51
|
Eckardt JN, Röllig C, Metzeler K, Heisig P, Stasik S, Georgi JA, Kroschinsky F, Stölzel F, Platzbecker U, Spiekermann K, Krug U, Braess J, Görlich D, Sauerland C, Woermann B, Herold T, Hiddemann W, Müller-Tidow C, Serve H, Baldus CD, Schäfer-Eckart K, Kaufmann M, Krause SW, Hänel M, Berdel WE, Schliemann C, Mayer J, Hanoun M, Schetelig J, Wendt K, Bornhäuser M, Thiede C, Middeke JM. Unsupervised meta-clustering identifies risk clusters in acute myeloid leukemia based on clinical and genetic profiles. COMMUNICATIONS MEDICINE 2023; 3:68. [PMID: 37198246 DOI: 10.1038/s43856-023-00298-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Increasingly large and complex biomedical data sets challenge conventional hypothesis-driven analytical approaches, however, data-driven unsupervised learning can detect inherent patterns in such data sets. METHODS While unsupervised analysis in the medical literature commonly only utilizes a single clustering algorithm for a given data set, we developed a large-scale model with 605 different combinations of target dimensionalities as well as transformation and clustering algorithms and subsequent meta-clustering of individual results. With this model, we investigated a large cohort of 1383 patients from 59 centers in Germany with newly diagnosed acute myeloid leukemia for whom 212 clinical, laboratory, cytogenetic and molecular genetic parameters were available. RESULTS Unsupervised learning identifies four distinct patient clusters, and statistical analysis shows significant differences in rate of complete remissions, event-free, relapse-free and overall survival between the four clusters. In comparison to the standard-of-care hypothesis-driven European Leukemia Net (ELN2017) risk stratification model, we find all three ELN2017 risk categories being represented in all four clusters in varying proportions indicating unappreciated complexity of AML biology in current established risk stratification models. Further, by using assigned clusters as labels we subsequently train a supervised model to validate cluster assignments on a large external multicenter cohort of 664 intensively treated AML patients. CONCLUSIONS Dynamic data-driven models are likely more suitable for risk stratification in the context of increasingly complex medical data than rigid hypothesis-driven models to allow for a more personalized treatment allocation and gain novel insights into disease biology.
Collapse
Affiliation(s)
- Jan-Niklas Eckardt
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany.
- Else Kröner Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany.
| | - Christoph Röllig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Klaus Metzeler
- Medical Clinic and Policlinic I Hematology and Cell Therapy, University Hospital, Leipzig, Germany
| | - Peter Heisig
- Department of Software and Multimedia Technology, Technical University Dresden, Dresden, Germany
| | - Sebastian Stasik
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Julia-Annabell Georgi
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Frank Kroschinsky
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Friedrich Stölzel
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Uwe Platzbecker
- Medical Clinic and Policlinic I Hematology and Cell Therapy, University Hospital, Leipzig, Germany
| | - Karsten Spiekermann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Utz Krug
- Department of Medicine III, Hospital Leverkusen, Leverkusen, Germany
| | - Jan Braess
- Hospital Barmherzige Brueder Regensburg, Regensburg, Germany
| | - Dennis Görlich
- Institute for Biostatistics and Clinical Research, University Muenster, Muenster, Germany
| | - Cristina Sauerland
- Institute for Biostatistics and Clinical Research, University Muenster, Muenster, Germany
| | - Bernhard Woermann
- Department of Hematology, Oncology and Tumor Immunology, Charité, Berlin, Germany
| | - Tobias Herold
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Hiddemann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
- German Consortium for Translational Cancer Research DKFZ, Heidelberg, Germany
| | - Hubert Serve
- Department of Medicine 2, Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Claudia D Baldus
- Department of Hematology and Oncology, University Hospital Schleswig Holstein, Kiel, Germany
| | | | - Martin Kaufmann
- Department of Hematology, Oncology and Palliative Care, Robert-Bosch Hospital, Stuttgart, Germany
| | - Stefan W Krause
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen, Germany
| | - Mathias Hänel
- Department of Internal Medicine 3, Klinikum Chemnitz GmbH, Chemnitz, Germany
| | - Wolfgang E Berdel
- Department of Internal Medicine A, University Hospital Muenster, Muenster, Germany
| | - Christoph Schliemann
- Department of Internal Medicine A, University Hospital Muenster, Muenster, Germany
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Masaryk University Hospital, Brno, Czech Republic
| | - Maher Hanoun
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Johannes Schetelig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Karsten Wendt
- Else Kröner Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Department of Software and Multimedia Technology, Technical University Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
- German Consortium for Translational Cancer Research DKFZ, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Christian Thiede
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Jan Moritz Middeke
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
- Else Kröner Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
| |
Collapse
|
52
|
Tong X, Li M, Jin J, Li Y, Li L, Peng Y, Huang L, Xu B, Meng F, Mao X, Huang L, Huang W, Zhang D. Cladribine- and decitabine-containing conditioning regimen has a low post-transplant relapse rate in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome. Int J Cancer 2023; 152:2123-2133. [PMID: 36594582 DOI: 10.1002/ijc.34419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/24/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023]
Abstract
To reduce the risk of relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT), there have been continuing efforts to optimize the conditioning regimens. Our study aimed to analyze the risk factors associated with the relapse of relapsed/refractory (R/R), high-risk acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (MDS) post-transplant and the efficacy of a new conditioning regimen involving decitabine and cladribine. Clinical data of 125 patients with R/R AML, high-risk AML and high-risk MDS who underwent allo-HSCT were collected. In addition, 35 patients with R/R AML, high-risk AML and high-risk MDS received treatment with a new conditioning regimen including decitabine and cladribine. Cox regression analysis was used to identify risk factors associated with OS, RFS and relapse. Among 125 patients who underwent allo-HSCT, CR before allo-HSCT and matched sibling donors were independent protective factors for OS. DNMT3A abnormality was an independent risk factor for both relapse and RFS. Among 35 patients who received a new conditioning regimen containing decitabine and cladribine, only six patients relapsed and 1-year cumulative incidence of relapse was 11.7%. Moreover, this new regimen showed efficient MRD clearance early after allo-HSCT. The combined decitabine- and cladribine-based conditioning regimen showed a low relapse rate and a high survival without an increased incidence of GVHD or adverse effects and thus has potential for use in allo-HSCT for R/R AML, high-risk AML and high-risk MDS.
Collapse
Affiliation(s)
- Xiwen Tong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengyuan Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Jin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yizhou Peng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lifang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fankai Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xia Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Donghua Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
53
|
Xie X, Su M, Ren K, Ma X, Lv Z, Li Z, Mei Y, Ji P. Clonal hematopoiesis and bone marrow inflammation. Transl Res 2023; 255:159-170. [PMID: 36347490 PMCID: PMC11992924 DOI: 10.1016/j.trsl.2022.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
Clonal hematopoiesis (CH) occurs in hematopoietic stem cells with increased risks of progressing to hematologic malignancies. CH mutations are predominantly found in aged populations and correlate with an increased incidence of cardiovascular and other diseases. Increased lines of evidence demonstrate that CH mutations are closely related to the inflammatory bone marrow microenvironment. In this review, we summarize the recent advances in this topic starting from the discovery of CH and its mutations. We focus on the most commonly mutated and well-studied genes in CH and their contributions to the innate immune responses and inflammatory signaling, especially in the hematopoietic cells of bone marrow. We also aimed to discuss the interrelationship between inflammatory bone marrow microenvironment and CH mutations. Finally, we provide our perspectives on the challenges in the field and possible future directions to help understand the pathophysiology of CH.
Collapse
Affiliation(s)
- Xinshu Xie
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Meng Su
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Kehan Ren
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Xuezhen Ma
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zhiyi Lv
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zhaofeng Li
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yang Mei
- School of Biomedical Sciences, Hunan University, Changsha, China; Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, China.
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois.
| |
Collapse
|
54
|
Kodada D, Hyblova M, Krumpolec P, Janostiakova N, Barath P, Grendar M, Blandova G, Petrovic O, Janega P, Repiska V, Minarik G. The Potential of Liquid Biopsy in Detection of Endometrial Cancer Biomarkers: A Pilot Study. Int J Mol Sci 2023; 24:ijms24097811. [PMID: 37175518 PMCID: PMC10178554 DOI: 10.3390/ijms24097811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Endometrial cancer belongs to the most common gynecologic cancer types globally, with increasing incidence. There are numerous ways of classifying different cases. The most recent decade has brought advances in molecular classification, which show more accurate prognostic factors and the possibility of personalised adjuvant treatment. In addition, diagnostic approaches lag behind these advances, with methods causing patients discomfort while lacking the reproducibility of tissue sampling for biopsy. Minimally invasive liquid biopsies could therefore represent an alternative screening and diagnostic approach in patients with endometrial cancer. The method could potentially detect molecular changes in this cancer type and identify patients at early stages. In this pilot study, we tested such a detection method based on circulating tumour DNA isolated from the peripheral blood plasma of 21 Slovak endometrial cancer patients. We successfully detected oncomutations in the circulating DNA of every single patient, although the prognostic value of the detected mutations failed to offer certainty. Furthermore, we detected changes associated with clonal hematopoiesis, including DNMT3A mutations, which were present in the majority of circulating tumour DNA samples.
Collapse
Affiliation(s)
- Dominik Kodada
- Medirex Group Academy, 94905 Nitra, Slovakia
- Faculty of Medicine, Comenius University in Bratislava, 84215 Bratislava, Slovakia
| | | | | | - Nikola Janostiakova
- Medirex Group Academy, 94905 Nitra, Slovakia
- Faculty of Medicine, Comenius University in Bratislava, 84215 Bratislava, Slovakia
| | | | - Marian Grendar
- Medirex Group Academy, 94905 Nitra, Slovakia
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Gabriela Blandova
- Faculty of Medicine, Comenius University in Bratislava, 84215 Bratislava, Slovakia
| | | | - Pavol Janega
- Medirex Group Academy, 94905 Nitra, Slovakia
- Faculty of Medicine, Comenius University in Bratislava, 84215 Bratislava, Slovakia
| | - Vanda Repiska
- Faculty of Medicine, Comenius University in Bratislava, 84215 Bratislava, Slovakia
| | | |
Collapse
|
55
|
Tian H, Liu C, Yu J, Han J, Du J, Liang S, Wang W, Liu Q, Lian R, Zhu T, Wu S, Tao T, Ye Y, Zhao J, Yang Y, Zhu X, Cai J, Wu J, Li M. PHF14 enhances DNA methylation of SMAD7 gene to promote TGF-β-driven lung adenocarcinoma metastasis. Cell Discov 2023; 9:41. [PMID: 37072414 PMCID: PMC10113255 DOI: 10.1038/s41421-023-00528-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/07/2023] [Indexed: 04/20/2023] Open
Abstract
Aberrant activation of TGF-β signaling plays a pivotal role in cancer metastasis and progression. However, molecular mechanisms underlying the dysregulation of TGF-β pathway remain to be understood. Here, we found that SMAD7, a direct downstream transcriptional target and also a key antagonist of TGF-β signaling, is transcriptionally suppressed in lung adenocarcinoma (LAD) due to DNA hypermethylation. We further identified that PHF14 binds DNMT3B and serves as a DNA CpG motif reader, recruiting DNMT3B to the SMAD7 gene locus, resulting in DNA methylation and transcriptional suppression of SMAD7. Our in vitro and in vivo experiments showed that PHF14 promotes metastasis through binding DNMT3B to suppress SMAD7 expression. Moreover, our data revealed that PHF14 expression correlates with lowered SMAD7 level and shorter survival of LAD patients, and importantly that SMAD7 methylation level of circulating tumor DNA (ctDNA) can potentially be used for prognosis prediction. Together, our present study illustrates a new epigenetic mechanism, mediated by PHF14 and DNMT3B, in the regulation of SMAD7 transcription and TGF-β-driven LAD metastasis, and suggests potential opportunities for LAD prognosis.
Collapse
Affiliation(s)
- Han Tian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Cancer Institute, Southern Medical University, Guangzhou, Guangdong, China
| | - Chenying Liu
- Department of Breast Pathology and Lab, Key Laboratory of Breast Cancer of Breast Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jianchen Yu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- School of Chemistry, South China Normal University, Guangzhou, Guangdong, China
| | - Jian Han
- Cancer Institute, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianan Du
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shujun Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenting Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qin Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rong Lian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Zhu
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shanshan Wu
- Department of Biology, School of Basic Medical Science, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Tianyu Tao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaokai Ye
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingjing Zhao
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xun Zhu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junchao Cai
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jueheng Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengfeng Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Cancer Institute, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
56
|
Ramabadran R, Wang JH, Reyes JM, Guzman AG, Gupta S, Rosas C, Brunetti L, Gundry MC, Tovy A, Long H, Gu T, Cullen SM, Tyagi S, Rux D, Kim JJ, Kornblau SM, Kyba M, Stossi F, Rau RE, Takahashi K, Westbrook TF, Goodell MA. DNMT3A-coordinated splicing governs the stem state switch towards differentiation in embryonic and haematopoietic stem cells. Nat Cell Biol 2023; 25:528-539. [PMID: 37024683 PMCID: PMC10337578 DOI: 10.1038/s41556-023-01109-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/17/2023] [Indexed: 04/08/2023]
Abstract
Upon stimulation by extrinsic stimuli, stem cells initiate a programme that enables differentiation or self-renewal. Disruption of the stem state exit has catastrophic consequences for embryogenesis and can lead to cancer. While some elements of this stem state switch are known, major regulatory mechanisms remain unclear. Here we show that this switch involves a global increase in splicing efficiency coordinated by DNA methyltransferase 3α (DNMT3A), an enzyme typically involved in DNA methylation. Proper activation of murine and human embryonic and haematopoietic stem cells depends on messenger RNA processing, influenced by DNMT3A in response to stimuli. DNMT3A coordinates splicing through recruitment of the core spliceosome protein SF3B1 to RNA polymerase and mRNA. Importantly, the DNA methylation function of DNMT3A is not required and loss of DNMT3A leads to impaired splicing during stem cell turnover. Finally, we identify the spliceosome as a potential therapeutic target in DNMT3A-mutated leukaemias. Together, our results reveal a modality through which DNMT3A and the spliceosome govern exit from the stem state towards differentiation.
Collapse
Affiliation(s)
- Raghav Ramabadran
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Jarey H Wang
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jaime M Reyes
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Anna G Guzman
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sinjini Gupta
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Carina Rosas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Lorenzo Brunetti
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Michael C Gundry
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ayala Tovy
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Hali Long
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Tianpeng Gu
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sean M Cullen
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Siddhartha Tyagi
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Danielle Rux
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Jean J Kim
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Kyba
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rachel E Rau
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas F Westbrook
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
57
|
Ghaoui R, Ha TT, Kerkhof J, McConkey H, Gao S, Babic M, King R, Ravenscroft G, Kocyzek B, Otto S, Laing NG, Scott H, Sadikovic B, Kassahn KS. Expanding the phenotype of DNMT3A as a cause a congenital myopathy with rhabdomyolysis. Neuromuscul Disord 2023; 33:484-489. [PMID: 37209493 DOI: 10.1016/j.nmd.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/17/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023]
Abstract
Pathogenic variants in DNMT3A are most commonly associated with Tatton-Brown-Rahman Syndrome (TBRS), but includes other phenotypes such as Heyn-Sproul-Jackson syndrome and acute myeloid leukemia (AML). We describe a patient presenting to the neuromuscular clinic with a de novo missense variant in DNMT3A where the striking clinical feature is that of a congenital myopathy with associated episodes of rhabdomyolysis, severe myalgias and chest pain along with phenotypic features associated with TBRS. Muscle biopsy showed minor myopathic features and cardiac investigations revealed mildly impaired bi-ventricular systolic function. We confirmed the DNA methylation profile matched haplo-insufficient TBRS cases, consistent with a loss of methyltransferase activity. Our report emphasizes the phenotypic overlap of patients with syndromic disorders presenting to neuromuscular clinics and limitations of gene panels in establishing a molecular diagnosis.
Collapse
|
58
|
Chianese U, Papulino C, Megchelenbrink W, Tambaro FP, Ciardiello F, Benedetti R, Altucci L. Epigenomic machinery regulating pediatric AML: clonal expansion mechanisms, therapies, and future perspectives. Semin Cancer Biol 2023; 92:84-101. [PMID: 37003397 DOI: 10.1016/j.semcancer.2023.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a genetic, epigenetic, and transcriptional etiology mainly presenting somatic and germline abnormalities. AML incidence rises with age but can also occur during childhood. Pediatric AML (pAML) accounts for 15-20% of all pediatric leukemias and differs considerably from adult AML. Next-generation sequencing technologies have enabled the research community to "paint" the genomic and epigenomic landscape in order to identify pathology-associated mutations and other prognostic biomarkers in pAML. Although current treatments have improved the prognosis for pAML, chemoresistance, recurrence, and refractory disease remain major challenges. In particular, pAML relapse is commonly caused by leukemia stem cells that resist therapy. Marked patient-to-patient heterogeneity is likely the primary reason why the same treatment is successful for some patients but, at best, only partially effective for others. Accumulating evidence indicates that patient-specific clonal composition impinges significantly on cellular processes, such as gene regulation and metabolism. Although our understanding of metabolism in pAML is still in its infancy, greater insights into these processes and their (epigenetic) modulation may pave the way toward novel treatment options. In this review, we summarize current knowledge on the function of genetic and epigenetic (mis)regulation in pAML, including metabolic features observed in the disease. Specifically, we describe how (epi)genetic machinery can affect chromatin status during hematopoiesis, leading to an altered metabolic profile, and focus on the potential value of targeting epigenetic abnormalities in precision and combination therapy for pAML. We also discuss the possibility of using alternative epidrug-based therapeutic approaches that are already in clinical practice, either alone as adjuvant treatments and/or in combination with other drugs.
Collapse
Affiliation(s)
- Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Chiara Papulino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Wout Megchelenbrink
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Princess Máxima Center, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands.
| | - Francesco Paolo Tambaro
- Bone Marrow Transplant Unit, Pediatric Oncology Department AORN Santobono Pausilipon, 80129, Naples Italy.
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Biogem Institute of Molecular and Genetic Biology, 83031 Ariano Irpino, Italy; IEOS, Institute for Endocrinology and Oncology "Gaetano Salvatore" (IEOS), 80131 Naples, Italy.
| |
Collapse
|
59
|
Chen Y, Zhu Y, Kramer A, Fang Y, Wilson M, Li YR, Yang L. Genetic engineering strategies to enhance antitumor reactivity and reduce alloreactivity for allogeneic cell-based cancer therapy. Front Med (Lausanne) 2023; 10:1135468. [PMID: 37064017 PMCID: PMC10090359 DOI: 10.3389/fmed.2023.1135468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
The realm of cell-based immunotherapy holds untapped potential for the development of next-generation cancer treatment through genetic engineering of chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapies for targeted eradication of cancerous malignancies. Such allogeneic "off-the-shelf" cell products can be advantageously manufactured in large quantities, stored for extended periods, and easily distributed to treat an exponential number of cancer patients. At current, patient risk of graft-versus-host disease (GvHD) and host-versus-graft (HvG) allorejection severely restrict the development of allogeneic CAR-T cell products. To address these limitations, a variety of genetic engineering strategies have been implemented to enhance antitumor efficacy, reduce GvHD and HvG onset, and improve the overall safety profile of T-cell based immunotherapies. In this review, we summarize these genetic engineering strategies and discuss the challenges and prospects these approaches provide to expedite progression of translational and clinical studies for adoption of a universal cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Adam Kramer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matthew Wilson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
60
|
Li W, Liu S, Wang C, Cui L, Zhao X, Liu W, Zhang R, Li Z. DNMT3A low-expression is correlated to poor prognosis in childhood B-ALL and confers resistance to daunorubicin on leukemic cells. BMC Cancer 2023; 23:255. [PMID: 36934225 PMCID: PMC10024838 DOI: 10.1186/s12885-023-10724-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Little is known about DNMT3A expression and its prognostic significance in childhood B cell acute lymphoblastic leukemia (B-ALL). METHODS We determined DNMT3A mRNA expression in 102 children with B-ALL. Correlations with relapse-free survival (RFS) and common clinical characteristics were analyzed. DNMT3A was stably knocked out by CRISPR/Cas9 gene editing technology in Reh and 697 B-ALL cell lines. Cell proliferation activity after treated with daunorubicin (DNR) was determined by CCK8 assay in DNMT3A KO Reh and 697 cell lines. RESULTS DNMT3A expression in B-ALL patients who were in continuous complete remission (CCR) was higher than in those who got relapse (P = 0.0111). Receiver operating characteristic curve showed prognostic significance of DNMT3A expression (P = 0.003). Low expression of DNMT3A (≤ 0.197) was significantly correlated with poor RFS (P < 0.001) in children with B-ALL. Knock-out of DNMT3A in Reh and 697 cell lines significantly increased IC50 of DNR (P = 0.0201 and 0.0022 respectively), indicating elevated resistance to DNR. CONCLUSION Low expression of DNMT3A associates with poor prognosis in children with B-ALL. Knock-out of DNMT3A confers resistance to DNR on leukemic cells.
Collapse
Affiliation(s)
- Weijing Li
- Laboratory of Hematologic Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Shugang Liu
- Laboratory of Hematologic Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Chanjuan Wang
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lei Cui
- Laboratory of Hematologic Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Xiaoxi Zhao
- Laboratory of Hematologic Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Wei Liu
- Department of Hematology Oncology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China.
| | - Ruidong Zhang
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing, China.
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Zhigang Li
- Laboratory of Hematologic Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing, China.
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.
| |
Collapse
|
61
|
McCallion O, Bilici M, Hester J, Issa F. Regulatory T-cell therapy approaches. Clin Exp Immunol 2023; 211:96-107. [PMID: 35960852 PMCID: PMC10019137 DOI: 10.1093/cei/uxac078] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Tregs) have enormous therapeutic potential to treat a variety of immunopathologies characterized by aberrant immune activation. Adoptive transfer of ex vivo expanded autologous Tregs continues to progress through mid- to late-phase clinical trials in several disease spaces and has generated promising preliminary safety and efficacy signals to date. However, the practicalities of this strategy outside of the clinical trial setting remain challenging. Here, we review the current landscape of regulatory T-cell therapy, considering emergent approaches and technologies presenting novel ways to engage Tregs, and reflect on the progress necessary to deliver their therapeutic potential to patients.
Collapse
Affiliation(s)
- Oliver McCallion
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Merve Bilici
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joanna Hester
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Correspondence. Fadi Issa, Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| |
Collapse
|
62
|
Jain S, Goswami A, Lone MR, Ramteke P, Gogia A, Aggarwal M, Viswanathan GK, Kakkar D, Mandal T, Sharma A, Sahoo R, Baldia A, Sharma MC, Bakhshi S, Pramanik R, Dhawan R, Kumar L, Mallick S. Follicular Helper T-Cell-derived Nodal Lymphomas: Study of Histomorphologic, Immunophenotypic, Clinical, and RHOA G17V Mutational Profile. Appl Immunohistochem Mol Morphol 2023; 31:172-180. [PMID: 36806188 DOI: 10.1097/pai.0000000000001105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/03/2023] [Indexed: 02/22/2023]
Abstract
The study was designed to review the demographic, clinical, and pathologic characteristics of follicular helper T cells (TFH)-derived nodal PTCL in India including angioimmunoblastic T-cell lymphoma (AITL), peripheral T-cell lymphoma (PTCL) with follicular helper T cell phenotype (P-TFH), and follicular T-cell lymphoma with additional immunohistochemistry (IHC) and RHOAG17V mutational analysis, as well as their impact on survival. This retrospective study included 88 cases of PTCL that were reclassified using IHC for TFH markers (PD1, ICOS, BCL6, and CD10) and dendritic-meshwork markers (CD21, CD23). Cases of TFH cell origin were evaluated for RHOAG17V mutation using Sanger sequencing and amplification-refractory mutation system-polymerase chain reaction (PCR) (validated using cloning and quantitative PCR) with detailed clinicopathologic correlation. Extensive re-evaluation with added IHC panel resulted in a total of 19 cases being reclassified, and the final subtypes were AITL (37 cases, 42%), PTCL-not otherwise specified (44, 50%), P-TFH (6, 7%), and follicular T-cell lymphoma (1, 1%). The presence of at least 2 TFH markers (>20% immunopositivity) determined the TFH origin. AITL patients tended to be male and showed increased presence of B-symptoms and hepatosplenomegaly. Histomorphology revealed that 92% of AITL cases had pattern 3 involvement. Sanger sequencing with conventional PCR did not yield any mutation, while RHOAG17V was detected by amplification-refractory mutation system-PCR in AITL (51%, P =0.027) and P-TFH (17%), which was validated with cloning followed by sequencing. Cases of RHOAG17V-mutant AITL had a worse Eastern Cooperative Oncology Group performance status initially but fared better in terms of overall outcome ( P =0.029). Although not specific for AITL, RHOAG17V mutation shows an association with diagnosis and requires sensitive methods for detection due to low-tumor burden. The mutant status of AITL could have prognostic implications and translational relevance.
Collapse
Affiliation(s)
| | | | | | | | | | - Mukul Aggarwal
- Haematology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | | | | | | | | | | | | | | | | | | | - Rishi Dhawan
- Haematology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | | | | |
Collapse
|
63
|
Eckardt JN, Röllig C, Metzeler K, Kramer M, Stasik S, Georgi JA, Heisig P, Spiekermann K, Krug U, Braess J, Görlich D, Sauerland CM, Woermann B, Herold T, Berdel WE, Hiddemann W, Kroschinsky F, Schetelig J, Platzbecker U, Müller-Tidow C, Sauer T, Serve H, Baldus C, Schäfer-Eckart K, Kaufmann M, Krause S, Hänel M, Schliemann C, Hanoun M, Thiede C, Bornhäuser M, Wendt K, Middeke JM. Prediction of complete remission and survival in acute myeloid leukemia using supervised machine learning. Haematologica 2023; 108:690-704. [PMID: 35708137 PMCID: PMC9973482 DOI: 10.3324/haematol.2021.280027] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 11/09/2022] Open
Abstract
Achievement of complete remission signifies a crucial milestone in the therapy of acute myeloid leukemia (AML) while refractory disease is associated with dismal outcomes. Hence, accurately identifying patients at risk is essential to tailor treatment concepts individually to disease biology. We used nine machine learning (ML) models to predict complete remission and 2-year overall survival in a large multicenter cohort of 1,383 AML patients who received intensive induction therapy. Clinical, laboratory, cytogenetic and molecular genetic data were incorporated and our results were validated on an external multicenter cohort. Our ML models autonomously selected predictive features including established markers of favorable or adverse risk as well as identifying markers of so-far controversial relevance. De novo AML, extramedullary AML, double-mutated CEBPA, mutations of CEBPA-bZIP, NPM1, FLT3-ITD, ASXL1, RUNX1, SF3B1, IKZF1, TP53, and U2AF1, t(8;21), inv(16)/t(16;16), del(5)/del(5q), del(17)/del(17p), normal or complex karyotypes, age and hemoglobin concentration at initial diagnosis were statistically significant markers predictive of complete remission, while t(8;21), del(5)/del(5q), inv(16)/t(16;16), del(17)/del(17p), double-mutated CEBPA, CEBPA-bZIP, NPM1, FLT3-ITD, DNMT3A, SF3B1, U2AF1, and TP53 mutations, age, white blood cell count, peripheral blast count, serum lactate dehydrogenase level and hemoglobin concentration at initial diagnosis as well as extramedullary manifestations were predictive for 2-year overall survival. For prediction of complete remission and 2-year overall survival areas under the receiver operating characteristic curves ranged between 0.77-0.86 and between 0.63-0.74, respectively in our test set, and between 0.71-0.80 and 0.65-0.75 in the external validation cohort. We demonstrated the feasibility of ML for risk stratification in AML as a model disease for hematologic neoplasms, using a scalable and reusable ML framework. Our study illustrates the clinical applicability of ML as a decision support system in hematology.
Collapse
Affiliation(s)
- Jan-Niklas Eckardt
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden.
| | - Christoph Röllig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden
| | - Klaus Metzeler
- Medical Clinic and Policlinic I Hematology and Cell Therapy. University Hospital, Leipzig
| | - Michael Kramer
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden
| | - Sebastian Stasik
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden
| | | | - Peter Heisig
- Institute of Software and Multimedia Technology, Technical University Dresden, Dresden
| | - Karsten Spiekermann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich
| | - Utz Krug
- Medical Clinic III, Hospital Leverkusen, Leverkusen
| | - Jan Braess
- Hospital Barmherzige Brueder Regensburg, Regensburg
| | - Dennis Görlich
- Institute for Biometrics and Clinical Research, University Muenster, Muenster
| | | | - Bernhard Woermann
- Department of Hematology, Oncology and Tumor Immunology, Charité, Berlin
| | - Tobias Herold
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich
| | - Wolfgang E Berdel
- Department of Internal Medicine A, University Hospital Muenster, Muenster
| | - Wolfgang Hiddemann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich
| | - Frank Kroschinsky
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden
| | - Johannes Schetelig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden
| | - Uwe Platzbecker
- Medical Clinic and Policlinic I Hematology and Cell Therapy. University Hospital, Leipzig
| | - Carsten Müller-Tidow
- Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany; German Consortium for Translational Cancer Research DKFZ, Heidelberg
| | - Tim Sauer
- Department of Medicine V, University Hospital Heidelberg, Heidelberg
| | - Hubert Serve
- Department of Medicine 2, Hematology and Oncology, Goethe University Frankfurt, Frankfurt
| | - Claudia Baldus
- Department of Hematology and Oncology, University Hospital Schleswig Holstein, Kiel
| | - Kerstin Schäfer-Eckart
- Department of Internal Medicine 5, Paracelsus Medical Private University Nuremberg, Nuremberg
| | - Martin Kaufmann
- Department of Hematology, Oncology and Palliative Care, Robert-Bosch Hospital, Stuttgart
| | - Stefan Krause
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen
| | - Mathias Hänel
- Department of Internal Medicine 3, Klinikum Chemnitz GmbH, Chemnitz, Germany; Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen
| | | | - Maher Hanoun
- Department of Internal Medicine 3, Klinikum Chemnitz GmbH, Chemnitz, Germany; Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen
| | - Christian Thiede
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany; German Consortium for Translational Cancer Research DKFZ, Heidelberg
| | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany; German Consortium for Translational Cancer Research DKFZ, Heidelberg, Germany; National Center for Tumor Diseases (NCT), Dresden
| | - Karsten Wendt
- Medical Clinic and Policlinic I Hematology and Cell Therapy. University Hospital, Leipzig
| | - Jan Moritz Middeke
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden
| |
Collapse
|
64
|
NPM 1 Mutations in AML-The Landscape in 2023. Cancers (Basel) 2023; 15:cancers15041177. [PMID: 36831522 PMCID: PMC9954410 DOI: 10.3390/cancers15041177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Acute myeloid leukemia (AML) represents 80% of acute leukemia in adults and is characterized by clonal expansion of hematopoietic stem cells secondary to genomic mutations, rendering a selective growth advantage to the mutant clones. NPM1mut is found in around 30% of AML and clinically presents with leukocytosis, high blast percentage and extramedullary involvement. Considered as a "gate-keeper" mutation, NPM1mut appears to be a "first hit" in the process of leukemogenesis and development of overt leukemia. Commonly associated with other mutations (e.g., FLT 3, DNMT3A, TET2, SF3B1), NPM1 mutation in AML has an important role in diagnosis, prognosis, treatment and post-treatment monitoring. Several novel therapies targeting NPM1 are being developed in various clinical phases with demonstration of efficacy. In this review, we summarize the pathophysiology of the NPM1 gene mutation in AML, clinical implications and the novel targeted therapies to date.
Collapse
|
65
|
Oura K, Morishita A, Hamaya S, Fujita K, Masaki T. The Roles of Epigenetic Regulation and the Tumor Microenvironment in the Mechanism of Resistance to Systemic Therapy in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:2805. [PMID: 36769116 PMCID: PMC9917861 DOI: 10.3390/ijms24032805] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Primary liver cancer is the sixth most common cancer and the third most common cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is a major histologic type with a poor prognosis owing to the difficulty in early detection, the chemotherapy resistance, and the high recurrence rate of the disease. Despite recent advancements in HCC prevention and diagnosis, over 50% of patients are diagnosed at Barcelona Clinic Liver Cancer Stage B or C. Systemic therapies are recommended for unresectable HCC (uHCC) with major vascular invasion, extrahepatic metastases, or intrahepatic lesions that have a limited response to transcatheter arterial chemoembolization, but the treatment outcome tends to be unsatisfactory due to acquired drug resistance. Elucidation of the mechanisms underlying the resistance to systemic therapies and the appropriate response strategies to solve this issue will contribute to improved outcomes in the multidisciplinary treatment of uHCC. In this review, we summarize recent findings on the mechanisms of resistance to drugs such as sorafenib, regorafenib, and lenvatinib in molecularly targeted therapy, with a focus on epigenetic regulation and the tumor microenvironment and outline the approaches to improve the therapeutic outcome for patients with advanced HCC.
Collapse
Affiliation(s)
- Kyoko Oura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita 761-0793, Kagawa, Japan
| | | | | | | | | |
Collapse
|
66
|
Stelmach P, Trumpp A. Leukemic stem cells and therapy resistance in acute myeloid leukemia. Haematologica 2023; 108:353-366. [PMID: 36722405 PMCID: PMC9890038 DOI: 10.3324/haematol.2022.280800] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 02/02/2023] Open
Abstract
A major obstacle in the treatment of acute myeloid leukemia (AML) is refractory disease or relapse after achieving remission. The latter arises from a few therapy-resistant cells within minimal residual disease (MRD). Resistant cells with long-term self-renewal capacity that drive clonal outgrowth are referred to as leukemic stem cells (LSC). The cancer stem cell concept considers LSC as relapse-initiating cells residing at the top of each genetically defined AML subclone forming epigenetically controlled downstream hierarchies. LSC display significant phenotypic and epigenetic plasticity, particularly in response to therapy stress, which results in various mechanisms mediating treatment resistance. Given the inherent chemotherapy resistance of LSC, targeted strategies must be incorporated into first-line regimens to prevent LSC-mediated AML relapse. The combination of venetoclax and azacitidine is a promising current strategy for the treatment of AML LSC. Nevertheless, the selection of patients who would benefit either from standard chemotherapy or venetoclax + azacitidine treatment in first-line therapy has yet to be established and the mechanisms of resistance still need to be discovered and overcome. Clinical trials are currently underway that investigate LSC susceptibility to first-line therapies. The era of single-cell multi-omics has begun to uncover the complex clonal and cellular architectures and associated biological networks. This should lead to a better understanding of the highly heterogeneous AML at the inter- and intra-patient level and identify resistance mechanisms by longitudinal analysis of patients' samples. This review discusses LSC biology and associated resistance mechanisms, potential therapeutic LSC vulnerabilities and current clinical trial activities.
Collapse
Affiliation(s)
- Patrick Stelmach
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM, gGmbH),Department of Medicine V, Heidelberg University Hospital
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM, gGmbH); Faculty of Biosciences, Heidelberg University; German Cancer Consortium (DKTK), Heidelberg.
| |
Collapse
|
67
|
Epigenetic Modification of Cytosines in Hematopoietic Differentiation and Malignant Transformation. Int J Mol Sci 2023; 24:ijms24021727. [PMID: 36675240 PMCID: PMC9863985 DOI: 10.3390/ijms24021727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The mammalian DNA methylation landscape is established and maintained by the combined activities of the two key epigenetic modifiers, DNA methyltransferases (DNMT) and Ten-eleven-translocation (TET) enzymes. Once DNMTs produce 5-methylcytosine (5mC), TET proteins fine-tune the DNA methylation status by consecutively oxidizing 5mC to 5-hydroxymethylcytosine (5hmC) and further oxidized derivatives. The 5mC and oxidized methylcytosines are essential for the maintenance of cellular identity and function during differentiation. Cytosine modifications with DNMT and TET enzymes exert pleiotropic effects on various aspects of hematopoiesis, including self-renewal of hematopoietic stem/progenitor cells (HSPCs), lineage determination, differentiation, and function. Under pathological conditions, these enzymes are frequently dysregulated, leading to loss of function. In particular, the loss of DNMT3A and TET2 function is conspicuous in diverse hematological disorders, including myeloid and lymphoid malignancies, and causally related to clonal hematopoiesis and malignant transformation. Here, we update recent advances in understanding how the maintenance of DNA methylation homeostasis by DNMT and TET proteins influences normal hematopoiesis and malignant transformation, highlighting the potential impact of DNMT3A and TET2 dysregulation on clonal dominance and evolution of pre-leukemic stem cells to full-blown malignancies. Clarification of the normal and pathological functions of DNA-modifying epigenetic regulators will be crucial to future innovations in epigenetic therapies for treating hematological disorders.
Collapse
|
68
|
Makkar H, Majhi RK, Goel H, Gupta AK, Chopra A, Tanwar P, Seth R. Acute myeloid leukemia: novel mutations and their clinical implications. AMERICAN JOURNAL OF BLOOD RESEARCH 2023; 13:12-27. [PMID: 36937458 PMCID: PMC10017594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/09/2023] [Indexed: 03/21/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogenous and challenging hematological malignancy with suboptimal outcomes. The implications of advanced technologies in the genetic characterization of AML have enhanced the understanding of individualized patient risk, which has also led to the development of new therapeutic strategies. A comprehensive study of novel mutations is essential to moderate the complicacies in patient management and achieve optimal outcomes in AML. In this review, we summarized the clinical relevance of important novel mutations, including TET2, ETV6, SATB1, EZH2, PTPN11, and U2AF1, which impact the prognosis of AML. TET2 mutation can lead to DNA hypermethylation, and gene fusion, and mutation in ETV6 disrupts hematopoietic transcription machinery, SATB1 downregulation aggravates the disease, and EZH2 mutation confers resistance to chemotherapy. PTPN11 mutation influences the RAS-MAPK signaling pathway, and U2AF1 alters the splicing of downstream mRNA. The systemic influence of these mutations has adverse consequences. Therefore, extensive research on novel mutations and their mechanism of action in the pathogenesis of AML is vital. This study lays out the perspective of expanding the apprehension about AML and novel drug targets. The combination of advanced genetic techniques, risk stratification, ongoing improvements, and innovations in treatment strategy will undoubtedly lead to improved survival outcomes in AML.
Collapse
Affiliation(s)
- Harshita Makkar
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Ravi Kumar Majhi
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Harsh Goel
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Aditya Kumar Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Rachna Seth
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| |
Collapse
|
69
|
Natarajan P. Genomic Aging, Clonal Hematopoiesis, and Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2023; 43:3-14. [PMID: 36353993 PMCID: PMC9780188 DOI: 10.1161/atvbaha.122.318181] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Chronologic age is the dominant risk factor for coronary artery disease but the features of aging promoting coronary artery disease are poorly understood. Advances in human genetics and population-based genetic profiling of blood cells have uncovered the surprising role of age-related subclinical leukemogenic mutations in blood cells, termed "clonal hematopoiesis of indeterminate potential," in coronary artery disease. Such mutations typically occur in DNMT3A, TET2, ASXL1, and JAK2. Murine and human studies prioritize the role of key inflammatory pathways linking clonal hematopoiesis with coronary artery disease. Increasingly larger, longitudinal, multiomics analyses are enabling further dissection into mechanistic insights. These observations expand the genetic architecture of coronary artery disease, now linking hallmark features of hematologic neoplasia with a much more common cardiovascular condition. Implications of these studies include the prospect of novel precision medicine paradigms for coronary artery disease.
Collapse
Affiliation(s)
- Pradeep Natarajan
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
70
|
Aryal S, Zhang Y, Wren S, Li C, Lu R. Molecular regulators of HOXA9 in acute myeloid leukemia. FEBS J 2023; 290:321-339. [PMID: 34743404 DOI: 10.1111/febs.16268] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023]
Abstract
Dysregulation of the oncogenic transcription factor HOXA9 is a prominent feature for most aggressive acute myeloid leukemia cases and a strong indicator of poor prognosis in patients. Leukemia subtypes with hallmark overexpression of HOXA9 include those carrying MLL gene rearrangements, NPM1c mutations, and other genetic alternations. A growing body of evidence indicates that HOXA9 dysregulation is both sufficient and necessary for leukemic transformation. The HOXA9 mRNA and protein regulation includes multilayered controls by transcription factors (such as CDX2/4 and USF2/1), epigenetic factors (such as MLL-menin-LEDGF, DOT1L, ENL, HBO1, NPM1c-XPO1, and polycomb proteins), microRNAs (such as miR-126 and miR-196b), long noncoding RNAs (such as HOTTIP), three-dimensional chromatin interactions, and post-translational protein modifications. Recently, insights into the dynamic regulation of HOXA9 have led to an advanced understanding of the HOXA9 regulome and provided new cancer therapeutic opportunities, including developing inhibitors targeting DOT1L, menin, and ENL proteins. This review summarizes recent advances in understanding the molecular mechanisms controlling HOXA9 regulation and the pharmacological approaches that target HOXA9 regulators to treat HOXA9-driven acute myeloid leukemia.
Collapse
Affiliation(s)
- Sajesan Aryal
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Yang Zhang
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Spencer Wren
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Chunliang Li
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rui Lu
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
71
|
Wang Y, Quesada AE, Zuo Z, Medeiros LJ, Yin CC, Li S, Xu J, Borthakur G, Li Y, Yang C, Abaza Y, Gao J, Lu X, You MJ, Zhang Y, Lin P. The Impact of Mutation of Myelodysplasia-Related Genes in De Novo Acute Myeloid Leukemia Carrying NPM1 Mutation. Cancers (Basel) 2022; 15:cancers15010198. [PMID: 36612194 PMCID: PMC9818485 DOI: 10.3390/cancers15010198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Background: The impact of gene mutations typically associated with myelodysplastic syndrome (MDS) in acute myeloid leukemia (AML) with NPM1 mutation is unclear. Methods: Using a cohort of 107 patients with NPM1-mutated AML treated with risk-adapted therapy, we compared survival outcomes of patients without MDS-related gene mutations (group A) with those carrying concurrent FLT3-ITD (group B) or with MDS-related gene mutations (group C). Minimal measurable disease (MMD) status assessed by multiparameter flow cytometry (MFC), polymerase chain reaction (PCR), and/or next-generation sequencing (NGS) were reviewed. Results: Among the 69 patients treated intensively, group C showed significantly inferior progression-free survival (PFS, p < 0.0001) but not overall survival (OS, p = 0.055) compared to group A. Though groups A and C had a similar MMD rate, group C patients had a higher relapse rate (p = 0.016). Relapse correlated with MMD status at the end of cycle 2 induction (p = 0.023). Survival of group C patients was similar to that of group B. Conclusion: MDS-related gene mutations are associated with an inferior survival in NPM1-mutated AML.
Collapse
Affiliation(s)
- Yi Wang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andres E. Quesada
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhuang Zuo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - C. Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yisheng Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Yang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yasmin Abaza
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Juehua Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - M. James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yizhuo Zhang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Correspondence: (Y.Z.); (P.L.); Tel.: +86-18622221239 (Y.Z.); +1-(713)-794-1746 (P.L.); Fax: +86-022-23340123 (Y.Z.); +1-(713)-563-2977 (P.L.)
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (Y.Z.); (P.L.); Tel.: +86-18622221239 (Y.Z.); +1-(713)-794-1746 (P.L.); Fax: +86-022-23340123 (Y.Z.); +1-(713)-563-2977 (P.L.)
| |
Collapse
|
72
|
The R736H cancer mutation in DNMT3A modulates the properties of the FF-subunit interface. Biochimie 2022; 208:66-74. [PMID: 36528185 DOI: 10.1016/j.biochi.2022.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The DNMT3A DNA methyltransferase is an important epigenetic enzyme that is frequently mutated in cancers, particularly in AML. The heterozygous R736H mutation in the FF-interface of the tetrameric enzyme is the second most frequently observed DNMT3A cancer mutation, but its pathogenic mechanism is unclear. We show here that R736H leads to a moderate reduction in catalytic activity of 20-40% depending on the substrate, but no changes in CpG specificity, flanking sequence preferences and subnuclear localization. Strikingly, R736H showed a very strong stimulation by DNMT3L and the R736H/DNMT3L complex was 3-fold more active than WT/DNMT3L. Similarly, formation of mixed R736H/DNMT3A WT FF-interfaces led to an increased activity. R736H/DNMT3L and mixed R736H/DNMT3A WT FF-interfaces were less stable than interfaces not involving R736H, suggesting that an increased flexibility of the mixed interfaces stimulates catalytic activity. Our data suggest that aberrant activity of DNMT3A R736H may lead to DNA hypermethylation in cancer cells which could cause changes in gene expression.
Collapse
|
73
|
DNA methyltransferases 3A and 3B target specific sequences during mouse gastrulation. Nat Struct Mol Biol 2022; 29:1252-1265. [PMID: 36510023 DOI: 10.1038/s41594-022-00885-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/02/2022] [Indexed: 12/14/2022]
Abstract
In mammalian embryos, DNA methylation is initialized to maximum levels in the epiblast by the de novo DNA methyltransferases DNMT3A and DNMT3B before gastrulation diversifies it across regulatory regions. Here we show that DNMT3A and DNMT3B are differentially regulated during endoderm and mesoderm bifurcation and study the implications in vivo and in meso-endoderm embryoid bodies. Loss of both Dnmt3a and Dnmt3b impairs exit from the epiblast state. More subtly, independent loss of Dnmt3a or Dnmt3b leads to small biases in mesoderm-endoderm bifurcation and transcriptional deregulation. Epigenetically, DNMT3A and DNMT3B drive distinct methylation kinetics in the epiblast, as can be predicted from their strand-specific sequence preferences. The enzymes compensate for each other in the epiblast, but can later facilitate lineage-specific methylation kinetics as their expression diverges. Single-cell analysis shows that differential activity of DNMT3A and DNMT3B combines with replication-linked methylation turnover to increase epigenetic plasticity in gastrulation. Together, these findings outline a dynamic model for the use of DNMT3A and DNMT3B sequence specificity during gastrulation.
Collapse
|
74
|
Li X, Feng C, Peng S. Epigenetics alternation in lung fibrosis and lung cancer. Front Cell Dev Biol 2022; 10:1060201. [PMID: 36420141 PMCID: PMC9676258 DOI: 10.3389/fcell.2022.1060201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/20/2022] [Indexed: 09/10/2023] Open
Abstract
Respiratory disease including interstitial lung diseases (ILDs) and lung cancer is a group of devastating diseases that linked with increased morbidity and healthcare burden. However, respiratory diseases cannot be fully explained by the alternation of genetic information. Genetic studies described that epigenetic mechanisms also participate to transmit genetic information. Recently, many studies demonstrated the role of altered epigenetic modification in the pathogenesis of lung cancer and pulmonary fibrosis. Due to lacking effective medication, the underlying pathophysiological processes and causal relationships of lung diseases with epigenetic mechanisms still need to be better understood. Our present review provided a systematic revision of current knowledge concerning diverse epigenetic aberrations in major lung diseases, with special emphasis on DNA methylation, histone modifications, lncRNAs profiles, telomere patterns, as well as chromatin-remodelling complexes. We believed that a new target therapy for lung disease based on findings of the involved epigenetic pathway is a promising future direction.
Collapse
Affiliation(s)
- Xueren Li
- Department of Respiratory Medicine, Tianjin Haihe Hospital, Tianjin, China
- Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Chunjing Feng
- The Institute Includes H&B(Tianjin) Stem Cell Research Institute, Tianjin, China
| | - Shouchun Peng
- Department of Respiratory Medicine, Tianjin Haihe Hospital, Tianjin, China
- Tianjin Institute of Respiratory Diseases, Tianjin, China
| |
Collapse
|
75
|
Chu X, Zhong L, Dan W, Wang X, Zhang Z, Liu Z, Lu Y, Shao X, Zhou Z, Chen S, Liu B. DNMT3A R882H mutation drives daunorubicin resistance in acute myeloid leukemia via regulating NRF2/NQO1 pathway. Cell Commun Signal 2022; 20:168. [PMID: 36303144 PMCID: PMC9615155 DOI: 10.1186/s12964-022-00978-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methyltransferase 3A (DNMT3A) often mutate on arginine 882 (DNMT3AR882) in acute myeloid leukemia (AML). AML patients with DNMT3A R882 mutation are usually resistant to daunorubicin treatment; however, the associated mechanism is still unclear. Therefore, it is urgent to investigate daunorubicin resistance in AML patients with DNMT3A R882 mutant. METHOD AML cell lines with DNMT3A-wild type (DNMT3A-WT), and DNMT3A-Arg882His (DNMT3A-R882H) mutation were constructed to investigate the role of DNMT3A R882H mutation on cell proliferation, apoptosis and cells' sensitivity to Danunorubin. Bioinformatics was used to analyze the role of nuclear factor-E2-related factor (NRF2) in AML patients with DNMT3A R882 mutation. The regulatory mechanism of DNMT3A R882H mutation on NRF2 was studied by Bisulfite Sequencing and CO-IP. NRF2 inhibitor Brusatol (Bru) was used to explore the role of NRF2 in AML cells carried DNMT3A R882H mutation. RESULTS AML cells with a DNMT3A R882H mutation showed high proliferative and anti-apoptotic activities. In addition, mutant cells were less sensitive to daunorubicin and had a higher NRF2 expression compared with those in WT cells. Furthermore, the NRF2/NQO1 pathway was activated in mutant cells in response to daunorubicin treatment. DNMT3A R882H mutation regulated the expression of NRF2 via influencing protein stability rather than decreasing methylation of NRF2 promoter. Also, NRF2/NQO1 pathway inhibition improved mutant cells' sensitivity to daunorubicin significantly. CONCLUSION Our findings identified NRF2 as an important player in the regulation of cell apoptosis through which helps mediate chemoresistance to daunorubicin in AML cells with DNMT3A R882H mutation. Targeting NRF2 might be a novel therapeutic approach to treat AML patients with a DNMT3A R882H mutation. Video abstract.
Collapse
Affiliation(s)
- Xuan Chu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wenran Dan
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Xiao Wang
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Zhonghui Zhang
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Zhenyan Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Yang Lu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Xin Shao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Ziwei Zhou
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Shuyu Chen
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Beizhong Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China. .,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
76
|
Association of H-Type Hypertension with miR-21, miR-29, and miR-199 in Kazahks of Xinjiang, China. Int J Hypertens 2022; 2022:4632087. [PMID: 36200021 PMCID: PMC9529513 DOI: 10.1155/2022/4632087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/30/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Objective This study aims to analyze the expressions of miR-21, miR-29, and miR-199 in the serum of the patients with H-type hypertension among Kazakhs. Then, we analyzed the effect of MTHFR 677C > T polymorphism on the association between the above miRNA and H-type hypertension. Method In this study, the expression of miR-21, miR-29, and miR-199 was quantitatively measured in 120 serum samples and then stratified according to the C677T polymorphism to analyze the relationship between target miRNAs and HHcy. Results The expression of miR-21/-29 in the hypertension group was higher than the normal group (P < 0.001). And the expression of miR-199 was higher in the hcy group than in the normal group (P < 0.001). In the CC and CT genotypes of MTHFR 677C > T, the expression of miR-21 was lower in the HHcy patients than in the normal individuals (P = 0.005 and P = 0.001) and miR-199 was significantly higher in the HHcy patients than in the normal ones (P = 0.002 and P = 0.048). No such difference was found in the TT genotype. Logistic regression analysis showed that after adjusting for sex, age, BMI, systolic blood pressure, diastolic blood pressure, and MTHFRC677 T gene polymorphism, miR-21 was negatively correlated with hcy (OR = 0.222, 95% CI (0.101–0.485), P < 0.001) and miR-199 was positively correlated with hcy (OR = 1.823,95%CI (1.272∼2.614), P = 0.001). Conclusion miR-21, miR-29, and miR-199 are associated with H-type hypertension in the Kazakhs, especially hyperhomocysteinemia. And these three miRNAs may serve as biomarkers to provide clues to the potential pathogenesis of H-type hypertension.
Collapse
|
77
|
Herek TA, Bouska A, Lone W, Sharma S, Amador C, Heavican TB, Li Y, Wei Q, Jochum D, Greiner TC, Smith L, Pileri S, Feldman AL, Rosenwald A, Ott G, Lim ST, Ong CK, Song J, Jaffe ES, Wang GG, Staudt L, Rimsza LM, Vose J, d'Amore F, Weisenburger DD, Chan WC, Iqbal J. DNMT3A mutations define a unique biological and prognostic subgroup associated with cytotoxic T cells in PTCL-NOS. Blood 2022; 140:1278-1290. [PMID: 35639959 PMCID: PMC9479030 DOI: 10.1182/blood.2021015019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are heterogenous T-cell neoplasms often associated with epigenetic dysregulation. We investigated de novo DNA methyltransferase 3A (DNMT3A) mutations in common PTCL entities, including angioimmunoblastic T-cell lymphoma and novel molecular subtypes identified within PTCL-not otherwise specified (PTCL-NOS) designated as PTCL-GATA3 and PTCL-TBX21. DNMT3A-mutated PTCL-TBX21 cases showed inferior overall survival (OS), with DNMT3A-mutated residues skewed toward the methyltransferase domain and dimerization motif (S881-R887). Transcriptional profiling demonstrated significant enrichment of activated CD8+ T-cell cytotoxic gene signatures in the DNMT3A-mutant PTCL-TBX21 cases, which was further validated using immunohistochemistry. Genomewide methylation analysis of DNMT3A-mutant vs wild-type (WT) PTCL-TBX21 cases demonstrated hypomethylation in target genes regulating interferon-γ (IFN-γ), T-cell receptor signaling, and EOMES (eomesodermin), a master transcriptional regulator of cytotoxic effector cells. Similar findings were observed in a murine model of PTCL with Dnmt3a loss (in vivo) and further validated in vitro by ectopic expression of DNMT3A mutants (DNMT3A-R882, -Q886, and -V716, vs WT) in CD8+ T-cell line, resulting in T-cell activation and EOMES upregulation. Furthermore, stable, ectopic expression of the DNMT3A mutants in primary CD3+ T-cell cultures resulted in the preferential outgrowth of CD8+ T cells with DNMT3AR882H mutation. Single-cell RNA sequencing(RNA-seq) analysis of CD3+ T cells revealed differential CD8+ T-cell subset polarization, mirroring findings in DNMT3A-mutated PTCL-TBX21 and validating the cytotoxic and T-cell memory transcriptional programs associated with the DNMT3AR882H mutation. Our findings indicate that DNMT3A mutations define a cytotoxic subset in PTCL-TBX21 with prognostic significance and thus may further refine pathological heterogeneity in PTCL-NOS and suggest alternative treatment strategies for this subset.
Collapse
Affiliation(s)
- Tyler A Herek
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Alyssa Bouska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Waseem Lone
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Sunandini Sharma
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Catalina Amador
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Tayla B Heavican
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Yuping Li
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Qi Wei
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Dylan Jochum
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Timothy C Greiner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Lynette Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE
| | - Stefano Pileri
- Division of Diagnostic Hematopathology, European Institute of Oncology-IEO IRCCS, Milan, Italy
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore/Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Choon Kiat Ong
- Division of Medical Oncology, National Cancer Centre Singapore/Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Joo Song
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Elaine S Jaffe
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Louis Staudt
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ
| | - Julie Vose
- Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE; and
| | - Francesco d'Amore
- Department of Haematology, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
78
|
DNA methyltransferase DNMT3A forms interaction networks with the CpG site and flanking sequence elements for efficient methylation. J Biol Chem 2022; 298:102462. [PMID: 36067881 PMCID: PMC9530848 DOI: 10.1016/j.jbc.2022.102462] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Specific DNA methylation at CpG and non-CpG sites is essential for chromatin regulation. The DNA methyltransferase DNMT3A interacts with target sites surrounded by variable DNA sequences with its TRD and RD loops, but the functional necessity of these interactions is unclear. We investigated CpG and non-CpG methylation in a randomized sequence context using WT DNMT3A and several DNMT3A variants containing mutations at DNA-interacting residues. Our data revealed that the flanking sequence of target sites between the −2 and up to the +8 position modulates methylation rates >100-fold. Non-CpG methylation flanking preferences were even stronger and favor C(+1). R836 and N838 in concert mediate recognition of the CpG guanine. R836 changes its conformation in a flanking sequence-dependent manner and either contacts the CpG guanine or the +1/+2 flank, thereby coupling the interaction with both sequence elements. R836 suppresses activity at CNT sites but supports methylation of CAC substrates, the preferred target for non-CpG methylation of DNMT3A in cells. N838 helps to balance this effect and prevent the preference for C(+1) from becoming too strong. Surprisingly, we found L883 reduces DNMT3A activity despite being highly conserved in evolution. However, mutations at L883 disrupt the DNMT3A-specific DNA interactions of the RD loop, leading to altered flanking sequence preferences. Similar effects occur after the R882H mutation in cancer cells. Our data reveal that DNMT3A forms flexible and interdependent interaction networks with the CpG guanine and flanking residues that ensure recognition of the CpG and efficient methylation of the cytosine in contexts of variable flanking sequences.
Collapse
|
79
|
Discovery of novel non-nucleoside inhibitors with high potency and selectivity for DNA methyltransferase 3A. Eur J Med Chem 2022; 242:114646. [PMID: 36029561 DOI: 10.1016/j.ejmech.2022.114646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022]
Abstract
DNA methyltransferases (DNMTs) are important epigenetic regulatory enzymes involved in gene expression corresponding to many diseases including cancer. As one of the major enzymatically active mammalian DNMTs, DNMT3A has been regarded as an attractive target for the treatment of cancer particularly in hematological malignancy. Discovery of promising inhibitors toward this target with low toxicity, adequate activity and target selectivity is therefore pivotal in the development of novel cancer therapy and the inhibitory mechanism investigation. In this study, a multistep structure-based virtual screening and in vitro bioassays were conducted to search for potent novel DNMT3A inhibitors. Compound DY-46 was then identified as a promising new scaffold candidate (IC50 = 1.3 ± 0.22 μM) that can occupy both the SAM-cofactor pocket and the cytosine pocket of DNMT3A. Further similarity searching led to the discovery of compound DY-46-2 with IC50 of 0.39 ± 0.23 μM, which showed excellent selectivity against DNMT1 (33.3-fold), DNMT3B (269-fold) and G9a (over 1000-fold). These potent compounds significantly inhibited cancer cell proliferation and showed low cytotoxicity in peripheral blood mononuclear cells. This study provides a promising scaffold for the further development of DNMT3A inhibitors, and the possibility to design proper analogs with broad or specific selectivity.
Collapse
|
80
|
Sandoval JE, Ramabadran R, Stillson N, Sarah L, Fujimori DG, Goodell MA, Reich N. First-in-Class Allosteric Inhibitors of DNMT3A Disrupt Protein-Protein Interactions and Induce Acute Myeloid Leukemia Cell Differentiation. J Med Chem 2022; 65:10554-10566. [PMID: 35866897 DOI: 10.1021/acs.jmedchem.2c00725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously identified two structurally related pyrazolone (compound 1) and pyridazine (compound 2) allosteric inhibitors of DNMT3A through screening of a small chemical library. Here, we show that these compounds bind and disrupt protein-protein interactions (PPIs) at the DNMT3A tetramer interface. This disruption is observed with distinct partner proteins and occurs even when the complexes are acting on DNA, which better reflects the cellular context. Compound 2 induces differentiation of distinct myeloid leukemia cell lines including cells with mutated DNMT3A R882. To date, small molecules targeting DNMT3A are limited to competitive inhibitors of AdoMet or DNA and display extreme toxicity. Our work is the first to identify small molecules with a mechanism of inhibition involving the disruption of PPIs with DNMT3A. Ongoing optimization of compounds 1 and 2 provides a promising basis to induce myeloid differentiation and treatment of diseases that display aberrant PPIs with DNMT3A, such as acute myeloid leukemia.
Collapse
Affiliation(s)
- Jonathan E Sandoval
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106-9510, United States
| | - Raghav Ramabadran
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Nathaniel Stillson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Letitia Sarah
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Norbert Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
81
|
Song H, Zhang Y, Liu J, Liu W, Luo B. Activation of DNA methyltransferase 3a by Epstein-Barr nuclear antigen 1 in gastric carcinoma. Dig Liver Dis 2022; 54:973-983. [PMID: 34215536 DOI: 10.1016/j.dld.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Epstein-Barr nuclear antigen 1 (EBNA1) is expressed in all Epstein-Barr virus (EBV)-infected cells. It interacts with a variety of cellular proteins and activates the transcription of other EBV latency genes, which plays an important role in the persistence of the EBV genome during latent infection. AIM Several studies have shown that EBV infection induces the expression of DNA methyltransferases (DNMTs) and causes extensive methylation of the whole genome in EBV-associated gastric carcinoma (EBVaGC). However, the specific mechanism by which EBV regulates DNMTs expression is still unclear. METHODS AND RESULTS EBNA1 plasmid and siRNA were transfected to evaluate the effect of EBNA1 on DNMT3a expression. Molecular biology experiments were used to detect the biological function of DNMT3a and its effect on EBV latency in gastric carcinoma cells. We showed that EBNA1 upregulated DNMT3a expression through the E2F1 transcription factor (E2F1) in EBVaGC. DNMT3a knockdown restrained cell proliferation, induced cell cycle arrest, promoted cell apoptosis and suppressed cell migration in vitro. CONCLUSIONS Our results showed a new mechanism for EBV to regulate the expression of DNMT3a. Targeting the EBNA1/E2F1/DNMT3a axis may provide an alternative therapeutic strategy in the treatment of EBVaGC with high DNMT3a expression.
Collapse
Affiliation(s)
- Hui Song
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo 255036, China
| | - Juanjuan Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
82
|
Distinct power of bone marrow microRNA signatures and tumor suppressor genes for early detection of acute leukemia. Clin Transl Oncol 2022; 24:1372-1380. [PMID: 35247197 DOI: 10.1007/s12094-022-02781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/13/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Acute leukemia involving lymphocytic and myeloid cells is cancer with a high mortality rate. Swift and timely diagnosis might be a potential approach to improving patient prognosis and survival. The microRNA (miRNA) signatures are emerging nowadays for their promising diagnostic potential. MiRNA levels from bone marrow can be used as prognostic biomarkers. METHODS The current study was designed to evaluate if the microRNAs and tumor suppressor genes (TSGs) profiling of hematopoietic bone marrow could help in acute leukemia early detection. Also, we assessed the DNA methyltransferase 3A (DNMT3A) expression and its possible epigenetic effects on miRNAs plus TSGs expression levels. The expression levels of ten miRNAs and four TSGs involved in acute lymphocytic leukemia (ALL) as well as acute myeloid leukemia (AML) were quantified in 43 and 40 bone marrow samples of ALL and AML patients in comparison with cancer-free subjects via real-time quantitative PCR (RT-qPCR). The receiver-operating-characteristic (ROC) analysis of miRNAs was performed in the study groups. Further, the correlation between the DNMT3A and TSGs was calculated. RESULTS Significant differences were detected in the bone marrow expression of miRNAs and TSGs (P < 0.05) between acute leukemia patients and healthy group. ROC analysis confirmed the ability of miR-30a, miR-101, miR-132, miR-129, miR-124, and miR-143 to discriminate both ALL and AML patients with an area under the ROC curve of ≥ 0.80 (P < 0.001) and high accuracy. The correlation between DNMT3A and P15/P16 TSGs revealed that DNMT3A plays a vital role in epigenetic control of TSGs expression. Our findings indicated that the downregulation of bone marrow miRNAs and TSGs was accompanied by acute leukemia development. CONCLUSIONS The authors conclude that this study could contribute to introducing useful biomarkers for acute leukemia diagnosis.
Collapse
|
83
|
Zhao H, Yu J, Weng G, Yu J, Wang E, Gao J, Liu H, Hou T, Wang Z, Kang Y. Structural view on the role of the TRD loop in regulating DNMT3A activity: a molecular dynamics study. Phys Chem Chem Phys 2022; 24:15791-15801. [PMID: 35758413 DOI: 10.1039/d2cp02031a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA methyltransferase 3A (DNMT3A) has been regarded as a potential epigenetic target for the development of cancer therapeutics. A number of DNMT3A inhibitors have been reported, but most of them do not have good potency, high selectivity and/or low cytotoxicity. It has been suggested that a non-conserved region around the target recognition domain (TRD) loop is implicated in the DNMT3A activity under the allosteric regulation of the ATRX-DNMT3-DNMT3L (ADD) domain, but the molecular mechanism of the regulation of the TRD loop on the DNMT3A activity needs to be elucidated. In this study, based on the reported crystal structures, the dynamics of the TRD loop in different multimerization with/without the bound guest molecule, namely the ADD domain or the DNA molecule, was investigated using conventional molecular dynamics (MD) and umbrella sampling simulations. The simulation results illustrate that the TRD loop exhibits relatively higher flexibility than the other components in the whole catalytic domain (CD), which could be well stabilized into different local minima through the binding with either the ADD domain or the DNA molecule by forming tight hydrogen-bond and salt-bridge networks involving distinct residues. Moreover, the movement of the TRD loop away from the catalytic loop upon activation could be triggered simply by the detachment of the ADD domain, but not necessarily induced by the ADD domain relocation on the CD. All these dynamic structural details could be a supplement to the previously reported crystal structure, which underlines the importance of the structural flexibility for the critical residues in the TRD loop, arousing more interest in the rational design of novel DNMT3A inhibitors targeting this region.
Collapse
Affiliation(s)
- Hong Zhao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China. .,Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, China
| | - Jie Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Gaoqi Weng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Jiahui Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Ercheng Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Junbo Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Huanxiang Liu
- Faculty of Applied Science, Macao Polytechnic University, Macao, SAR, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Zhe Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
84
|
Theranostic Potentials of Gold Nanomaterials in Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14133047. [PMID: 35804818 PMCID: PMC9264814 DOI: 10.3390/cancers14133047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hematological malignancies (HMs) cover 50% of all malignancies, and people of all ages can be affected by these deadly diseases. In many cases, conventional diagnostic tools fail to diagnose HMs at an early stage, due to heterogeneity and the long-term indolent phase of HMs. Therefore, many patients start their treatment at the late stage of HMs and have poor survival. Gold nanomaterials (GNMs) have shown promise as a cancer theranostic agent. GNMs are 1 nm to 100 nm materials having magnetic resonance and surface-plasmon-resonance properties. GNMs conjugated with antibodies, nucleic acids, peptides, photosensitizers, chemotherapeutic drugs, synthetic-drug candidates, bioactive compounds, and other theranostic biomolecules may enhance the efficacy and efficiency of both traditional and advanced theranostic approaches to combat HMs. Abstract Hematological malignancies (HMs) are a heterogeneous group of blood neoplasia generally characterized by abnormal blood-cell production. Detection of HMs-specific molecular biomarkers (e.g., surface antigens, nucleic acid, and proteomic biomarkers) is crucial in determining clinical states and monitoring disease progression. Early diagnosis of HMs, followed by an effective treatment, can remarkably extend overall survival of patients. However, traditional and advanced HMs’ diagnostic strategies still lack selectivity and sensitivity. More importantly, commercially available chemotherapeutic drugs are losing their efficacy due to adverse effects, and many patients develop resistance against these drugs. To overcome these limitations, the development of novel potent and reliable theranostic agents is urgently needed to diagnose and combat HMs at an early stage. Recently, gold nanomaterials (GNMs) have shown promise in the diagnosis and treatment of HMs. Magnetic resonance and the surface-plasmon-resonance properties of GNMs have made them a suitable candidate in the diagnosis of HMs via magnetic-resonance imaging and colorimetric or electrochemical sensing of cancer-specific biomarkers. Furthermore, GNMs-based photodynamic therapy, photothermal therapy, radiation therapy, and targeted drug delivery enhanced the selectivity and efficacy of anticancer drugs or drug candidates. Therefore, surface-tuned GNMs could be used as sensitive, reliable, and accurate early HMs, metastatic HMs, and MRD-detection tools, as well as selective, potent anticancer agents. However, GNMs may induce endothelial leakage to exacerbate cancer metastasis. Studies using clinical patient samples, patient-derived HMs models, or healthy-animal models could give a precise idea about their theranostic potential as well as biocompatibility. The present review will investigate the theranostic potential of vectorized GNMs in HMs and future challenges before clinical theranostic applications in HMs.
Collapse
|
85
|
Florez MA, Tran BT, Wathan TK, DeGregori J, Pietras EM, King KY. Clonal hematopoiesis: Mutation-specific adaptation to environmental change. Cell Stem Cell 2022; 29:882-904. [PMID: 35659875 PMCID: PMC9202417 DOI: 10.1016/j.stem.2022.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) describes a widespread expansion of genetically variant hematopoietic cells that increases exponentially with age and is associated with increased risks of cancers, cardiovascular disease, and other maladies. Here, we discuss how environmental contexts associated with CHIP, such as old age, infections, chemotherapy, or cigarette smoking, alter tissue microenvironments to facilitate the selection and expansion of specific CHIP mutant clones. Further, we consider major remaining gaps in knowledge, including intrinsic effects, clone size thresholds, and factors affecting clonal competition, that will determine future application of this field in transplant and preventive medicine.
Collapse
Affiliation(s)
- Marcus A Florez
- Medical Scientist Training Program and Program in Translational Biology and Molecular Medicine, Graduate School of Biomedical Sciences, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA
| | - Brandon T Tran
- Graduate School of Biomedical Sciences, Program in Cancer and Cell Biology, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA
| | - Trisha K Wathan
- Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric M Pietras
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine Y King
- Medical Scientist Training Program and Program in Translational Biology and Molecular Medicine, Graduate School of Biomedical Sciences, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Program in Cancer and Cell Biology, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA.
| |
Collapse
|
86
|
Krug A, Tari G, Saidane A, Gaulard P, Ricci JE, Lemonnier F, Verhoeyen E. Novel T Follicular Helper-like T-Cell Lymphoma Therapies: From Preclinical Evaluation to Clinical Reality. Cancers (Basel) 2022; 14:cancers14102392. [PMID: 35625998 PMCID: PMC9139536 DOI: 10.3390/cancers14102392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary This work reviews the multiple efforts that have been and are being invested by researchers as well as clinicians to improve the treatment of a specific T-cell lymphoma called follicular helper peripheral T-cell lymphoma. Still, though treatments for B-cell lymphomas have improved, this particular T-cell lymphoma has little to no new therapeutic options that show marked improvements in the survival of the patients compared to treatment with chemotherapy. We report here the evaluation of targeted new therapies for this T-cell lymphoma in new preclinical models for this cancer or in clinical trials with the objective to offer better (combination) treatment options. Abstract The classification of peripheral T-cell lymphomas (PTCL) is constantly changing and contains multiple subtypes. Here, we focus on Tfh-like PTCL, to which angioimmunoblastic T-cell lymphoma (AITL) belongs, according to the last WHO classification. The first-line treatment of these malignancies still relies on chemotherapy but gives very unsatisfying results for these patients. Enormous progress in the last decade in terms of understanding the implicated genetic mutations leading to signaling and epigenetic pathway deregulation in Tfh PTCL allowed the research community to propose new therapeutic approaches. These findings point towards new biomarkers and new therapies, including hypomethylating agents, such as azacytidine, and inhibitors of the TCR-hyperactivating molecules in Tfh PTCL. Additionally, metabolic interference, inhibitors of the NF-κB and PI3K-mTOR pathways and possibly novel immunotherapies, such as antibodies and chimeric antigen receptors (CAR) directed against Tfh malignant T-cell surface markers, are discussed in this review among other new treatment options.
Collapse
Affiliation(s)
- Adrien Krug
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
| | - Gamze Tari
- Univ Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France;
| | - Aymen Saidane
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
| | - Philippe Gaulard
- Département de Pathologie, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France;
| | - Jean-Ehrland Ricci
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
| | - François Lemonnier
- Service Unité Hémopathies Lymphoides, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France;
| | - Els Verhoeyen
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon1, CNRS, UMR 5308, 69007 Lyon, France
- Correspondence: or ; Tel.: +33-4-72728731
| |
Collapse
|
87
|
Gu T, Hao D, Woo J, Huang TW, Guo L, Lin X, Guzman AG, Tovy A, Rosas C, Jeong M, Zhou Y, Deneen B, Huang Y, Li W, Goodell MA. The disordered N-terminal domain of DNMT3A recognizes H2AK119ub and is required for postnatal development. Nat Genet 2022; 54:625-636. [PMID: 35534561 PMCID: PMC9295050 DOI: 10.1038/s41588-022-01063-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/28/2022] [Indexed: 02/03/2023]
Abstract
DNA methyltransferase 3a (DNMT3A) plays a crucial role during mammalian development. Two isoforms of DNMT3A are differentially expressed from stem cells to somatic tissues, but their individual functions remain largely uncharacterized. Here we report that the long isoform DNMT3A1, but not the short DNMT3A2, is essential for mouse postnatal development. DNMT3A1 binds to and regulates bivalent neurodevelopmental genes in the brain. Strikingly, Dnmt3a1 knockout perinatal lethality could be partially rescued by DNMT3A1 restoration in the nervous system. We further show that the intrinsically disordered N terminus of DNMT3A1 is required for normal development and DNA methylation at DNMT3A1-enriched regions. Mechanistically, a ubiquitin-interacting motif embedded in a putative α-helix within the N terminus binds to mono-ubiquitinated histone H2AK119, probably mediating recruitment of DNMT3A1 to Polycomb-regulated regions. These data demonstrate an isoform-specific role for DNMT3A1 in mouse postnatal development and reveal the N terminus as a necessary regulatory domain for DNMT3A1 chromatin occupancy and functions in the nervous system.
Collapse
Affiliation(s)
- Tianpeng Gu
- Molecular and Cellular Biology Department, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Dapeng Hao
- Division of Biostatistics, Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Teng-Wei Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Lei Guo
- Department of Translational Medical Science, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Xueqiu Lin
- Division of Biostatistics, Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Anna G Guzman
- Molecular and Cellular Biology Department, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Ayala Tovy
- Molecular and Cellular Biology Department, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Carina Rosas
- Molecular and Cellular Biology Department, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Mira Jeong
- Molecular and Cellular Biology Department, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Yubin Zhou
- Department of Translational Medical Science, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Yun Huang
- Department of Translational Medical Science, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Margaret A Goodell
- Molecular and Cellular Biology Department, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
88
|
Amancherla K, Wells JA, Bick AG. Clonal hematopoiesis and vascular disease. Semin Immunopathol 2022; 44:303-308. [PMID: 35122117 PMCID: PMC9064918 DOI: 10.1007/s00281-022-00913-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022]
Abstract
Somatic mutations in hematopoietic stem cells are common with aging and can result in expansion of clones harboring mutations, termed clonal hematopoiesis. This results in an increased risk of blood cancers but has also been linked with chronic inflammatory disease states. In recent years, clonal hematopoiesis has been established to have a causative role in atherogenesis and cardiovascular disease. Additionally, as the effector cells have been identified to be immune cells, there is ongoing interest in assessing whether dysregulated immune function plays a role in other chronic inflammatory conditions such as rheumatologic disease. Here, we summarize current understanding of clonal hematopoiesis with a focus on cardiovascular disease and inflammation while outlining the potential, yet unexplored, relationship between clonal hematopoiesis and autoimmune disease. Hematopoietic stem cells (HSCs) continually regenerate blood cells. Acquisition of a somatic mutation that provides a selective advantage, a driver mutation, can result in clonal expansion. Clonal hematopoiesis of indeterminate potential, where somatic mutations in certain cancer-associated genes result in clonal expansion in the absence of overt malignancy, can result in atherosclerotic cardiovascular disease in multiple vascular beds, inflammation, and may also contribute to the pathogenesis of autoimmune disease. Many questions remain unanswered regarding the relationship between clonal hematopoiesis and inflammatory disorders.
Collapse
Affiliation(s)
- Kaushik Amancherla
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John A Wells
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
89
|
Parry AJ, Reik W. DNMT3A binds ubiquitinated histones to regulate bivalent genes. Nat Genet 2022; 54:537-538. [PMID: 35534560 PMCID: PMC7615034 DOI: 10.1038/s41588-022-01073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A new study demonstrates that the disordered N-terminal domain of DNMT3A1 binds PRC1-catalyzed H2AK119ub, targeting DNA methylation to bivalent promoters in mouse brain cortical cells. Methylation around bivalent genes is critical for mouse postnatal development, and could be equally important in other cell types and in disease.
Collapse
Affiliation(s)
- Aled J Parry
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
- Altos Labs Cambridge Institute, Cambridge, UK
| |
Collapse
|
90
|
Webb T, Craigon C, Ciulli A. Targeting epigenetic modulators using PROTAC degraders: Current status and future perspective. Bioorg Med Chem Lett 2022; 63:128653. [PMID: 35257896 DOI: 10.1016/j.bmcl.2022.128653] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/10/2023]
Abstract
Epigenetic modulators perform critical functions in gene expression for rapid adaption to external stimuli and are prevalent in all higher-order organisms. The establishment of a link between dysregulation of epigenetic processes and disease pathogenesis, particularly in cancer, has led to much interest in identifying drug targets. This prompted the development of small molecule inhibitors, primarily in haematological malignancies. While there have been epigenetic-targeting drugs to receive FDA approval for the treatment of cancers, many suffer from limited applicability, toxicity and the onset of drug resistance, as our understanding of the biology remains incomplete. The recent advent of genome-wide RNAi and CRISPR screens has shed new light on loss of specific proteins causing vulnerabilities of specific cancer types, highlighting the potential for exploiting synthetic lethality as a therapeutic approach. However, small molecule inhibitors have largely been unable to recapitulate phenotypic effects observed using genome-wide knockdown approaches. This mechanistic disconnect and gap are set to be addressed by targeted protein degradation. Degraders such as PROTACs targeting epigenetic proteins recapitulate CRISPR mediated genetic knockdown at the post-translational level and therefore can better exploit target druggability. Here, we review the current landscape of epigenetic drug discovery, the rationale behind and progress made in the development of PROTAC degraders, and look at future perspectives for the field.
Collapse
Affiliation(s)
- Thomas Webb
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom
| | - Conner Craigon
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom.
| |
Collapse
|
91
|
Pi T, Lang G, Liu B, Shi J. Protective Effects of Dendrobium nobile Lindl. Alkaloids on Alzheimer's Disease-like Symptoms Induced by High-methionine Diet. Curr Neuropharmacol 2022; 20:983-997. [PMID: 34370639 PMCID: PMC9881098 DOI: 10.2174/1570159x19666210809101945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND High methionine-diet (HMD) causes Alzheimer's disease (AD)-like symptoms. Previous studies have shown that Dendrobium nobile Lindle. alkaloids (DNLA) have potential benefits for AD Object: The objective of this study has been to explore whether DNLA can improve AD-like symptoms induced by HMD. METHODS Mice were fed with 2% HMD diet for 11 weeks; the DNLA20 control group (20 mg/kg), DNLA10 group (10 mg/kg), and DNLA20 group (20 mg/kg) were administered DNLA for 3 months. Morris water maze test was used to detect learning and memory ability. Neuron damage was evaluated by HE and Nissl staining. Levels of homocysteine (Hcy), beta-amyloid 1-42 (Aβ1-42), S-adenosine methionine (SAM) and S-adenosine homocysteine (SAH) were detected by ELISA. Immunofluorescence and western blotting (WB) were used to determine the expression of proteins. CPG island methylation levels were accessed by Methylation-specific PCR (MSP) and MethylTarget methylation detection. RESULTS Morris water maze test revealed that DNLA improved learning and memory dysfunction. HE, Nissl, and immunofluorescence staining showed that DNLA alleviated neuron damage and reduced the 5-methylcytosine (5-mC), Aβ1-40) and Aβ1-42) levels. DNLA also decreased the levels of Hcy and Aβ1-42) in the serum, along with decreasing SAM/SAH level in the liver tissue. WB results showed that DNLA down-regulated the expression of amyloid-precursor protein (APP), presenilin-1 (PS1), beta-secretase-1 (BACE1), DNA methyltransferase1 (DNMT1), Aβ1-40) and Aβ1-42) proteins. DNLA also up-regulated the proteins expression of insulin-degrading enzyme (IDE), neprilysin (NEP), DNMT3a and DNMT3b. Meanwhile, DNLA increased CPG island methylation levels of APP and BACE1 genes. CONCLUSION DNLA alleviated AD-like symptoms induced by HMD via the DNA methylation pathway.
Collapse
Affiliation(s)
- Tingting Pi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Guizhou Province, China
| | - Guangping Lang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Guizhou Province, China
| | - Bo Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Guizhou Province, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Guizhou Province, China,Address correspondence to this author at the Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Guizhou Province, China; Tel: +86 851 2864 3666; E-mail:
| |
Collapse
|
92
|
Tovy A, Rosas C, Gaikwad AS, Medrano G, Zhang L, Reyes JM, Huang YH, Arakawa T, Kurtz K, Conneely SE, Guzman AG, Aguilar R, Gao A, Chen CW, Kim JJ, Carter MT, Lasa-Aranzasti A, Valenzuela I, Van Maldergem L, Brunetti L, Hicks MJ, Marcogliese AN, Goodell MA, Rau RE. Perturbed hematopoiesis in individuals with germline DNMT3A overgrowth Tatton-Brown-Rahman syndrome. Haematologica 2022; 107:887-898. [PMID: 34092059 PMCID: PMC8968878 DOI: 10.3324/haematol.2021.278990] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/21/2021] [Indexed: 12/02/2022] Open
Abstract
Tatton-Brown-Rahman syndrome (TBRS) is an overgrowth disorder caused by germline heterozygous mutations in the DNA methyltransferase DNMT3A. DNMT3A is a critical regulator of hematopoietic stem cell (HSC) differentiation and somatic DNMT3A mutations are frequent in hematologic malignancies and clonal hematopoiesis. Yet, the impact of constitutive DNMT3A mutation on hematopoiesis in TBRS is undefined. In order to establish how constitutive mutation of DNMT3A impacts blood development in TBRS we gathered clinical data and analyzed blood parameters in 18 individuals with TBRS. We also determined the distribution of major peripheral blood cell lineages by flow cytometric analyses. Our analyses revealed non-anemic macrocytosis, a relative decrease in lymphocytes and increase in neutrophils in TBRS individuals compared to unaffected controls. We were able to recapitulate these hematologic phenotypes in multiple murine models of TBRS and identified rare hematological and non-hematological malignancies associated with constitutive Dnmt3a mutation. We further show that loss of DNMT3A in TBRS is associated with an altered DNA methylation landscape in hematopoietic cells affecting regions critical to stem cell function and tumorigenesis. Overall, our data identify key hematopoietic effects driven by DNMT3A mutation with clinical implications for individuals with TBRS and DNMT3A-associated clonal hematopoiesis or malignancies.
Collapse
Affiliation(s)
- Ayala Tovy
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Carina Rosas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Amos S Gaikwad
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Geraldo Medrano
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Linda Zhang
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX
| | - Jaime M Reyes
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Yung-Hsin Huang
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Tastuhiko Arakawa
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Kristen Kurtz
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Shannon E Conneely
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Anna G Guzman
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Rogelio Aguilar
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Anne Gao
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Chun-Wei Chen
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX
| | - Jean J Kim
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Education, Innovation and Technology, Baylor College of Medicine, Houston, TX
| | - Melissa T Carter
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Amaia Lasa-Aranzasti
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital and Medicine Genetics Group, Vall d'Hebron Research Institute, Barcelona
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital and Medicine Genetics Group, Vall d'Hebron Research Institute, Barcelona
| | - Lionel Van Maldergem
- Centre de Génétique Humaine and Integrative and Cognitive Neuroscience Research Unit EA481, University of Franche-Comté, Besancon, France
| | - Lorenzo Brunetti
- Department of Medicine and Surgery, University of Perugia, Perugia
| | - M John Hicks
- Department of Pathology Texas Children's Hospital and Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Andrea N Marcogliese
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Education, Innovation and Technology, Baylor College of Medicine, Houston, TX.
| | - Rachel E Rau
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX.
| |
Collapse
|
93
|
Tumor Immune Microenvironment in Lymphoma: Focus on Epigenetics. Cancers (Basel) 2022; 14:cancers14061469. [PMID: 35326620 PMCID: PMC8946119 DOI: 10.3390/cancers14061469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Lymphoma is a neoplasm arising from B or T lymphocytes or natural killer cells characterized by clonal lymphoproliferation. This tumor comprises a diverse and heterogeneous group of malignancies with distinct clinical, histopathological, and molecular characteristics. Despite advances in lymphoma treatment, clinical outcomes of patients with relapsed or refractory disease remain poor. Thus, a deeper understanding of molecular pathogenesis and tumor progression of lymphoma is required. Epigenetic alterations contribute to cancer initiation, progression, and drug resistance. In fact, over the past decade, dysregulation of epigenetic mechanisms has been identified in lymphomas, and the knowledge of the epigenetic aberrations has led to the emergence of the promising epigenetic therapy field in lymphoma tumors. However, epigenetic aberrations in lymphoma not only have been found in tumor cells, but also in cells from the tumor microenvironment, such as immune cells. Whereas the epigenetic dysregulation in lymphoma cells is being intensively investigated, there are limited studies regarding the epigenetic mechanisms that affect the functions of immune cells from the tumor microenvironment in lymphoma. Therefore, this review tries to provide a general overview of epigenetic alterations that affect both lymphoma cells and infiltrating immune cells within the tumor, as well as the epigenetic cross-talk between them.
Collapse
|
94
|
Walsh K, Raghavachari N, Kerr C, Bick AG, Cummings SR, Druley T, Dunbar CE, Genovese G, Goodell MA, Jaiswal S, Maciejewski J, Natarajan P, Shindyapina AV, Shuldiner AR, Van Den Akker EB, Vijg J. Clonal Hematopoiesis Analyses in Clinical, Epidemiologic, and Genetic Aging Studies to Unravel Underlying Mechanisms of Age-Related Dysfunction in Humans. FRONTIERS IN AGING 2022; 3:841796. [PMID: 35821803 PMCID: PMC9261374 DOI: 10.3389/fragi.2022.841796] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022]
Abstract
Aging is characterized by increased mortality, functional decline, and exponential increases in the incidence of diseases such as cancer, stroke, cardiovascular disease, neurological disease, respiratory disease, etc. Though the role of aging in these diseases is widely accepted and considered to be a common denominator, the underlying mechanisms are largely unknown. A significant age-related feature observed in many population cohorts is somatic mosaicism, the detectable accumulation of somatic mutations in multiple cell types and tissues, particularly those with high rates of cell turnover (e.g., skin, liver, and hematopoietic cells). Somatic mosaicism can lead to the development of cellular clones that expand with age in otherwise normal tissues. In the hematopoietic system, this phenomenon has generally been referred to as "clonal hematopoiesis of indeterminate potential" (CHIP) when it applies to a subset of clones in which mutations in driver genes of hematologic malignancies are found. Other mechanisms of clonal hematopoiesis, including large chromosomal alterations, can also give rise to clonal expansion in the absence of conventional CHIP driver gene mutations. Both types of clonal hematopoiesis (CH) have been observed in studies of animal models and humans in association with altered immune responses, increased mortality, and disease risk. Studies in murine models have found that some of these clonal events are involved in abnormal inflammatory and metabolic changes, altered DNA damage repair and epigenetic changes. Studies in long-lived individuals also show the accumulation of somatic mutations, yet at this advanced age, carriership of somatic mutations is no longer associated with an increased risk of mortality. While it remains to be elucidated what factors modify this genotype-phenotype association, i.e., compensatory germline genetics, cellular context of the mutations, protective effects to diseases at exceptional age, it points out that the exceptionally long-lived are key to understand the phenotypic consequences of CHIP mutations. Assessment of the clinical significance of somatic mutations occurring in blood cell types for age-related outcomes in human populations of varied life and health span, environmental exposures, and germline genetic risk factors will be valuable in the development of personalized strategies tailored to specific somatic mutations for healthy aging.
Collapse
Affiliation(s)
- Kenneth Walsh
- University of Virginia, Charlottesville, VA, United States
| | - Nalini Raghavachari
- National Institute on Aging, NIH, Bethesda, MD, United States,*Correspondence: Nalini Raghavachari,
| | - Candace Kerr
- National Institute on Aging, NIH, Bethesda, MD, United States
| | | | - Steven R. Cummings
- University of California, San Francisco, San Francisco, CA, United States
| | - Todd Druley
- Angle Biosciences, St. Louis, MO, United States
| | - Cynthia E. Dunbar
- National Heart, Lung and Blood Institute, NIH, Bethesda, MD, United States
| | | | | | | | | | | | | | | | | | - Jan Vijg
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
95
|
Genomic and Epigenomic Landscape of Juvenile Myelomonocytic Leukemia. Cancers (Basel) 2022; 14:cancers14051335. [PMID: 35267643 PMCID: PMC8909150 DOI: 10.3390/cancers14051335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Juvenile myelomonocytic leukemia (JMML) is a rare pediatric myelodysplastic/myeloproliferative neoplasm characterized by the constitutive activation of the RAS pathway. In spite of the recent progresses in the molecular characterization of JMML, this disease is still a clinical challenge due to its heterogeneity, difficult diagnosis, poor prognosis, and the lack of curative treatment options other than hematopoietic stem cell transplantation (HSCT). In this review, we will provide a detailed overview of the genetic and epigenetic alterations occurring in JMML, and discuss their clinical relevance in terms of disease prognosis and risk of relapse after HSCT. We will also present the most recent advances on novel preclinical and clinical therapeutic approaches directed against JMML molecular targets. Finally, we will outline future research perspectives to further explore the oncogenic mechanism driving JMML leukemogenesis and progression, with special attention to the application of single-cell next-generation sequencing technologies. Abstract Juvenile myelomonocytic leukemia (JMML) is a rare myelodysplastic/myeloproliferative neoplasm of early childhood. Most of JMML patients experience an aggressive clinical course of the disease and require hematopoietic stem cell transplantation, which is currently the only curative treatment. JMML is characterized by RAS signaling hyperactivation, which is mainly driven by mutations in one of five genes of the RAS pathway, including PTPN11, KRAS, NRAS, NF1, and CBL. These driving mutations define different disease subtypes with specific clinico-biological features. Secondary mutations affecting other genes inside and outside the RAS pathway contribute to JMML pathogenesis and are associated with a poorer prognosis. In addition to these genetic alterations, JMML commonly presents aberrant epigenetic profiles that strongly correlate with the clinical outcome of the patients. This observation led to the recent publication of an international JMML stratification consensus, which defines three JMML clinical groups based on DNA methylation status. Although the characterization of the genomic and epigenomic landscapes in JMML has significantly contributed to better understand the molecular mechanisms driving the disease, our knowledge on JMML origin, cell identity, and intratumor and interpatient heterogeneity is still scarce. The application of new single-cell sequencing technologies will be critical to address these questions in the future.
Collapse
|
96
|
Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2022 update on diagnosis, risk stratification, and management. Am J Hematol 2022; 97:352-372. [PMID: 34985762 DOI: 10.1002/ajh.26455] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022]
Abstract
DISEASE OVERVIEW Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder with overlapping features of myelodysplastic syndromes and myeloproliferative neoplasms, with an inherent risk for leukemic transformation (~15% over 3-5 years). DIAGNOSIS Diagnosis is based on the presence of sustained (>3 months) peripheral blood monocytosis (≥1 × 109 /L; monocytes ≥10%), usually with accompanying bone marrow dysplasia. Clonal cytogenetic abnormalities occur in ~30% of patients, while >90% have somatic gene mutations. Mutations involving TET2 (~60%), SRSF2 (~50%), ASXL1 (~40%), and the oncogenic RAS pathway (~30%) are frequent, while the presence of ASXL1 and DNMT3A mutations and the absence of TET2 mutations negatively impact overall survival. RISK-STRATIFICATION Molecularly integrated prognostic models include the Groupe Français des Myélodysplasies, Mayo Molecular Model (MMM), and the CMML specific prognostic model. Risk factors incorporated into the MMM include presence of truncating ASXL1 mutations, absolute monocyte count >10 × 109 /L, hemoglobin <10 g/dL, platelet count <100 × 109 /L, and the presence of circulating immature myeloid cells. The MMM stratifies CMML patients into four groups: high (≥3 risk factors), intermediate-2 (2 risk factors), intermediate-1 (1 risk factor), and low (no risk factors), with median survivals of 16, 31, 59, and 97 months, respectively. RISK-ADAPTED THERAPY Hypomethylating agents such as 5-azacitidine and decitabine are commonly used, with overall response rates of ~40%-50% and complete remission rates of ~7%-17%; with no impact on mutational allele burdens. Allogeneic stem cell transplant is the only potentially curative option but is associated with significant morbidity and mortality.
Collapse
Affiliation(s)
- Mrinal M. Patnaik
- Division of Hematology, Department of Medicine Mayo Clinic Rochester Minnesota USA
| | - Ayalew Tefferi
- Division of Hematology, Department of Medicine Mayo Clinic Rochester Minnesota USA
| |
Collapse
|
97
|
Jawad M, Afkhami M, Ding Y, Zhang X, Li P, Young K, Xu ML, Cui W, Zhao Y, Halene S, Al-Kali A, Viswanatha D, Chen D, He R, Zheng G. DNMT3A R882 Mutations Confer Unique Clinicopathologic Features in MDS Including a High Risk of AML Transformation. Front Oncol 2022; 12:849376. [PMID: 35296003 PMCID: PMC8918526 DOI: 10.3389/fonc.2022.849376] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/31/2022] [Indexed: 01/14/2023] Open
Abstract
DNMT3A mutations play a prominent role in clonal hematopoiesis and myeloid neoplasms with arginine (R)882 as a hotspot, however the clinical implications of R882 vs. non-R882 mutations in myeloid neoplasms like myelodysplastic syndrome (MDS) is unclear. By data mining with publicly accessible cancer genomics databases and a clinical genomic database from a tertiary medical institution, DNMT3A R882 mutations were found to be enriched in AML (53% of all DNMT3A mutations) but decreased in frequency in clonal hematopoiesis of indeterminate potential (CHIP) (10.6%) or other myeloid neoplasms including MDS (27%) (p<.001). Next with the largest cohort of patients with DNMT3A R882 mutant MDS known to date from multiple institutions, DNMT3A R882 mutant MDS cases were shown to have more severe leukopenia, enriched SRSF2 and IDH2 mutations, increased cases with excess blasts (47% vs 22.5%, p=.004), markedly increased risk of AML transformation (25.8%, vs. 1.7%, p=.0001) and a worse progression-free survival (PFS) (median 20.3, vs. >50 months, p=.009) than non-R882 mutant MDS cases. DNMT3A R882 mutation is an independent risk factor for worse PFS, and importantly the differences in the risk of AML transformation between R882 vs. non-R882 mutant patients cannot be explained by different treatment approaches. Interestingly the higher risk of AML transformation and the worse PFS in DNMT3A R882 mutant MDS cases are mitigated by coexisting SF3B1 or SRSF2 mutations. The unique clinicopathologic features of DNMT3A R882 mutant MDS shed light on the prognostic and therapeutic implications of DNMT3A R882 mutations.
Collapse
Affiliation(s)
- Majd Jawad
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Michelle Afkhami
- Division of Molecular Pathology and Therapy Biomarkers, Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
- Division of Hematopathology, Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Yi Ding
- Department of Laboratory Medicine, Geisinger Health, Danville, PA, United States
| | - Xiaohui Zhang
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Peng Li
- Department of Pathology, Associated Regional and University Pathologists (ARUP) Laboratories, Salt Lake City, UT, United States
| | - Kim Young
- Division of Hematopathology, Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Mina Luqing Xu
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Wei Cui
- Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Yiqing Zhao
- Department of Preventive Medicine, Northwestern University, Chicago, IL, United States
| | - Stephanie Halene
- Department of Internal Medicine, Division of Hematology, Yale School of Medicine, New Haven, CT, United States
| | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - David Viswanatha
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Dong Chen
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Rong He
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Gang Zheng
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
98
|
Roux B, Picou F, Debeissat C, Koubi M, Gallay N, Hirsch P, Ravalet N, Béné MC, Maigre M, Hunault M, Mosser J, Etcheverry A, Gyan E, Delhommeau F, Domenech J, Herault O. Aberrant DNA methylation impacts HOX genes expression in bone marrow mesenchymal stromal cells of myelodysplastic syndromes and de novo acute myeloid leukemia. Cancer Gene Ther 2022; 29:1263-1275. [PMID: 35194200 DOI: 10.1038/s41417-022-00441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/12/2021] [Accepted: 02/08/2022] [Indexed: 11/09/2022]
Abstract
DNA methylation, a major biological process regulating the transcription, contributes to the pathophysiology of hematologic malignancies, and hypomethylating agents are commonly used to treat myelodysplastic syndromes (MDS) and acute myeloid leukemias (AML). In these diseases, bone marrow mesenchymal stromal cells (MSCs) play a key supportive role through the production of various signals and interactions. The DNA methylation status of MSCs, likely to reflect their functionality, might be relevant to understand their contribution to the pathophysiology of these diseases. Consequently, the aim of our study was to analyze the modifications of DNA methylation profiles of MSCs induced by MDS or AML. MSCs from MDS/AML patients were characterized via 5-methylcytosine quantification, gene expression profiles of key regulators of DNA methylation, identification of differentially methylated regions (DMRs) by methylome array, and quantification of DMR-coupled genes expression. MDS and AML-MSCs displayed global hypomethylation and under-expression of DNMT1 and UHRF1. Methylome analysis revealed aberrant methylation profiles in all MDS and in a subgroup of AML-MSCs. This aberrant methylation was preferentially found in the sequence of homeobox genes, especially from the HOX family (HOXA1, HOXA4, HOXA5, HOXA9, HOXA10, HOXA11, HOXB5, HOXC4, and HOXC6), and impacted on their expression. These results highlight modifications of DNA methylation in MDS/AML-MSCs, both at global and focal levels dysregulating the expression of HOX genes well known for their involvement in leukemogenesis. Such DNA methylation in MSCs could be the consequence of the malignant disease or could participate in its development through defective functionality or exosomal transfer of HOX transcription factors from MSCs to hematopoietic cells.
Collapse
Affiliation(s)
- Benjamin Roux
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Frédéric Picou
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Christelle Debeissat
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Myriam Koubi
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France
| | - Nathalie Gallay
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Pierre Hirsch
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France
| | - Noémie Ravalet
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Marie C Béné
- CHU de Nantes, Service d'Hématologie Biologique, CRCINA, Nantes, France.,FHU GOAL, Angers, France
| | | | - Mathilde Hunault
- FHU GOAL, Angers, France.,CHU d'Angers, Service d'Hématologie, Angers, France
| | - Jean Mosser
- CHU de Rennes, Service de Génétique Moléculaire et Génomique, Rennes, France.,Cancéropôle Grand Ouest, Nantes, France
| | - Amandine Etcheverry
- CHU de Rennes, Service de Génétique Moléculaire et Génomique, Rennes, France
| | - Emmanuel Gyan
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie et Thérapie Cellulaire, Tours, France
| | - François Delhommeau
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France.,CNRS GDR 3697 Micronit "Microenvironment of tumor niches", Tours, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Jorge Domenech
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Olivier Herault
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France. .,EA 7501 GICC, université de Tours, Tours, France. .,CHU de Tours, Service d'Hématologie Biologique, Tours, France. .,FHU GOAL, Angers, France. .,Cancéropôle Grand Ouest, Nantes, France. .,CNRS GDR 3697 Micronit "Microenvironment of tumor niches", Tours, France. .,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
99
|
Mack A, Emperle M, Schnee P, Adam S, Pleiss J, Bashtrykov P, Jeltsch A. Preferential self-interaction of DNA methyltransferase DNMT3A subunits containing the R882H cancer mutation leads to dominant changes of flanking sequence preferences. J Mol Biol 2022; 434:167482. [DOI: 10.1016/j.jmb.2022.167482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
|
100
|
Liao M, Chen R, Yang Y, He H, Xu L, Jiang Y, Guo Z, He W, Jiang H, Wang J. Aging-elevated inflammation promotes DNMT3A R878H-driven clonal hematopoiesis. Acta Pharm Sin B 2022; 12:678-691. [PMID: 35256939 PMCID: PMC8897035 DOI: 10.1016/j.apsb.2021.09.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/07/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
Aging-elevated DNMT3A R882H-driven clonal hematopoiesis (CH) is a risk factor for myeloid malignancies remission and overall survival. Although some studies were conducted to investigate this phenomenon, the exact mechanism is still under debate. In this study, we observed that DNMT3A R878H bone marrow cells (human allele: DNMT3A R882H) displayed enhanced reconstitution capacity in aged bone marrow milieu and upon inflammatory insult. DNMT3A R878H protects hematopoietic stem and progenitor cells from the damage induced by chronic inflammation, especially TNFα insults. Mechanistically, we identified that RIPK1–RIPK3–MLKL-mediated necroptosis signaling was compromised in R878H cells in response to proliferation stress and TNFα insults. Briefly, we elucidated the molecular mechanism driving DNMT3A R878H-based clonal hematopoiesis, which raises clinical value for treating DNMT3A R882H-driven clonal hematopoiesis and myeloid malignancies with aging.
Collapse
|