51
|
Eustermann S, Patel AB, Hopfner KP, He Y, Korber P. Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nat Rev Mol Cell Biol 2024; 25:309-332. [PMID: 38081975 DOI: 10.1038/s41580-023-00683-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 03/28/2024]
Abstract
The packaging of DNA into chromatin in eukaryotes regulates gene transcription, DNA replication and DNA repair. ATP-dependent chromatin remodelling enzymes (re)arrange nucleosomes at the first level of chromatin organization. Their Snf2-type motor ATPases alter histone-DNA interactions through a common DNA translocation mechanism. Whether remodeller activities mainly catalyse nucleosome dynamics or accurately co-determine nucleosome organization remained unclear. In this Review, we discuss the emerging mechanisms of chromatin remodelling: dynamic remodeller architectures and their interactions, the inner workings of the ATPase cycle, allosteric regulation and pathological dysregulation. Recent mechanistic insights argue for a decisive role of remodellers in the energy-driven self-organization of chromatin, which enables both stability and plasticity of genome regulation - for example, during development and stress. Different remodellers, such as members of the SWI/SNF, ISWI, CHD and INO80 families, process (epi)genetic information through specific mechanisms into distinct functional outputs. Combinatorial assembly of remodellers and their interplay with histone modifications, histone variants, DNA sequence or DNA-bound transcription factors regulate nucleosome mobilization or eviction or histone exchange. Such input-output relationships determine specific nucleosome positions and compositions with distinct DNA accessibilities and mediate differential genome regulation. Finally, remodeller genes are often mutated in diseases characterized by genome dysregulation, notably in cancer, and we discuss their physiological relevance.
Collapse
Affiliation(s)
- Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Avinash B Patel
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Faculty of Chemistry and Pharmacy, LMU Munich, Munich, Germany
| | - Yuan He
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| | - Philipp Korber
- Biomedical Center (BMC), Molecular Biology, Faculty of Medicine, LMU Munich, Martinsried, Germany.
| |
Collapse
|
52
|
Bryant L, Sangree A, Clark K, Bhoj E. Histone 3.3-related chromatinopathy: missense variants throughout H3-3A and H3-3B cause a range of functional consequences across species. Hum Genet 2024; 143:497-510. [PMID: 36867246 DOI: 10.1007/s00439-023-02536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
There has been considerable recent interest in the role that germline variants in histone genes play in Mendelian syndromes. Specifically, missense variants in H3-3A and H3-3B, which both encode Histone 3.3, were discovered to cause a novel neurodevelopmental disorder, Bryant-Li-Bhoj syndrome. Most of the causative variants are private and scattered throughout the protein, but all seem to have either a gain-of-function or dominant negative effect on protein function. This is highly unusual and not well understood. However, there is extensive literature about the effects of Histone 3.3 mutations in model organisms. Here, we collate the previous data to provide insight into the elusive pathogenesis of missense variants in Histone 3.3.
Collapse
Affiliation(s)
- Laura Bryant
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Annabel Sangree
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kelly Clark
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Elizabeth Bhoj
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
53
|
Figueroa-Bossi N, Fernández-Fernández R, Kerboriou P, Bouloc P, Casadesús J, Sánchez-Romero MA, Bossi L. Transcription-driven DNA supercoiling counteracts H-NS-mediated gene silencing in bacterial chromatin. Nat Commun 2024; 15:2787. [PMID: 38555352 PMCID: PMC10981669 DOI: 10.1038/s41467-024-47114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
In all living cells, genomic DNA is compacted through interactions with dedicated proteins and/or the formation of plectonemic coils. In bacteria, DNA compaction is achieved dynamically, coordinated with dense and constantly changing transcriptional activity. H-NS, a major bacterial nucleoid structuring protein, is of special interest due to its interplay with RNA polymerase. H-NS:DNA nucleoprotein filaments inhibit transcription initiation by RNA polymerase. However, the discovery that genes silenced by H-NS can be activated by transcription originating from neighboring regions has suggested that elongating RNA polymerases can disassemble H-NS:DNA filaments. In this study, we present evidence that transcription-induced counter-silencing does not require transcription to reach the silenced gene; rather, it exerts its effect at a distance. Counter-silencing is suppressed by introducing a DNA gyrase binding site within the intervening segment, suggesting that the long-range effect results from transcription-driven positive DNA supercoils diffusing toward the silenced gene. We propose a model wherein H-NS:DNA complexes form in vivo on negatively supercoiled DNA, with H-NS bridging the two arms of the plectoneme. Rotational diffusion of positive supercoils generated by neighboring transcription will cause the H-NS-bound negatively-supercoiled plectoneme to "unroll" disrupting the H-NS bridges and releasing H-NS.
Collapse
Affiliation(s)
- Nara Figueroa-Bossi
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France
| | - Rocío Fernández-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Patricia Kerboriou
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France
| | - Philippe Bouloc
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | - Lionello Bossi
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
54
|
Chen P, Li G, Li W. Nucleosome Dynamics Derived at the Single-Molecule Level Bridges Its Structures and Functions. JACS AU 2024; 4:866-876. [PMID: 38559720 PMCID: PMC10976579 DOI: 10.1021/jacsau.3c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 04/04/2024]
Abstract
Nucleosome, the building block of chromatin, plays pivotal roles in all DNA-related processes. While cryogenic-electron microscopy (cryo-EM) has significantly advanced our understanding of nucleosome structures, the emerging field of single-molecule force spectroscopy is illuminating their dynamic properties. This technique is crucial for revealing how nucleosome behavior is influenced by chaperones, remodelers, histone variants, and post-translational modifications, particularly in their folding and unfolding mechanisms under tension. Such insights are vital for deciphering the complex interplay in nucleosome assembly and structural regulation, highlighting the nucleosome's versatility in response to DNA activities. In this Perspective, we aim to consolidate the latest advancements in nucleosome dynamics, with a special focus on the revelations brought forth by single-molecule manipulation. Our objective is to highlight the insights gained from studying nucleosome dynamics through this innovative approach, emphasizing the transformative impact of single-molecule manipulation techniques in the field of chromatin research.
Collapse
Affiliation(s)
- Ping Chen
- National
Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation
and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Department
of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory
for Tumor Invasion and Metastasis, Capital
Medical University, Beijing 100069, P. R. China
| | - Guohong Li
- National
Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation
and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Li
- National
Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation
and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| |
Collapse
|
55
|
Atanasoff-Kardjalieff AK, Berger H, Steinert K, Janevska S, Ponts N, Humpf HU, Kalinina S, Studt-Reinhold L. Incorporation of the histone variant H2A.Z counteracts gene silencing mediated by H3K27 trimethylation in Fusarium fujikuroi. Epigenetics Chromatin 2024; 17:7. [PMID: 38509556 PMCID: PMC10953111 DOI: 10.1186/s13072-024-00532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Fusarium fujikuroi is a pathogen of rice causing diverse disease symptoms such as 'bakanae' or stunting, most likely due to the production of various natural products (NPs) during infection. Fusaria have the genetic potential to synthesize a plethora of these compounds with often diverse bioactivity. The capability to synthesize NPs exceeds the number of those being produced by far, implying a gene regulatory network decisive to induce production. One such regulatory layer is the chromatin structure and chromatin-based modifications associated with it. One prominent example is the exchange of histones against histone variants such as the H2A variant H2A.Z. Though H2A.Z already is well studied in several model organisms, its regulatory functions are not well understood. Here, we used F. fujikuroi as a model to explore the role of the prominent histone variant FfH2A.Z in gene expression within euchromatin and facultative heterochromatin. RESULTS Through the combination of diverse '-omics' methods, we show the global distribution of FfH2A.Z and analyze putative crosstalks between the histone variant and two prominent histone marks, i.e., H3K4me3 and H3K27me3, important for active gene transcription and silencing, respectively. We demonstrate that, if FfH2A.Z is positioned at the + 1-nucleosome, it poises chromatin for gene transcription, also within facultative heterochromatin. Lastly, functional characterization of FfH2A.Z overexpression and depletion mutants revealed that FfH2A.Z is important for wild type-like fungal development and secondary metabolism. CONCLUSION In this study, we show that the histone variant FfH2A.Z is a mark of positive gene transcription and acts independently of the chromatin state most likely through the stabilization of the + 1-nucleosome. Furthermore, we demonstrate that FfH2A.Z depletion does not influence the establishment of both H3K27me3 and H3K4me3, thus indicating no crosstalk between FfH2A.Z and both histone marks. These results highlight the manifold functions of the histone variant FfH2A.Z in the phytopathogen F. fujikuroi, which are distinct regarding gene transcription and crosstalk with the two prominent histone marks H3K27me3 and H3K4me3, as proposed for other model organisms.
Collapse
Affiliation(s)
- Anna K Atanasoff-Kardjalieff
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz Strasse 24, Tulln an der Donau, 3430, Austria
| | - Harald Berger
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz Strasse 24, Tulln an der Donau, 3430, Austria
| | - Katharina Steinert
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Slavica Janevska
- (Epi-)Genetic Regulation of Fungal Virulence, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, 07745, Jena, Germany
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), Villenave d'Ornon, 33882, France
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Svetlana Kalinina
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz Strasse 24, Tulln an der Donau, 3430, Austria.
| |
Collapse
|
56
|
Dubey SK, Dubey R, Kleinman ME. Unraveling Histone Loss in Aging and Senescence. Cells 2024; 13:320. [PMID: 38391933 PMCID: PMC10886805 DOI: 10.3390/cells13040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
As the global population experiences a notable surge in aging demographics, the need to understand the intricate molecular pathways exacerbated by age-related stresses, including epigenetic dysregulation, becomes a priority. Epigenetic mechanisms play a critical role in driving age-related diseases through altered gene expression, genomic instability, and irregular chromatin remodeling. In this review, we focus on histones, a central component of the epigenome, and consolidate the key findings of histone loss and genome-wide redistribution as fundamental processes contributing to aging and senescence. The review provides insights into novel histone expression profiles, nucleosome occupancy, disruptions in higher-order chromatin architecture, and the emergence of noncanonical histone variants in the aging cellular landscape. Furthermore, we explore the current state of our understanding of the molecular mechanisms of histone deficiency in aging cells. Specific emphasis is placed on highlighting histone degradation pathways in the cell and studies that have explored potential strategies to mitigate histone loss or restore histone levels in aging cells. Finally, in addressing future perspectives, the insights gained from this review hold profound implications for advancing strategies that actively intervene in modulating histone expression profiles in the context of cellular aging and identifying potential therapeutic targets for alleviating a multitude of age-related diseases.
Collapse
Affiliation(s)
| | | | - Mark Ellsworth Kleinman
- Department of Surgery, East Tennessee State University, Johnson City, TN 37614, USA; (S.K.D.); (R.D.)
| |
Collapse
|
57
|
Chen X, Xu Y. Interplay between the transcription preinitiation complex and the +1 nucleosome. Trends Biochem Sci 2024; 49:145-155. [PMID: 38218671 DOI: 10.1016/j.tibs.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/15/2024]
Abstract
Eukaryotic transcription starts with the assembly of a preinitiation complex (PIC) on core promoters. Flanking this region is the +1 nucleosome, the first nucleosome downstream of the core promoter. While this nucleosome is rich in epigenetic marks and plays a key role in transcription regulation, how the +1 nucleosome interacts with the transcription machinery has been a long-standing question. Here, we summarize recent structural and functional studies of the +1 nucleosome in complex with the PIC. We specifically focus on how differently organized promoter-nucleosome templates affect the assembly of the PIC and PIC-Mediator on chromatin and result in distinct transcription initiation.
Collapse
Affiliation(s)
- Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China.
| |
Collapse
|
58
|
Li L, Chen K, Sia Y, Hu P, Ye Y, Chen Z. Structure of the ISW1a complex bound to the dinucleosome. Nat Struct Mol Biol 2024; 31:266-274. [PMID: 38177688 DOI: 10.1038/s41594-023-01174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/03/2023] [Indexed: 01/06/2024]
Abstract
Nucleosomes are basic repeating units of chromatin and form regularly spaced arrays in cells. Chromatin remodelers alter the positions of nucleosomes and are vital in regulating chromatin organization and gene expression. Here we report the cryo-EM structure of chromatin remodeler ISW1a complex from Saccharomyces cerevisiae bound to the dinucleosome. Each subunit of the complex recognizes a different nucleosome. The motor subunit binds to the mobile nucleosome and recognizes the acidic patch through two arginine residues, while the DNA-binding module interacts with the entry DNA at the nucleosome edge. This nucleosome-binding mode provides the structural basis for linker DNA sensing of the motor. Notably, the Ioc3 subunit recognizes the disk face of the adjacent nucleosome through interacting with the H4 tail, the acidic patch and the nucleosomal DNA, which plays a role in the spacing activity in vitro and in nucleosome organization and cell fitness in vivo. Together, these findings support the nucleosome spacing activity of ISW1a and add a new mode of nucleosome remodeling in the context of a chromatin environment.
Collapse
Affiliation(s)
- Lifei Li
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, P.R. China
- School of Life Science, Tsinghua University, Beijing, P.R. China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, P.R. China
- Beijing Frontier Research Center for Biological Structure, Beijing, P.R. China
| | - Kangjing Chen
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, P.R. China
- School of Life Science, Tsinghua University, Beijing, P.R. China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, P.R. China
- Beijing Frontier Research Center for Biological Structure, Beijing, P.R. China
| | - Youyang Sia
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, P.R. China
- School of Life Science, Tsinghua University, Beijing, P.R. China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, P.R. China
- Beijing Frontier Research Center for Biological Structure, Beijing, P.R. China
| | - Pengjing Hu
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, P.R. China
- School of Life Science, Tsinghua University, Beijing, P.R. China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, P.R. China
- Beijing Frontier Research Center for Biological Structure, Beijing, P.R. China
| | - Youpi Ye
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, P.R. China
- School of Life Science, Tsinghua University, Beijing, P.R. China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, P.R. China
- Beijing Frontier Research Center for Biological Structure, Beijing, P.R. China
| | - Zhucheng Chen
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, P.R. China.
- School of Life Science, Tsinghua University, Beijing, P.R. China.
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, P.R. China.
- Beijing Frontier Research Center for Biological Structure, Beijing, P.R. China.
| |
Collapse
|
59
|
Xu W, Zhang H, Guo W, Jiang L, Zhao Y, Peng Y. Deciphering principles of nucleosome interactions and impact of cancer-associated mutations from comprehensive interaction network analysis. Brief Bioinform 2024; 25:bbad532. [PMID: 38329268 PMCID: PMC10851104 DOI: 10.1093/bib/bbad532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/30/2023] [Accepted: 12/23/2023] [Indexed: 02/09/2024] Open
Abstract
Nucleosomes represent hubs in chromatin organization and gene regulation and interact with a plethora of chromatin factors through different modes. In addition, alterations in histone proteins such as cancer mutations and post-translational modifications have profound effects on histone/nucleosome interactions. To elucidate the principles of histone interactions and the effects of those alterations, we developed histone interactomes for comprehensive mapping of histone-histone interactions (HHIs), histone-DNA interactions (HDIs), histone-partner interactions (HPIs) and DNA-partner interactions (DPIs) of 37 organisms, which contains a total of 3808 HPIs from 2544 binding proteins and 339 HHIs, 100 HDIs and 142 DPIs across 110 histone variants. With the developed networks, we explored histone interactions at different levels of granularities (protein-, domain- and residue-level) and performed systematic analysis on histone interactions at a large scale. Our analyses have characterized the preferred binding hotspots on both nucleosomal/linker DNA and histone octamer and unraveled diverse binding modes between nucleosome and different classes of binding partners. Last, to understand the impact of histone cancer-associated mutations on histone/nucleosome interactions, we complied one comprehensive cancer mutation dataset including 7940 cancer-associated histone mutations and further mapped those mutations onto 419,125 histone interactions at the residue level. Our quantitative analyses point to histone cancer-associated mutations' strongly disruptive effects on HHIs, HDIs and HPIs. We have further predicted 57 recurrent histone cancer mutations that have large effects on histone/nucleosome interactions and may have driver status in oncogenesis.
Collapse
Affiliation(s)
- Wang Xu
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Houfang Zhang
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Wenhan Guo
- Computational Science Program, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Lijun Jiang
- Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Yunhui Peng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
60
|
Liang Z, Solano A, Lou J, Hinde E. Histone FRET reports the spatial heterogeneity in nanoscale chromatin architecture that is imparted by the epigenetic landscape at the level of single foci in an intact cell nucleus. Chromosoma 2024; 133:5-14. [PMID: 38265456 PMCID: PMC10904561 DOI: 10.1007/s00412-024-00815-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024]
Abstract
Genome sequencing has identified hundreds of histone post-translational modifications (PTMs) that define an open or compact chromatin nanostructure at the level of nucleosome proximity, and therefore serve as activators or repressors of gene expression. Direct observation of this epigenetic mode of transcriptional regulation in an intact single nucleus, is however, a complex task. This is because despite the development of fluorescent probes that enable observation of specific histone PTMs and chromatin density, the changes in nucleosome proximity regulating gene expression occur on a spatial scale well below the diffraction limit of optical microscopy. In recent work, to address this research gap, we demonstrated that the phasor approach to fluorescence lifetime imaging microscopy (FLIM) of Förster resonance energy transfer (FRET) between fluorescently labelled histones core to the nucleosome, is a readout of chromatin nanostructure that can be multiplexed with immunofluorescence (IF) against specific histone PTMs. Here from application of this methodology to gold standard gene activators (H3K4Me3 and H3K9Ac) versus repressors (e.g., H3K9Me3 and H3K27Me), we find that while on average these histone marks do impart an open versus compact chromatin nanostructure, at the level of single chromatin foci, there is significant spatial heterogeneity. Collectively this study illustrates the importance of studying the epigenetic landscape as a function of space within intact nuclear architecture and opens the door for the study of chromatin foci sub-populations defined by combinations of histone marks, as is seen in the context of bivalent chromatin.
Collapse
Affiliation(s)
- Zhen Liang
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, Australia
- Cancer and RNA Laboratory, St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine, Melbourne Medical School, St Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Ashleigh Solano
- School of Physics, University of Melbourne, Melbourne, VIC, Australia
| | - Jieqiong Lou
- School of Physics, University of Melbourne, Melbourne, VIC, Australia
| | - Elizabeth Hinde
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, Australia.
- School of Physics, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
61
|
Arbel-Groissman M, Menuhin-Gruman I, Yehezkeli H, Naki D, Bergman S, Udi Y, Tuller T. The Causes for Genomic Instability and How to Try and Reduce Them Through Rational Design of Synthetic DNA. Methods Mol Biol 2024; 2760:371-392. [PMID: 38468099 DOI: 10.1007/978-1-0716-3658-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Genetic engineering has revolutionized our ability to manipulate DNA and engineer organisms for various applications. However, this approach can lead to genomic instability, which can result in unwanted effects such as toxicity, mutagenesis, and reduced productivity. To overcome these challenges, smart design of synthetic DNA has emerged as a promising solution. By taking into consideration the intricate relationships between gene expression and cellular metabolism, researchers can design synthetic constructs that minimize metabolic stress on the host cell, reduce mutagenesis, and increase protein yield. In this chapter, we summarize the main challenges of genomic instability in genetic engineering and address the dangers of unknowingly incorporating genomically unstable sequences in synthetic DNA. We also demonstrate the instability of those sequences by the fact that they are selected against conserved sequences in nature. We highlight the benefits of using ESO, a tool for the rational design of DNA for avoiding genetically unstable sequences, and also summarize the main principles and working parameters of the software that allow maximizing its benefits and impact.
Collapse
Affiliation(s)
- Matan Arbel-Groissman
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Itamar Menuhin-Gruman
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hader Yehezkeli
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Doron Naki
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shaked Bergman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Yarin Udi
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel.
- The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
62
|
Seller CA, Schroeder JI. Distinct guard cell-specific remodeling of chromatin accessibility during abscisic acid- and CO 2-dependent stomatal regulation. Proc Natl Acad Sci U S A 2023; 120:e2310670120. [PMID: 38113262 PMCID: PMC10756262 DOI: 10.1073/pnas.2310670120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
In plants, epidermal guard cells integrate and respond to numerous environmental signals to control stomatal pore apertures, thereby regulating gas exchange. Chromatin structure controls transcription factor (TF) access to the genome, but whether large-scale chromatin remodeling occurs in guard cells during stomatal movements, and in response to the hormone abscisic acid (ABA) in general, remains unknown. Here, we isolate guard cell nuclei from Arabidopsis thaliana plants to examine whether the physiological signals, ABA and CO2 (carbon dioxide), regulate guard cell chromatin during stomatal movements. Our cell type-specific analyses uncover patterns of chromatin accessibility specific to guard cells and define cis-regulatory sequences supporting guard cell-specific gene expression. We find that ABA triggers extensive and dynamic chromatin remodeling in guard cells, roots, and mesophyll cells with clear patterns of cell type specificity. DNA motif analyses uncover binding sites for distinct TFs enriched in ABA-induced and ABA-repressed chromatin. We identify the Abscisic Acid Response Element (ABRE) Binding Factor (ABF) bZIP-type TFs that are required for ABA-triggered chromatin opening in guard cells and roots and implicate the inhibition of a clade of bHLH-type TFs in controlling ABA-repressed chromatin. Moreover, we demonstrate that ABA and CO2 induce distinct programs of chromatin remodeling, whereby elevated atmospheric CO2 had only minimal impact on chromatin dynamics. We provide insight into the control of guard cell chromatin dynamics and propose that ABA-induced chromatin remodeling primes the genome for abiotic stress resistance.
Collapse
Affiliation(s)
- Charles A. Seller
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA92093-0116
| | - Julian I. Schroeder
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA92093-0116
| |
Collapse
|
63
|
Brennan L, Disatham J, Menko AS, Kantorow M. Multiomic analysis implicates FOXO4 in genetic regulation of chick lens fiber cell differentiation. Dev Biol 2023; 504:25-37. [PMID: 37722500 PMCID: PMC10843493 DOI: 10.1016/j.ydbio.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells follows a coordinated program involving cell cycle exit, expression of key structural proteins and the hallmark elimination of organelles to achieve transparency. Although multiple mechanisms and pathways have been identified to play key roles in lens differentiation, the entirety of mechanisms governing lens differentiation remain to be discovered. A previous study established that specific chromatin accessibility changes were directly associated with the expression of essential lens fiber cell genes, suggesting that the activity of transcription factors needed for expression of these genes could be regulated through binding access to the identified chromatin regions. Sequence analysis of the identified chromatin accessible regions revealed enhanced representation of the binding sequence for the transcription factor FOXO4 suggesting a direct role for FOXO4 in expression of these genes. FOXO4 is known to regulate a variety of cellular processes including cellular response to metabolic and oxidative stress, cell cycle withdrawal, and homeostasis, suggesting a previously unidentified role for FOXO4 in the regulation of lens cell differentiation. To further evaluate the role of FOXO4 we employed a multiomics approach to analyze the relationship between genome-wide FOXO4 binding, the differentiation-specific expression of key genes, and chromatin accessibility. To better identify active promoters and enhancers we also examined histone modification through analysis of H3K27ac. Specific methods included CUT&RUN (FOXO4 binding and H3K27ac modification), RNA-seq (differentiation state specific gene expression), and ATAC-seq (chromatin accessibility). CUT&RUN identified 20,966 FOXO4 binding sites and 33,921 H3K27ac marked regions across the lens fiber cell genome. RNA-seq identified 956 genes with significantly greater expression levels in fiber cells compared to epithelial cells (log2FC > 0.7, q < 0.05) and 2548 genes with significantly lower expression levels (log2FC < -0.7, q < 0.05). Integrated analysis identified 1727 differentiation-state specific genes that were nearest neighbors to at least one FOXO4 binding site, including genes encoding lens gap junctions (GJA1, GJA3), lens structural proteins (BFSP1, CRYBB1, ASL1), and genes required for lens transparency (HSF4, NRCAM). Multiomics analysis comparing the identified FOXO4 binding sites in published ATAC-seq data revealed that chromatin accessibility was associated with FOXO4-dependent gene expression during lens differentiation. The results provide evidence for an important requirement for FOXO4 in the regulated expression of key genes required for lens differentiation and link epigenetic regulation of chromatin accessibility and H3K27ac histone modification with the function of FOXO4 in controlling lens gene expression during lens fiber cell differentiation.
Collapse
Affiliation(s)
- Lisa Brennan
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Joshua Disatham
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - A Sue Menko
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Marc Kantorow
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
64
|
Liang F, Dong Z, Ye J, Hu W, Bhandari RK, Mai K, Wang X. In vivo DNA methylation editing in zebrafish. Epigenetics 2023; 18:2192326. [PMID: 36945831 PMCID: PMC10038036 DOI: 10.1080/15592294.2023.2192326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The CRISPR/dCas9-based epigenome editing technique has driven much attention. Fused with a catalytic domain from Dnmt or Tet protein, the CRISPR/dCas9-DnmtCD or -TetCD systems possess the targeted DNA methylation editing ability and have established a series of in vitro and in vivo disease models. However, no publication has been reported on zebrafish (Danio rerio), an important animal model in biomedicine. The present study demonstrated that CRISPR/dCas9-Dnmt7 and -Tet2 catalytic domain fusions could site-specifically edit genomic DNA methylation in vivo in zebrafish and may serve as an efficient toolkit for DNA methylation editing in the zebrafish model.
Collapse
Affiliation(s)
- Fang Liang
- Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, P. R. China
| | - Zijiong Dong
- Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, P. R. China
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, P. R. China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Ramji Kumar Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Kangsen Mai
- Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, P. R. China
| | - Xuegeng Wang
- Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, P. R. China
| |
Collapse
|
65
|
Obermeyer S, Schrettenbrunner L, Stöckl R, Schwartz U, Grasser K. Different elongation factors distinctly modulate RNA polymerase II transcription in Arabidopsis. Nucleic Acids Res 2023; 51:11518-11533. [PMID: 37819035 PMCID: PMC10681736 DOI: 10.1093/nar/gkad825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/24/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Various transcript elongation factors (TEFs) including modulators of RNA polymerase II (RNAPII) activity and histone chaperones tune the efficiency of transcription in the chromatin context. TEFs are involved in establishing gene expression patterns during growth and development in Arabidopsis, while little is known about the genomic distribution of the TEFs and the way they facilitate transcription. We have mapped the genome-wide occupancy of the elongation factors SPT4-SPT5, PAF1C and FACT, relative to that of elongating RNAPII phosphorylated at residues S2/S5 within the carboxyterminal domain. The distribution of SPT4-SPT5 along transcribed regions closely resembles that of RNAPII-S2P, while the occupancy of FACT and PAF1C is rather related to that of RNAPII-S5P. Under transcriptionally challenging heat stress conditions, mutant plants lacking the corresponding TEFs are differentially impaired in transcript synthesis. Strikingly, in plants deficient in PAF1C, defects in transcription across intron/exon borders are observed that are cumulative along transcribed regions. Upstream of transcriptional start sites, the presence of FACT correlates with nucleosomal occupancy. Under stress conditions FACT is particularly required for transcriptional upregulation and to promote RNAPII transcription through +1 nucleosomes. Thus, Arabidopsis TEFs are differently distributed along transcribed regions, and are distinctly required during transcript elongation especially upon transcriptional reprogramming.
Collapse
Affiliation(s)
- Simon Obermeyer
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Lukas Schrettenbrunner
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Richard Stöckl
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Centre, Biology and Pre-Clinical Medicine, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Klaus D Grasser
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| |
Collapse
|
66
|
Tigu AB, Bancos A. The Role of Epigenetic Modifier Mutations in Peripheral T-Cell Lymphomas. Curr Issues Mol Biol 2023; 45:8974-8988. [PMID: 37998740 PMCID: PMC10670124 DOI: 10.3390/cimb45110563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are a group of diseases with a low incidence, high degree of heterogeneity, and a dismal prognosis in most cases. Because of the low incidence of these diseases, there have been few therapeutic novelties developed over time. Nevertheless, this fact is changing presently as epigenetic modifiers have been shown to be recurrently mutated in some types of PTCLs, especially in the cases of PTCLs not otherwise specified (PTCL-NOS), T follicular helper (TFH), and angioimmunoblastic T-cell lymphoma (AITL). These have brought about more insight into PTCL biology, especially in the case of PTCLs arising from TFH lymphocytes. From a biological perspective, it has been observed that ten-eleven translocators (TET2) mutated T lymphocytes tend to polarize to TFH, while Tregs lose their inhibitory properties. IDH2 R172 was shown to have inhibitory effects on TET2, mimicking the effects of TET2 mutations, as well as having effects on histone methylation. DNA methyltransferase 3A (DNMT3A) loss-of-function, although it was shown to have opposite effects to TET2 from an inflammatory perspective, was also shown to increase the number of T lymphocyte progenitors. Aside from bringing about more knowledge of PTCL biology, these mutations were shown to increase the sensitivity of PTCLs to certain epigenetic therapies, like hypomethylating agents (HMAs) and histone deacetylase inhibitors (HDACis). Thus, to answer the question from the title of this review: We found the Achilles heel, but only for one of the Achilles.
Collapse
Affiliation(s)
- Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
| | - Anamaria Bancos
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
67
|
Seller CA, Schroeder JI. Distinct guard cell specific remodeling of chromatin accessibility during abscisic acid and CO 2 dependent stomatal regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540345. [PMID: 37215031 PMCID: PMC10197618 DOI: 10.1101/2023.05.11.540345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In plants, epidermal guard cells integrate and respond to numerous environmental signals to control stomatal pore apertures thereby regulating gas exchange. Chromatin structure controls transcription factor access to the genome, but whether large-scale chromatin remodeling occurs in guard cells during stomatal movements, and in response to the hormone abscisic acid (ABA) in general, remain unknown. Here we isolate guard cell nuclei from Arabidopsis thaliana plants to examine whether the physiological signals, ABA and CO2, regulate guard cell chromatin during stomatal movements. Our cell type specific analyses uncover patterns of chromatin accessibility specific to guard cells and define novel cis-regulatory sequences supporting guard cell specific gene expression. We find that ABA triggers extensive and dynamic chromatin remodeling in guard cells, roots, and mesophyll cells with clear patterns of cell-type specificity. DNA motif analyses uncover binding sites for distinct transcription factors enriched in ABA-induced and ABA-repressed chromatin. We identify the ABF/AREB bZIP-type transcription factors that are required for ABA-triggered chromatin opening in guard cells and implicate the inhibition of a set of bHLH-type transcription factors in controlling ABA-repressed chromatin. Moreover, we demonstrate that ABA and CO2 induce distinct programs of chromatin remodeling. We provide insight into the control of guard cell chromatin dynamics and propose that ABA-induced chromatin remodeling primes the genome for abiotic stress resistance.
Collapse
Affiliation(s)
- Charles A. Seller
- School of Biological Sciences, Cell and Developmental Biology Department University of California San Diego, La Jolla, CA 92093-0116
| | - Julian I. Schroeder
- School of Biological Sciences, Cell and Developmental Biology Department University of California San Diego, La Jolla, CA 92093-0116
| |
Collapse
|
68
|
Brahma P, Aggarwal R, Sanyal K. Biased eviction of variant histone H3 nucleosomes triggers biofilm growth in Candida albicans. mBio 2023; 14:e0206323. [PMID: 37768046 PMCID: PMC10653867 DOI: 10.1128/mbio.02063-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Candida albicans lives as a commensal in most healthy humans but can cause superficial skin infections to life-threatening systemic infections. C. albicans also forms biofilms on biotic and abiotic surfaces. Biofilm cells are difficult to treat and highly resistant to antifungals. A specific set of genes is differentially regulated in biofilm cells as compared to free-floating planktonic cells of C. albicans. In this study, we addressed how a variant histone H3VCTG, a previously identified negative regulator of biofilm formation, modulates gene expression changes. By providing compelling evidence, we show that biased eviction of H3VCTG nucleosomes at the promoters of biofilm-relevant genes facilitates the accessibility of both transcription activators and repressors to modulate gene expression. Our study is a comprehensive investigation of genome-wide nucleosome occupancy in both planktonic and biofilm states, which reveals transition to an open chromatin landscape during biofilm mode of growth in C. albicans, a medically relevant pathogen.
Collapse
Affiliation(s)
- Priya Brahma
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Rashi Aggarwal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| |
Collapse
|
69
|
Amigo R, Raiqueo F, Tarifeño E, Farkas C, Gutiérrez JL. Poly(dA:dT) Tracts Differentially Modulate Nucleosome Remodeling Activity of RSC and ISW1a Complexes, Exerting Tract Orientation-Dependent and -Independent Effects. Int J Mol Sci 2023; 24:15245. [PMID: 37894925 PMCID: PMC10607297 DOI: 10.3390/ijms242015245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The establishment and maintenance of nucleosome-free regions (NFRs) are prominent processes within chromatin dynamics. Transcription factors, ATP-dependent chromatin remodeling complexes (CRCs) and DNA sequences are the main factors involved. In Saccharomyces cerevisiae, CRCs such as RSC contribute to chromatin opening at NFRs, while other complexes, including ISW1a, contribute to NFR shrinking. Regarding DNA sequences, growing evidence points to poly(dA:dT) tracts as playing a direct role in active processes involved in nucleosome positioning dynamics. Intriguingly, poly(dA:dT)-tract-containing NFRs span asymmetrically relative to the location of the tract by a currently unknown mechanism. In order to obtain insight into the role of poly(dA:dT) tracts in nucleosome remodeling, we performed a systematic analysis of their influence on the activity of ISW1a and RSC complexes. Our results show that poly(dA:dT) tracts differentially affect the activity of these CRCs. Moreover, we found differences between the effects exerted by the two alternative tract orientations. Remarkably, tract-containing linker DNA is taken as exit DNA for nucleosome sliding catalyzed by RSC. Our findings show that defined DNA sequences, when present in linker DNA, can dictate in which direction a remodeling complex has to slide nucleosomes and shed light into the mechanisms underlying asymmetrical chromatin opening around poly(dA:dT) tracts.
Collapse
Affiliation(s)
- Roberto Amigo
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| | - Fernanda Raiqueo
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| | - Estefanía Tarifeño
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| | - Carlos Farkas
- Biomedical Sciences Research Laboratory, Department of Basic Sciences and Morphology, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile;
| | - José L. Gutiérrez
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| |
Collapse
|
70
|
Hu Y, Shen F, Yang X, Han T, Long Z, Wen J, Huang J, Shen J, Guo Q. Single-cell sequencing technology applied to epigenetics for the study of tumor heterogeneity. Clin Epigenetics 2023; 15:161. [PMID: 37821906 PMCID: PMC10568863 DOI: 10.1186/s13148-023-01574-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Previous studies have traditionally attributed the initiation of cancer cells to genetic mutations, considering them as the fundamental drivers of carcinogenesis. However, recent research has shed light on the crucial role of epigenomic alterations in various cell types present within the tumor microenvironment, suggesting their potential contribution to tumor formation and progression. Despite these significant findings, the progress in understanding the epigenetic mechanisms regulating tumor heterogeneity has been impeded over the past few years due to the lack of appropriate technical tools and methodologies. RESULTS The emergence of single-cell sequencing has enhanced our understanding of the epigenetic mechanisms governing tumor heterogeneity by revealing the distinct epigenetic layers of individual cells (chromatin accessibility, DNA/RNA methylation, histone modifications, nucleosome localization) and the diverse omics (transcriptomics, genomics, multi-omics) at the single-cell level. These technologies provide us with new insights into the molecular basis of intratumoral heterogeneity and help uncover key molecular events and driving mechanisms in tumor development. CONCLUSION This paper provides a comprehensive review of the emerging analytical and experimental approaches of single-cell sequencing in various omics, focusing specifically on epigenomics. These approaches have the potential to capture and integrate multiple dimensions of individual cancer cells, thereby revealing tumor heterogeneity and epigenetic features. Additionally, this paper outlines the future trends of these technologies and their current technical limitations.
Collapse
Affiliation(s)
- Yuhua Hu
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, Jiangsu, China
- Graduate School, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Feng Shen
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, Jiangsu, China
- Department of Neurosurgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Xi Yang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tingting Han
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, Jiangsu, China
- Graduate School, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Zhuowen Long
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Jiale Wen
- Graduate School, Dalian Medical University, Dalian, 116044, Liaoning, China
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Junxing Huang
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, Jiangsu, China.
| | - Jiangfeng Shen
- Department of Thoracic Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, Jiangsu, China.
| | - Qing Guo
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, Jiangsu, China.
| |
Collapse
|
71
|
Agostini M, Traldi P, Hamdan M. Mass Spectrometry-Based Proteomics: Analyses Related to Drug-Resistance and Disease Biomarkers. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1722. [PMID: 37893440 PMCID: PMC10608342 DOI: 10.3390/medicina59101722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023]
Abstract
Mass spectrometry-based proteomics is a key player in research efforts to characterize aberrant epigenetic alterations, including histone post-translational modifications and DNA methylation. Data generated by this approach complements and enrich datasets generated by genomic, epigenetic and transcriptomics approaches. These combined datasets can provide much-needed information on various mechanisms responsible for drug resistance, the discovery and validation of potential biomarkers for different diseases, the identification of signaling pathways, and genes and enzymes to be targeted by future therapies. The increasing use of high-resolution, high-accuracy mass spectrometers combined with more refined protein labeling and enrichment procedures enhanced the role of this approach in the investigation of these epigenetic modifications. In this review, we discuss recent MS-based studies, which are contributing to current research efforts to understand certain mechanisms behind drug resistance to therapy. We also discuss how these MS-based analyses are contributing to biomarkers discovery and validation.
Collapse
Affiliation(s)
| | - Pietro Traldi
- Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35100 Padova, Italy; (M.A.); (M.H.)
| | | |
Collapse
|
72
|
Schuette G, Ding X, Zhang B. Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction. Biophys J 2023; 122:3425-3438. [PMID: 37496267 PMCID: PMC10502442 DOI: 10.1016/j.bpj.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Genome-wide chromosome conformation capture (Hi-C) experiments have revealed many structural features of chromatin across multiple length scales. Further understanding genome organization requires relating these discoveries to the mechanisms that establish chromatin structures and reconstructing these structures in three dimensions, but both objectives are difficult to achieve with existing algorithms that are often computationally expensive. To alleviate this challenge, we present an algorithm that efficiently converts Hi-C data into contact energies, which measure the interaction strength between genomic loci brought into proximity. Contact energies are local quantities unaffected by the topological constraints that correlate Hi-C contact probabilities. Thus, extracting contact energies from Hi-C contact probabilities distills the biologically unique information contained in the data. We show that contact energies reveal the location of chromatin loop anchors, support a phase separation mechanism for genome compartmentalization, and parameterize polymer simulations that predict three-dimensional chromatin structures. Therefore, we anticipate that contact energy extraction will unleash the full potential of Hi-C data and that our inversion algorithm will facilitate the widespread adoption of contact energy analysis.
Collapse
Affiliation(s)
- Greg Schuette
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
73
|
Woodhouse M, Brooks Crickard J. DNA curtains to visualize chromatin interactions. Methods 2023; 217:36-42. [PMID: 37437647 PMCID: PMC10529070 DOI: 10.1016/j.ymeth.2023.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/26/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023] Open
Abstract
Recent advances in single molecule imaging have allowed the evolution of biochemical techniques that directly visualize protein-DNA interactions in real-time. These techniques rely on diffraction limited total internal reflection microscopy (TIRFM), and have significantly improved our understanding of RNA transcription, DNA replication, homologous recombination, and general DNA repair in the context of chromatin. Here we described a general single molecule TIRFM technique called DNA curtains to directly visualize how enzymes function on chromatinized DNA. The goal of this manuscript is to introduce the reader to methods to express and reconstitute nucleosomes on long stretches of DNA, and to directly visualize this process using DNA curtains with TIRFM.
Collapse
Affiliation(s)
- Mitchell Woodhouse
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - J Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
74
|
Mo W, Shu Y, Liu B, Long Y, Li T, Cao X, Deng X, Zhai J. Single-molecule targeted accessibility and methylation sequencing of centromeres, telomeres and rDNAs in Arabidopsis. NATURE PLANTS 2023; 9:1439-1450. [PMID: 37599304 DOI: 10.1038/s41477-023-01498-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
The short read-length of next-generation sequencing makes it challenging to characterize highly repetitive regions (HRRs) such as centromeres, telomeres and ribosomal DNAs. Based on recent strategies that combined long-read sequencing and exogenous enzymatic labelling of open chromatin, we developed single-molecule targeted accessibility and methylation sequencing (STAM-seq) in plants by further integrating nanopore adaptive sampling to investigate the HRRs in wild-type Arabidopsis and DNA methylation mutants that are defective in CG- or non-CG methylation. We found that CEN180 repeats show higher chromatin accessibility and lower DNA methylation on their forward strand, individual rDNA units show a negative correlation between their DNA methylation and accessibility, and both accessibility and CHH methylation levels are lower at telomere compared to adjacent subtelomeric region. Moreover, DNA methylation-deficient mutants showed increased chromatin accessibility at HRRs, consistent with the role of DNA methylation in maintaining heterochromatic status in plants. STAM-seq can be applied to study accessibility and methylation of repetitive sequences across diverse plant species.
Collapse
Affiliation(s)
- Weipeng Mo
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yi Shu
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Bo Liu
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yanping Long
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Tong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Jixian Zhai
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
75
|
Helzer KT, Sharifi MN, Sperger JM, Shi Y, Annala M, Bootsma ML, Reese SR, Taylor A, Kaufmann KR, Krause HK, Schehr JL, Sethakorn N, Kosoff D, Kyriakopoulos C, Burkard ME, Rydzewski NR, Yu M, Harari PM, Bassetti M, Blitzer G, Floberg J, Sjöström M, Quigley DA, Dehm SM, Armstrong AJ, Beltran H, McKay RR, Feng FY, O'Regan R, Wisinski KB, Emamekhoo H, Wyatt AW, Lang JM, Zhao SG. Fragmentomic analysis of circulating tumor DNA-targeted cancer panels. Ann Oncol 2023; 34:813-825. [PMID: 37330052 PMCID: PMC10527168 DOI: 10.1016/j.annonc.2023.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND The isolation of cell-free DNA (cfDNA) from the bloodstream can be used to detect and analyze somatic alterations in circulating tumor DNA (ctDNA), and multiple cfDNA-targeted sequencing panels are now commercially available for Food and Drug Administration (FDA)-approved biomarker indications to guide treatment. More recently, cfDNA fragmentation patterns have emerged as a tool to infer epigenomic and transcriptomic information. However, most of these analyses used whole-genome sequencing, which is insufficient to identify FDA-approved biomarker indications in a cost-effective manner. PATIENTS AND METHODS We used machine learning models of fragmentation patterns at the first coding exon in standard targeted cancer gene cfDNA sequencing panels to distinguish between cancer and non-cancer patients, as well as the specific tumor type and subtype. We assessed this approach in two independent cohorts: a published cohort from GRAIL (breast, lung, and prostate cancers, non-cancer, n = 198) and an institutional cohort from the University of Wisconsin (UW; breast, lung, prostate, bladder cancers, n = 320). Each cohort was split 70%/30% into training and validation sets. RESULTS In the UW cohort, training cross-validated accuracy was 82.1%, and accuracy in the independent validation cohort was 86.6% despite a median ctDNA fraction of only 0.06. In the GRAIL cohort, to assess how this approach performs in very low ctDNA fractions, training and independent validation were split based on ctDNA fraction. Training cross-validated accuracy was 80.6%, and accuracy in the independent validation cohort was 76.3%. In the validation cohort where the ctDNA fractions were all <0.05 and as low as 0.0003, the cancer versus non-cancer area under the curve was 0.99. CONCLUSIONS To our knowledge, this is the first study to demonstrate that sequencing from targeted cfDNA panels can be utilized to analyze fragmentation patterns to classify cancer types, dramatically expanding the potential capabilities of existing clinically used panels at minimal additional cost.
Collapse
Affiliation(s)
- K T Helzer
- Department of Human Oncology, University of Wisconsin, Madison
| | - M N Sharifi
- Carbone Cancer Center, University of Wisconsin, Madison; Department of Medicine, University of Wisconsin, Madison, USA
| | - J M Sperger
- Department of Medicine, University of Wisconsin, Madison, USA
| | - Y Shi
- Department of Human Oncology, University of Wisconsin, Madison
| | - M Annala
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - M L Bootsma
- Department of Human Oncology, University of Wisconsin, Madison
| | - S R Reese
- Department of Human Oncology, University of Wisconsin, Madison; Department of Medicine, University of Wisconsin, Madison, USA
| | - A Taylor
- Department of Medicine, University of Wisconsin, Madison, USA
| | - K R Kaufmann
- Department of Medicine, University of Wisconsin, Madison, USA
| | - H K Krause
- Department of Medicine, University of Wisconsin, Madison, USA
| | - J L Schehr
- Carbone Cancer Center, University of Wisconsin, Madison
| | - N Sethakorn
- Carbone Cancer Center, University of Wisconsin, Madison; Department of Medicine, University of Wisconsin, Madison, USA
| | - D Kosoff
- Carbone Cancer Center, University of Wisconsin, Madison; Department of Medicine, University of Wisconsin, Madison, USA
| | - C Kyriakopoulos
- Carbone Cancer Center, University of Wisconsin, Madison; Department of Medicine, University of Wisconsin, Madison, USA
| | - M E Burkard
- Carbone Cancer Center, University of Wisconsin, Madison; Department of Medicine, University of Wisconsin, Madison, USA
| | - N R Rydzewski
- Department of Human Oncology, University of Wisconsin, Madison
| | - M Yu
- Carbone Cancer Center, University of Wisconsin, Madison; Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison
| | - P M Harari
- Department of Human Oncology, University of Wisconsin, Madison; Carbone Cancer Center, University of Wisconsin, Madison
| | - M Bassetti
- Department of Human Oncology, University of Wisconsin, Madison; Carbone Cancer Center, University of Wisconsin, Madison
| | - G Blitzer
- Department of Human Oncology, University of Wisconsin, Madison; Carbone Cancer Center, University of Wisconsin, Madison
| | - J Floberg
- Department of Human Oncology, University of Wisconsin, Madison; Carbone Cancer Center, University of Wisconsin, Madison
| | - M Sjöström
- Department of Radiation Oncology, University of California San Francisco, San Francisco; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco
| | - D A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco; Departments of Epidemiology and Biostatistics; Urology, University of California San Francisco, San Francisco
| | - S M Dehm
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis
| | - A J Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Department of Medicine, Duke University, Durham
| | - H Beltran
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston
| | - R R McKay
- Moores Cancer Center, University of California San Diego, La Jolla
| | - F Y Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis; Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco
| | - R O'Regan
- Carbone Cancer Center, University of Wisconsin, Madison; Department of Medicine, University of Wisconsin, Madison, USA; Department of Medicine, University of Rochester, Rochester, USA
| | - K B Wisinski
- Carbone Cancer Center, University of Wisconsin, Madison; Department of Medicine, University of Wisconsin, Madison, USA
| | - H Emamekhoo
- Carbone Cancer Center, University of Wisconsin, Madison; Department of Medicine, University of Wisconsin, Madison, USA
| | - A W Wyatt
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - J M Lang
- Carbone Cancer Center, University of Wisconsin, Madison; Department of Medicine, University of Wisconsin, Madison, USA
| | - S G Zhao
- Department of Human Oncology, University of Wisconsin, Madison; Carbone Cancer Center, University of Wisconsin, Madison; William S. Middleton Memorial Veterans' Hospital, Madison, USA.
| |
Collapse
|
76
|
Zhang S, Yang F, Huang Y, He L, Li Y, Wan YCE, Ding Y, Chan KM, Xie T, Sun H, Wang H. ATF3 induction prevents precocious activation of skeletal muscle stem cell by regulating H2B expression. Nat Commun 2023; 14:4978. [PMID: 37591871 PMCID: PMC10435463 DOI: 10.1038/s41467-023-40465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 07/27/2023] [Indexed: 08/19/2023] Open
Abstract
Skeletal muscle stem cells (also called satellite cells, SCs) are important for maintaining muscle tissue homeostasis and damage-induced regeneration. However, it remains poorly understood how SCs enter cell cycle to become activated upon injury. Here we report that AP-1 family member ATF3 (Activating Transcription Factor 3) prevents SC premature activation. Atf3 is rapidly and transiently induced in SCs upon activation. Short-term deletion of Atf3 in SCs accelerates acute injury-induced regeneration, however, its long-term deletion exhausts the SC pool and thus impairs muscle regeneration. The Atf3 loss also provokes SC activation during voluntary exercise and enhances the activation during endurance exercise. Mechanistically, ATF3 directly activates the transcription of Histone 2B genes, whose reduction accelerates nucleosome displacement and gene transcription required for SC activation. Finally, the ATF3-dependent H2B expression also prevents genome instability and replicative senescence in SCs. Therefore, this study has revealed a previously unknown mechanism for preserving the SC population by actively suppressing precocious activation, in which ATF3 is a key regulator.
Collapse
Affiliation(s)
- Suyang Zhang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, New Territories, Hong Kong SAR, China
| | - Feng Yang
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yile Huang
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangqiang He
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuying Li
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi Ching Esther Wan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518172, China
| | - Yingzhe Ding
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518172, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, New Territories, Hong Kong SAR, China.
| |
Collapse
|
77
|
Pelayo MA, Morishita F, Sawada H, Matsushita K, Iimura H, He Z, Looi LS, Katagiri N, Nagamori A, Suzuki T, Širl M, Soukup A, Satake A, Ito T, Yamaguchi N. AGAMOUS regulates various target genes via cell cycle-coupled H3K27me3 dilution in floral meristems and stamens. THE PLANT CELL 2023; 35:2821-2847. [PMID: 37144857 PMCID: PMC10396370 DOI: 10.1093/plcell/koad123] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
The MADS domain transcription factor AGAMOUS (AG) regulates floral meristem termination by preventing maintenance of the histone modification lysine 27 of histone H3 (H3K27me3) along the KNUCKLES (KNU) coding sequence. At 2 d after AG binding, cell division has diluted the repressive mark H3K27me3, allowing activation of KNU transcription prior to floral meristem termination. However, how many other downstream genes are temporally regulated by this intrinsic epigenetic timer and what their functions are remain unknown. Here, we identify direct AG targets regulated through cell cycle-coupled H3K27me3 dilution in Arabidopsis thaliana. Expression of the targets KNU, AT HOOK MOTIF NUCLEAR LOCALIZED PROTEIN18 (AHL18), and PLATZ10 occurred later in plants with longer H3K27me3-marked regions. We established a mathematical model to predict timing of gene expression and manipulated temporal gene expression using the H3K27me3-marked del region from the KNU coding sequence. Increasing the number of del copies delayed and reduced KNU expression in a polycomb repressive complex 2- and cell cycle-dependent manner. Furthermore, AHL18 was specifically expressed in stamens and caused developmental defects when misexpressed. Finally, AHL18 bound to genes important for stamen growth. Our results suggest that AG controls the timing of expression of various target genes via cell cycle-coupled dilution of H3K27me3 for proper floral meristem termination and stamen development.
Collapse
Affiliation(s)
- Margaret Anne Pelayo
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Fumi Morishita
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Haruka Sawada
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kasumi Matsushita
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Hideaki Iimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Zemiao He
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Liang Sheng Looi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Naoya Katagiri
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Asumi Nagamori
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan
| | - Marek Širl
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 12844, Czech Republic
| | - Aleš Soukup
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 12844, Czech Republic
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Nishi-ku 819-0395, Japan
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| |
Collapse
|
78
|
Wu WF, Lin JT, Qiu YK, Dong W, Wan J, Li S, Zheng H, Wu YQ. The role of epigenetic modification in postoperative cognitive dysfunction. Ageing Res Rev 2023; 89:101983. [PMID: 37321381 DOI: 10.1016/j.arr.2023.101983] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
With the ageing of the population, the health problems of elderly individuals have become particularly important. Through a large number of clinical studies and trials, it has been confirmed that elderly patients can experience postoperative cognitive dysfunction after general anesthesia/surgery. However, the mechanism of postoperative cognitive dysfunction is still unknown. In recent years, the role of epigenetics in postoperative cognitive dysfunction has been widely studied and reported. Epigenetics includes the genetic structure and biochemical changes of chromatin not involving changes in the DNA sequence. This article summarizes the epigenetic mechanism of cognitive impairment after general anesthesia/surgery and analyses the broad prospects of epigenetics as a therapeutic target for postoperative cognitive dysfunction.
Collapse
Affiliation(s)
- Wei-Feng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Jia-Tao Lin
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Yong-Kang Qiu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Wei Dong
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
79
|
Schuette G, Ding X, Zhang B. Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533194. [PMID: 36993500 PMCID: PMC10055272 DOI: 10.1101/2023.03.17.533194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Genome-wide chromosome conformation capture (Hi-C) experiments have revealed many structural features of chromatin across multiple length scales. Further understanding genome organization requires relating these discoveries to the mechanisms that establish chromatin structures and reconstructing these structures in three dimensions, but both objectives are difficult to achieve with existing algorithms that are often computationally expensive. To alleviate this challenge, we present an algorithm that efficiently converts Hi-C data into contact energies, which measure the interaction strength between genomic loci brought into proximity. Contact energies are local quantities unaffected by the topological constraints that correlate Hi-C contact probabilities. Thus, extracting contact energies from Hi-C contact probabilities distills the biologically unique information contained in the data. We show that contact energies reveal the location of chromatin loop anchors, support a phase separation mechanism for genome compartmentalization, and parameterize polymer simulations that predict three-dimensional chromatin structures. Therefore, we anticipate that contact energy extraction will unleash the full potential of Hi-C data and that our inversion algorithm will facilitate the widespread adoption of contact energy analysis.
Collapse
Affiliation(s)
- Greg Schuette
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
80
|
Sakamoto M, Abe S, Miki Y, Miyanari Y, Sasaki H, Ishiuchi T. Dynamic nucleosome remodeling mediated by YY1 underlies early mouse development. Genes Dev 2023; 37:590-604. [PMID: 37532472 PMCID: PMC10499016 DOI: 10.1101/gad.350376.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/12/2023] [Indexed: 08/04/2023]
Abstract
Nucleosome positioning can alter the accessibility of DNA-binding proteins to their cognate DNA elements, and thus its precise control is essential for cell identity and function. Mammalian preimplantation embryos undergo temporal changes in gene expression and cell potency, suggesting the involvement of dynamic epigenetic control during this developmental phase. However, the dynamics of nucleosome organization during early development are poorly understood. In this study, using a low-input MNase-seq method, we show that nucleosome positioning is globally obscure in zygotes but becomes well defined during subsequent development. Down-regulation of the chromatin assembly in embryonic stem cells can partially reverse nucleosome organization into a zygote-like pattern, suggesting a possible link between the chromatin assembly pathway and fuzzy nucleosomes in zygotes. We also reveal that YY1, a zinc finger-containing transcription factor expressed upon zygotic genome activation, regulates the de novo formation of well-positioned nucleosome arrays at the regulatory elements through identifying YY1-binding sites in eight-cell embryos. The YY1-binding regions acquire H3K27ac enrichment around the eight-cell and morula stages, and YY1 depletion impairs the morula-to-blastocyst transition. Thus, our study delineates the remodeling of nucleosome organization and its underlying mechanism during early mouse development.
Collapse
Affiliation(s)
- Mizuki Sakamoto
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Shusaku Abe
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuka Miki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusuke Miyanari
- NanoLSI, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ishiuchi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan;
| |
Collapse
|
81
|
Yu W, Zhou R, Li N, Lei ZC, Guo D, Peng F, Li Y, Bai X, Feng S, Wang Y, He J, Yin S, Zeng X, He L, Gao Y, Li M, Guo YR, Liu K, Wang Y. Histone tyrosine sulfation by SULT1B1 regulates H4R3me2a and gene transcription. Nat Chem Biol 2023; 19:855-864. [PMID: 36805701 DOI: 10.1038/s41589-023-01267-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 01/16/2023] [Indexed: 02/22/2023]
Abstract
Tyrosine sulfation is a common posttranslational modification in mammals. To date, it has been thought to be limited to secreted and transmembrane proteins, but little is known about tyrosine sulfation on nuclear proteins. Here we report that SULT1B1 is a histone sulfotransferase that can sulfate the tyrosine 99 residue of nascent histone H3 in cytosol. The sulfated histone H3 can be transported into the nucleus and majorly deposited in the promoter regions of genes in chromatin. While the H3Y99 residue is buried inside octameric nucleosome, dynamically regulated subnucleosomal structures provide chromatin-H3Y99sulf the opportunity of being recognized and bound by PRMT1, which deposits H4R3me2a in chromatin. Disruption of H3Y99sulf reduces PRMT1 binding to chromatin, H4R3me2a level and gene transcription. These findings reveal the mechanisms underlying H3Y99 sulfation and its cross-talk with H4R3me2a to regulate gene transcription. This study extends the spectrum of tyrosine sulfation on nuclear proteins and the repertoire of histone modifications regulating chromatin functions.
Collapse
Affiliation(s)
- Weixing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runxin Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Chao Lei
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dingyuan Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Peng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Bai
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Center for Research Equipment and Facilities, Westlake University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shan Feng
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Center for Research Equipment and Facilities, Westlake University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sibi Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Leya He
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yusong R Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Yugang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
82
|
Nagae F, Takada S, Terakawa T. Histone chaperone Nap1 dismantles an H2A/H2B dimer from a partially unwrapped nucleosome. Nucleic Acids Res 2023; 51:5351-5363. [PMID: 37177996 PMCID: PMC10287947 DOI: 10.1093/nar/gkad396] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
DNA translocases, such as RNA polymerases, inevitably collide with nucleosomes on eukaryotic chromatin. Upon these collisions, histone chaperones are suggested to facilitate nucleosome disassembly and re-assembly. In this study, by performing in vitro transcription assays and molecular simulations, we found that partial unwrapping of a nucleosome by an RNA polymerase dramatically facilitates an H2A/H2B dimer dismantling from the nucleosome by Nucleosome Assembly Protein 1 (Nap1). Furthermore, the results uncovered molecular mechanisms of Nap1 functions in which the highly acidic C-terminal flexible tails of Nap1 contribute to the H2A/H2B binding by associating with the binding interface buried and not accessible to Nap1 globular domains, supporting the penetrating fuzzy binding mechanism seemingly shared across various histone chaperones. These findings have broad implications for the mechanisms by which histone chaperones process nucleosomes upon collisions with translocases in transcription, histone recycling and nucleosomal DNA repair.
Collapse
Affiliation(s)
- Fritz Nagae
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Terakawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
- PREST, Japan Science and Technology Agency (JST), Kawaguchi, Japan
| |
Collapse
|
83
|
Gòdia M, Lian Y, Naval-Sanchez M, Ponte I, Rodríguez-Gil JE, Sanchez A, Clop A. Micrococcal nuclease sequencing of porcine sperm suggests enriched co-location between retained histones and genomic regions related to semen quality and early embryo development. PeerJ 2023; 11:e15520. [PMID: 37361042 PMCID: PMC10290446 DOI: 10.7717/peerj.15520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
The mammalian spermatozoon has a unique chromatin structure in which the majority of histones are replaced by protamines during spermatogenesis and a small fraction of nucleosomes are retained at specific locations of the genome. The sperm's chromatin structure remains unresolved in most animal species, including the pig. However, mapping the genomic locations of retained nucleosomes in sperm could help understanding the molecular basis of both sperm development and function as well as embryo development. This information could then be useful to identify molecular markers for sperm quality and fertility traits. Here, micrococcal nuclease digestion coupled with high throughput sequencing was performed on pig sperm to map the genomic location of mono- and sub-nucleosomal chromatin fractions in relation to a set of diverse functional elements of the genome, some of which were related to semen quality and early embryogenesis. In particular, the investigated elements were promoters, the different sections of the gene body, coding and non-coding RNAs present in the pig sperm, potential transcription factor binding sites, genomic regions associated to semen quality traits and repeat elements. The analysis yielded 25,293 and 4,239 peaks in the mono- and sub-nucleosomal fractions, covering 0.3% and 0.02% of the porcine genome, respectively. A cross-species comparison revealed positional conservation of the nucleosome retention in sperm between the pig data and a human dataset that found nucleosome enrichment in genomic regions of importance in development. Both gene ontology analysis of the genes mapping nearby the mono-nucleosomal peaks and the identification of putative transcription factor binding motifs within the mono- and the sub- nucleosomal peaks showed enrichment for processes related to sperm function and embryo development. There was significant motif enrichment for Znf263, which in humans was suggested to be a key regulator of genes with paternal preferential expression during early embryogenesis. Moreover, enriched positional intersection was found in the genome between the mono-nucleosomal peaks and both the RNAs present in pig sperm and the RNAs related to sperm quality. There was no co-location between GWAS hits for semen quality in swine and the nucleosomal sites. Finally, the data evidenced depletion of mono-nucleosomes in long interspersed nuclear elements and enrichment of sub-nucleosomes in short interspersed repeat elements.These results suggest that retained nucleosomes in sperm could both mark regulatory elements or genes expressed during spermatogenesis linked to semen quality and fertility and act as transcriptional guides during early embryogenesis. The results of this study support the undertaking of ambitious research using a larger number of samples to robustly assess the positional relationship between histone retention in sperm and the reproductive ability of boars.
Collapse
Affiliation(s)
- Marta Gòdia
- Centre for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB-UB), Cerdanyola del Vallés, Catalonia, Spain
- Animal Breeding and Genomics, Wageningen University and Research, Wageninger, Netherlands
| | - Yu Lian
- Centre for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB-UB), Cerdanyola del Vallés, Catalonia, Spain
| | | | - Inma Ponte
- Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Catalonia, Spain
| | - Joan Enric Rodríguez-Gil
- Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Catalonia, Spain
| | - Armand Sanchez
- Centre for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB-UB), Cerdanyola del Vallés, Catalonia, Spain
- Animal and food sciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Catalonia, Spain
| | - Alex Clop
- Centre for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB-UB), Cerdanyola del Vallés, Catalonia, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia, Spain
| |
Collapse
|
84
|
Haase MAB, Lazar-Stefanita L, Ólafsson G, Wudzinska A, Shen MJ, Truong DM, Boeke JD. Human macroH2A1 drives nucleosome dephasing and genome instability in histone-humanized yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.538725. [PMID: 37205538 PMCID: PMC10187286 DOI: 10.1101/2023.05.06.538725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In addition to replicative histones, eukaryotic genomes encode a repertoire of non-replicative variant histones providing additional layers of structural and epigenetic regulation. Here, we systematically replaced individual replicative human histones with non-replicative human variant histones using a histone replacement system in yeast. Variants H2A.J, TsH2B, and H3.5 complemented for their respective replicative counterparts. However, macroH2A1 failed to complement and its expression was toxic in yeast, negatively interacting with native yeast histones and kinetochore genes. To isolate yeast with "macroH2A1 chromatin" we decoupled the effects of its macro and histone fold domains, which revealed that both domains sufficed to override native yeast nucleosome positioning. Furthermore, both modified constructs of macroH2A1 exhibited lower nucleosome occupancy that correlated with decreased short-range chromatin interactions (<20 Kb), disrupted centromeric clustering, and increased chromosome instability. While supporting viability, macroH2A1 dramatically alters chromatin organization in yeast, leading to genome instability and massive fitness defects.
Collapse
Affiliation(s)
- Max A. B. Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY, 10016, USA
| | - Luciana Lazar-Stefanita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
| | - Guðjón Ólafsson
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
| | - Aleksandra Wudzinska
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
| | - Michael J. Shen
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
| | - David M. Truong
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, 11201, USA
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D. Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, 11201, USA
| |
Collapse
|
85
|
Abril-Garrido J, Dienemann C, Grabbe F, Velychko T, Lidschreiber M, Wang H, Cramer P. Structural basis of transcription reduction by a promoter-proximal +1 nucleosome. Mol Cell 2023:S1097-2765(23)00255-1. [PMID: 37148879 DOI: 10.1016/j.molcel.2023.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
At active human genes, the +1 nucleosome is located downstream of the RNA polymerase II (RNA Pol II) pre-initiation complex (PIC). However, at inactive genes, the +1 nucleosome is found further upstream, at a promoter-proximal location. Here, we establish a model system to show that a promoter-proximal +1 nucleosome can reduce RNA synthesis in vivo and in vitro, and we analyze its structural basis. We find that the PIC assembles normally when the edge of the +1 nucleosome is located 18 base pairs (bp) downstream of the transcription start site (TSS). However, when the nucleosome edge is located further upstream, only 10 bp downstream of the TSS, the PIC adopts an inhibited state. The transcription factor IIH (TFIIH) shows a closed conformation and its subunit XPB contacts DNA with only one of its two ATPase lobes, inconsistent with DNA opening. These results provide a mechanism for nucleosome-dependent regulation of transcription initiation.
Collapse
Affiliation(s)
- Julio Abril-Garrido
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Frauke Grabbe
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Taras Velychko
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michael Lidschreiber
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Haibo Wang
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
86
|
Hirashima S, Park S, Sugiyama H. Evaluation by Experimentation and Simulation of a FRET Pair Comprising Fluorescent Nucleobase Analogs in Nucleosomes. Chemistry 2023; 29:e202203961. [PMID: 36700521 PMCID: PMC10332638 DOI: 10.1002/chem.202203961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Förster resonance energy transfer (FRET) is an attractive tool for understanding biomolecular dynamics. FRET-based analysis of nucleosomes has the potential to fill the knowledge gaps between static structures and dynamic cellular behaviors. Compared with typical FRET pairs using bulky fluorophores introduced by flexible linkers, fluorescent nucleoside-based FRET pair has great potential since it can be fitted within the helical structures of nucleic acids. Herein we report on the construction of nucleosomes containing a nucleobase FRET pair and the investigation of experimental and theoretical FRET efficiencies through steady-state fluorescence spectroscopy and calculation based on molecular dynamics simulations, respectively. Distinguishable experimental FRET efficiencies were observed depending on the positions of FRET pairs in nucleosomal DNA. The tendency could be supported by theoretical study. This work suggests the possibility of our approach to analyze structural changes of nucleosomes by epigenetic modifications or internucleosomal interactions.
Collapse
Affiliation(s)
- Shingo Hirashima
- Department of Chemistry Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
| | - Soyoung Park
- Immunology Frontier Research Center (iFReC), Osaka University Yamadaoka, Suita, 565-0871, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
- Institute for Integrated Cell-Material Science (iCeMS), Kyoto University Sakyo, Kyoto, 606-8501, Japan
| |
Collapse
|
87
|
Boulasiki P, Tan XW, Spinelli M, Riccio A. The NuRD Complex in Neurodevelopment and Disease: A Case of Sliding Doors. Cells 2023; 12:cells12081179. [PMID: 37190088 DOI: 10.3390/cells12081179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The Nucleosome Remodelling and Deacetylase (NuRD) complex represents one of the major chromatin remodelling complexes in mammalian cells, uniquely coupling the ability to "open" the chromatin by inducing nucleosome sliding with histone deacetylase activity. At the core of the NuRD complex are a family of ATPases named CHDs that utilise the energy produced by the hydrolysis of the ATP to induce chromatin structural changes. Recent studies have highlighted the prominent role played by the NuRD in regulating gene expression during brain development and in maintaining neuronal circuitry in the adult cerebellum. Importantly, components of the NuRD complex have been found to carry mutations that profoundly affect neurological and cognitive development in humans. Here, we discuss recent literature concerning the molecular structure of NuRD complexes and how the subunit composition and numerous permutations greatly determine their functions in the nervous system. We will also discuss the role of the CHD family members in an array of neurodevelopmental disorders. Special emphasis will be given to the mechanisms that regulate the NuRD complex composition and assembly in the cortex and how subtle mutations may result in profound defects of brain development and the adult nervous system.
Collapse
Affiliation(s)
- Paraskevi Boulasiki
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Xiao Wei Tan
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Matteo Spinelli
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Neuroscience Department, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Antonella Riccio
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
88
|
Carraro M, Hendriks IA, Hammond CM, Solis-Mezarino V, Völker-Albert M, Elsborg JD, Weisser MB, Spanos C, Montoya G, Rappsilber J, Imhof A, Nielsen ML, Groth A. DAXX adds a de novo H3.3K9me3 deposition pathway to the histone chaperone network. Mol Cell 2023; 83:1075-1092.e9. [PMID: 36868228 PMCID: PMC10114496 DOI: 10.1016/j.molcel.2023.02.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 11/29/2022] [Accepted: 02/08/2023] [Indexed: 03/05/2023]
Abstract
A multitude of histone chaperones are required to support histones from their biosynthesis until DNA deposition. They cooperate through the formation of histone co-chaperone complexes, but the crosstalk between nucleosome assembly pathways remains enigmatic. Using exploratory interactomics, we define the interplay between human histone H3-H4 chaperones in the histone chaperone network. We identify previously uncharacterized histone-dependent complexes and predict the structure of the ASF1 and SPT2 co-chaperone complex, expanding the role of ASF1 in histone dynamics. We show that DAXX provides a unique functionality to the histone chaperone network, recruiting histone methyltransferases to promote H3K9me3 catalysis on new histone H3.3-H4 prior to deposition onto DNA. Hereby, DAXX provides a molecular mechanism for de novo H3K9me3 deposition and heterochromatin assembly. Collectively, our findings provide a framework for understanding how cells orchestrate histone supply and employ targeted deposition of modified histones to underpin specialized chromatin states.
Collapse
Affiliation(s)
- Massimo Carraro
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivo A Hendriks
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Colin M Hammond
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | - Jonas D Elsborg
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Melanie B Weisser
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK; Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | - Guillermo Montoya
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK; Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | - Axel Imhof
- EpiQMAx GmbH, Planegg, Germany; Faculty of Medicine, Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Michael L Nielsen
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
89
|
Hu Y, Ma S, Kartha VK, Duarte FM, Horlbeck M, Zhang R, Shrestha R, Labade A, Kletzien H, Meliki A, Castillo A, Durand N, Mattei E, Anderson LJ, Tay T, Earl AS, Shoresh N, Epstein CB, Wagers A, Buenrostro JD. Single-cell multi-scale footprinting reveals the modular organization of DNA regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.533945. [PMID: 37034577 PMCID: PMC10081223 DOI: 10.1101/2023.03.28.533945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cis-regulatory elements control gene expression and are dynamic in their structure, reflecting changes to the composition of diverse effector proteins over time1-3. Here we sought to connect the structural changes at cis-regulatory elements to alterations in cellular fate and function. To do this we developed PRINT, a computational method that uses deep learning to correct sequence bias in chromatin accessibility data and identifies multi-scale footprints of DNA-protein interactions. We find that multi-scale footprints enable more accurate inference of TF and nucleosome binding. Using PRINT with single-cell multi-omics, we discover wide-spread changes to the structure and function of candidate cis-regulatory elements (cCREs) across hematopoiesis, wherein nucleosomes slide, expose DNA for TF binding, and promote gene expression. Activity segmentation using the co-variance across cell states identifies "sub-cCREs" as modular cCRE subunits of regulatory DNA. We apply this single-cell and PRINT approach to characterize the age-associated alterations to cCREs within hematopoietic stem cells (HSCs). Remarkably, we find a spectrum of aging alterations among HSCs corresponding to a global gain of sub-cCRE activity while preserving cCRE accessibility. Collectively, we reveal the functional importance of cCRE structure across cell states, highlighting changes to gene regulation at single-cell and single-base-pair resolution.
Collapse
Affiliation(s)
- Yan Hu
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Sai Ma
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
- Current address: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Vinay K. Kartha
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Fabiana M. Duarte
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Max Horlbeck
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Ruochi Zhang
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Rojesh Shrestha
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Ajay Labade
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Heidi Kletzien
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115
| | - Alia Meliki
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Andrew Castillo
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Neva Durand
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
| | - Eugenio Mattei
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
| | - Lauren J. Anderson
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
| | - Tristan Tay
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Andrew S. Earl
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Noam Shoresh
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
| | - Charles B. Epstein
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
| | - Amy Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115
| | - Jason D. Buenrostro
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| |
Collapse
|
90
|
Jie L, Sanagi M, Luo Y, Maeda H, Fukao Y, Chiba Y, Yanagisawa S, Yamaguchi J, Takagi J, Sato T. Histone chaperone NUCLEOSOME ASSEMBLY PROTEIN 1 proteins affect plant growth under nitrogen deficient conditions in Arabidopsis thaliana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:93-98. [PMID: 38439935 PMCID: PMC10910346 DOI: 10.5511/plantbiotechnology.22.1219a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/19/2022] [Indexed: 03/06/2024]
Abstract
Nitrogen (N) availability is one of the most important factors regulating plant metabolism and growth as it affects global gene expression profiles. Dynamic changes in chromatin structure, including histone modifications and nucleosome assembly/disassembly, have been extensively shown to regulate gene expression under various environmental stresses in plants. However, the involvement of chromatin related changes in plant nutrient responses has been demonstrated only in a few studies to date. In this study, we investigated the function of histone chaperone NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) proteins under N deficient conditions in Arabidopsis. In the nap1;1 nap1;2 nap1;3 triple mutant (m123-1), the expression of N-responsive marker genes and growth of lateral roots were decreased under N deficient conditions. In addition, the m123-1 plants showed a delay in N deficiency-induced leaf senescence. Taken together, these results suggest that NAP1s affect plant growth under N deficient conditions in Arabidopsis.
Collapse
Affiliation(s)
- Linnan Jie
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Miho Sanagi
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yongming Luo
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Haruna Maeda
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yoichiro Fukao
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yukako Chiba
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Shuichi Yanagisawa
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Junji Yamaguchi
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Junpei Takagi
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Takeo Sato
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
91
|
Nucleosome Remodeling at the Yeast PHO8 and PHO84 Promoters without the Putatively Essential SWI/SNF Remodeler. Int J Mol Sci 2023; 24:ijms24054949. [PMID: 36902382 PMCID: PMC10003099 DOI: 10.3390/ijms24054949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/08/2023] Open
Abstract
Chromatin remodeling by ATP-dependent remodeling enzymes is crucial for all genomic processes, like transcription or replication. Eukaryotes harbor many remodeler types, and it is unclear why a given chromatin transition requires more or less stringently one or several remodelers. As a classical example, removal of budding yeast PHO8 and PHO84 promoter nucleosomes upon physiological gene induction by phosphate starvation essentially requires the SWI/SNF remodeling complex. This dependency on SWI/SNF may indicate specificity in remodeler recruitment, in recognition of nucleosomes as remodeling substrate or in remodeling outcome. By in vivo chromatin analyses of wild type and mutant yeast under various PHO regulon induction conditions, we found that overexpression of the remodeler-recruiting transactivator Pho4 allowed removal of PHO8 promoter nucleosomes without SWI/SNF. For PHO84 promoter nucleosome removal in the absence of SWI/SNF, an intranucleosomal Pho4 site, which likely altered the remodeling outcome via factor binding competition, was required in addition to such overexpression. Therefore, an essential remodeler requirement under physiological conditions need not reflect substrate specificity, but may reflect specific recruitment and/or remodeling outcomes.
Collapse
|
92
|
De Sarkar N, Patton RD, Doebley AL, Hanratty B, Adil M, Kreitzman AJ, Sarthy JF, Ko M, Brahma S, Meers MP, Janssens DH, Ang LS, Coleman IM, Bose A, Dumpit RF, Lucas JM, Nunez TA, Nguyen HM, McClure HM, Pritchard CC, Schweizer MT, Morrissey C, Choudhury AD, Baca SC, Berchuck JE, Freedman ML, Ahmad K, Haffner MC, Montgomery RB, Corey E, Henikoff S, Nelson PS, Ha G. Nucleosome Patterns in Circulating Tumor DNA Reveal Transcriptional Regulation of Advanced Prostate Cancer Phenotypes. Cancer Discov 2023; 13:632-653. [PMID: 36399432 PMCID: PMC9976992 DOI: 10.1158/2159-8290.cd-22-0692] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/01/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
Advanced prostate cancers comprise distinct phenotypes, but tumor classification remains clinically challenging. Here, we harnessed circulating tumor DNA (ctDNA) to study tumor phenotypes by ascertaining nucleosome positioning patterns associated with transcription regulation. We sequenced plasma ctDNA whole genomes from patient-derived xenografts representing a spectrum of androgen receptor active (ARPC) and neuroendocrine (NEPC) prostate cancers. Nucleosome patterns associated with transcriptional activity were reflected in ctDNA at regions of genes, promoters, histone modifications, transcription factor binding, and accessible chromatin. We identified the activity of key phenotype-defining transcriptional regulators from ctDNA, including AR, ASCL1, HOXB13, HNF4G, and GATA2. To distinguish NEPC and ARPC in patient plasma samples, we developed prediction models that achieved accuracies of 97% for dominant phenotypes and 87% for mixed clinical phenotypes. Although phenotype classification is typically assessed by IHC or transcriptome profiling from tumor biopsies, we demonstrate that ctDNA provides comparable results with diagnostic advantages for precision oncology. SIGNIFICANCE This study provides insights into the dynamics of nucleosome positioning and gene regulation associated with cancer phenotypes that can be ascertained from ctDNA. New methods for classification in phenotype mixtures extend the utility of ctDNA beyond assessments of somatic DNA alterations with important implications for molecular classification and precision oncology. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Navonil De Sarkar
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Pathology and Prostate Cancer Center of Excellence, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Robert D. Patton
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Anna-Lisa Doebley
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington
- Medical Scientist Training Program, University of Washington, Seattle, Washington
| | - Brian Hanratty
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Mohamed Adil
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Adam J. Kreitzman
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jay F. Sarthy
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Minjeong Ko
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Sandipan Brahma
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Michael P. Meers
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Derek H. Janssens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Lisa S. Ang
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Ilsa M. Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Arnab Bose
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Ruth F. Dumpit
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jared M. Lucas
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Talina A. Nunez
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Holly M. Nguyen
- Department of Urology, University of Washington, Seattle, Washington
| | | | - Colin C. Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
| | - Michael T. Schweizer
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Atish D. Choudhury
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sylvan C. Baca
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Matthew L. Freedman
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Kami Ahmad
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Michael C. Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - R. Bruce Montgomery
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Urology, University of Washington, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
- Corresponding Authors: Gavin Ha, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109. Phone: 206-667-2802; E-mail: ; and Peter S. Nelson, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109. Phone: 206-667-3377; E-mail:
| | - Gavin Ha
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
- Corresponding Authors: Gavin Ha, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109. Phone: 206-667-2802; E-mail: ; and Peter S. Nelson, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109. Phone: 206-667-3377; E-mail:
| |
Collapse
|
93
|
Singha R, Aggarwal R, Sanyal K. Negative regulation of biofilm development by the CUG-Ser1 clade-specific histone H3 variant is dependent on the canonical histone chaperone CAF-1 complex in Candida albicans. Mol Microbiol 2023; 119:574-585. [PMID: 36855815 DOI: 10.1111/mmi.15050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
The CUG-Ser1 clade-specific histone H3 variant (H3VCTG ) has been reported to be a negative regulator of planktonic to biofilm growth transition in Candida albicans. The preferential binding of H3VCTG at the biofilm gene promoters makes chromatin repressive for the biofilm mode of growth. The two evolutionarily conserved chaperone complexes involved in incorporating histone H3 are CAF-1 and HIRA. In this study, we sought to identify the chaperone complex(es) involved in loading H3VCTG . We demonstrate that C. albicans cells lacking either Cac1 or Cac2 subunit of the CAF-1 chaperone complex, exhibit a hyper-filamentation phenotype on solid surfaces and form more robust biofilms than wild-type cells, thereby mimicking the phenotype of the H3VCTG null mutant. None of the subunits of the HIRA chaperone complex shows any significant difference in biofilm growth as compared to the wild type. The occupancy of H3VCTG is found to be significantly reduced at the promoters of biofilm genes in the absence of CAF-1 subunits. Hence, we provide evidence that CAF-1, a chaperone known to load canonical histone H3 in mammalian cells, is involved in chaperoning of variant histone H3VCTG at the biofilm gene promoters in C. albicans. Our findings also illustrate the acquisition of an unconventional role of the CAF-1 chaperone complex in morphogenesis in C. albicans.
Collapse
Affiliation(s)
- Rima Singha
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Rashi Aggarwal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
94
|
Simultaneous Measurement of DNA Methylation and Nucleosome Occupancy in Single Cells Using scNOMe-Seq. Methods Mol Biol 2023; 2611:231-247. [PMID: 36807071 DOI: 10.1007/978-1-0716-2899-7_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Single-cell Nucleosome Occupancy and Methylome sequencing (scNOMe-seq) is a multimodal assay that simultaneously measures endogenous DNA methylation and nucleosome occupancy (i.e., chromatin accessibility) in single cells. scNOMe-seq combines the activity of a GpC Methyltransferase, an enzyme which methylates cytosines in GpC dinucleotides, with bisulfite conversion, whereby unmethylated cytosines are converted into thymines. Because GpC Methyltransferase acts only on cytosines present in non-nucleosomal regions of the genome, the subsequent bisulfite conversion step not only detects the endogenous DNA methylation, but also reveals the genome-wide pattern of chromatin accessibility. Implementing this technology at the single-cell level helps to capture the dynamics governing methylation and accessibility vary across individual cells and cell types. Here, we provide a scalable plate-based protocol for preparing scNOMe-seq libraries from single nucleus suspensions.
Collapse
|
95
|
Wang H, Schilbach S, Ninov M, Urlaub H, Cramer P. Structures of transcription preinitiation complex engaged with the +1 nucleosome. Nat Struct Mol Biol 2023; 30:226-232. [PMID: 36411341 PMCID: PMC9935396 DOI: 10.1038/s41594-022-00865-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022]
Abstract
The preinitiation complex (PIC) assembles on promoters of protein-coding genes to position RNA polymerase II (Pol II) for transcription initiation. Previous structural studies revealed the PIC on different promoters, but did not address how the PIC assembles within chromatin. In the yeast Saccharomyces cerevisiae, PIC assembly occurs adjacent to the +1 nucleosome that is located downstream of the core promoter. Here we present cryo-EM structures of the yeast PIC bound to promoter DNA and the +1 nucleosome located at three different positions. The general transcription factor TFIIH engages with the incoming downstream nucleosome and its translocase subunit Ssl2 (XPB in human TFIIH) drives the rotation of the +1 nucleosome leading to partial detachment of nucleosomal DNA and intimate interactions between TFIIH and the nucleosome. The structures provide insights into how transcription initiation can be influenced by the +1 nucleosome and may explain why the transcription start site is often located roughly 60 base pairs upstream of the dyad of the +1 nucleosome in yeast.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Sandra Schilbach
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Momchil Ninov
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Institute of Clinical Chemistry, Bioanalytics Group, University Medical Center Göttingen, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
96
|
Wang F, Feng X, He Q, Li H, Li H. The Saccharomyces cerevisiae Yta7 ATPase hexamer contains a unique bromodomain tier that functions in nucleosome disassembly. J Biol Chem 2023; 299:102852. [PMID: 36592926 PMCID: PMC9898759 DOI: 10.1016/j.jbc.2022.102852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/01/2023] Open
Abstract
The Saccharomyces cerevisiae Yta7 is a chromatin remodeler harboring a histone-interacting bromodomain (BRD) and two AAA+ modules. It is not well understood how Yta7 recognizes the histone H3 tail to promote nucleosome disassembly for DNA replication or RNA transcription. By cryo-EM analysis, here we show that Yta7 assembles a three-tiered hexamer with a top BRD tier, a middle AAA1 tier, and a bottom AAA2 tier. Unexpectedly, the Yta7 BRD stabilizes a four-stranded β-helix, termed BRD-interacting motif (BIM), of the largely disordered N-terminal region. The BIM motif is unique to the baker's yeast, and we show both BRD and BIM contribute to nucleosome recognition. We found that Yta7 binds both acetylated and nonacetylated H3 peptides but with a higher affinity for the unmodified peptide. This property is consistent with the absence of key residues of canonical BRDs involved in acetylated peptide recognition and the role of Yta7 in general nucleosome remodeling. Interestingly, the BRD tier exists in a spiral and a flat-ring form on top of the Yta7 AAA+ hexamer. The spiral is likely in a nucleosome-searching mode because the bottom BRD blocks the entry to the AAA+ chamber. The flat ring may be in a nucleosome disassembly state because the entry is unblocked and the H3 peptide has entered the AAA+ chamber and is stabilized by the AAA1 pore loops 1 and 2. Indeed, we show that the BRD tier is a flat ring when bound to the nucleosome. Overall, our study sheds light on the nucleosome disassembly by Yta7.
Collapse
Affiliation(s)
- Feng Wang
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Xiang Feng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Qing He
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Hua Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| |
Collapse
|
97
|
Zhang M, Celis CD, Liu J, Bustamante C, Ren G. Conformational Change of Nucleosome Arrays prior to Phase Separation. RESEARCH SQUARE 2023:rs.3.rs-2460504. [PMID: 36711774 PMCID: PMC9882673 DOI: 10.21203/rs.3.rs-2460504/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chromatin phase transition serves as a regulatory mechanism for eukaryotic transcription. Understanding this process requires the characterization of the nucleosome array structure in response to external stimuli prior to phase separation. However, the intrinsic flexibility and heterogeneity hinders the arrays' structure determination. Here we exploit advances in cryogenic electron tomography (cryo-ET) to determine the three-dimensional (3D) structure of each individual particle of mono-, di-, tri-, and tetranucleosome arrays. Statistical analysis reveals the ionic strength changes the angle between the DNA linker and nucleosome core particle (NCP), which regulate the overall morphology of nucleosome arrays. The finding that one-third of the arrays in the presence of H1 contain an NCP invaded by foreign DNA suggests an alternative function of H1 in constructing nucleosomal networks. The new insights into the nucleosome conformational changes prior to the intermolecular interaction stage extends our understanding of chromatin phase separation regulation.
Collapse
Affiliation(s)
- Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, USA
- Applied Science and Technology Graduate Group, University of California, Berkeley, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, USA
| | - César-Díaz Celis
- California Institute for Quantitative Biosciences, University of California, Berkeley, USA
- Howard Hughes Medical Institute, University of California, Berkeley, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Carlos Bustamante
- Applied Science and Technology Graduate Group, University of California, Berkeley, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, USA
- Howard Hughes Medical Institute, University of California, Berkeley, USA
- Department of Chemistry, University of California, Berkeley, USA
- Department of Physics, University of California, Berkeley, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, USA
- Kavli Energy Nanoscience Institute, University of California, Berkeley, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, USA
| |
Collapse
|
98
|
Wu X, Xie Y, Zhao K, Lu J. Targeting the super elongation complex for oncogenic transcription driven tumor malignancies: Progress in structure, mechanisms and small molecular inhibitor discovery. Adv Cancer Res 2023; 158:387-421. [PMID: 36990537 DOI: 10.1016/bs.acr.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oncogenic transcription activation is associated with tumor development and resistance derived from chemotherapy or target therapy. The super elongation complex (SEC) is an important complex regulating gene transcription and expression in metazoans closely related to physiological activities. In normal transcriptional regulation, SEC can trigger promoter escape, limit proteolytic degradation of transcription elongation factors and increase the synthesis of RNA polymerase II (POL II), and regulate many normal human genes to stimulate RNA elongation. Dysregulation of SEC accompanied by multiple transcription factors in cancer promotes rapid transcription of oncogenes and induce cancer development. In this review, we summarized recent progress in understanding the mechanisms of SEC in regulating normal transcription, and importantly its roles in cancer development. We also highlighted the discovery of SEC complex target related inhibitors and their potential applications in cancer treatment.
Collapse
Affiliation(s)
- Xinyu Wu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yanqiu Xie
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| |
Collapse
|
99
|
Zhao T, Lu J, Zhang H, Xue M, Pan J, Ma L, Berger F, Jiang D. Histone H3.3 deposition in seed is essential for the post-embryonic developmental competence in Arabidopsis. Nat Commun 2022; 13:7728. [PMID: 36513677 PMCID: PMC9747979 DOI: 10.1038/s41467-022-35509-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
The acquisition of germination and post-embryonic developmental ability during seed maturation is vital for seed vigor, an important trait for plant propagation and crop production. How seed vigor is established in seeds is still poorly understood. Here, we report the crucial function of Arabidopsis histone variant H3.3 in endowing seeds with post-embryonic developmental potentials. H3.3 is not essential for seed formation, but loss of H3.3 results in severely impaired germination and post-embryonic development. H3.3 exhibits a seed-specific 5' gene end distribution and facilitates chromatin opening at regulatory regions in seeds. During germination, H3.3 is essential for proper gene transcriptional regulation. Moreover, H3.3 is constantly loaded at the 3' gene end, correlating with gene body DNA methylation and the restriction of chromatin accessibility and cryptic transcription at this region. Our results suggest a fundamental role of H3.3 in initiating chromatin accessibility at regulatory regions in seed and licensing the embryonic to post-embryonic transition.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jingyun Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Huairen Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Mande Xue
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Pan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lijun Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
100
|
Muñoz S, Jones A, Bouchoux C, Gilmore T, Patel H, Uhlmann F. Functional crosstalk between the cohesin loader and chromatin remodelers. Nat Commun 2022; 13:7698. [PMID: 36509793 PMCID: PMC9744909 DOI: 10.1038/s41467-022-35444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
The cohesin complex participates in many structural and functional aspects of genome organization. Cohesin recruitment onto chromosomes requires nucleosome-free DNA and the Scc2-Scc4 cohesin loader complex that catalyzes topological cohesin loading. Additionally, the cohesin loader facilitates promoter nucleosome clearance in a yet unknown way, and it recognizes chromatin receptors such as the RSC chromatin remodeler. Here, we explore the cohesin loader-RSC interaction. Amongst multi-pronged contacts by Scc2 and Scc4, we find that Scc4 contacts a conserved patch on the RSC ATPase motor module. The cohesin loader directly stimulates in vitro nucleosome sliding by RSC, providing an explanation how it facilitates promoter nucleosome clearance. Furthermore, we observe cohesin loader interactions with a wide range of chromatin remodelers. Our results provide mechanistic insight into how the cohesin loader recognizes, as well as influences, the chromatin landscape, with implications for our understanding of human developmental disorders including Cornelia de Lange and Coffin-Siris syndromes.
Collapse
Affiliation(s)
- Sofía Muñoz
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK.
- Cell Cycle Control and the Maintenance of Genomic Stability Laboratory, Cancer Research Center (CIC), University of Salamanca, Salamanca, Spain.
| | - Andrew Jones
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Céline Bouchoux
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Tegan Gilmore
- Bioinformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Harshil Patel
- Bioinformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|