Liu R, Li Y, Yu S, Xiao H. CircGLIS3 inhibits thyroid cancer invasion and metastasis through miR-146b-3p/AIF1L axis. Cell Oncol (Dordr) 2023; 46:1777-1789. [PMID: 37610691 DOI: 10.1007/s13402-023-00845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
PURPOSE Studies have shown that circRNA is involved in the occurrence and development of human cancers. However, it remains unclear that the contribution of circRNA in thyroid carcinoma and its role in the process of tumorigenesis. METHODS The expression profile of circRNA-miRNA-mRNA in thyroid carcinoma was detected by RNA sequencing and verified by qRT-PCR. The characteristics of circGLIS3 were verified by RNase R and actinomycin assays, subcellular fractionation, and fluorescence in situ hybridization. The functions of circGLIS3 and AIF1L were detected by wound healing, transwell, 3D culture and Western blot. RNA Immunoprecipitation (RIP), RNA pulldown and dual-luciferase reporter assays were used to verify the target genes of circGLIS3 and downstream miRNAs. Functional rescue experiments were performed by transfecting miRNA mimics or siRNA of target genes. Finally, metastatic mouse models were used to investigate circGLIS3 function in vivo. RESULTS In this study, we discovered a novel circRNA (has_circ_0007368, named as circGLIS3) by RNA sequencing. CircGLIS3 was down-regulated in thyroid carcinoma tissues and cells line, and was negatively associated with malignant clinical features of thyroid carcinoma. Functional studies found that circGLIS3 could inhibit the migration and invasion of thyroid carcinoma cells, and was related to the EMT process. Mechanistically, circGLIS3 can upregulate the expression of the AIF1L gene by acting as a miR-146b-3p sponge to inhibit the progression of thyroid carcinoma. CONCLUSION Our study identified circGLIS3 as a novel tumor suppressor in thyroid cancer, indicating the potential of circGLIS3 as a promising diagnostic and prognostic marker for thyroid cancer.
Collapse
Affiliation(s)
- Siting Cao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yali Yin
- Department of Endocrinology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Huijuan Hu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shubin Hong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Weiman He
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Weiming Lv
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Rengyun Liu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang Yu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
90
|
Kuroki M, Iinuma R, Okuda H, Terazawa K, Shibata H, Mori KI, Ohashi T, Makiyama A, Futamura M, Miyazaki T, Horikawa Y, Ogawa T. Comprehensive Genome profile testing in head and neck cancer. Auris Nasus Larynx 2023; 50:952-959. [PMID: 37164815 DOI: 10.1016/j.anl.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
OBJECTIVE Head and neck cancer (HNC) is a tumor occurring in various primary sites with limited chemotherapy options for its treatment. Recently, comprehensive genomic profiling (CGP) testing has become clinically widespread. In this study, we examined the utility of CGP in diagnosing and treating HNC. METHODS This study included 29 patients with HNC who underwent CGP testing at the Gifu University Hospital between December 2019 and April 2022. We analyzed the types of gene mutations and tumor mutational burden (TMB) based on the CGP results. Squamous cell carcinoma accounted for 55.2%, and other cancers accounted for 44.8%. And we investigated the correlation of prognosis with gene mutations and TMB. RESULTS Gene mutations were detected in TP53(48.3%), CDKN2A (27.6%), CDKN2B (17.2%), NOTCH1 (17.2%), PIK3CA (17.2%), ARID1A (13.8%), and NF1 (13.8%). TP53, CDKN2A and CDKN2B mutations significantly decreased survival rate in HNC. Five cases (17.2%) were TMB-high and 82.8% were TMB-low. In SCC cases treated with immune checkpoint inhibitors, TMB-high had better Overall survival than TMB-low. And all patients with TMB-high were oropharyngeal cancer. CONCLUSION Although there were no cases in which effective treatment was actually performed based on the results of CGP, many gene mutations have been detected and several gene mutations correlated with prognosis. Furthermore, TMB can be used as a biomarker to predict the therapeutic effects of immune checkpoint inhibitors in cases of SCC.
Collapse
Affiliation(s)
- Masashi Kuroki
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Ryota Iinuma
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Hiroshi Okuda
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Kosuke Terazawa
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Hirofumi Shibata
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Ken-Ichi Mori
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Toshimitsu Ohashi
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Akitaka Makiyama
- Department of Cancer Center, Gifu University Hospital, Gifu City, Japan
| | - Manabu Futamura
- Department of Cancer Center, Gifu University Hospital, Gifu City, Japan
| | | | - Yukio Horikawa
- Department of Cancer Center, Gifu University Hospital, Gifu City, Japan; Department of Clinical Genetics Center, Gifu University Hospital, Gifu City, Japan; Department of Diabetes, Endocrinology and Metabolism, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Takenori Ogawa
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu City, Japan; Department of Cancer Center, Gifu University Hospital, Gifu City, Japan; Department of Clinical Genetics Center, Gifu University Hospital, Gifu City, Japan.
| |
Collapse
|
91
|
Tri BDM, Chi BDP, Hiep BT, Trung NH, Minh TD, Dung NTN, Bui TD, Tran VQ, Nguyen HT. Relationship of Recurrence Rate with some Characteristics in Patients with Thyroid Carcinoma. Indian J Endocrinol Metab 2023; 27:544-551. [PMID: 38371183 PMCID: PMC10871007 DOI: 10.4103/ijem.ijem_134_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 06/25/2023] [Indexed: 02/20/2024] Open
Abstract
Background Determining the clinical and subclinical characteristics related to the recurrence status in patients with a thyroid carcinoma has great significance for prognosis, prediction of recurrence and monitoring of treatment outcomes. This study aimed to determine the association between recurrence rate and some characteristics in patients with thyroid carcinoma. Patients and Methods The study was conducted by descriptive method with longitudinal follow-up on 102 thyroid carcinoma patients at 103 Military Hospital, Hanoi, Vietnam, from July 2013 to December 2016. Results Univariate analysis showed that there was a relationship between the recurrence characteristics in the studied patients and the characteristics of lymph node metastasis (P = 0.026; OR = 15; 95% CI = 1.4-163.2) and BRAF V600E mutation status (P = 0.01; OR = 3.41; 95% CI = 1.31-8.88). When analysing the multivariable Logistic regression model, there was a positive correlation between the occurrence of BRAF V600E gene mutation (P = 0.032; OR = 17.649; 95% CI = 1.290-241.523) and male sex (P = 0.036; OR = 12.788; 95% CI = 1.185-137.961) and the occurrence of recurrence in study patients. The mean time to relapse was earlier in male patients than in female patients (P = 0.02). The mean time to relapse in patients with the BRAF V600E mutation (31.81 ± 1.14 months) was shorter than the mean time to relapse in the group without the mutation (57.82 ± 2.08 months) (P = 0.01). The group of patients with mutations in the BRAF V600E gene increased the risk of recurrence compared with the group without the mutation (HR = 9.14, P = 0.04). Conclusion There is a positive correlation between recurrence and masculinity, lymph node metastasis and the occurrence of BRAF V600E mutations in thyroid carcinoma patients.
Collapse
Affiliation(s)
- Bui D. M. Tri
- Centre for Health Professionals Training, Ho Chi Minh City, Vietnam
| | - Bui D. P. Chi
- Department of Diagnostic Imaging, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Bui T. Hiep
- Department of Pharmacology - Clinical Pharmacy, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Nguyen H. Trung
- Department of Military Hygiene, Vietnam Military Medical University, Hanoi, Vietnam
| | - Tong D. Minh
- Department of Military Hygiene, Vietnam Military Medical University, Hanoi, Vietnam
| | | | - Thanh D. Bui
- Military Medical Hospital 175, Ho Chi Minh City, Vietnam
| | - Viet Q. Tran
- Military Medical Hospital 175, Ho Chi Minh City, Vietnam
| | - Hiep T. Nguyen
- Department of Family Medicine, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| |
Collapse
|
92
|
Bhattacharya S, Mahato RK, Singh S, Bhatti GK, Mastana SS, Bhatti JS. Advances and challenges in thyroid cancer: The interplay of genetic modulators, targeted therapies, and AI-driven approaches. Life Sci 2023; 332:122110. [PMID: 37734434 DOI: 10.1016/j.lfs.2023.122110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Thyroid cancer continues to exhibit a rising incidence globally, predominantly affecting women. Despite stable mortality rates, the unique characteristics of thyroid carcinoma warrant a distinct approach. Differentiated thyroid cancer, comprising most cases, is effectively managed through standard treatments such as thyroidectomy and radioiodine therapy. However, rarer variants, including anaplastic thyroid carcinoma, necessitate specialized interventions, often employing targeted therapies. Although these drugs focus on symptom management, they are not curative. This review delves into the fundamental modulators of thyroid cancers, encompassing genetic, epigenetic, and non-coding RNA factors while exploring their intricate interplay and influence. Epigenetic modifications directly affect the expression of causal genes, while long non-coding RNAs impact the function and expression of micro-RNAs, culminating in tumorigenesis. Additionally, this article provides a concise overview of the advantages and disadvantages associated with pharmacological and non-pharmacological therapeutic interventions in thyroid cancer. Furthermore, with technological advancements, integrating modern software and computing into healthcare and medical practices has become increasingly prevalent. Artificial intelligence and machine learning techniques hold the potential to predict treatment outcomes, analyze data, and develop personalized therapeutic approaches catering to patient specificity. In thyroid cancer, cutting-edge machine learning and deep learning technologies analyze factors such as ultrasonography results for tumor textures and biopsy samples from fine needle aspirations, paving the way for a more accurate and effective therapeutic landscape in the near future.
Collapse
Affiliation(s)
- Srinjan Bhattacharya
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Rahul Kumar Mahato
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Satwinder Singh
- Department of Computer Science and Technology, Central University of Punjab, Bathinda 151401, Punjab, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Leicestershire, Loughborough LE11 3TU, UK.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India.
| |
Collapse
|
93
|
Feng G, Wang P, Zhang H, Cheng S, Xing Y, Wang Y. MEX3A induces the development of thyroid cancer via targeting CREB1. Cell Biol Int 2023; 47:1843-1853. [PMID: 37529875 DOI: 10.1002/cbin.12076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
Thyroid cancer is a prevalent form of endocrine cancer, and its global incidence has been steadily increasing. MEX3A is a protein that is known to be highly expressed in various human malignant tumors, including thyroid cancer, and it has been linked to patient prognosis. However, the molecular mechanisms underlying MEX3A's tumorigenic capabilities in thyroid cancer are not fully understood. In this study, we aimed to investigate the role of MEX3A in thyroid cancer. We confirmed that MEX3A was overexpressed in both thyroid cancer tissues and cell lines. Additionally, we found a positive correlation between high levels of MEX3A and the AJCC stage. To further understand the functional significance of MEX3A in thyroid cancer, we depleted MEX3A expression in B-CPAP and TPC-1 cells. Interestingly, we observed a significant reduction in thyroid cancer cell proliferation and migration, as well as ameliorated cell apoptosis and arrested tumor growth upon MEX3A depletion. These findings strongly suggested that MEX3A played a critical role in the development of thyroid cancer. Furthermore, our study uncovered an important interaction between MEX3A and CREB1 (cAMP response element-binding protein 1). The interaction between MEX3A and CREB1 appeared to contribute to the tumor-promoting effects of MEX3A in thyroid cancer by directly targeting CREB1. Silencing CREB1 was observed to alleviate the malignant phenotypes promoted by MEX3A in thyroid cancer cells. Together, this study highlighted the importance of the MEX3A-CREB1 interaction in thyroid cancer development and suggested the therapeutic potential of targeting MEX3A for the treatment of this disease.
Collapse
Affiliation(s)
- Guoxun Feng
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Penghui Wang
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Hongyi Zhang
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Shi Cheng
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Ying Xing
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Yuan Wang
- Department of General Surgery, Peking University People Hospital, Beijing, China
| |
Collapse
|
94
|
Pasquali D, Giacomelli L, Pedicillo MC, Conzo G, Gentile G, De Stefano IS, Angelillis F, Santoro A, Miele F, Digitale Selvaggio L, Melcarne R, Pannone G. Tumor Inflammatory Microenvironment of the Thyroid Cancer: Relationship between Regulatory T-Cell Imbalance, and p-NFΚB (p65) Expression-A Preliminary Study. J Clin Med 2023; 12:6817. [PMID: 37959281 PMCID: PMC10647421 DOI: 10.3390/jcm12216817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Inflammatory microenvironment is an essential component of all tumors, including thyroid cancer. Autoimmune thyroid diseases are often associated with thyroid cancer. CD25, expressed in Treg cells and B cells, has been found to be associated with autoimmune thyroid diseases and the NFkB pathway is critical to tumor formation, regulating immune-related genes, and pro-inflammatory cytokine. METHODS Protein expression of CD25 and NFkB and its phosphorylated form was analyzed by immunohistochemistry in 80 patients with thyroid cancer (10 cases of cancers with Hashimoto's thyroiditis and 70 cases without). RESULTS CD25 was mainly detected in the nucleus of the inflammatory cells such as in the thyrocytes and neoplastic cells. Protein staining was detected in the T-lymphocytes of the outermost zone of the lymphoid follicles. Moreover, in all cancer alterations, there were a higher level of p-NFkB than in the surrounding tissues. Again, p-NFkB staining was evident in neoplastic cells but not evident in inflammatory cells. CONCLUSIONS Strong inflammatory infiltrate in the tumor microenvironment is correlated with an invasive phenotype. CD25 and p-NFkB levels were statistically significantly overexpressed in cancer cells.
Collapse
Affiliation(s)
- Daniela Pasquali
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy;
| | - Laura Giacomelli
- Department of General and Specialist Surgery, Sapienza University of Rome, 00161 Rome, Italy;
| | - Maria Carmela Pedicillo
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.C.P.); (I.S.D.S.); (F.A.); (G.P.)
| | - Giovanni Conzo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy;
| | - Gabriella Gentile
- Department of Radiology, Oncology and Pathology, Sapienza University of Rome, 00161 Rome, Italy;
| | - Ilenia Sara De Stefano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.C.P.); (I.S.D.S.); (F.A.); (G.P.)
| | - Francesco Angelillis
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.C.P.); (I.S.D.S.); (F.A.); (G.P.)
| | - Angela Santoro
- General Pathology Unit, Department of Woman and Child’s Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | | | - Lucia Digitale Selvaggio
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy;
| | - Rossella Melcarne
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Giuseppe Pannone
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.C.P.); (I.S.D.S.); (F.A.); (G.P.)
| |
Collapse
|
95
|
Wang C, Zhang Y. Current Application of Nanoparticle Drug Delivery Systems to the Treatment of Anaplastic Thyroid Carcinomas. Int J Nanomedicine 2023; 18:6037-6058. [PMID: 37904863 PMCID: PMC10613415 DOI: 10.2147/ijn.s429629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Anaplastic thyroid carcinomas (ATCs) are a rare subtype of thyroid cancers with a low incidence but extremely high invasiveness and fatality. The treatment of ATCs is very challenging, and currently, a comprehensive individualized therapeutic strategy involving surgery, radiotherapy (RT), chemotherapy, BRAF/MEK inhibitors (BRAFi/MEKi) and immunotherapy is preferred. For ATC patients in stage IVA/IVB, a surgery-based comprehensive strategy may provide survival benefits. Unfortunately, ATC patients in IVC stage barely get benefits from the current treatment. Recently, nanoparticle delivery of siRNAs, targeted drugs, cytotoxic drugs, photosensitizers and other agents is considered as a promising anti-cancer treatment. Nanoparticle drug delivery systems have been mainly explored in the treatment of differentiated thyroid cancer (DTC). With the rapid development of drug delivery techniques and nanomaterials, using hybrid nanoparticles as the drug carrier to deliver siRNAs, targeted drugs, immune drugs, chemotherapy drugs and phototherapy drugs to ATC patients have become a hot research field. This review aims to describe latest findings of nanoparticle drug delivery systems in the treatment of ATCs, thus providing references for the further analyses.
Collapse
Affiliation(s)
- Chonggao Wang
- Department of Thyroid Surgery, Nanjing Hospital of Chinese Medicine, Nanjing, 210001, People’s Republic of China
- School of Medicine, Southeast University, Nanjing, 210001, People’s Republic of China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
96
|
Alzahrani AS. Clinical use of Molecular Data in Thyroid Nodules and Cancer. J Clin Endocrinol Metab 2023; 108:2759-2771. [PMID: 37200449 DOI: 10.1210/clinem/dgad282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/20/2023]
Abstract
Over the past 3 decades, advances in the molecular genetics of thyroid cancer (TC) have been translated into diagnostic tests, prognostic markers, and therapeutic agents. The main drivers in differentiated TC pathogenesis are single-point mutations and gene fusions in components of the Mitogen-activated protein kinase (MAPK) and phosphoinositide-3-kinase-protein kinase B/Akt (PI3K/Akt) pathways. Other important genetic alterations in the more advanced types of TC include TERT promoter, TP53, EIF1AX, and epigenetic alterations. Using this knowledge, several molecular tests have been developed for cytologically indeterminate thyroid nodules. Currently, 3 commercially available tests are in use including a DNA/RNA-based test (ThyroSeq v.3), an RNA-based test (Afirma Gene Sequencing Classifier), and a hybrid DNA/miRNA test, ThyGeNEXT/ThyraMIR. These tests are mostly used to rule out malignancy in Bethesda III and IV thyroid nodules because they all have high sensitivities and negative predictive values. Their common use, predominantly in the United States, has resulted in a significant reduction in unnecessary thyroid surgeries for benign nodules. Some of these tests also provide information on the underlying molecular drivers of TC; this may support decision making in initial TC management planning, although this practice has not yet been widely adopted. More importantly, molecular testing is essential in patients with advanced disease before using specific mono-kinase inhibitors (eg, selpercatinib for RET-altered TC) because these drugs are ineffective in the absence of a specific molecular target. This mini-review discusses the utilization of molecular data in the clinical management of patients with thyroid nodules and TC in these different clinical situations.
Collapse
Affiliation(s)
- Ali S Alzahrani
- Department of Medicine and Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
97
|
Tsoukalas N, Kiakou M, Tolia M, Galanopoulos M, Tsapakidis K, Arvanitou E, Charalambakis N, Tountziaris V, Nikolaou M, Christofyllakis C. SYNCHRONOUS DIAGNOSIS OF TESTICULAR AND THYROID CANCER IN A YOUNG MALE. Exp Oncol 2023; 45:263-268. [PMID: 37824765 DOI: 10.15407/exp-oncology.2023.02.263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 10/14/2023]
Abstract
Testicular cancer is the most common neoplasm in young males. The early diagnosis and the appropriate treatment make it a curable malignancy in over 90% of the patients, but 6% of the patients with testicular cancer develop a second, mostly treatment-related, malignancy in another primary site many years after the first diagnosis. The simultaneous appearance of a testicular tumor with another primary neoplasm is rarely described in the literature. Here is presented an interesting case of a coexisting non-seminomatous germ cell testicular tumor with a papillary thyroid carcinoma, which was detected early during post-treatment restaging of the testicular tumor. The synchronous presence of these two neoplasms might indicate a probable common pathogenetic background. As treatment-related oncogenesis is highly improbable in this case and the common environmental factors are not known yet, the interest is focused on genetic predisposition. Recent discoveries in molecular genetics show that the two neoplasms share common genetic alterations in the RAS and BRAF genes, which affect the significant signaling pathways. Interestingly, BRAF-V600E was positive in both primary malignancies in our individual.
Collapse
Affiliation(s)
- N Tsoukalas
- 401 General Military Hospital, Athens 11524, Greece
| | - M Kiakou
- 401 General Military Hospital, Athens 11524, Greece
| | - M Tolia
- Department of Radiotherapy-Radiation Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | - K Tsapakidis
- Department of Radiotherapy-Radiation Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - E Arvanitou
- 401 General Military Hospital, Athens 11524, Greece
| | - N Charalambakis
- Department of Medical Oncology, Metaxa Cancer Hospital, Piraeus, Greece
| | - V Tountziaris
- 1st Urological Department, Aristotle University of Thessaloniki, Greece
| | - M Nikolaou
- 1st Oncology Department, Anti-cancer Hospital "Sant Savvas", Athens, Greece
| | | |
Collapse
|
98
|
Xu GJ, Loberg MA, Gallant JN, Sheng Q, Chen SC, Lehmann BD, Shaddy SM, Tigue ML, Phifer CJ, Wang L, Saab-Chalhoub MW, Dehan LM, Wei Q, Chen R, Li B, Kim CY, Ferguson DC, Netterville JL, Rohde SL, Solórzano CC, Bischoff LA, Baregamian N, Shaver AC, Mehrad M, Ely KA, Byrne DW, Stricker TP, Murphy BA, Choe JH, Kagohara LT, Jaffee EM, Huang EC, Ye F, Lee E, Weiss VL. Molecular signature incorporating the immune microenvironment enhances thyroid cancer outcome prediction. CELL GENOMICS 2023; 3:100409. [PMID: 37868034 PMCID: PMC10589635 DOI: 10.1016/j.xgen.2023.100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/03/2023] [Accepted: 08/23/2023] [Indexed: 10/24/2023]
Abstract
Genomic and transcriptomic analysis has furthered our understanding of many tumors. Yet, thyroid cancer management is largely guided by staging and histology, with few molecular prognostic and treatment biomarkers. Here, we utilize a large cohort of 251 patients with 312 samples from two tertiary medical centers and perform DNA/RNA sequencing, spatial transcriptomics, and multiplex immunofluorescence to identify biomarkers of aggressive thyroid malignancy. We identify high-risk mutations and discover a unique molecular signature of aggressive disease, the Molecular Aggression and Prediction (MAP) score, which provides improved prognostication over high-risk mutations alone. The MAP score is enriched for genes involved in epithelial de-differentiation, cellular division, and the tumor microenvironment. The MAP score also identifies aggressive tumors with lymphocyte-rich stroma that may benefit from immunotherapy. Future clinical profiling of the stromal microenvironment of thyroid cancer could improve prognostication, inform immunotherapy, and support development of novel therapeutics for thyroid cancer and other stroma-rich tumors.
Collapse
Affiliation(s)
- George J. Xu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew A. Loberg
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jean-Nicolas Gallant
- Department of Otolaryngology – Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sheau-Chiann Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brian D. Lehmann
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sophia M. Shaddy
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Megan L. Tigue
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Courtney J. Phifer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Li Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mario W. Saab-Chalhoub
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren M. Dehan
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiang Wei
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Rui Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Christine Y. Kim
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Donna C. Ferguson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James L. Netterville
- Department of Otolaryngology – Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah L. Rohde
- Department of Otolaryngology – Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carmen C. Solórzano
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lindsay A. Bischoff
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naira Baregamian
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aaron C. Shaver
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mitra Mehrad
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kim A. Ely
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel W. Byrne
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas P. Stricker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Barbara A. Murphy
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer H. Choe
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Luciane T. Kagohara
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
- Bloomberg-Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth M. Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
- Bloomberg-Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric C. Huang
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Vivian L. Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
99
|
Minna E, Devecchi A, Pistore F, Paolini B, Mauro G, Penso DA, Pagliardini S, Busico A, Pruneri G, De Cecco L, Borrello MG, Sensi M, Greco A. Genomic and transcriptomic analyses of thyroid cancers identify DICER1 somatic mutations in adult follicular-patterned RAS-like tumors. Front Endocrinol (Lausanne) 2023; 14:1267499. [PMID: 37867524 PMCID: PMC10585144 DOI: 10.3389/fendo.2023.1267499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Background Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer (TC). Several genomic and transcriptomic studies explored the molecular landscape of follicular cell-derived TCs, and BRAFV600E, RAS mutations, and gene fusions are well-established drivers. DICER1 mutations were described in specific sets of TC patients but represent a rare event in adult TC patients. Methods Here, we report the molecular characterization of 30 retrospective follicular cell-derived thyroid tumors, comprising PTCs (90%) and poorly differentiated TCs (10%), collected at our Institute. We performed DNA whole-exome sequencing using patient-matched control for somatic mutation calling, and targeted RNA-seq for gene fusion detection. Transcriptional profiles established in the same cohort by microarray were investigated using three signaling-related gene signatures derived from The Cancer Genome Atlas (TCGA). Results The occurrence of BRAFV600E (44%), RAS mutations (13%), and gene fusions (13%) was confirmed in our cohort. In addition, in two patients lacking known drivers, mutations of the DICER1 gene (p.D1709N and p.D1810V) were identified. DICER1 mutations occur in two adult patients with follicular-pattern lesions, and in one of them a second concurrent DICER1 mutation (p.R459*) is also observed. Additional putative drivers include ROS1 gene (p.P2130A mutation), identified in a patient with a rare solid-trabecular subtype of PTC. Transcriptomics indicates that DICER1 tumors are RAS-like, whereas the ROS1-mutated tumor displays a borderline RAS-/BRAF-like subtype. We also provide an overview of DICER1 and ROS1 mutations in thyroid lesions by investigating the COSMIC database. Conclusion Even though small, our series recapitulates the genetic background of PTC. Furthermore, we identified DICER1 mutations, one of which is previously unreported in thyroid lesions. For these less common alterations and for patients with unknown drivers, we provide signaling information applying TCGA-derived classification.
Collapse
Affiliation(s)
- Emanuela Minna
- Pathology Unit 2, Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Devecchi
- Pathology Unit 2, Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federico Pistore
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Biagio Paolini
- Pathology Unit 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Mauro
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Donata Alda Penso
- Pathology Unit 2, Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sonia Pagliardini
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Adele Busico
- Pathology Unit 2, Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giancarlo Pruneri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Grazia Borrello
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marialuisa Sensi
- Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Angela Greco
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
100
|
Mukhtar N, Alhamoudi K, Alswailem M, Alhindi H, Murugan AK, Alghamdi B, Alzahrani AS. How do BRAFV600E and TERT promoter mutations interact with the ATA and TNM staging systems in thyroid cancer? Front Endocrinol (Lausanne) 2023; 14:1270796. [PMID: 37859987 PMCID: PMC10582750 DOI: 10.3389/fendo.2023.1270796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023] Open
Abstract
Context The American Thyroid Association risk stratification (ATA) and the American Joint Committee on Cancer Tumor Node Metastases (TNM) predict recurrence and mortality of differentiated thyroid cancer (DTC). BRAFV600E and TERT promoter mutations have been shown to correlate with the histopathological features and outcome of DTC. Our objectives were to study the correlation of these molecular markers with these clinicopathological-staging systems. Patients and methods We studied 296 unselected patients, 214 females and 82 males with a median age of 36 years (IQR 23.3-49.0). BRAFV600E and TERT promoter mutations were tested by PCR-based Sanger sequencing. Data were extracted from medical records and analysed using Chi-Square and Fisher Exact tests and Kaplan Meier analysis. Results Of 296 patients tested, 137 (46.3%) had BRAFV600E-positive tumors and 72 (24.3%) were positive for TERT promoter mutations. The BRAFV600E mutation did not correlate with the ATA and TNM staging, being non-significantly different in various stages of these systems and did not predict the development of persistent disease (PD) (P 0.12). Unlike BRAFV600E, TERT promoter mutations were more frequent in the ATA high-risk than in intermediate- or low-risk tumors (P 0.006) and in TNM stages III and IV than lower stages (P <0.0001). TERT promoter mutations also predicted the outcome, being present in 37.2% of patients with PD compared to only 15.4% in those without evidence of disease (P <0.0001). The same pattern was also seen when BRAFV600E and TERT promoter mutations were combined. Conclusion TERT promoter mutations alone or in combination with BRAFV600E mutation, but not BRAFV600E mutation alone, correlated well with the ATA and TNM staging and predicted development of PD, especially in higher stages of these systems.
Collapse
Affiliation(s)
- Noha Mukhtar
- Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Kheloud Alhamoudi
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Meshael Alswailem
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Hindi Alhindi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | | | - Balgees Alghamdi
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Ali S. Alzahrani
- Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|