51
|
Derbyshire MC, Raffaele S. Surface frustration re-patterning underlies the structural landscape and evolvability of fungal orphan candidate effectors. Nat Commun 2023; 14:5244. [PMID: 37640704 PMCID: PMC10462633 DOI: 10.1038/s41467-023-40949-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Pathogens secrete effector proteins to subvert host physiology and cause disease. Effectors are engaged in a molecular arms race with the host resulting in conflicting evolutionary constraints to manipulate host cells without triggering immune responses. The molecular mechanisms allowing effectors to be at the same time robust and evolvable remain largely enigmatic. Here, we show that 62 conserved structure-related families encompass the majority of fungal orphan effector candidates in the Pezizomycotina subphylum. These effectors diversified through changes in patterns of thermodynamic frustration at surface residues. The underlying mutations tended to increase the robustness of the overall effector protein structure while switching potential binding interfaces. This mechanism could explain how conserved effector families maintained biological activity over long evolutionary timespans in different host environments and provides a model for the emergence of sequence-unrelated effector families with conserved structures.
Collapse
Affiliation(s)
- Mark C Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes Micro-organismes Environnement (LIPME), INRAE, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France.
| |
Collapse
|
52
|
Peters Haugrud AR, Shi G, Seneviratne S, Running KLD, Zhang Z, Singh G, Szabo-Hever A, Acharya K, Friesen TL, Liu Z, Faris JD. Genome-wide association mapping of resistance to the foliar diseases septoria nodorum blotch and tan spot in a global winter wheat collection. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:54. [PMID: 37337566 PMCID: PMC10276793 DOI: 10.1007/s11032-023-01400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Septoria nodorum blotch (SNB) and tan spot, caused by the necrotrophic fungal pathogens Parastagonospora nodorum and Pyrenophora tritici-repentis, respectively, often occur together as a leaf spotting disease complex on wheat (Triticum aestivum L.). Both pathogens produce necrotrophic effectors (NEs) that contribute to the development of disease. Here, genome-wide association analysis of a diverse panel of 264 winter wheat lines revealed novel loci on chromosomes 5A and 5B associated with sensitivity to the NEs SnTox3 and SnTox5 in addition to the known sensitivity genes for NEs Ptr/SnToxA, SnTox1, SnTox3, and SnTox5. Sensitivity loci for SnTox267 and Ptr ToxB were not detected. Evaluation of the panel with five P. nodorum isolates for SNB development indicated the Snn3-SnTox3 and Tsn1-SnToxA interactions played significant roles in disease development along with additional QTL on chromosomes 2A and 2D, which may correspond to the Snn7-SnTox267 interaction. For tan spot, the Tsc1-Ptr ToxC interaction was associated with disease caused by two isolates, and a novel QTL on chromosome 7D was associated with a third isolate. The Tsn1-ToxA interaction was associated with SNB but not tan spot. Therefore some, but not all, of the previously characterized host gene-NE interactions in these pathosystems play significant roles in disease development in winter wheat. Based on these results, breeders should prioritize the selection of resistance alleles at the Tsc1, Tsn1, Snn3, and Snn7 loci as well as the 2A and 7D QTL to obtain good levels of resistance to SNB and tan spot in winter wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01400-5.
Collapse
Affiliation(s)
- Amanda R. Peters Haugrud
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102 USA
| | - Sudeshi Seneviratne
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102 USA
| | | | - Zengcui Zhang
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| | - Gurminder Singh
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102 USA
| | - Agnes Szabo-Hever
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| | - Krishna Acharya
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102 USA
| | - Timothy L. Friesen
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102 USA
| | - Justin D. Faris
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| |
Collapse
|
53
|
Zou Y, Zhang Y, Liu X, Song H, Cai Q, Wang S, Yi C, Chen J. Research Progress of Benzothiazole and Benzoxazole Derivatives in the Discovery of Agricultural Chemicals. Int J Mol Sci 2023; 24:10807. [PMID: 37445983 DOI: 10.3390/ijms241310807] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Benzoxazole and benzothiazole have a broad spectrum of agricultural biological activities, such as antibacterial, antiviral, and herbicidal activities, which are important fused heterocyclic scaffold structures in agrochemical discovery. In recent years, great progress has been made in the research of benzoxazoles and benzothiazoles, especially in the development of herbicides and insecticides. With the widespread use of benzoxazoles and benzothiazoles, there may be more new products containing benzoxazoles and benzothiazoles in the future. We systematically reviewed the application of benzoxazoles and benzothiazoles in discovering new agrochemicals in the past two decades and summarized the antibacterial, fungicidal, antiviral, herbicidal, and insecticidal activities of the active compounds. We also discussed the structural-activity relationship and mechanism of the active compounds. This work aims to provide inspiration and ideas for the discovery of new agrochemicals based on benzoxazole and benzothiazole.
Collapse
Affiliation(s)
- Yue Zou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xing Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongyi Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Qingfeng Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Sheng Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Chongfen Yi
- Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Jixiang Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
54
|
Priyashantha AKH, Dai DQ, Bhat DJ, Stephenson SL, Promputtha I, Kaushik P, Tibpromma S, Karunarathna SC. Plant-Fungi Interactions: Where It Goes? BIOLOGY 2023; 12:809. [PMID: 37372094 PMCID: PMC10295453 DOI: 10.3390/biology12060809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Fungi live different lifestyles-including pathogenic and symbiotic-by interacting with living plants. Recently, there has been a substantial increase in the study of phytopathogenic fungi and their interactions with plants. Symbiotic relationships with plants appear to be lagging behind, although progressive. Phytopathogenic fungi cause diseases in plants and put pressure on survival. Plants fight back against such pathogens through complicated self-defense mechanisms. However, phytopathogenic fungi develop virulent responses to overcome plant defense reactions, thus continuing their deteriorative impacts. Symbiotic relationships positively influence both plants and fungi. More interestingly, they also help plants protect themselves from pathogens. In light of the nonstop discovery of novel fungi and their strains, it is imperative to pay more attention to plant-fungi interactions. Both plants and fungi are responsive to environmental changes, therefore construction of their interaction effects has emerged as a new field of study. In this review, we first attempt to highlight the evolutionary aspect of plant-fungi interactions, then the mechanism of plants to avoid the negative impact of pathogenic fungi, and fungal strategies to overcome the plant defensive responses once they have been invaded, and finally the changes of such interactions under the different environmental conditions.
Collapse
Affiliation(s)
- A. K. Hasith Priyashantha
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (A.K.H.P.); (D.-Q.D.)
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (A.K.H.P.); (D.-Q.D.)
| | - Darbhe J. Bhat
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Biology Division, Vishnugupta Vishwavidyapeetam, Gokarna 581326, India
| | - Steven L. Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | | | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (A.K.H.P.); (D.-Q.D.)
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (A.K.H.P.); (D.-Q.D.)
- National Institute of Fundamental Studies (NIFS), Hantana Road, Kandy 20000, Sri Lanka
| |
Collapse
|
55
|
Cai J, Muhammad I, Chen B, Xu P, Li Y, Xu H, Li K. Whole genome sequencing and analysis of Armillaria gallica Jzi34 symbiotic with Gastrodia elata. BMC Genomics 2023; 24:275. [PMID: 37217849 DOI: 10.1186/s12864-023-09384-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Armillaria species are plant pathogens, but a few Armillaria species can establish a symbiotic relationship with Gastrodia elata, a rootless and leafless orchid, that is used as a Chinese herbal medicine. Armillaria is a nutrient source for the growth of G. elata. However, there are few reports on the molecular mechanism of symbiosis between Armillaria species and G. elata. The genome sequencing and analysis of Armillaria symbiotic with G. elata would provide genomic information for further studying the molecular mechanism of symbiosis. RESULTS The de novo genome assembly was performed with the PacBio Sequel platform and Illumina NovaSeq PE150 for the A. gallica Jzi34 strain, which was symbiotic with G. elata. Its genome assembly contained ~ 79.9 Mbp and consisted of 60 contigs with an N50 of 2,535,910 bp. There were only 4.1% repetitive sequences in the genome assembly. Functional annotation analysis revealed a total of 16,280 protein coding genes. Compared with the other five genomes of Armillaria, the carbohydrate enzyme gene family of the genome was significantly contracted, while it had the largest set of glycosyl transferase (GT) genes. It also had an expansion of auxiliary activity enzymes AA3-2 gene subfamily and cytochrome P450 genes. The synteny analysis result of P450 genes reveals that the evolutionary relationship of P450 proteins between A. gallica Jzi34 and other four Armillaria was complex. CONCLUSIONS These characteristics may be beneficial for establishing a symbiotic relationship with G. elata. These results explore the characteristics of A. gallica Jzi34 from a genomic perspective and provide an important genomic resource for further detailed study of Armillaria. This will help to further study the symbiotic mechanism between A. gallica and G. elata.
Collapse
Affiliation(s)
- Jinlong Cai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Ikram Muhammad
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Bilian Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Peng Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Yiguo Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Huini Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Kunzhi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China.
| |
Collapse
|
56
|
Tetz V, Kardava K, Krasnov K, Vecherkovskaya M, Tetz G. Antifungal activity of a novel synthetic polymer M451 against phytopathogens. Front Microbiol 2023; 14:1176428. [PMID: 37275130 PMCID: PMC10235499 DOI: 10.3389/fmicb.2023.1176428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Phytopathogenic fungi are the predominant causal agents of plant diseases. Available fungicides have substantial disadvantages, such as being insufficiently effective owing to intrinsic tolerance and the spread of antifungal resistance accumulating in plant tissues, posing a global threat to public health. Therefore, finding a new broad-spectrum fungicide is a challenge to protect plants. We studied the potency of a novel antimicrobial agent, M451, a 1,6-diaminohexane derivative, against different phytopathogenic fungi of the Ascomycota, Oomycota, and Basidiomycota phyla. M451 exhibited significant antifungal activity with EC50 values from 34-145 μg/mL. The minimal fungicidal concentration against Fusarium oxysporum ranged from 4 to 512 μg/mL depending on the exposure times of 5 min to 24 h. M451 has the highest activity and significantly lower exposure times compared to different polyene, azole, and phenylpyrrole antifungals. The conidial germination assay revealed that M451 induced 99 and 97.8% inhibition against F. oxysporum within 5 min of exposure to 5,000 and 500 μg/mL, respectively. Germ tube elongation, spore production, and spore germination were also significantly inhibited by M451 at concentrations of ≥50 μg/mL. Based on the broad spectrum of antifungal effects across different plant pathogens, M451 could be a new chemical fungicide for plant disease management.
Collapse
Affiliation(s)
| | | | | | | | - George Tetz
- Human Microbiology Institute, New York, NY, United States
| |
Collapse
|
57
|
Yang LN, Ren M, Zhan J. Modeling plant diseases under climate change: evolutionary perspectives. TRENDS IN PLANT SCIENCE 2023; 28:519-526. [PMID: 36593138 DOI: 10.1016/j.tplants.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 05/22/2023]
Abstract
Infectious plant diseases are a major threat to global agricultural productivity, economic development, and ecological integrity. There is widespread concern that these social and natural disasters caused by infectious plant diseases may escalate with climate change and computer modeling offers a unique opportunity to address this concern. Here, we analyze the intrinsic problems associated with current modeling strategies and highlight the need to integrate evolutionary principles into polytrophic, eco-evolutionary frameworks to improve predictions. We particularly discuss how evolutionary shifts in functional trade-offs, relative adaptability between plants and pathogens, ecosystems, and climate preferences induced by climate change may feedback to future plant disease epidemics and how technological advances can facilitate the generation and integration of this relevant knowledge for better modeling predictions.
Collapse
Affiliation(s)
- Li-Na Yang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China.
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
58
|
|
59
|
Taylor NP, Cunniffe NJ. Coupling machine learning and epidemiological modelling to characterise optimal fungicide doses when fungicide resistance is partial or quantitative. J R Soc Interface 2023; 20:20220685. [PMID: 37073520 PMCID: PMC10113818 DOI: 10.1098/rsif.2022.0685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/29/2023] [Indexed: 04/20/2023] Open
Abstract
Increasing fungicide dose tends to lead to better short-term control of plant diseases. However, high doses select more rapidly for fungicide resistant strains, reducing long-term disease control. When resistance is qualitative and complete-i.e. resistant strains are unaffected by the chemical and resistance requires only a single genetic change-using the lowest possible dose ensuring sufficient control is well known as the optimal resistance management strategy. However, partial resistance (where resistant strains are still partially suppressed by the fungicide) and quantitative resistance (where a range of resistant strains are present) remain ill-understood. Here, we use a model of quantitative fungicide resistance (parametrized for the economically important fungal pathogen Zymoseptoria tritici) which handles qualitative partial resistance as a special case. Although low doses are optimal for resistance management, we show that for some model parametrizations the resistance management benefit does not outweigh the improvement in control from increasing doses. This holds for both qualitative partial resistance and quantitative resistance. Via a machine learning approach (a gradient-boosted trees model combined with Shapley values to facilitate interpretability), we interpret the effect of parameters controlling pathogen mutation and characterising the fungicide, in addition to the time scale of interest.
Collapse
Affiliation(s)
- Nick P. Taylor
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
60
|
Feau N, Dhillon BD, Sakalidis M, Dale AL, Søndreli KL, Goodwin SB, LeBoldus JM, Hamelin RC. Forest health in the Anthropocene: the emergence of a novel tree disease is associated with poplar cultivation. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220008. [PMID: 36744569 PMCID: PMC9900707 DOI: 10.1098/rstb.2022.0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/11/2022] [Indexed: 02/07/2023] Open
Abstract
Plant domestication and movement are large contributors to the success of new diseases. The introduction of new host species can result in accelerated evolutionary changes in pathogens, affecting long-established coevolutionary dynamics. This has been observed in poplars where severe epidemics of pathogens that were innocuous in their natural pathosystems occurred following host domestication. The North American fungus Sphaerulina musiva is responsible for endemic leaf spots on Populus deltoides. We show that the expansion of poplar cultivation resulted in the emergence of a new lineage of this pathogen that causes stem infections on a new host, P. balsamifera. This suggests a host shift since this is not a known host. Genome analysis of this emerging lineage reveals a mosaic pattern with islands of diversity separated by fixed genome regions, which is consistent with a homoploid hybridization event between two individuals that produced a hybrid swarm. Genome regions of extreme divergence and low diversity are enriched in genes involved in host-pathogen interactions. The specialization of this emerging lineage to a new host and its clonal propagation represents a serious threat to poplars and could affect both natural and planted forests. This work provides a clear example of the changes created by the intensification of tree cultivation that facilitate the emergence of specialized pathogens, jeopardizing the natural equilibrium between hosts and pathogens. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- Nicolas Feau
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, VT6 1Z4
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada, V8Z 1M5
| | - Braham D. Dhillon
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, VT6 1Z4
- Department of Plant Pathology, University of Florida - Fort Lauderdale Research and Education Center, Davie, FL 33314, USA
| | - Monique Sakalidis
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, VT6 1Z4
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Forestry, Michigan State University, East Lansing, MI 48824, USA
| | - Angela L. Dale
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, VT6 1Z4
- GC-New Construction Materials, FPInnovations, Vancouver, BC, Canada, V6T 1Z4
| | - Kelsey L. Søndreli
- Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | | | - Jared M. LeBoldus
- Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
- Forest Engineering, Resources and Management Department, Oregon State University, Corvallis, OR 97331, USA
| | - Richard C. Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, VT6 1Z4
- Faculté de Foresterie et Géomatique, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada, G1V 0A6
| |
Collapse
|
61
|
Becerra S, Baroncelli R, Boufleur TR, Sukno SA, Thon MR. Chromosome-level analysis of the Colletotrichum graminicola genome reveals the unique characteristics of core and minichromosomes. Front Microbiol 2023; 14:1129319. [PMID: 37032845 PMCID: PMC10076810 DOI: 10.3389/fmicb.2023.1129319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
The fungal pathogen Colletotrichum graminicola causes the anthracnose of maize (Zea mays) and is responsible for significant yield losses worldwide. The genome of C. graminicola was sequenced in 2012 using Sanger sequencing, 454 pyrosequencing, and an optical map to obtain an assembly of 13 pseudochromosomes. We re-sequenced the genome using a combination of short-read (Illumina) and long-read (PacBio) technologies to obtain a chromosome-level assembly. The new version of the genome sequence has 13 chromosomes with a total length of 57.43 Mb. We detected 66 (23.62 Mb) structural rearrangements in the new assembly with respect to the previous version, consisting of 61 (21.98 Mb) translocations, 1 (1.41 Mb) inversion, and 4 (221 Kb) duplications. We annotated the genome and obtained 15,118 predicted genes and 3,614 new gene models compared to the previous version of the assembly. We show that 25.88% of the new assembly is composed of repetitive DNA elements (13.68% more than the previous assembly version), which are mostly found in gene-sparse regions. We describe genomic compartmentalization consisting of repeat-rich and gene-poor regions vs. repeat-poor and gene-rich regions. A total of 1,140 secreted proteins were found mainly in repeat-rich regions. We also found that ~75% of the three smallest chromosomes (minichromosomes, between 730 and 551 Kb) are strongly affected by repeat-induced point mutation (RIP) compared with 28% of the larger chromosomes. The gene content of the minichromosomes (MCs) comprises 121 genes, of which 83.6% are hypothetical proteins with no predicted function, while the mean percentage of Chr1-Chr10 is 36.5%. No predicted secreted proteins are present in the MCs. Interestingly, only 2% of the genes in Chr11 have homologs in other strains of C. graminicola, while Chr12 and 13 have 58 and 57%, respectively, raising the question as to whether Chrs12 and 13 are dispensable. The core chromosomes (Chr1-Chr10) are very different with respect to the MCs (Chr11-Chr13) in terms of the content and sequence features. We hypothesize that the higher density of repetitive elements and RIPs in the MCs may be linked to the adaptation and/or host co-evolution of this pathogenic fungus.
Collapse
Affiliation(s)
- Sioly Becerra
- Department of Microbiology and Genetics, Institute for Agrobiotechnology Research (CIALE), University of Salamanca, Villamayor, Spain
| | - Riccardo Baroncelli
- Department of Microbiology and Genetics, Institute for Agrobiotechnology Research (CIALE), University of Salamanca, Villamayor, Spain
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Thaís R. Boufleur
- Department of Plant Pathology and Nematology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Serenella A. Sukno
- Department of Microbiology and Genetics, Institute for Agrobiotechnology Research (CIALE), University of Salamanca, Villamayor, Spain
| | - Michael R. Thon
- Department of Microbiology and Genetics, Institute for Agrobiotechnology Research (CIALE), University of Salamanca, Villamayor, Spain
| |
Collapse
|
62
|
Serag A, Salem MA, Gong S, Wu JL, Farag MA. Decoding Metabolic Reprogramming in Plants under Pathogen Attacks, a Comprehensive Review of Emerging Metabolomics Technologies to Maximize Their Applications. Metabolites 2023; 13:424. [PMID: 36984864 PMCID: PMC10055942 DOI: 10.3390/metabo13030424] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
In their environment, plants interact with a multitude of living organisms and have to cope with a large variety of aggressions of biotic or abiotic origin. What has been known for several decades is that the extraordinary variety of chemical compounds the plants are capable of synthesizing may be estimated in the range of hundreds of thousands, but only a fraction has been fully characterized to be implicated in defense responses. Despite the vast importance of these metabolites for plants and also for human health, our knowledge about their biosynthetic pathways and functions is still fragmentary. Recent progress has been made particularly for the phenylpropanoids and oxylipids metabolism, which is more emphasized in this review. With an increasing interest in monitoring plant metabolic reprogramming, the development of advanced analysis methods should now follow. This review capitalizes on the advanced technologies used in metabolome mapping in planta, including different metabolomics approaches, imaging, flux analysis, and interpretation using bioinformatics tools. Advantages and limitations with regards to the application of each technique towards monitoring which metabolite class or type are highlighted, with special emphasis on the necessary future developments to better mirror such intricate metabolic interactions in planta.
Collapse
Affiliation(s)
- Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Mohamed A. Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom 32511, Menoufia, Egypt
| | - Shilin Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| |
Collapse
|
63
|
Ling ZL, Cao B, Hu SN, Geng JN, Liu F, Liu DM, Zhao RL. Insights into the genomic evolution and the alkali tolerance mechanisms of Agaricus sinodeliciosus by comparative genomic and transcriptomic analyses. Microb Genom 2023; 9:mgen000928. [PMID: 36884020 PMCID: PMC10132060 DOI: 10.1099/mgen.0.000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/08/2022] [Indexed: 03/09/2023] Open
Abstract
Agaricus sinodeliciosus is a rare wild edible mushroom from northwest China, and grows naturally in mild saline-alkali soil, which is also unusual in mushrooms. A. sinodeliciosus represents a potential model organism for explaining saline-alkali tolerance mechanisms and revealing related physiological processes in mushrooms. Here, we provide a high-quality genome of A. sinodeliciosus. Comparative genomic analyses reveal A. sinodeliciosus has numerous changes to its genome organization after a solitary evolutionary history under saline-alkali environments, such as gene family contraction, retrotransposon expansion and rapid evolution of adaptative genes. Our saline and alkali tolerance tests show that mycelium growth and fruit body formation of this species are effected by mild alkalinity. Transcriptomic analyses reveal that genes involved in carbon and nitrogen utilization, cell stability and fruit body formation of A. sinodeliciosus could be activated under mildly alkaline conditions. In particular, the 'starch and sucrose metabolism', 'biosynthesis of amino acids' and 'phenylpropanoid biosynthesis' pathways are important for mildly alkaline tolerance of A. sinodeliciosus. Like plants and arbuscular mycorrhizal fungi, in the rot fungus A. sinodeliciosus, the biosynthesis of intracellular small molecules could be enhanced to counter osmotic and oxidative stresses caused by mild alkalinity, and the biosynthesis of monolignol could be suppressed to increase cell wall infiltrates under mildly alkaline conditions. This research provides an understanding of the genomic evolution and mechanisms of A. sinodeliciosus in tolerance to saline-alkali environments. The A. sinodeliciosus genome constitutes a valuable resource for evolutionary and ecological studies of Agaricus.
Collapse
Affiliation(s)
- Zhi-Lin Ling
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Bin Cao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Song-Nian Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Jia-Ning Geng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Fei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Dong-Mei Liu
- Institue of Ecology, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Rui-Lin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, PR China
| |
Collapse
|
64
|
Sun G, Xie S, Tang L, Zhao C, Zhang M, Huang L. Comparative genomics of five Valsa species gives insights on their pathogenicity evolution. G3 (BETHESDA, MD.) 2023; 13:jkac312. [PMID: 36454665 PMCID: PMC9911072 DOI: 10.1093/g3journal/jkac312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/21/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022]
Abstract
Valsa is a genus of ascomycetes within the Valsaceae family. This family includes many wood destructive pathogens such as the well known Valsa mali and Valsa pyri which cause canker diseases in fruit trees and threaten the global fruit production. Lack of genomic information of this family is impeding our understandings about their evolution and genetic basis of their pathogenicity divergence. Here, we report genome assemblies of Valsa malicola, Valsa persoonii, and Valsa sordida which represent close relatives of Valsa mali and Valsa pyri with different host preferences. Comparative genomics analysis revealed that segmental rearrangements, inversions, and translocations frequently occurred among Valsa spp. genomes. Gene families that exhibited gene copy expansions tended to be associated with secondary metabolism, transmembrane transport, and pyrophosphatase activities. Orthologous genes in regions lost synteny exhibited significantly higher rate of synonymous substitution (KS) than those in regions retained synteny. Moreover, among these genes, membrane transporter families associated with antidrug (MFS, DHA) activities and nutrient transportation (SP and APCs) activities were significantly over-represented. Lineage specific synonymous substitution (KS) and nonsynonymous substitution (KA) analysis based on the phylogeny constructed from 11 fungal species identified a set of genes with selection signatures in Valsa clade and these genes were significantly enriched in functions associated with fatty acid beta-oxidation, DNA helicase activity, and ATPase activity. Furthermore, unique genes that possessed or retained by each of the five Valsa species are more likely part of the secondary metabolic (SM) gene clusters. SM gene clusters conserved across five Valsa species showed various degrees of diversification in both identity and completeness. All 11 syntenically conserved SM clusters showed differential expression during the infection of apple branch with Valsa mali suggesting involvements of secondary metabolism in the pathogenicity of Valsa species.
Collapse
Affiliation(s)
- Guangchao Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Shichang Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
65
|
Francis A, Ghosh S, Tyagi K, Prakasam V, Rani M, Singh NP, Pradhan A, Sundaram RM, Priyanka C, Laha GS, Kannan C, Prasad MS, Chattopadhyay D, Jha G. Evolution of pathogenicity-associated genes in Rhizoctonia solani AG1-IA by genome duplication and transposon-mediated gene function alterations. BMC Biol 2023; 21:15. [PMID: 36721195 PMCID: PMC9890813 DOI: 10.1186/s12915-023-01526-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Rhizoctonia solani is a polyphagous fungal pathogen that causes diseases in crops. The fungal strains are classified into anastomosis groups (AGs); however, genomic complexity, diversification into the AGs and the evolution of pathogenicity-associated genes remain poorly understood. RESULTS We report a recent whole-genome duplication and sequential segmental duplications in AG1-IA strains of R. solani. Transposable element (TE) clusters have caused loss of synteny in the duplicated blocks and introduced differential structural alterations in the functional domains of several pathogenicity-associated paralogous gene pairs. We demonstrate that the TE-mediated structural variations in a glycosyl hydrolase domain and a GMC oxidoreductase domain in two paralogous pairs affect the pathogenicity of R. solani. Furthermore, to investigate the association of TEs with the natural selection and evolution of pathogenicity, we sequenced the genomes of forty-two rice field isolates of R. solani AG1-IA. The genomic regions with high population mutation rates and with the lowest nucleotide diversity are enriched with TEs. Genetic diversity analysis predicted the genes that are most likely under diversifying and purifying selections. We present evidence that a smaller variant of a glucosamine phosphate N-acetyltransferase (GNAT) protein, predicted to be under purifying selection, and an LPMP_AA9 domain-containing protein, predicted to be under diversifying selection, are important for the successful pathogenesis of R. solani in rice as well as tomato. CONCLUSIONS Our study has unravelled whole-genome duplication, TE-mediated neofunctionalization of genes and evolution of pathogenicity traits in R. solani AG1-IA. The pathogenicity-associated genes identified during the study can serve as novel targets for disease control.
Collapse
Affiliation(s)
- Aleena Francis
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Srayan Ghosh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Present address: Department of Biosciences, Durham University, Durham, UK
| | - Kriti Tyagi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - V Prakasam
- ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500 030, India
| | - Mamta Rani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nagendra Pratap Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Amrita Pradhan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - R M Sundaram
- ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500 030, India
| | - C Priyanka
- ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500 030, India
| | - G S Laha
- ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500 030, India
| | - C Kannan
- ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500 030, India
| | - M S Prasad
- ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500 030, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Gopaljee Jha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
66
|
Caballero JRI, Lalande BM, Hanna JW, Klopfenstein NB, Kim MS, Stewart JE. Genomic Comparisons of Two Armillaria Species with Different Ecological Behaviors and Their Associated Soil Microbial Communities. MICROBIAL ECOLOGY 2023; 85:708-729. [PMID: 35312808 DOI: 10.1007/s00248-022-01989-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Armillaria species show considerable variation in ecological roles and virulence, from mycorrhizae and saprophytes to important root pathogens of trees and horticultural crops. We studied two Armillaria species that can be found in coniferous forests of northwestern USA and southwestern Canada. Armillaria altimontana not only is considered as a weak, opportunistic pathogen of coniferous trees, but it also appears to exhibit in situ biological control against A. solidipes, formerly North American A. ostoyae, which is considered a virulent pathogen of coniferous trees. Here, we describe their genome assemblies and present a functional annotation of the predicted genes and proteins for the two Armillaria species that exhibit contrasting ecological roles. In addition, the soil microbial communities were examined in association with the two Armillaria species within a 45-year-old plantation of western white pine (Pinus monticola) in northern Idaho, USA, where A. altimontana was associated with improved tree growth and survival, while A. solidipes was associated with reduced growth and survival. The results from this study reveal a high similarity between the genomes of the beneficial/non-pathogenic A. altimontana and pathogenic A. solidipes; however, many relatively small differences in gene content were identified that could contribute to differences in ecological lifestyles and interactions with woody hosts and soil microbial communities.
Collapse
Affiliation(s)
| | - Bradley M Lalande
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
- Forest Health Protection, USDA Forest Service, Gunnison, CO, 81230, USA
| | - John W Hanna
- Rocky Mountain Research Station, USDA Forest Service, Moscow, ID, 83843, USA
| | - Ned B Klopfenstein
- Rocky Mountain Research Station, USDA Forest Service, Moscow, ID, 83843, USA.
| | - Mee-Sook Kim
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR, 97331, USA.
| | - Jane E Stewart
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
67
|
Nuwamanya AM, Runo S, Mwangi M. Farmers' perceptions on tomato early blight, fungicide use factors and awareness of fungicide resistance: Insights from a field survey in Kenya. PLoS One 2023; 18:e0269035. [PMID: 36689479 PMCID: PMC9870120 DOI: 10.1371/journal.pone.0269035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/07/2022] [Indexed: 01/24/2023] Open
Abstract
Early blight (EB) caused by Alternaria solani is one of the most devastating tomato diseases in Kenya and is most often managed by application of synthetic fungicides. However, there have been reports from farmers about the declining efficacy of some fungicides. These reports suggest that A. solani populations in Kenya could be developing resistance to some of the commonly used fungicides. In this study, we surveyed 175 tomato fields, sampled in 3 major tomato producing counties in Kenya, to determine the status of EB, management practices, and fungicide use factors that could contribute to development of resistance to fungicides among A. solani populations in Kenya. Data was recorded on farm characteristics, EB prevalence, fungicide usage, and farmers' perceptions on fungicide efficacy. EB was prevalent in 85% of the fields and 90% of the farmers identified it as a major cause of yield loss. Tomato was grown all year round on 60% of the fields with only short fallow periods. All farmers reported that they were relying on fungicides for EB control and none among the cultivars grown was resistant to the disease. A total of 40 fungicide products, representing 20 active compounds with varying FRAC resistance risk levels were in use against EB. Majority (83%) of the farmers were applying fungicides at dosages and frequencies higher than those indicated on labels. Most farmers (81%) indicated that they had observed declines in effectiveness of at least one fungicide, used at EB control. This observation was more with fungicides in the strobilurin and triazole groups. These findings demonstrate that the current tomato production systems in Kenya do not take into account the risk of A. solani developing resistance to fungicides. Enhancing farmers' knowledge of the disease and their ability to properly select and apply fungicides is therefore crucial for effective control of EB and mitigating the high risk of fungicide resistance build up.
Collapse
Affiliation(s)
- Andrew M. Nuwamanya
- Department of Agricultural Science and Technology, School of Agriculture and Enterprise Development, Kenyatta University, Nairobi, Kenya
| | - Steven Runo
- Department of Biochemistry, Biotechnology and Microbiology, School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
| | - Maina Mwangi
- Department of Agricultural Science and Technology, School of Agriculture and Enterprise Development, Kenyatta University, Nairobi, Kenya
| |
Collapse
|
68
|
Gangurde SS, Xavier A, Naik YD, Jha UC, Rangari SK, Kumar R, Reddy MSS, Channale S, Elango D, Mir RR, Zwart R, Laxuman C, Sudini HK, Pandey MK, Punnuri S, Mendu V, Reddy UK, Guo B, Gangarao NVPR, Sharma VK, Wang X, Zhao C, Thudi M. Two decades of association mapping: Insights on disease resistance in major crops. FRONTIERS IN PLANT SCIENCE 2022; 13:1064059. [PMID: 37082513 PMCID: PMC10112529 DOI: 10.3389/fpls.2022.1064059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 05/03/2023]
Abstract
Climate change across the globe has an impact on the occurrence, prevalence, and severity of plant diseases. About 30% of yield losses in major crops are due to plant diseases; emerging diseases are likely to worsen the sustainable production in the coming years. Plant diseases have led to increased hunger and mass migration of human populations in the past, thus a serious threat to global food security. Equipping the modern varieties/hybrids with enhanced genetic resistance is the most economic, sustainable and environmentally friendly solution. Plant geneticists have done tremendous work in identifying stable resistance in primary genepools and many times other than primary genepools to breed resistant varieties in different major crops. Over the last two decades, the availability of crop and pathogen genomes due to advances in next generation sequencing technologies improved our understanding of trait genetics using different approaches. Genome-wide association studies have been effectively used to identify candidate genes and map loci associated with different diseases in crop plants. In this review, we highlight successful examples for the discovery of resistance genes to many important diseases. In addition, major developments in association studies, statistical models and bioinformatic tools that improve the power, resolution and the efficiency of identifying marker-trait associations. Overall this review provides comprehensive insights into the two decades of advances in GWAS studies and discusses the challenges and opportunities this research area provides for breeding resistant varieties.
Collapse
Affiliation(s)
- Sunil S. Gangurde
- Crop Genetics and Breeding Research, United States Department of Agriculture (USDA) - Agriculture Research Service (ARS), Tifton, GA, United States
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Alencar Xavier
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | | | - Uday Chand Jha
- Indian Council of Agricultural Research (ICAR), Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, India
| | | | - Raj Kumar
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
| | - M. S. Sai Reddy
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
| | - Sonal Channale
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
| | - Dinakaran Elango
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Reyazul Rouf Mir
- Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Sopore, India
| | - Rebecca Zwart
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
| | - C. Laxuman
- Zonal Agricultural Research Station (ZARS), Kalaburagi, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Hari Kishan Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Manish K. Pandey
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Somashekhar Punnuri
- College of Agriculture, Family Sciences and Technology, Dr. Fort Valley State University, Fort Valley, GA, United States
| | - Venugopal Mendu
- Department of Plant Science and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Umesh K. Reddy
- Department of Biology, West Virginia State University, West Virginia, WV, United States
| | - Baozhu Guo
- Crop Genetics and Breeding Research, United States Department of Agriculture (USDA) - Agriculture Research Service (ARS), Tifton, GA, United States
| | | | - Vinay K. Sharma
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
| | - Xingjun Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, China
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, China
| | - Mahendar Thudi
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, China
| |
Collapse
|
69
|
Roik A, Reverter M, Pogoreutz C. A roadmap to understanding diversity and function of coral reef-associated fungi. FEMS Microbiol Rev 2022; 46:fuac028. [PMID: 35746877 PMCID: PMC9629503 DOI: 10.1093/femsre/fuac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Tropical coral reefs are hotspots of marine productivity, owing to the association of reef-building corals with endosymbiotic algae and metabolically diverse bacterial communities. However, the functional importance of fungi, well-known for their contribution to shaping terrestrial ecosystems and global nutrient cycles, remains underexplored on coral reefs. We here conceptualize how fungal functional traits may have facilitated the spread, diversification, and ecological adaptation of marine fungi on coral reefs. We propose that functions of reef-associated fungi may be diverse and go beyond their hitherto described roles of pathogens and bioeroders, including but not limited to reef-scale biogeochemical cycles and the structuring of coral-associated and environmental microbiomes via chemical mediation. Recent technological and conceptual advances will allow the elucidation of the physiological, ecological, and chemical contributions of understudied marine fungi to coral holobiont and reef ecosystem functioning and health and may help provide an outlook for reef management actions.
Collapse
Affiliation(s)
- Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Claudia Pogoreutz
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
70
|
Depotter JRL, Ökmen B, Ebert MK, Beckers J, Kruse J, Thines M, Doehlemann G. High Nucleotide Substitution Rates Associated with Retrotransposon Proliferation Drive Dynamic Secretome Evolution in Smut Pathogens. Microbiol Spectr 2022; 10:e0034922. [PMID: 35972267 PMCID: PMC9603552 DOI: 10.1128/spectrum.00349-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022] Open
Abstract
Transposable elements (TEs) play a pivotal role in shaping diversity in eukaryotic genomes. The covered smut pathogen on barley, Ustilago hordei, encountered a recent genome expansion. Using long reads, we assembled genomes of 6 U. hordei strains and 3 sister species, to study this genome expansion. We found that larger genome sizes can mainly be attributed to a higher genome fraction of long terminal repeat retrotransposons (LTR-RTs). In the studied smut genomes, LTR-RTs fractions are the largest in U. hordei and are positively correlated with the mating-type locus sizes, which is up to ~560 kb in U. hordei. Furthermore, LTR-RTs were found to be associated with higher nucleotide substitution levels, as these occur in specific genome regions of smut species with a recent LTR-RT proliferation. Moreover, genes in genome regions with higher nucleotide substitution levels generally reside closer to LTR-RTs than other genome regions. Genome regions with many nucleotide substitutions encountered an especially high fraction of CG substitutions, which is not observed for LTR-RT sequences. The high nucleotide substitution levels particularly accelerate the evolution of secretome genes, as their more accessory nature results in substitutions that often lead to amino acid alterations. IMPORTANCE Genomic alteration can be generated through various means, in which transposable elements (TEs) can play a pivotal role. Their mobility causes mutagenesis in itself and can disrupt the function of the sequences they insert into. They also impact genome evolution as their repetitive nature facilitates nonhomologous recombination. Furthermore, TEs have been linked to specific epigenetic genome organizations. We report a recent TE proliferation in the genome of the barley covered smut fungus, Ustilago hordei. This proliferation is associated with a distinct nucleotide substitution regime that has a higher rate and a higher fraction of CG substitutions. This different regime shapes the evolution of genes in subjected genome regions. We hypothesize that TEs may influence the error-rate of DNA polymerase in a hitherto unknown fashion.
Collapse
Affiliation(s)
- J. R. L. Depotter
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - B. Ökmen
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - M. K. Ebert
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - J. Beckers
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - J. Kruse
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M., Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M., Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany
| | - G. Doehlemann
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
71
|
Silan E, Ozkilinc H. Phylogenetic divergences in brown rot fungal pathogens of Monilinia species from a worldwide collection: inferences based on the nuclear versus mitochondrial genes. BMC Ecol Evol 2022; 22:119. [PMID: 36271324 PMCID: PMC9585774 DOI: 10.1186/s12862-022-02079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Phylogenetic analyses for plant pathogenic fungi explore many questions on diversities, relationships, origins, and divergences of populations from different sources such as species, host, and geography. This information is highly valuable, especially from a large global sampling, to understand the evolutionary paths of the pathogens worldwide. Monilinia fructicola and M. laxa are two important fungal pathogens of stone fruits that cause the widespread disease commonly known as brown rot. Three nuclear genes (Calmodulin, SDHA, TEF1α) and three mitochondrial genes (Cytochrome_b, NAD2, and NAD5) of the two pathogen species from a worldwide collection including five different countries from four different continents were studied in this work. RESULTS Both Maximum Likelihood and Bayesian approaches were applied to the data sets, and in addition, Maximum Parsimony based approaches were used for the regions having indel polymorphisms. Calmodulin, SDHA, NAD2, and NAD5 regions were found phylogenetically informative and utilized for phylogenetics of Monilinia species for the first time. Each gene region presented a set of haplotypes except Cytochrome_b, which was monomorphic. According to this large collection of two Monilinia species around the world, M. fructicola showed more diversity than M. laxa, a result that should be carefully considered, as M. fructicola is known to be a quarantine pathogen. Moreover, the other two mitochondrial genes (NAD2 and NAD5) did not have any substitution type mutations but presented an intron indel polymorphism indicating the contribution of introns as well as mobile introns to the fungal diversity and evolution. Based on the concatenated gene sets, nuclear DNA carries higher mutations and uncovers more phylogenetic clusters in comparison to the mitochondrial DNA-based data for these fungal species. CONCLUSIONS This study provides the most comprehensive knowledge on the phylogenetics of both nuclear and mitochondrial genes of two prominent brown rot pathogens, M. fructicola and M. laxa. Based on the regions used in this study, the nuclear genes resolved phylogenetic branching better than the mitochondrial genes and discovered new phylogenetic lineages for these species.
Collapse
Affiliation(s)
- Ece Silan
- School of Graduate Studies, MSc Program in Biomolecular Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Hilal Ozkilinc
- School of Graduate Studies, MSc Program in Biomolecular Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
- Dept. of Molecular Biology and Genetics, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| |
Collapse
|
72
|
Hoh DZ, Lee HH, Wada N, Liu WA, Lu MR, Lai CK, Ke HM, Sun PF, Tang SL, Chung WH, Chen YL, Chung CL, Tsai IJ. Comparative genomic and transcriptomic analyses of trans-kingdom pathogen Fusarium solani species complex reveal degrees of compartmentalization. BMC Biol 2022; 20:236. [PMID: 36266645 PMCID: PMC9583462 DOI: 10.1186/s12915-022-01436-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The Fusarium solani species complex (FSSC) comprises fungal pathogens responsible for mortality in a diverse range of animals and plants, but their genome diversity and transcriptome responses in animal pathogenicity remain to be elucidated. We sequenced, assembled and annotated six chromosome-level FSSC clade 3 genomes of aquatic animal and plant host origins. We established a pathosystem and investigated the expression data of F. falciforme and F. keratoplasticum in Chinese softshell turtle (Pelodiscus sinensis) host. RESULTS Comparative analyses between the FSSC genomes revealed a spectrum of conservation patterns in chromosomes categorised into three compartments: core, fast-core (FC), and lineage-specific (LS). LS chromosomes contribute to variations in genomes size, with up to 42.2% of variations between F. vanettenii strains. Each chromosome compartment varied in structural architectures, with FC and LS chromosomes contain higher proportions of repetitive elements with genes enriched in functions related to pathogenicity and niche expansion. We identified differences in both selection in the coding sequences and DNA methylation levels between genome features and chromosome compartments which suggest a multi-speed evolution that can be traced back to the last common ancestor of Fusarium. We further demonstrated that F. falciforme and F. keratoplasticum are opportunistic pathogens by inoculating P. sinensis eggs and identified differentially expressed genes also associated with plant pathogenicity. These included the most upregulated genes encoding the CFEM (Common in Fungal Extracellular Membrane) domain. CONCLUSIONS The high-quality genome assemblies provided new insights into the evolution of FSSC chromosomes, which also serve as a resource for studies of fungal genome evolution and pathogenesis. This study also establishes an animal model for fungal pathogens of trans-kingdom hosts.
Collapse
Affiliation(s)
- Daphne Z Hoh
- Biodiversity Research Center, Academia Sinica, 115 Nangang, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, 116 Wenshan, Taipei, Taiwan
| | - Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, 115 Nangang, Taipei, Taiwan
| | - Naohisa Wada
- Biodiversity Research Center, Academia Sinica, 115 Nangang, Taipei, Taiwan
| | - Wei-An Liu
- Biodiversity Research Center, Academia Sinica, 115 Nangang, Taipei, Taiwan
| | - Min R Lu
- Biodiversity Research Center, Academia Sinica, 115 Nangang, Taipei, Taiwan
| | - Cheng-Kuo Lai
- Biodiversity Research Center, Academia Sinica, 115 Nangang, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, 115 Nangang, Taipei, Taiwan
| | - Pei-Feng Sun
- Biodiversity Research Center, Academia Sinica, 115 Nangang, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, 116 Wenshan, Taipei, Taiwan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, 115 Nangang, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Wen-Hsin Chung
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Lien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Isheng Jason Tsai
- Biodiversity Research Center, Academia Sinica, 115 Nangang, Taipei, Taiwan.
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
73
|
Jiang N, Li Z, Dai Y, Liu Z, Han X, Li Y, Li Y, Xiong H, Xu J, Zhang G, Xiao S, Yuan X, Fu Y. Massive genome investigations reveal insights of prevalent introgression for environmental adaptation and triterpene biosynthesis in Ganoderma. Mol Ecol Resour 2022. [PMID: 36214617 DOI: 10.1111/1755-0998.13718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022]
Abstract
Genome introgression is one of the driving forces that can increase species and genetic diversity and facilitate the adaptive evolution of organisms and biodiversity conservation. However, the genomic introgression and its contribution to biodiversity of macrofungi are still unclear. The genus Ganoderma is a typical macrofungal group that plays crucial roles in forest ecosystem as saprophytic organisms and plant pathogens, and is also involved in human health as medicinal mushrooms. Most public Ganoderma genomes are fragmented, and reference genomes and whole-genome information of diverse germplasm resources for many Ganoderma species are lacking, thus hindering functional and evolutionary genomic investigations among Ganoderma species. In this study, we provide high-quality genomes of 10 Ganoderma species and whole-genome variants data of 224 individuals from various ecoregions, enabling us to infer the phylogeny of Ganoderma species and their historical population dynamics. Based on whole-genome variants, widespread and genome-wide introgression among Ganoderma species is revealed. Genes with significant introgression signals were related to stress response, digestive absorption, and secondary metabolite synthesis, factors that may contribute to environmental adaptation and important biocomponent metabolism. CYP512U6, an essential functional gene in the CYP450 family related to Ganoderma triterpene synthesis, was detected with significant introgression and selection signals combined with Ganoderma metabolomic analysis, indicating that both ancient gene exchange and recent domestication have contributed to the categories and content of secondary metabolites of Ganoderma. The reference genomes, whole-genome variants, and metabolite profiles could serve as abundant and valuable genetic resources for evolution, ecology, and conservation investigations of Ganoderma species and other macrofungi.
Collapse
Affiliation(s)
- Nan Jiang
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, Jilin, China
- College of Plant Protection, Jilin Agricultural University, Jilin, Changchun, China
| | - Zhenhao Li
- ShouXianGu Botanical Drug Institute Co., Ltd., Jinhua, Zhejiang, China
| | - Yueting Dai
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhenhua Liu
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, Jilin, China
| | - Xuerong Han
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, Jilin, China
| | - Yu Li
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, Jilin, China
| | - Yong Li
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Hui Xiong
- ShouXianGu Botanical Drug Institute Co., Ltd., Jinhua, Zhejiang, China
| | - Jing Xu
- ShouXianGu Botanical Drug Institute Co., Ltd., Jinhua, Zhejiang, China
| | - Guoliang Zhang
- ShouXianGu Botanical Drug Institute Co., Ltd., Jinhua, Zhejiang, China
| | - Shijun Xiao
- Jiaxing Key Laboratory for New Germplasm Breeding of Economic Mycology, Jiaxing, Zhejiang, China
| | - Xiaohui Yuan
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, Jilin, China
| | - Yongping Fu
- College of Plant Protection, Jilin Agricultural University, Jilin, Changchun, China
| |
Collapse
|
74
|
Rodrigues ASB, Silva DN, Várzea V, Paulo OS, Batista D. Worldwide Population Structure of the Coffee Rust Fungus Hemileia vastatrix Is Strongly Shaped by Local Adaptation and Breeding History. PHYTOPATHOLOGY 2022; 112:1998-2011. [PMID: 35322716 DOI: 10.1094/phyto-09-21-0376-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The devastating disease coffee leaf rust, caused by Hemileia vastatrix, has been a major constraint to worldwide coffee production. Recently, H. vastatrix populations were shown to be structured into three divergent genetic lineages with marked host specialization (C1, C2, and C3). However, there is yet no overall understanding of the population dynamics and adaptation of the most widespread and epidemiological relevant H. vastatrix group (C3). We used restriction site-associated DNA sequencing to generate 13,804 single nucleotide polymorphisms (SNPs) across a worldwide collection of 99 H. vastatrix isolates. Phylogenetic analyses uncovered a well-supported structuring within C3, with three main subgroups (SGs; SGI, SGII, and SGIII), which seem to reflect the historical distribution, breeding, and exchange of coffee cultivars. SGI shows a ladder-like diversification pattern and occurs across all four continents sampled, SGII is mainly restricted to Africa, and SGIII is observed only in Timor, revealing a higher genetic differentiation. Outlier and association tests globally identified 112 SNPs under putative positive selection, which impacted population structure. In particular, 29 overlapping SNPs per se seemed to have an extremely strong effect on H. vastatrix population divergence. We also found exclusive and fixed alleles associated with the SGs supporting local adaptation. Functional annotation revealed that transposable elements may play a role in host adaptation. Our study provides a higher-resolution perspective on the evolutionary history of H. vastatrix on cultivated coffee, showing its strong ability to adapt and the strength of the selective force imposed by coffee hosts, which should be taken into account when designing strategies for pathogen dissemination control and selective breeding.
Collapse
Affiliation(s)
- Ana Sofia B Rodrigues
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Computational Biology and Population Genomics Group (CoBiG2), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Diogo Nuno Silva
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Computational Biology and Population Genomics Group (CoBiG2), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- Centro de Investigação das Ferrugens do Cafeeiro (CIFC)/Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Vitor Várzea
- Centro de Investigação das Ferrugens do Cafeeiro (CIFC)/Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Octávio S Paulo
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Computational Biology and Population Genomics Group (CoBiG2), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Dora Batista
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Computational Biology and Population Genomics Group (CoBiG2), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- Centro de Investigação das Ferrugens do Cafeeiro (CIFC)/Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| |
Collapse
|
75
|
Ogaji YO, Lee RC, Sawbridge TI, Cocks BG, Daetwyler HD, Kaur S. De Novo Long-Read Whole-Genome Assemblies and the Comparative Pan-Genome Analysis of Ascochyta Blight Pathogens Affecting Field Pea. J Fungi (Basel) 2022; 8:884. [PMID: 36012871 PMCID: PMC9410150 DOI: 10.3390/jof8080884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Ascochyta Blight (AB) is a major disease of many cool-season legumes globally. In field pea, three fungal pathogens have been identified to be responsible for this disease in Australia, namely Peyronellaea pinodes, Peyronellaea pinodella and Phoma koolunga. Limited genomic resources for these pathogens have been generated, which has hampered the implementation of effective management strategies and breeding for resistant cultivars. Using Oxford Nanopore long-read sequencing, we report the first high-quality, fully annotated, near-chromosome-level nuclear and mitochondrial genome assemblies for 18 isolates from the Australian AB complex. Comparative genome analysis was performed to elucidate the differences and similarities between species and isolates using phylogenetic relationships and functional diversity. Our data indicated that P. pinodella and P. koolunga are heterothallic, while P. pinodes is homothallic. More homology and orthologous gene clusters are shared between P. pinodes and P. pinodella compared to P. koolunga. The analysis of the repetitive DNA content showed differences in the transposable repeat composition in the genomes and their expression in the transcriptomes. Significant repeat expansion in P. koolunga's genome was seen, with strong repeat-induced point mutation (RIP) activity being evident. Phylogenetic analysis revealed that genetic diversity can be exploited for species marker development. This study provided the much-needed genetic resources and characterization of the AB species to further drive research in key areas such as disease epidemiology and host-pathogen interactions.
Collapse
Affiliation(s)
- Yvonne O. Ogaji
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Robert C. Lee
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Tim I. Sawbridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Benjamin G. Cocks
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Hans D. Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Sukhjiwan Kaur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
| |
Collapse
|
76
|
Montezano Fernandes F, Vieira de Queiroz M, Lopes da Silva L, Maria Queiroz Azevedo D, Luis Badel J, Couto Alfenas A. Chromosomal polymorphism of the Ceratocystis fimbriata species complex in Brazil. Fungal Genet Biol 2022; 162:103728. [PMID: 35932991 DOI: 10.1016/j.fgb.2022.103728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 11/04/2022]
Abstract
Ceratocystis fimbriata is an important pathogen that causes wilt in several plant species. Despite the importance of this pathogen, knowledge about its karyotypic polymorphism and genomic architecture is limited. The main objective of this study was to investigate the karyotype of isolates of the C. fimbriata species complex from different host plants and geographical origins in Brazil. First, the identity of the isolates was confirmed conducting multilocus sequence analysis (MLSA) phylogeny using β-tubulin (TUBB), translation elongation factor 1α (TEF-1α) and mating-type (MAT1 and MAT2) gene sequences. To investigate the chromosomal polymorphism, two conditions of pulsed-field gel electrophoresis (PFGE) were used and the karyotypes of the isolates obtained. The retrotransposon-microsatellite amplified polymorphism (REMAP) molecular marker was utilized to assess the genetic variability among isolates. In the MLSA utilizing the concatenated gene sequences, Ceratocystis cacaofunesta and C. fimbriata formed separate clades, but considerable variation among C. fimbriata isolates was observed. Polymorphism in chromosome number and size was found, indicating the existence of genomic differences among isolates and occurrence of chromosomal rearrangements in the species complex. The number of chromosomes varied from seven to nine and the estimated minimum chromosome sizes were estimated to be between 2.7 to 6.0 Mbp. Small polymorphic chromosomes ranging from 1.2 to 1.8 Mbp were observed in all isolates, raising the hypothesis that they could be supernumerary chromosomes. REMAP analysis revealed a high genetic variability and that isolates from the same host tend to group together in a same cluster. Our results bring new insights into the chromosomal diversity and genome organization of the C. fimbriata complex.
Collapse
Affiliation(s)
- Fernando Montezano Fernandes
- Laboratory of Forest Pathology, Department of Plant Pathology, Universidade Federal de Viçosa, Minas Gerais State, 36570-900, Brazil
| | - Marisa Vieira de Queiroz
- Laboratory of Molecular Genetics of Microorganisms, Department of Microbiology, Universidade Federal de Viçosa, Minas Gerais State, 36570-900, Brazil
| | - Leandro Lopes da Silva
- Laboratory of Molecular Genetics of Microorganisms, Department of Microbiology, Universidade Federal de Viçosa, Minas Gerais State, 36570-900, Brazil
| | - Daiana Maria Queiroz Azevedo
- Laboratory of Forest Pathology, Department of Plant Pathology, Universidade Federal de Viçosa, Minas Gerais State, 36570-900, Brazil
| | - Jorge Luis Badel
- Laboratory of Molecular Phytobacteriology, Department of Plant Pathology, Universidade Federal de Viçosa, Minas Gerais State, 36570-900, Brazil
| | - Acelino Couto Alfenas
- Laboratory of Forest Pathology, Department of Plant Pathology, Universidade Federal de Viçosa, Minas Gerais State, 36570-900, Brazil.
| |
Collapse
|
77
|
Hilário S, Gonçalves MFM, Fidalgo C, Tacão M, Alves A. Genome Analyses of Two Blueberry Pathogens: Diaportheamygdali CAA958 and Diaporthe eres CBS 160.32. J Fungi (Basel) 2022; 8:804. [PMID: 36012791 PMCID: PMC9409727 DOI: 10.3390/jof8080804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
The genus Diaporthe includes pathogenic species distributed worldwide and affecting a wide variety of hosts. Diaporthe amygdali and Diaporthe eres have been found to cause cankers, dieback, or twig blights on economically important crops such as soybean, almond, grapevine, and blueberry. Despite their importance as plant pathogens, the strategies of species of Diaporthe to infect host plants are poorly explored. To provide a genomic basis of pathogenicity, the genomes of D. amygdali CAA958 and D. eres CBS 160.32 were sequenced and analyzed. Cellular transporters involved in the transport of toxins, ions, sugars, effectors, and genes implicated in pathogenicity were detected in both genomes. Hydrolases and oxidoreductases were the most prevalent carbohydrate-active enzymes (CAZymes). However, analyses of the secreted proteins revealed that the secretome of D. eres CBS 160.32 is represented by 5.4% of CAZymes, whereas the secreted CAZymes repertoire of D. amygdali CAA958 represents 29.1% of all secretomes. Biosynthetic gene clusters (BGCs) encoding compounds related to phytotoxins and mycotoxins were detected in D. eres and D. amygdali genomes. The core gene clusters of the phytotoxin Fusicoccin A in D. amygdali are reported here through a genome-scale assembly. Comparative analyses of the genomes from 11 Diaporthe species revealed an average of 874 CAZymes, 101 secondary metabolite BGCs, 1640 secreted proteins per species, and genome sizes ranging from 51.5 to 63.6 Mbp. This study offers insights into the overall features and characteristics of Diaporthe genomes. Our findings enrich the knowledge about D. eres and D. amygdali, which will facilitate further research into the pathogenicity mechanisms of these species.
Collapse
Affiliation(s)
| | | | | | | | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (S.H.); (M.F.M.G.); (C.F.); (M.T.)
| |
Collapse
|
78
|
Hanafy RA, Dagar SS, Griffith GW, Pratt CJ, Youssef NH, Elshahed MS. Taxonomy of the anaerobic gut fungi ( Neocallimastigomycota): a review of classification criteria and description of current taxa. Int J Syst Evol Microbiol 2022; 72. [PMID: 35776761 DOI: 10.1099/ijsem.0.005322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Members of the anaerobic gut fungi (Neocallimastigomycota) reside in the rumen and alimentary tract of larger mammalian and some reptilian, marsupial and avian herbivores. The recent decade has witnessed a significant expansion in the number of described Neocallimastigomycota genera and species. However, the difficulties associated with the isolation and maintenance of Neocallimastigomycota strains has greatly complicated comparative studies to resolve inter- and intra-genus relationships. Here, we provide an updated outline of Neocallimastigomycota taxonomy. We critically evaluate various morphological, microscopic and phylogenetic traits previously and currently utilized in Neocallimastigomycota taxonomy, and provide an updated key for quick characterization of all genera. We then synthesize data from taxa description manuscripts, prior comparative efforts and molecular sequence data to present an updated list of Neocallimastigomycota genera and species, with an emphasis on resolving relationships and identifying synonymy between recent and historic strains. We supplement data from published manuscripts with information and illustrations from strains in the authors' collections. Twenty genera and 36 species are recognized, but the status of 10 species in the genera Caecomyces, Piromyces, Anaeromyces and Cyllamyces remains uncertain due to the unavailability of culture and conferre (cf.) strains, lack of sequence data, and/or inadequacy of available microscopic and phenotypic data. Six cases of synonymy are identified in the genera Neocallimastix and Caecomyces, and two names in the genus Piromyces are rejected based on apparent misclassification.
Collapse
Affiliation(s)
- Radwa A Hanafy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Sumit S Dagar
- Bioenergy Group, Agharkar Research Institute, Pune, India
| | - Gareth W Griffith
- Institute of Biological, Environmental, and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, Wales, UK
| | - Carrie J Pratt
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
79
|
Dahanayaka BA, Snyman L, Vaghefi N, Martin A. Using a Hybrid Mapping Population to Identify Genomic Regions of Pyrenophora teres Associated With Virulence. FRONTIERS IN PLANT SCIENCE 2022; 13:925107. [PMID: 35812984 PMCID: PMC9260246 DOI: 10.3389/fpls.2022.925107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/27/2022] [Indexed: 05/26/2023]
Abstract
Net blotches caused by Pyrenophora teres are important foliar fungal diseases of barley and result in significant yield losses of up to 40%. The two types of net blotch, net-form net blotch and spot-form net blotch, are caused by P. teres f. teres (Ptt) and P. teres f. maculata (Ptm), respectively. This study is the first to use a cross between Ptt and Ptm to identify quantitative trait loci (QTL) associated with virulence and leaf symptoms. A genetic map consisting of 1,965 Diversity Arrays Technology (DArT) markers was constructed using 351 progenies of the Ptt/Ptm cross. Eight barley cultivars showing differential reactions to the parental isolates were used to phenotype the hybrid progeny isolates. Five QTL associated with virulence and four QTL associated with leaf symptoms were identified across five linkage groups. Phenotypic variation explained by these QTL ranged from 6 to 16%. Further phenotyping of selected progeny isolates on 12 more barley cultivars revealed that three progeny isolates are moderately to highly virulent across these cultivars. The results of this study suggest that accumulation of QTL in hybrid isolates can result in enhanced virulence.
Collapse
Affiliation(s)
| | - Lislé Snyman
- Department of Agriculture and Fisheries Queensland, Hermitage Research Facility, Warwick, QLD, Australia
| | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
- School of Agriculture and Food, University of Melbourne, Parkville, VIC, Australia
| | - Anke Martin
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
80
|
Maphosa MN, Steenkamp ET, Kanzi AM, van Wyk S, De Vos L, Santana QC, Duong TA, Wingfield BD. Intra-Species Genomic Variation in the Pine Pathogen Fusarium circinatum. J Fungi (Basel) 2022; 8:jof8070657. [PMID: 35887414 PMCID: PMC9316270 DOI: 10.3390/jof8070657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium circinatum is an important global pathogen of pine trees. Genome plasticity has been observed in different isolates of the fungus, but no genome comparisons are available. To address this gap, we sequenced and assembled to chromosome level five isolates of F. circinatum. These genomes were analysed together with previously published genomes of F. circinatum isolates, FSP34 and KS17. Multi-sample variant calling identified a total of 461,683 micro variants (SNPs and small indels) and a total of 1828 macro structural variants of which 1717 were copy number variants and 111 were inversions. The variant density was higher on the sub-telomeric regions of chromosomes. Variant annotation revealed that genes involved in transcription, transport, metabolism and transmembrane proteins were overrepresented in gene sets that were affected by high impact variants. A core genome representing genomic elements that were conserved in all the isolates and a non-redundant pangenome representing all genomic elements is presented. Whole genome alignments showed that an average of 93% of the genomic elements were present in all isolates. The results of this study reveal that some genomic elements are not conserved within the isolates and some variants are high impact. The described genome-scale variations will help to inform novel disease management strategies against the pathogen.
Collapse
|
81
|
Amandine C, Ebert D, Stukenbrock E, Rodríguez de la Vega RC, Tiffin P, Croll D, Tellier A. Unraveling coevolutionary dynamics using ecological genomics. Trends Genet 2022; 38:1003-1012. [PMID: 35715278 DOI: 10.1016/j.tig.2022.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
Abstract
Coevolutionary interactions, from the delicate co-dependency in mutualistic interactions to the antagonistic relationship of hosts and parasites, are a ubiquitous driver of adaptation. Surprisingly, little is known about the genomic processes underlying coevolution in an ecological context. However, species comprise genetically differentiated populations that interact with temporally variable abiotic and biotic environments. We discuss the recent advances in coevolutionary theory and genomics as well as shortcomings, to identify coevolving genes that take into account this spatial and temporal variability of coevolution, and propose a practical guide to understand the dynamic of coevolution using an ecological genomics lens.
Collapse
Affiliation(s)
- Cornille Amandine
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190 Gif-sur-Yvette, France.
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Eva Stukenbrock
- Max Planck Institute for Terrestrial Microbiology, Max Planck Research Group, Fungal Biodiversity, Marburg, Germany
| | | | - Peter Tiffin
- Department of Plant and Microbial Biology, 250 Biological Sciences, 1445 Gortner Ave., University of Minnesota, Saint Paul, MN 55108, USA
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Aurélien Tellier
- Population Genetics, Department of Life Science Systems, Technical University of Munich, Liesel-Beckman-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
82
|
Transcription factor lineages in plant-pathogenic fungi, connecting diversity with fungal virulence. Fungal Genet Biol 2022; 161:103712. [PMID: 35667520 DOI: 10.1016/j.fgb.2022.103712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 12/27/2022]
Abstract
Plant-pathogenic fungi span diverse taxonomic lineages. Their host-infection strategies are often specialised and require the coordinated regulation of molecular virulence factors. Transcription factors (TFs) are fundamental regulators of gene expression, yet relatively few virulence-specific regulators are characterised in detail and their evolutionary trajectories are not well understood. Hence, this study compared the full range of TFs across taxonomically-diverse fungal proteomes and classified their lineages through an orthology analysis. The primary aims were to characterise differences in the range and profile of TF lineages broadly linked to plant-host association or pathogenic lifestyles, and to better characterise the evolutionary origin and trajectory of experimentally-validated virulence regulators. We observed significantly fewer TFs among obligate, host-associated pathogens, largely attributed to contractions in several Zn2Cys6 TF-orthogroup lineages. We also present novel insight into the key virulence-regulating TFs Ste12, Pf2 and EBR1, providing evidence for their ancestral origins, expansion and/or loss. Ultimately, the analysis presented here provides both primary evidence for TF evolution in fungal phytopathogenicity, as well as a practical phylogenetic resource to guide further detailed investigation on the regulation of virulence within key pathogen lineages.
Collapse
|
83
|
Poudel B, Purushotham N, Jones A, Nasim J, Adorada DL, Sparks AH, Schwessinger B, Vaghefi N. The First Annotated Genome Assembly of Macrophomina tecta Associated with Charcoal Rot of Sorghum. Genome Biol Evol 2022; 14:evac081. [PMID: 35647618 PMCID: PMC9185371 DOI: 10.1093/gbe/evac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/14/2022] Open
Abstract
Charcoal rot is an important soilborne disease caused by a range of Macrophomina species, which affects a broad range of commercially important crops worldwide. Even though Macrophomina species are fungal pathogens of substantial economic importance, their mechanism of pathogenicity and host spectrum are poorly understood. There is an urgent need to better understand the biology, epidemiology, and evolution of Macrophomina species, which, in turn, will aid in improving charcoal rot management strategies. Here, we present the first high-quality genome assembly and annotation of Macrophomina tecta strain BRIP 70781 associated with charcoal rot symptoms on sorghum. Hybrid assembly integrating long reads generated by Oxford Nanopore Technology and short Illumina paired-end reads resulted in 43 contigs with a total assembly size of ∼54 Mb, and an N50 of 3.4 Mb. In total, 12,926 protein-coding genes and 7,036 repeats were predicted. Genome comparisons detected accumulation of DNA transposons in Macrophomina species associated with sorghum. The first reference genome of M. tecta generated in this study will contribute to more comparative and population genomics studies of Macrophomina species.
Collapse
Affiliation(s)
- Barsha Poudel
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Neeraj Purushotham
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
- Loam Bio, Orange, NSW, Australia
| | - Ashley Jones
- Research School of Biology, Australian National University, Canberra, Australia
| | - Jamila Nasim
- Loam Bio, Orange, NSW, Australia
- Research School of Biology, Australian National University, Canberra, Australia
| | - Dante L. Adorada
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Adam H. Sparks
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
- Department of Primary Industries and Regional Development, Perth, WA, Australia
| | | | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
- School of Agriculture and Food, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
84
|
Buijs VA, Groenewald JZ, Haridas S, LaButti KM, Lipzen A, Martin FM, Barry K, Grigoriev IV, Crous PW, Seidl MF. Enemy or ally: a genomic approach to elucidate the lifestyle of Phyllosticta citrichinaensis. G3 (BETHESDA, MD.) 2022; 12:jkac061. [PMID: 35311955 PMCID: PMC9073689 DOI: 10.1093/g3journal/jkac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/02/2022] [Indexed: 11/14/2022]
Abstract
Members of the fungal genus Phyllosticta can colonize a variety of plant hosts, including several Citrus species such as Citrus sinensis (orange), Citrus limon (lemon), and Citrus maxima (pomelo). Some Phyllosticta species have the capacity to cause disease, such as Citrus Black Spot, while others have only been observed as endophytes. Thus far, genomic differences underlying lifestyle adaptations of Phyllosticta species have not yet been studied. Furthermore, the lifestyle of Phyllosticta citrichinaensis is ambiguous, as it has been described as a weak pathogen but Koch's postulates may not have been established and the presence of this species was never reported to cause any crop or economic losses. Here, we examined the genomic differences between pathogenic and endophytic Phyllosticta spp. colonizing Citrus and specifically aimed to elucidate the lifestyle of Phyllosticta citrichinaensis. We found several genomic differences between species of different lifestyles, including groups of genes that were only present in pathogens or endophytes. We also observed that species, based on their carbohydrate active enzymes, group independent of their phylogenetic association, and this clustering correlated with trophy prediction. Phyllosticta citrichinaensis shows an intermediate lifestyle, sharing genomic and phenotypic attributes of both pathogens and endophytes. We thus present the first genomic comparison of multiple citrus-colonizing pathogens and endophytes of the genus Phyllosticta, and therefore provide the basis for further comparative studies into the lifestyle adaptations within this genus.
Collapse
Affiliation(s)
- Valerie A Buijs
- Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Utrecht 3584 CT, The Netherlands
- Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Johannes Z Groenewald
- Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Utrecht 3584 CT, The Netherlands
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt M LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Francis M Martin
- Department of Biology, Institut National de la Recherche Agronomique, UMR INRA-Université de Lorraine “Interaction Arbres/Microorganismes”, Champenoux F-54280, France
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Pedro W Crous
- Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Utrecht 3584 CT, The Netherlands
- Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
85
|
Wang J, Zhan G, Tian Y, Zhang Y, Xu Y, Kang Z, Zhao J. Role of Sexual Reproduction in the Evolution of the Wheat Stripe Rust Fungus Races in China. PHYTOPATHOLOGY 2022; 112:1063-1071. [PMID: 34784735 DOI: 10.1094/phyto-08-21-0331-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Experimental and population genetic approaches have reshaped our view of how fungal pathogens reproduce, with consequences for our understanding of fungal invasions. Puccinia striiformis f. sp. tritici, the causal agent of stripe rust, poses a severe threat to wheat production worldwide. The sexual stage of P. striiformis f. sp. tritici was discovered >10 years ago, but how it affects the evolution of the pathogen, especially the emergence of the new virulent races, remains largely unknown. Here, using population genetic analyses, we demonstrate that sexual reproduction plays an important role in the evolution of P. striiformis f. sp. tritici races in China, specifically the newly emerged and devastating race virulent to resistance gene Yr26, which is widely used in China and exerts strong selective pressure on the pathogen population. Association analysis identified six genes encoding secreted proteins as candidates for virulence on wheat cultivars carrying the Yr26 resistance gene. Our results highlight the important role of sexual reproduction and selection exerted by hosts in the emergence of new virulent races in China.
Collapse
Affiliation(s)
- Jierong Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gangming Zhan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Tian
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiwen Xu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Zhao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
86
|
Du S, Trivedi P, Wei Z, Feng J, Hu HW, Bi L, Huang Q, Liu YR. The Proportion of Soil-Borne Fungal Pathogens Increases with Elevated Organic Carbon in Agricultural Soils. mSystems 2022; 7:e0133721. [PMID: 35311561 PMCID: PMC9040864 DOI: 10.1128/msystems.01337-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Soil-borne fungal phytopathogens are important threats to soil and crop health. However, their community composition and environmental determinants remain unclear. Here, we explored the effects of agricultural fertilization regime (i.e., organic material application) on soil fungal phytopathogens, using data sets from a combination of field survey and long-term experiment. We found that soil organic carbon was the key factor that affected the diversity and relative abundance of fungal phytopathogens in agricultural soils. The dominant genera of phytopathogens including Monographella was also strongly associated with soil organic carbon. In addition, the elevated soil organic carbon enhanced the node proportion of phytopathogens and the positive interactions within the fungal community in the network. Results of the long-term experiment revealed that applications of crop straw and fresh livestock manure significantly increased the proportion of phytopathogens, which were associated with the elevated soil organic carbon. This work offers new insights into the occurrence and environmental factors of fungal phytopathogens in agricultural soils, which are fundamental to control their impacts on the soil and crop systems. IMPORTANCE Fungal phytopathogens are important threats to soil and crop health, but their community composition and environmental determinants remain unclear. We found that soil organic carbon is the key factor of the prevalence of fungal phytopathogens through a field survey, which is also supported by our long-term (6-year) experiment showing the applications of crop straw and fresh livestock manure significantly increased the proportion of fungal phytopathogens. These findings advance our understanding of the occurrence and environmental drivers of soil-borne fungal phytopathogens under agricultural fertilization regime and have important implications for the control of soil-borne pathogens.
Collapse
Affiliation(s)
- Shuai Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jiao Feng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Li Bi
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
87
|
Zhou X, Yu D, Cao Z. Convergence Analysis of Rust Fungi and Anther Smuts Reveals Their Common Molecular Adaptation to a Phytoparasitic Lifestyle. Front Genet 2022; 13:863617. [PMID: 35464858 PMCID: PMC9023891 DOI: 10.3389/fgene.2022.863617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/25/2022] [Indexed: 11/28/2022] Open
Abstract
Convergent evolution between distantly related taxa often mirrors adaptation to similar environments. Rust fungi and anther smuts, which belong to different classes in Pucciniomycotina, have independently evolved a phytoparasitic lifestyle, representing an example of convergent evolution in the fungal kingdom. To investigate their adaptations and the genetic bases underlying their phytoparasitic lifestyles, we performed genome-wide convergence analysis of amino acid substitutions, evolutionary rates, and gene gains and losses. Convergent substitutions were detected in ATPeV0D and RP-S27Ae, two genes important for the generation of turgor pressure and ribosomal biosynthesis, respectively. A total of 51 positively selected genes were identified, including eight genes associated with translation and three genes related to the secretion pathway. In addition, rust fungi and anther smuts contained more proteins associated with oligopeptide transporters and vacuolar proteases than did other fungi. For rust fungi and anther smuts, these forms of convergence suggest four adaptive mechanisms for a phytoparasitic lifestyle: 1) reducing the metabolic demand for hyphal growth and penetration at the pre-penetration stage, 2) maintaining the efficiency of protein synthesis during colonization, 3) ensuring the normal secretion of rapidly evolving secreted proteins, and 4) improving the capacity for oligopeptide metabolism. Our results are the first to shed light on the genetic convergence mechanisms and molecular adaptation underlying phytoparasitic lifestyles in fungi.
Collapse
Affiliation(s)
| | | | - Zhimin Cao
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
88
|
Zaccaron AZ, Chen LH, Samaras A, Stergiopoulos I. A chromosome-scale genome assembly of the tomato pathogen Cladosporium fulvum reveals a compartmentalized genome architecture and the presence of a dispensable chromosome. Microb Genom 2022; 8:000819. [PMID: 35471194 PMCID: PMC9453070 DOI: 10.1099/mgen.0.000819] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/29/2022] [Indexed: 01/25/2023] Open
Abstract
Cladosporium fulvum is a fungal pathogen that causes leaf mould of tomato. The reference genome of this pathogen was released in 2012 but its high repetitive DNA content prevented a contiguous assembly and further prohibited the analysis of its genome architecture. In this study, we combined third generation sequencing technology with the Hi-C chromatin conformation capture technique, to produce a high-quality and near complete genome assembly and gene annotation of a Race 5 isolate of C. fulvum. The resulting genome assembly contained 67.17 Mb organized into 14 chromosomes (Chr1-to-Chr14), all of which were assembled telomere-to-telomere. The smallest of the chromosomes, Chr14, is only 460 kb in size and contains 25 genes that all encode hypothetical proteins. Notably, PCR assays revealed that Chr14 was absent in 19 out of 24 isolates of a world-wide collection of C. fulvum, indicating that Chr14 is dispensable. Thus, C. fulvum is currently the second species of Capnodiales shown to harbour dispensable chromosomes. The genome of C. fulvum Race 5 is 49.7 % repetitive and contains 14 690 predicted genes with an estimated completeness of 98.9%, currently one of the highest among the Capnodiales. Genome structure analysis revealed a compartmentalized architecture composed of gene-dense and repeat-poor regions interspersed with gene-sparse and repeat-rich regions. Nearly 39.2 % of the C. fulvum Race 5 genome is affected by Repeat-Induced Point (RIP) mutations and evidence of RIP leakage toward non-repetitive regions was observed in all chromosomes, indicating the RIP plays an important role in the evolution of this pathogen. Finally, 345 genes encoding candidate effectors were identified in C. fulvum Race 5, with a significant enrichment of their location in gene-sparse regions, in accordance with the 'two-speed genome' model of evolution. Overall, the new reference genome of C. fulvum presents several notable features and is a valuable resource for studies in plant pathogens.
Collapse
Affiliation(s)
- Alex Z. Zaccaron
- Department of Plant Pathology, University of California Davis, Davis, USA
| | - Li-Hung Chen
- Department of Plant Pathology, University of California Davis, Davis, USA
- Present address: Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Anastasios Samaras
- Department of Plant Pathology, University of California Davis, Davis, USA
| | | |
Collapse
|
89
|
Onetto CA, Sosnowski MR, Van Den Heuvel S, Borneman AR. Population genomics of the grapevine pathogen Eutypa lata reveals evidence for population expansion and intraspecific differences in secondary metabolite gene clusters. PLoS Genet 2022; 18:e1010153. [PMID: 35363788 PMCID: PMC9007359 DOI: 10.1371/journal.pgen.1010153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/13/2022] [Accepted: 03/17/2022] [Indexed: 12/02/2022] Open
Abstract
Eutypa dieback of grapevine is an important disease caused by the generalist Ascomycete fungus Eutypa lata. Despite the relevance of this species to the global wine industry, its genomic diversity remains unknown, with only a single publicly available genome assembly. Whole-genome sequencing and comparative genomics was performed on forty Australian E. lata isolates to understand the genome evolution, adaptation, population size and structure of these isolates. Phylogenetic and linkage disequilibrium decay analyses provided evidence of extensive gene flow through sexual recombination between isolates obtained from different geographic locations and hosts. Investigation of the genetic diversity of these isolates suggested rapid population expansion, likely as a consequence of the recent growth of the Australian wine industry. Genomic regions affected by selective sweeps were shown to be enriched for genes associated with secondary metabolite clusters and included genes encoding proteins with a role in nutrient acquisition, degradation of host cell wall and metal and drug resistance, suggesting recent adaptation to both abiotic factors and potentially host genotypes. Genome synteny analysis using long-read genome assemblies showed significant intraspecific genomic plasticity with extensive chromosomal rearrangements impacting the secondary metabolite production potential of this species. Finally, k-mer based GWAS analysis identified a potential locus associated with mycelia recovery in canes of Vitis vinifera that will require further investigations. Eutypa dieback of grapevine, caused by the Ascomycete fungus Eutypa lata, is responsible for significant economic losses to the wine industry. Despite the worldwide prevalence of this pathogen, its genomic diversity remains unknown, with only a single publicly available genome assembly. This knowledge gap was addressed by performing whole-genome sequencing of 40 E. lata isolates sourced from different hosts and geographical locations around Australia. Investigation of the genetic diversity of this population showed a high degree of gene-flow and sexual recombination as well as demographic expansion. Through the inspection of signatures of selective sweeps, repeat-mediated chromosomal rearrangements, and pan-genomic elements, it was shown that this species has a highly dynamic secondary metabolite production potential that could have important implications for its pathogenicity and lifestyle. In addition, application of a k-mer based GWAS methodology, identified a potential locus associated with the growth of this species within canes of Vitis vinifera.
Collapse
Affiliation(s)
| | - Mark R. Sosnowski
- South Australian Research and Development Institute, Adelaide, Australia
- School of Wine, Food and Agriculture, The University of Adelaide, Adelaide, Australia
| | | | - Anthony R. Borneman
- The Australian Wine Research Institute, Adelaide, Australia
- School of Wine, Food and Agriculture, The University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
90
|
Hartmann FE. Using structural variants to understand the ecological and evolutionary dynamics of fungal plant pathogens. THE NEW PHYTOLOGIST 2022; 234:43-49. [PMID: 34873717 DOI: 10.1111/nph.17907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Deletions, duplications, insertions, inversions and translocations are commonly referred to as structural variants (SVs). Fungal plant pathogens have compact genomes, facilitating the generation of accurate maps of SVs for these species in recent studies. Structural variants have been found to constitute a significant proportion of the standing genetic variation in fungal plant pathogen populations, potentially leading to the generation of accessory genes, regions or chromosomes enriched in pathogenicity factors. Structural variants are involved in the rapid adaptation and ecological traits of pathogens, including host specialization and mating. Long-read sequencing techniques coupled with theoretical and experimental approaches have considerable potential for elucidating the phenotypic effects of SVs and deciphering the evolutionary and genomic mechanisms underlying the formation of SVs in fungal plant pathogens.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Ecologie Systematique Evolution, Batiment 360, Universite Paris-Saclay, CNRS, AgroParisTech, Orsay, 91400, France
| |
Collapse
|
91
|
Dolatabadian A, Fernando WGD. Genomic Variations and Mutational Events Associated with Plant-Pathogen Interactions. BIOLOGY 2022; 11:421. [PMID: 35336795 PMCID: PMC8945218 DOI: 10.3390/biology11030421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022]
Abstract
Phytopathologists are actively researching the molecular basis of plant-pathogen interactions. The mechanisms of responses to pathogens have been studied extensively in model crop plant species and natural populations. Today, with the rapid expansion of genomic technologies such as DNA sequencing, transcriptomics, proteomics, and metabolomics, as well as the development of new methods and protocols, data analysis, and bioinformatics, it is now possible to assess the role of genetic variation in plant-microbe interactions and to understand the underlying molecular mechanisms of plant defense and microbe pathogenicity with ever-greater resolution and accuracy. Genetic variation is an important force in evolution that enables organisms to survive in stressful environments. Moreover, understanding the role of genetic variation and mutational events is essential for crop breeders to produce improved cultivars. This review focuses on genetic variations and mutational events associated with plant-pathogen interactions and discusses how these genome compartments enhance plants' and pathogens' evolutionary processes.
Collapse
Affiliation(s)
- Aria Dolatabadian
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | | |
Collapse
|
92
|
Skiadas P, Klein J, Quiroz‐Monnens T, Elberse J, de Jonge R, Van den Ackerveken G, Seidl MF. Sexual reproduction contributes to the evolution of resistance-breaking isolates of the spinach pathogen Peronospora effusa. Environ Microbiol 2022; 24:1622-1637. [PMID: 35191594 PMCID: PMC9304176 DOI: 10.1111/1462-2920.15944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Peronospora effusa causes downy mildew, the economically most important disease of cultivated spinach worldwide. To date, 19 P. effusa races have been denominated based on their capacity to break spinach resistances, but their genetic diversity and the evolutionary processes that contribute to race emergence are unknown. Here, we performed the first systematic analysis of P. effusa races showing that those emerge by both asexual and sexual reproduction. Specifically, we studied the diversity of 26 P. effusa isolates from 16 denominated races based on mitochondrial and nuclear comparative genomics. Mitochondrial genomes based on long-read sequencing coupled with diversity assessment based on short-read sequencing uncovered two mitochondrial haplogroups, each with distinct genome organization. Nuclear genome-wide comparisons of the 26 isolates revealed that 10 isolates from six races could clearly be divided into three asexually evolving groups, in concordance with their mitochondrial phylogeny. The remaining isolates showed signals of reticulated evolution and discordance between nuclear and mitochondrial phylogenies, suggesting that these evolved through sexual reproduction. Increased understanding of this pathogen's reproductive modes will provide the framework for future studies into the molecular mechanisms underlying race emergence and into the P. effusa-spinach interaction, thus assisting in sustainable production of spinach through knowledge-driven resistance breeding.
Collapse
Affiliation(s)
- Petros Skiadas
- Theoretical Biology and BioinformaticsUtrecht University, Padualaan 8 3584 CHUtrechtThe Netherlands
- Plant‐Microbe Interactions, Utrecht University, Padualaan 8 3584 CHUtrechtThe Netherlands
| | - Joël Klein
- Plant‐Microbe Interactions, Utrecht University, Padualaan 8 3584 CHUtrechtThe Netherlands
| | - Thomas Quiroz‐Monnens
- Plant‐Microbe Interactions, Utrecht University, Padualaan 8 3584 CHUtrechtThe Netherlands
| | - Joyce Elberse
- Plant‐Microbe Interactions, Utrecht University, Padualaan 8 3584 CHUtrechtThe Netherlands
| | - Ronnie de Jonge
- Plant‐Microbe Interactions, Utrecht University, Padualaan 8 3584 CHUtrechtThe Netherlands
| | | | - Michael F. Seidl
- Theoretical Biology and BioinformaticsUtrecht University, Padualaan 8 3584 CHUtrechtThe Netherlands
| |
Collapse
|
93
|
Severn-Ellis AA, Schoeman MH, Bayer PE, Hane JK, Rees DJG, Edwards D, Batley J. Genome Analysis of the Broad Host Range Necrotroph Nalanthamala psidii Highlights Genes Associated With Virulence. FRONTIERS IN PLANT SCIENCE 2022; 13:811152. [PMID: 35283890 PMCID: PMC8914235 DOI: 10.3389/fpls.2022.811152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Guava wilt disease is caused by the fungus Nalanthamala psidii. The wilt disease results in large-scale destruction of orchards in South Africa, Taiwan, and several Southeast Asian countries. De novo assembly, annotation, and in-depth analysis of the N. psidii genome were carried out to facilitate the identification of characteristics associated with pathogenicity and pathogen evolution. The predicted secretome revealed a range of CAZymes, proteases, lipases and peroxidases associated with plant cell wall degradation, nutrient acquisition, and disease development. Further analysis of the N. psidii carbohydrate-active enzyme profile exposed the broad-spectrum necrotrophic lifestyle of the pathogen, which was corroborated by the identification of putative effectors and secondary metabolites with the potential to induce tissue necrosis and cell surface-dependent immune responses. Putative regulatory proteins including transcription factors and kinases were identified in addition to transporters potentially involved in the secretion of secondary metabolites. Transporters identified included important ABC and MFS transporters involved in the efflux of fungicides. Analysis of the repetitive landscape and the detection of mechanisms linked to reproduction such as het and mating genes rendered insights into the biological complexity and evolutionary potential of N. psidii as guava pathogen. Hence, the assembly and annotation of the N. psidii genome provided a valuable platform to explore the pathogenic potential and necrotrophic lifestyle of the guava wilt pathogen.
Collapse
Affiliation(s)
- Anita A. Severn-Ellis
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- Aquaculture Research and Development, Department of Primary Industries and Regional Development, Indian Ocean Marine Research Centre, Watermans Bay, WA, Australia
| | - Maritha H. Schoeman
- Institute for Tropical and Subtropical Crops, Agricultural Research Council, Nelspruit, South Africa
| | - Philipp E. Bayer
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - James K. Hane
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - D. Jasper G. Rees
- Agricultural Research Council, Biotechnology Platform, Pretoria, South Africa
- Botswana University of Agriculture and Natural Resources, Gaborone, Botswana
| | - David Edwards
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
94
|
Stengel A, Stanke KM, Quattrone AC, Herr JR. Improving Taxonomic Delimitation of Fungal Species in the Age of Genomics and Phenomics. Front Microbiol 2022; 13:847067. [PMID: 35250961 PMCID: PMC8892103 DOI: 10.3389/fmicb.2022.847067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/28/2022] [Indexed: 01/04/2023] Open
Abstract
Species concepts have long provided a source of debate among biologists. These lively debates have been important for reaching consensus on how to communicate across scientific disciplines and for advancing innovative strategies to study evolution, population biology, ecology, natural history, and disease epidemiology. Species concepts are also important for evaluating variability and diversity among communities, understanding biogeographical distributions, and identifying causal agents of disease across animal and plant hosts. While there have been many attempts to address the concept of species in the fungi, there are several concepts that have made taxonomic delimitation especially challenging. In this review we discuss these major challenges and describe methodological approaches that show promise for resolving ambiguity in fungal taxonomy by improving discrimination of genetic and functional traits. We highlight the relevance of eco-evolutionary theory used in conjunction with integrative taxonomy approaches to improve the understanding of interactions between environment, ecology, and evolution that give rise to distinct species boundaries. Beyond recent advances in genomic and phenomic methods, bioinformatics tools and modeling approaches enable researchers to test hypothesis and expand our knowledge of fungal biodiversity. Looking to the future, the pairing of integrative taxonomy approaches with multi-locus genomic sequencing and phenomic techniques, such as transcriptomics and proteomics, holds great potential to resolve many unknowns in fungal taxonomic classification.
Collapse
Affiliation(s)
- Ashley Stengel
- Complex Biosystems Interdisciplinary Life Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Kimberly M. Stanke
- Complex Biosystems Interdisciplinary Life Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Amanda C. Quattrone
- Complex Biosystems Interdisciplinary Life Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Joshua R. Herr
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
95
|
Kozhar O, Kim M, Ibarra Caballero J, Klopfenstein NB, Cannon PG, Stewart JE. Long evolutionary history of an emerging fungal pathogen of diverse tree species in eastern Asia, Australia, and the Pacific Islands. Mol Ecol 2022; 31:2013-2031. [DOI: 10.1111/mec.16384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Olga Kozhar
- Colorado State University Fort Collins CO USA
| | - Mee‐Sook Kim
- USDA Forest Service Pacific Northwest Research Station Corvallis OR USA
| | | | | | - Phil G. Cannon
- USDA Forest Service Forest Health Protection Vallejo CA USA
| | | |
Collapse
|
96
|
Lubna, Asaf S, Jan R, Khan AL, Bilal S, Asif S, Al-Harrasi A, Kim KM. Unraveling the Genome Sequence of Plant Growth Promoting Aspergillus niger (CSR3) Provides Insight into the Synthesis of Secondary Metabolites and Its Comparative Genomics. J Fungi (Basel) 2022; 8:107. [PMID: 35205861 PMCID: PMC8877640 DOI: 10.3390/jof8020107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
Aspergillus niger strain CSR3 is an endophytic fungus that regulates plant endogenous hormones, secondary metabolites, and promotes plant growth during abiotic stress conditions. In this study, we sequenced the genome of A. niger (CSR3) and compared it with previously available A. niger strains. The final genome assembly was 35.8 Mb in size, consisting of 23 scaffolds with N50 scaffold length of 2.4 Mb. A total of 12,442 protein coding genes, 270 tRNA, and 57 rRNA were predicted in the CSR3 genome. We used comparative genomic analysis to provide insights into the genome's evolution and to elucidate the adaptive genomic signatures for bioactive secondary metabolite biosynthesis, hormones biosynthesis, and plant growth promoting activities. We also analyzed the transposable elements (TEs), simple sequence repeats (SSRs), CAZymes families, genes involved in gibberellin biosynthesis, and secondary metabolite clusters in the CSR3 genome. A total of 21 secondary metabolite biosynthesis gene clusters were detected, with 18 essential enzymes involved in the mevalonate pathway (MVA). The repeat analysis revealed about 3431 SSR, 274 TEs, and 205 inverted repeats (IR). Further gene family analysis revealed that 124 gene families were gained, whereas 125 gene families were lost in CSR3 genome, compared to A. niger ASM151534V and A. niger ASM285V2 genomes. The results improve our understanding of the CSR3 genome and will assist in future investigations on the genetic basis of A. niger CSR3, including the identification of CSR3 phytostimulant properties.
Collapse
Affiliation(s)
- Lubna
- Department of Botany, Garden Campus, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; (S.A.); (S.B.)
| | - Rahmatullah Jan
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Korea; (R.J.); (S.A.)
| | - Abdul Latif Khan
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX 77479, USA
| | - Saqib Bilal
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; (S.A.); (S.B.)
| | - Saleem Asif
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Korea; (R.J.); (S.A.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; (S.A.); (S.B.)
| | - Kyung-Min Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Korea; (R.J.); (S.A.)
| |
Collapse
|
97
|
Du S, Ge AH, Liang ZH, Xiang JF, Xiao JL, Zhang Y, Liu YR, Zhang LM, Shen JP. Fumigation practice combined with organic fertilizer increase antibiotic resistance in watermelon rhizosphere soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150426. [PMID: 34818756 DOI: 10.1016/j.scitotenv.2021.150426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Chemical fumigants and organic fertilizer are commonly used in facility agriculture to control soil-borne diseases and promote soil health. However, there is a lack of evidence for the effect of non-antibiotic fumigants on the distribution of antibiotic resistance genes (ARGs) in plant rhizosphere soils. Here, the response of a wide spectrum of ARGs and mobile genetic elements (MGEs) to dazomet fumigation practice in the rhizosphere soil of watermelon was investigated along its branching, flowering and fruiting growth stages in plastic shelters using high-throughput quantitative PCR approach. Our results indicated that soil fumigation combined with organic fertilizer application significantly increased the relative abundance of ARGs and MGEs in the rhizosphere soil of watermelon plant. The positive correlations between the relative abundance of ARGs and MGEs suggested that soil fumigation might increase the horizontal gene transfer (HGT) potential of ARGs. This result was further confirmed by the enhanced associations between ARG and MGE subtypes in the networks of fumigation treatments. Moreover, bipartite associations between ARGs/MGEs and microbial communities (bacteria and fungi) revealed a higher percentage of linkage between MGEs and microbial taxa in the fumigated soils. Structural equation model analysis further suggested that the increases in antibiotic resistance after fumigation and organic fertilizer application were mainly driven by MGEs and fungal community. Together, our results provide vital evidence that dazomet fumigation process combined with organic fertilizer in plastic shelters has the great potential to promote ARGs' dissemination in the rhizosphere, and raise cautions of the acquired resistance by soil-borne fungal pathogen and the potential spreading of ARGs along soil-plant continuum.
Collapse
Affiliation(s)
- Shuai Du
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - An-Hui Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Huai Liang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ji-Fang Xiang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ji-Ling Xiao
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yi Zhang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ju-Pei Shen
- University of Chinese Academy of Sciences, Beijing 100049, China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
98
|
Wang Y, Wu J, Yan J, Guo M, Xu L, Hou L, Zou Q. Comparative genome analysis of plant ascomycete fungal pathogens with different lifestyles reveals distinctive virulence strategies. BMC Genomics 2022; 23:34. [PMID: 34996360 PMCID: PMC8740420 DOI: 10.1186/s12864-021-08165-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pathogens have evolved diverse lifestyles and adopted pivotal new roles in both natural ecosystems and human environments. However, the molecular mechanisms underlying their adaptation to new lifestyles are obscure. Comparative genomics was adopted to determine distinct strategies of plant ascomycete fungal pathogens with different lifestyles and to elucidate their distinctive virulence strategies. RESULTS We found that plant ascomycete biotrophs exhibited lower gene gain and loss events and loss of CAZyme-encoding genes involved in plant cell wall degradation and biosynthesis gene clusters for the production of secondary metabolites in the genome. Comparison with the candidate effectome detected distinctive variations between plant biotrophic pathogens and other groups (including human, necrotrophic and hemibiotrophic pathogens). The results revealed the biotroph-specific and lifestyle-conserved candidate effector families. These data have been configured in web-based genome browser applications for public display ( http://lab.malab.cn/soft/PFPG ). This resource allows researchers to profile the genome, proteome, secretome and effectome of plant fungal pathogens. CONCLUSIONS Our findings demonstrated different genome evolution strategies of plant fungal pathogens with different lifestyles and explored their lifestyle-conserved and specific candidate effectors. It will provide a new basis for discovering the novel effectors and their pathogenic mechanisms.
Collapse
Affiliation(s)
- Yansu Wang
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, 518000, Shenzhen, P. R. China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, P. R. China
| | - Jie Wu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, P. R. China
| | - Jiacheng Yan
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, P. R. China
| | - Ming Guo
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, USA
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, 518000, Shenzhen, P. R. China
| | - Liping Hou
- Beidahuang Industry Group General Hospital, Harbin, China.
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, P. R. China.
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
| |
Collapse
|
99
|
Transcriptional response to host chemical cues underpins the expansion of host range in a fungal plant pathogen lineage. THE ISME JOURNAL 2022; 16:138-148. [PMID: 34282282 PMCID: PMC8692328 DOI: 10.1038/s41396-021-01058-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/26/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
The host range of parasites is an important factor in assessing the dynamics of disease epidemics. The evolution of pathogens to accommodate new hosts may lead to host range expansion, a process the molecular bases of which are largely enigmatic. The fungus Sclerotinia sclerotiorum has been reported to parasitize more than 400 plant species from diverse eudicot families while its close relative, S. trifoliorum, is restricted to plants from the Fabaceae family. We analyzed S. sclerotiorum global transcriptome reprogramming on hosts from six botanical families and reveal a flexible, host-specific transcriptional program. We generated a chromosome-level genome assembly for S. trifoliorum and found near-complete gene space conservation in two representative strains of broad and narrow host range Sclerotinia species. However, S. trifoliorum showed increased sensitivity to the Brassicaceae defense compound camalexin. Comparative analyses revealed a lack of transcriptional response to camalexin in the S. trifoliorum strain and suggest that regulatory variation in detoxification and effector genes at the population level may associate with the genetic accommodation of Brassicaceae in the Sclerotinia host range. Our work proposes transcriptional plasticity and the co-existence of signatures for generalist and polyspecialist adaptive strategies in the genome of a plant pathogen.
Collapse
|
100
|
Anand G, Rajeshkumar KC. Challenges and Threats Posed by Plant Pathogenic Fungi on Agricultural Productivity and Economy. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|