51
|
Gabbert AD, Mydosh JL, Talukdar PK, Gloss LM, McDermott JE, Cooper KK, Clair GC, Konkel ME. The Missing Pieces: The Role of Secretion Systems in Campylobacter jejuni Virulence. Biomolecules 2023; 13:135. [PMID: 36671522 PMCID: PMC9856085 DOI: 10.3390/biom13010135] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Campylobacter jejuni is likely the most common bacterial cause of gastroenteritis worldwide, responsible for millions of cases of inflammatory diarrhea characterized by severe abdominal cramps and blood in the stool. Further, C. jejuni infections are associated with post-infection sequelae in developed countries and malnutrition and growth-stunting in low- and middle-income countries. Despite the increasing prevalence of the disease, campylobacteriosis, and the recognition that this pathogen is a serious health threat, our understanding of C. jejuni pathogenesis remains incomplete. In this review, we focus on the Campylobacter secretion systems proposed to contribute to host-cell interactions and survival in the host. Moreover, we have applied a genomics approach to defining the structural and mechanistic features of C. jejuni type III, IV, and VI secretion systems. Special attention is focused on the flagellar type III secretion system and the prediction of putative effectors, given that the proteins exported via this system are essential for host cell invasion and the inflammatory response. We conclude that C. jejuni does not possess a type IV secretion system and relies on the type III and type VI secretion systems to establish a niche and potentiate disease.
Collapse
Affiliation(s)
- Amber D. Gabbert
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jennifer L. Mydosh
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Prabhat K. Talukdar
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Lisa M. Gloss
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jason E. McDermott
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Geremy C. Clair
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
52
|
McDonald JB, Scott NE, Underwood GJ, Andrews DM, Van TTH, Moore RJ. Characterisation of N-linked protein glycosylation in the bacterial pathogen Campylobacter hepaticus. Sci Rep 2023; 13:227. [PMID: 36604449 PMCID: PMC9816155 DOI: 10.1038/s41598-022-26532-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Campylobacter hepaticus is an important pathogen which causes Spotty Liver Disease (SLD) in layer chickens. SLD results in an increase in mortality and a significant decrease in egg production and therefore is an important economic concern of the global poultry industry. The human pathogen Campylobacter jejuni encodes an N-linked glycosylation system that plays fundamental roles in host colonization and pathogenicity. While N-linked glycosylation has been extensively studied in C. jejuni and is now known to occur in a range of Campylobacter species, little is known about C. hepaticus glycosylation. In this study glycoproteomic analysis was used to confirm the functionality of the C. hepaticus N-glycosylation system. It was shown that C. hepaticus HV10T modifies > 35 proteins with an N-linked heptasaccharide glycan. C. hepaticus shares highly conserved glycoproteins with C. jejuni that are involved in host colonisation and also possesses unique glycoproteins which may contribute to its ability to survive in challenging host environments. C. hepaticus N-glycosylation may function as an important virulence factor, providing an opportunity to investigate and develop a better understanding the system's role in poultry infection.
Collapse
Affiliation(s)
- Jamieson B McDonald
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Greg J Underwood
- Bioproperties Pty Ltd, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Daniel M Andrews
- Bioproperties Pty Ltd, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia.
| |
Collapse
|
53
|
Ito S, Kishimoto M. Development of a Sampling and Real-time PCR Method for the Quantitative Detection of Campylobacter spp. in Retail Chicken Meat Without DNA Extraction. J Food Prot 2023; 86:100028. [PMID: 36916587 DOI: 10.1016/j.jfp.2022.100028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Campylobacter food poisoning is caused by consumption of the contaminated foods, especially poultry meat. Continuous quantitative measurement of Campylobacter spp. in contaminated foods is crucial to develop preventive measures. We developed a direct-qPCR method for determining the viable cell counts of Campylobacter spp. using qPCR without DNA extraction from enriched food samples and a sampling method (the wrap procedure) in which the sample is wrapped in a sheet, different from the conventional homogenization procedure. The viable cell counts of Campylobacter spp. before and after enrichment of the samples sampled using the wrap and homogenization procedures from chicken samples inoculated with Campylobacter jejuni were determined using the culture method, and the cycle threshold (CT) values after enrichment were determined using the direct-qPCR. An enrichment regression equation was generated from the viable cell counts obtained before and after enrichment, and a direct-qPCR regression equation was generated from the CT values and viable cell counts obtained after enrichment, enabling the viable cell counts before enrichment to be estimated from the CT values. Estimated viable cell counts were similar for the culture method when sampled by the homogenization procedure, but lower for the wrap procedure. However, the detection rate of direct-qPCR was 37.5% for liver and 89.7% for breast fillet using the homogenization procedure, whereas using the wrap procedure, it was 100% for both samples. The detection rate of direct-qPCR for retail chicken was 30.4-35.7% for the homogenization procedure, and 85.7-100% for the wrap procedure. Colonies were observed using the culture method, but their quantification was difficult due to swarming or their low number. However, estimating viable cell counts using the combination of wrap procedure and direct-qPCR methods is possible. The developed method can provide baseline data for the risk assessment Campylobacter food poisoning.
Collapse
Affiliation(s)
- Satoshi Ito
- Faculty of Nutrition, Kobe Gakuin University, Kobe, Hyogo 651-2113, Japan.
| | - Michiru Kishimoto
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences Graduate School, Nagoya, Aichi 470-0196, Japan
| |
Collapse
|
54
|
Frirdich E, Vermeulen J, Biboy J, Vollmer W, Gaynor EC. Multiple Campylobacter jejuni proteins affecting the peptidoglycan structure and the degree of helical cell curvature. Front Microbiol 2023; 14:1162806. [PMID: 37143542 PMCID: PMC10151779 DOI: 10.3389/fmicb.2023.1162806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023] Open
Abstract
Campylobacter jejuni is a Gram-negative helical bacterium. Its helical morphology, maintained by the peptidoglycan (PG) layer, plays a key role in its transmission in the environment, colonization, and pathogenic properties. The previously characterized PG hydrolases Pgp1 and Pgp2 are important for generating C. jejuni helical morphology, with deletion mutants being rod-shaped and showing alterations in their PG muropeptide profiles in comparison to the wild type. Homology searches and bioinformatics were used to identify additional gene products involved in C. jejuni morphogenesis: the putative bactofilin 1104 and the M23 peptidase domain-containing proteins 0166, 1105, and 1228. Deletions in the corresponding genes resulted in varying curved rod morphologies with changes in their PG muropeptide profiles. All changes in the mutants complemented except 1104. Overexpression of 1104 and 1105 also resulted in changes in the morphology and in the muropeptide profiles, suggesting that the dose of these two gene products influences these characteristics. The related helical ε-Proteobacterium Helicobacter pylori has characterized homologs of C. jejuni 1104, 1105, and 1228 proteins, yet deletion of the homologous genes in H. pylori had differing effects on H. pylori PG muropeptide profiles and/or morphology compared to the C. jejuni deletion mutants. It is therefore apparent that even related organisms with similar morphologies and homologous proteins can have diverse PG biosynthetic pathways, highlighting the importance of studying PG biosynthesis in related organisms.
Collapse
Affiliation(s)
- Emilisa Frirdich
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Emilisa Frirdich,
| | - Jenny Vermeulen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Jacob Biboy
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Erin C. Gaynor
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
55
|
Buiatte ABG, de Melo RT, Peres PABM, Bastos CM, Grazziotin AL, Armendaris Rodriguez PM, Barreto F, Rossi DA. Virulence, antimicrobial resistance, and dissemination of Campylobacter coli isolated from chicken carcasses in Brazil. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
56
|
Abbas RZ, Alsayeqh AF, Aqib AI. Role of Bacteriophages for Optimized Health and Production of Poultry. Animals (Basel) 2022; 12:ani12233378. [PMID: 36496899 PMCID: PMC9736383 DOI: 10.3390/ani12233378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
The poultry sector is facing infections from Salmonella, Campylobacter, Listeria and Staphylococcus spp., and Escherichia coli, that have developed multidrug resistance aptitude. Antibiotics cause disturbances in the balance of normal microbiota leading to dysbiosis, immunosuppression, and the development of secondary infections. Bacteriophages have been reported to lower the colonization of Salmonella and Campylobacter in poultry. The specificity of bacteriophages is greater than that of antibiotics and can be used as a cocktail for enhanced antibacterial activity. Specie-specific phages have been prepared, e.g., Staphylophage (used against Staphylococcus bacteria) that specifically eliminate bacterial pathogens. Bacteriophage products, e.g., BacWashTM and Ecolicide PX have been developed as antiseptics and disinfectants for effective biosecurity and biosafety measures. The success of phage therapy is influenced by time to use, the amount used, the delivery mechanism, and combination therapy with other therapeutics. It is a need of time to build a comprehensive understanding of the use of bacteriophages in poultry production. The current review thus focuses on mechanisms of bacteriophages against poultry pathogens, their applications in various therapeutics, impacts on the economy, and current challenges.
Collapse
Affiliation(s)
- Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad 38000, Pakistan
- Correspondence:
| | - Abdullah F Alsayeqh
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah 51452, Saudi Arabia
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| |
Collapse
|
57
|
Kwack KH, Jang EY, Yang SB, Lee JH, Moon JH. Genomic and phenotypic comparison of Prevotella intermedia strains possessing different virulence in vivo. Virulence 2022; 13:1133-1145. [PMID: 35791444 PMCID: PMC9262359 DOI: 10.1080/21505594.2022.2095718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Prevotella intermedia readily colonizes healthy dental biofilm and is associated with periodontal diseases. The viscous exopolysaccharide (EPS)-producing capability is known as a major virulence factor of P. intermedia 17 (Pi17). However, the inter-strain difference in P. intermedia regarding virulence-associated phenotype is not well studied. We compared in vivo virulence and whole genome sequences using five wild-type strains: ATCC 49046 (Pi49046), ATCC 15032 (Pi15032), ATCC 15033 (Pi15033), ATCC 25611 (Pi25611), and Pi17. Non-EPS producing Pi25611 was the least virulent in insect and mammalian models. Unexpectedly, Pi49046 did not produce viscous EPS but was the most virulent, followed by Pi17. Genomes of the five strains were quite similar but revealed subtle differences such as copy number variations and single nucleotide polymorphisms. Variations between strains were found in genes encoding glycosyltransferases and genes involved in the acquisition of carbohydrates and iron/haem. Based on these genetic variations, further analyses were performed. Phylogenetic and structural analyses discovered phosphoglycosyltransferases of Pi49046 and Pi17 have evolved to contain additional loops that may confer substrate specificity. Pi17, Pi15032, and Pi15033 displayed increased growth by various carbohydrates. Meanwhile, Pi49046 exhibited the highest activities for haemolysis and haem accumulation, as well as co-aggregation with Porphyromonas gingivalis harbouring fimA type II, which is more tied to periodontitis than other fimA types. Collectively, subtle genetic differences related to glycosylation and acquisition of carbohydrates and iron/haem may contribute to the diversity of virulence and phenotypic traits among P. intermedia strains. These variations may also reflect versatile strategies for within-host adaptation of P. intermedia.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- a Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,b Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Young Jang
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Seok Bin Yang
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Hyung Lee
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Ji-Hoi Moon
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
58
|
Mo R, Ma W, Zhou W, Gao B. Polar localization of CheO under hypoxia promotes Campylobacter jejuni chemotactic behavior within host. PLoS Pathog 2022; 18:e1010953. [PMID: 36327346 PMCID: PMC9665402 DOI: 10.1371/journal.ppat.1010953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/15/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Campylobacter jejuni is a food-borne zoonotic pathogen of worldwide concern and the leading cause of bacterial diarrheal disease. In contrast to other enteric pathogens, C. jejuni has strict growth and nutritional requirements but lacks many virulence factors that have evolved for pathogenesis or interactions with the host. It is unclear how this bacterium has adapted to an enteric lifestyle. Here, we discovered that the CheO protein (CJJ81176_1265) is required for C. jejuni colonization of mice gut through its role in chemotactic control of flagellar rotation in oxygen-limiting environments. CheO interacts with the chemotaxis signaling proteins CheA and CheZ, and also with the flagellar rotor components FliM and FliY. Under microaerobic conditions, CheO localizes at the cellular poles where the chemosensory array and flagellar machinery are located in C. jejuni and its polar localization depends on chemosensory array formation. Several chemoreceptors that mediate energy taxis coordinately determine the bipolar distribution of CheO. Suppressor screening for a ΔcheO mutant identified that a single residue variation in FliM can alleviate the phenotype caused by the absence of CheO, confirming its regulatory role in the flagellar rotor switch. CheO homologs are only found in species of the Campylobacterota phylum, mostly species of host-associated genera Campylobacter, Helicobacter and Wolinella. The CheO results provide insights into the complexity of chemotaxis signal transduction in C. jejuni and closely related species. Importantly, the recruitment of CheO into chemosensory array to promote chemotactic behavior under hypoxia represents a new adaptation strategy of C. jejuni to human and animal intestines. Bacteria use chemotaxis to navigate their flagellar motility towards or away from a variety of environmental stimuli. For many pathogens, chemotactic motility plays an important role in infection and disease. Understanding the mechanism of chemotaxis behavior in pathogens can help the development of therapeutic strategies by interfering with chemotactic signal transduction. In this study, we identified a novel chemotaxis protein CheO in Campylobacter jejuni, a leading cause of human gastroenteritis worldwide. We demonstrated that CheO is directly involved in chemotactic control of the flagellar motor switch, the reason that it is required for colonization of different animal models. We also provide evidences that CheO is responsive to environmental oxygen variation, with a more prominent role in energy taxis under low oxygen levels. Therefore, CheO presents a novel mechanism for C. jejuni adaptation to hypoxia conditions such as those existing in human and animal intestines. Targeting CheO and other chemotaxis regulators could reduce the survival of C. jejuni within hosts and in the food chain.
Collapse
Affiliation(s)
- Ran Mo
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Tropical Marine Biological Research Station in Hainan, Sanya Institute of Oceanology, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenhui Ma
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Weijie Zhou
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Beile Gao
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Tropical Marine Biological Research Station in Hainan, Sanya Institute of Oceanology, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, China
- * E-mail:
| |
Collapse
|
59
|
Clinical and microbiological findings of recurrent Campylobacter spp. gastroenteritis in a tertiary care hospital. Enferm Infecc Microbiol Clin 2022. [DOI: 10.1016/j.eimc.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
60
|
Riegert AS, Narindoshvili T, Platzer NE, Raushel FM. Functional Characterization of a HAD Phosphatase Involved in Capsular Polysaccharide Biosynthesis in Campylobacter jejuni. Biochemistry 2022; 61:2431-2440. [PMID: 36214481 PMCID: PMC9633586 DOI: 10.1021/acs.biochem.2c00484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Campylobacter jejuni is a Gram-negative, pathogenic bacterium found in the intestinal tracts of chickens and many other farm animals. C. jejuni infection results in campylobacteriosis, which can cause nausea, diarrhea, fever, cramps, and death. The surface of the bacterium is coated with a thick layer of sugar known as the capsular polysaccharide. This highly modified polysaccharide contains an unusual d-glucuronamide moiety in serotypes HS:2 and HS:19. Previously, we have demonstrated that a phosphorylated glucuronamide intermediate is synthesized in C. jejuni NCTC 11168 (serotype HS:2) by cumulative reactions of three enzymes: Cj1441, Cj1436/Cj1437, and Cj1438. Cj1441 functions as a UDP-d-glucose dehydrogenase to make UDP-d-glucuronate; then Cj1436 or Cj1437 catalyzes the formation of ethanolamine phosphate or S-serinol phosphate, respectively, and finally Cj1438 catalyzes amide bond formation using d-glucuronate and either ethanolamine phosphate or S-serinol phosphate. Here, we investigated the final d-glucuronamide-modifying enzyme, Cj1435. Cj1435 was shown to catalyze the hydrolysis of the phosphate esters from either the d-glucuronamide of ethanolamine phosphate or S-serinol phosphate. Kinetic constants for a range of substrates were determined, and the stereoselectivity of the enzyme for the hydrolysis of glucuronamide of S-serinol phosphate was established using 31P nuclear magnetic resonance spectroscopy. A bioinformatic analysis of Cj1435 reveals it to be a member of the HAD phosphatase superfamily with a unique DXXE catalytic motif.
Collapse
Affiliation(s)
- Alexander S. Riegert
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Tamari Narindoshvili
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States
| | - Nicole E. Platzer
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States
| | - Frank M. Raushel
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, United States
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States
| |
Collapse
|
61
|
Bio-responsive composite liposomes against Campylobacter jejuni in vitro and its application in chicken preservation. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
62
|
Du K, Foote MS, Mousavi S, Buczkowski A, Schmidt S, Bereswill S, Heimesaat MM. Less Pronounced Immunopathological Responses Following Oral Butyrate Treatment of Campylobacter jejuni-Infected Mice. Microorganisms 2022; 10:1953. [PMID: 36296229 PMCID: PMC9609162 DOI: 10.3390/microorganisms10101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Given that human Campylobacter jejuni infections are rising globally and antibiotic treatment is not recommended, infected patients would substantially benefit from alternative therapeutic strategies. Short-chain fatty acids such as butyrate are known for their health benefits, including anti-microbial and anti-inflammatory effects. This prompted us to investigate potential disease-alleviating properties of butyrate treatment during acute murine C. jejuni-induced enterocolitis. Therefore, following gut microbiota depletion IL-10-/- mice were challenged with 109 viable C. jejuni cells by oral gavage and treated with butyrate via the drinking water (22 g/L) starting on day 2 post-infection. As early as day 3 post-infection, butyrate reduced diarrheal severity and frequency in treated mice, whereas on day 6 post-infection, gastrointestinal C. jejuni burdens and the overall clinical outcomes were comparable in butyrate- and placebo-treated cohorts. Most importantly, butyrate treatment dampened intestinal pro-inflammatory immune responses given lower colonic numbers of apoptotic cells and neutrophils, less distinct TNF-α secretion in mesenteric lymph nodes and lower IL-6 and MCP-1 concentrations in the ileum. In conclusion, results of our preclinical intervention study provide evidence that butyrate represents a promising candidate molecule for the treatment of acute campylobacteriosis.
Collapse
Affiliation(s)
- Ke Du
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany
| | - Minnja S. Foote
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany
| | - Soraya Mousavi
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany
| | - Agnes Buczkowski
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany
- Hofmann & Sommer GmbH und Co., KG, Büro Berlin, 12489 Berlin, Germany
| | - Sebastian Schmidt
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany
- Hofmann & Sommer GmbH und Co., KG, Büro Berlin, 12489 Berlin, Germany
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany
| | - Markus M. Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany
| |
Collapse
|
63
|
Wei D, Li Y, Che M, Li C, Wu Q, Sun C. Melatonin relieves hepatic lipid dysmetabolism caused by aging via modifying the secondary bile acid pattern of gut microbes. Cell Mol Life Sci 2022; 79:527. [PMID: 36151409 PMCID: PMC11803049 DOI: 10.1007/s00018-022-04412-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/17/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022]
Abstract
It has been reported that aging-generated gut microecosystem may promote host hepatic lipid dysmetabolism through shaping the pattern of secondary bile acids (BAs). Then as an oral drug, melatonin (Mel)-mediated beneficial efforts on the communication between gut microbiota and aging host are still not clearly. Here, we show that aging significantly shapes the pattern of gut microbiota and BAs, whereas Mel treatment reverses these phenotypes (P < 0.05), which is identified to depend on the existence of gut microbiota. Mechanistically, aging-triggered high-level expression of ileac farnesoid X receptor (FXR) is significantly decreased through Mel-mediated inhibition on Campylobacter jejuni (C. jejuni)-induced deconjugation of tauroursodeoxycholic acid (TUDCA) and glycoursodeoxycholic acid (GUDCA) (P < 0.05). The aging-induced high-level of serum taurine chenodeoxycholic acid (TCDCA) activate trimethylamine-N-oxide (TMAO)-triggered activating transcriptional factor 4 (ATF4) signaling via hepatic FXR, which further regulates hepatic BAs metabolism, whereas TUDCA inhibits aging-triggered high-level of hepatic ATF4. Overall, Mel reduces C. jejuni-mediated deconjugation of TUDCA to inhibit aging-triggered high-level expression of hepatic FXR, which further decreases hepatic TMAO production, to relieve hepatic lipid dysmetabolism.
Collapse
Affiliation(s)
- Dongqin Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yizhou Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Meng Che
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chaowei Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qiong Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
64
|
Effects of Sublethally Injured Campylobacter jejuni in Mice. Microbiol Spectr 2022; 10:e0069022. [PMID: 35862957 PMCID: PMC9431606 DOI: 10.1128/spectrum.00690-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Globally, Campylobacter spp. are the most common food-associated bacterial cause of human gastrointestinal disease. Campylobacteriosis is primarily associated with the consumption of contaminated chicken meat. Chemical decontamination of chicken carcasses during processing is one of the most effective interventions to mitigate Campylobacter contamination. Following exposure to sanitizers, however, sublethally injured populations of bacteria may persist. The risk that sublethally injured Campylobacter pose for public health is unknown. Furthermore, the virulence potential of sublethally injured Campylobacter jejuni during prolonged storage in relation to host pathogenesis and the host immune response has not been well established. Therefore, we evaluated the effects of sublethally injured C. jejuni on the host, after storage in chicken meat juice. C57BL/6 mice were infected with two C. jejuni chicken meat isolates or the ATCC 33291 strain that had been stored in the chicken meat juice, after exposure to chlorine or acidified sodium chlorite (ASC). Although chlorine exposure was unable to reduce intestinal colonization by C. jejuni, exposure to ASC significantly reduced the intestinal colonization and tissue translocation in mice. The expression of pro- and anti-inflammatory cytokine genes for interleukin-6 (IL-6), IL23a, and IL-10, Toll-like receptor 2 (TLR2) and TLR4 genes, and host stress response genes (CRP, MBL1, and NF-κB1) were significantly reduced following the exposure to ASC. Our results demonstrated that sublethally injured C. jejuni has reduced virulence potential and colonization in mice. The data contribute toward clarification of the importance of chemical decontamination during processing to minimize human campylobacteriosis. IMPORTANCECampylobacter is the most common cause of bacterial gastrointestinal disease, and consumption of contaminated poultry is frequently identified as the source of bacteria. The survivability and virulence potential of sublethally injured Campylobacter following exposure to chemicals which are commonly used to eliminate Campylobacter during the poultry meat processing are of concern to the food industry, government health officials, and consumers. Here, we demonstrate that sublethally injured Campylobacter jejuni has reduced bacterial virulence and colonization potential in mice.
Collapse
|
65
|
Lambrecht NJ, Bridges D, Wilson ML, Adu B, Eisenberg JNS, Folson G, Baylin A, Jones AD. Associations of bacterial enteropathogens with systemic inflammation, iron deficiency, and anemia in preschool-age children in southern Ghana. PLoS One 2022; 17:e0271099. [PMID: 35802561 PMCID: PMC9269377 DOI: 10.1371/journal.pone.0271099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022] Open
Abstract
Anemia remains a pervasive public health problem among preschool-age children in Ghana. Recent analyses have found that anemia in Ghanaian children, particularly in Southern regions, is largely attributable to infectious causes, rather than nutritional factors. Infections with enteropathogens can reduce iron absorption and increase systemic inflammation, but few studies have examined direct links between enteropathogens and anemia. This study investigated associations between detection of individual bacterial enteropathogens and systemic inflammation, iron deficiency, and anemia among 6- to 59-month-old children in Greater Accra, Ghana. Serum samples were analyzed from a cross-sectional sample of 262 children for concentrations of hemoglobin (Hb), biomarkers of systemic inflammation [C-reactive protein (CRP) and α-1-acid glycoprotein (AGP)], and biomarkers of iron status [serum ferritin (SF) and serum transferrin receptor (sTfR)]. Stool samples were analyzed for ten bacterial enteropathogens using qPCR. We estimated associations between presence of each enteropathogen and elevated systemic inflammation (CRP > 5 mg/L and AGP > 1 g/L), iron deficiency (SF < 12 μg/L and sTfR > 8.3 mg/L) and anemia (Hb < 110 g/L). Enteropathogens were detected in 87% of children’s stool despite a low prevalence of diarrhea (6.5%). Almost half (46%) of children had anemia while one-quarter (24%) had iron deficiency (low SF). Despite finding no associations with illness symptoms, Campylobacter jejuni/coli detection was strongly associated with elevated CRP [Odds Ratio (95% CI): 3.49 (1.45, 8.41)] and elevated AGP [4.27 (1.85, 9.84)]. Of the pathogens examined, only enteroinvasive Escherichia coli/Shigella spp. (EIEC/Shigella) was associated with iron deficiency, and enteroaggregative Escherichia coli (EAEC) [1.69 (1.01, 2.84)] and EIEC/Shigella [2.34 (1.15, 4.76)] were associated with anemia. These results suggest that certain enteroinvasive pathogenic bacteria may contribute to child anemia. Reducing exposure to enteropathogens through improved water, sanitation, and hygiene practices may help reduce the burden of anemia in young Ghanaian children.
Collapse
Affiliation(s)
- Nathalie J. Lambrecht
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
- Institute of Public Health, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Research Department 2, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
- * E-mail:
| | - Dave Bridges
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mark L. Wilson
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Joseph N. S. Eisenberg
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gloria Folson
- Department of Nutrition, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Ana Baylin
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrew D. Jones
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
66
|
Ma L, Feng J, Zhang J, Lu X. Campylobacter biofilms. Microbiol Res 2022; 264:127149. [DOI: 10.1016/j.micres.2022.127149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
|
67
|
Flagellotropic Bacteriophages: Opportunities and Challenges for Antimicrobial Applications. Int J Mol Sci 2022; 23:ijms23137084. [PMID: 35806089 PMCID: PMC9266447 DOI: 10.3390/ijms23137084] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022] Open
Abstract
Bacteriophages (phages) are the most abundant biological entities in the biosphere. As viruses that solely infect bacteria, phages have myriad healthcare and agricultural applications including phage therapy and antibacterial treatments in the foodservice industry. Phage therapy has been explored since the turn of the twentieth century but was no longer prioritized following the invention of antibiotics. As we approach a post-antibiotic society, phage therapy research has experienced a significant resurgence for the use of phages against antibiotic-resistant bacteria, a growing concern in modern medicine. Phages are extraordinarily diverse, as are their host receptor targets. Flagellotropic (flagellum-dependent) phages begin their infection cycle by attaching to the flagellum of their motile host, although the later stages of the infection process of most of these phages remain elusive. Flagella are helical appendages required for swimming and swarming motility and are also of great importance for virulence in many pathogenic bacteria of clinical relevance. Not only is bacterial motility itself frequently important for virulence, as it allows pathogenic bacteria to move toward their host and find nutrients more effectively, but flagella can also serve additional functions including mediating bacterial adhesion to surfaces. Flagella are also a potent antigen recognized by the human immune system. Phages utilizing the flagellum for infections are of particular interest due to the unique evolutionary tradeoff they force upon their hosts: by downregulating or abolishing motility to escape infection by a flagellotropic phage, a pathogenic bacterium would also likely attenuate its virulence. This factor may lead to flagellotropic phages becoming especially potent antibacterial agents. This review outlines past, present, and future research of flagellotropic phages, including their molecular mechanisms of infection and potential future applications.
Collapse
|
68
|
Genomic Analysis Reveals That Isolation Temperature on Selective Media Introduces Genetic Variation in Campylobacter jejuni from Bovine Feces. Pathogens 2022; 11:pathogens11060678. [PMID: 35745532 PMCID: PMC9229866 DOI: 10.3390/pathogens11060678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Campylobacter jejuni is commonly isolated on selective media following incubation at 37 °C or 42 °C, but the impact of these temperatures on genome variation remains unclear. Previously, Campylobacter selective enrichments from the feces of steers before and after ceftiofur treatment were plated on selective agar media and incubated at either 37 °C or 42 °C. Here, we analyzed the whole genome sequence of C. jejuni strains of the same multilocus sequence typing (MLST)-based sequence type (ST) and isolated from the same sample upon incubation at both temperatures. Four such strain pairs (one ST8221 and three ST8567) were analyzed using core genome and whole genome MLST (cgMLST, wgMLST). Among the 1970 wgMLST loci, 7-25 varied within each pair. In all but one of the pairs more (1.7-8.5 fold) new alleles were found at 42 °C. Most frameshift, nonsense, or start-loss mutations were also found at 42 °C. Variable loci CAMP0575, CAMP0912, and CAMP0913 in both STs may regularly respond to different temperatures. Furthermore, frameshifts in four variable loci in ST8567 occurred at multiple time points, suggesting a persistent impact of temperature. These findings suggest that the temperature of isolation may impact the sequence of several loci in C. jejuni from cattle.
Collapse
|
69
|
Meng S, Hettiarachchi IL, Bhetuwal BR, Thapa P, Zhu J. Stereoselective Synthesis of β-d-Manno-heptopyranoside via Cs 2CO 3-Mediated Anomeric O-Alkylation: Synthesis of a Tetrasaccharide Repeat Unit of Bacillus thermoaerophilus Surface-Layer Glycoprotein. J Org Chem 2022; 87:6588-6600. [PMID: 35537215 PMCID: PMC9166265 DOI: 10.1021/acs.joc.2c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stereoselective synthesis of d-glycero- and l-glycero-β-d-mannoheptosides has been achieved by cesium carbonate-mediated β-selective anomeric O-alkylation of the corresponding d-mannoheptoses. In addition, this method has been utilized in the total synthesis of a tetrasaccharide repeat unit of Bacillus thermoaerophilus surface-layer glycoprotein.
Collapse
Affiliation(s)
- Shuai Meng
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Ishani Lakshika Hettiarachchi
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Bishwa Raj Bhetuwal
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Prakash Thapa
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
70
|
Conesa A, Garofolo G, Di Pasquale A, Cammà C. Monitoring AMR in Campylobacter jejuni from Italy in the last 10 years (2011-2021): Microbiological and WGS data risk assessment. EFSA J 2022; 20:e200406. [PMID: 35634560 PMCID: PMC9131813 DOI: 10.2903/j.efsa.2022.e200406] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Campylobacter jejuni is considered as the main pathogen in human food-borne outbreaks worldwide. Over the past years, several studies have reported antimicrobial resistance (AMR) in C. jejuni strains. In Europe, the official monitoring of AMR comprises the testing of Campylobacter spp. from food-producing animals because this microorganism is responsible for human infections and usually predominant in poultry. Food-producing animals are considered to be a major source of campylobacteriosis through contamination of food products. Concerns are growing due to the current classification of C. jejuni by the WHO as a 'high priority pathogen' due to the emergence of resistance to multiple drugs such as those belonging to the fluoroquinolones, macrolides and other classes, which limits the treatment alternatives. Knowledge about the contributions of different food sources to gastrointestinal disease is fundamental to prioritise food safety interventions and to establish proper control strategies. Assessing the genetic diversity among Campylobacter species is essential to the understanding of their epidemiology and population structure. Using a population genetic approach and grouping the isolates into sequence types within different clonal complexes, it is possible to investigate the source of the human cases. The work programme was aimed for the fellow to assess the AMR of C. jejuni isolated from humans, poultry and birds from wild and urban Italian habitats. Given the public health concern represented by resistant pathogens in food-producing animals and the paucity of data about this topic in Italy, the aim was to identify correlations between phenotypic and genotypic AMR and comparing the origin of the isolates. The work programme allowed the fellow to acquire knowledge, skills and competencies on the web-based tools used by IZSAM to process the NGS data and perform bioinformatics analyses for the identification of epidemiological clusters, the study of AMR patterns in C. jejuni isolates, and the assessment of the human exposure to such AMR pathogens. Furthermore, the fellow became able to transfer the acquired knowledge through innovative web-based didactical tools applied to WGS and clustering of specific food-borne pathogens, with particular reference to C. jejuni. To achieve this objective, 2,734 C. jejuni strains isolated from domestic and wild animals and humans, during the period 2011-2021 were analysed. The resistance phenotypes of the isolates were determined using the microdilution method with EUCAST breakpoints, for the following antibiotics: nalidixic acid, ciprofloxacin, chloramphenicol, erythromycin, gentamicin, streptomycin, tetracycline. The data were complemented by WGS data for each strain, uploaded in the Italian information system for the collection and analysis of complete genome sequence of pathogens isolated from animal, food and environment (GENPAT) developed and maintained at IZSAM; information like clonal complex and sequence type to understand the phylogenetical distance between strains according to their origins were also considered. This work underlines that a better knowledge of the resistance levels of C. jejuni is necessary, and mandatory monitoring of Campylobacter species in the different animal productions is strongly suggested.
Collapse
Affiliation(s)
- A Conesa
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale – IZSAMTeramoItaly
| | - G Garofolo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale – IZSAMTeramoItaly
| | - A Di Pasquale
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale – IZSAMTeramoItaly
| | - C Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale – IZSAMTeramoItaly
| |
Collapse
|
71
|
Cloning vectors for gene delivery, integration and expression in Campylobacter jejuni. Biotechniques 2022; 72:255-262. [PMID: 35416085 DOI: 10.2144/btn-2021-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Campylobacter genetics research is negatively impacted by a shortage of molecular tools for expressing DNA elements. A previous technique coupled an antibiotic resistance gene and its promoter to a gene of interest, inserting this expression unit into a conserved chromosomal location. Here the authors describe two new plasmids for construction and gene integration utilizing aspects of the previous type of expression unit. pBlueKan+cysMPro allows for the assembly of amplified DNA targets behind a kanamycin resistance marker and a constitutively transcribed cysM promoter. Transfer of the transcription unit to plasmid pCJR01 adds flanking regions of Campylobacter rRNA homology for recombination into conserved rRNA regions. System utility was demonstrated by restoring function of a flaAB deletion (RM3194ΔflaAB::tet) with a flaA gene or flaA/flaB combination.
Collapse
|
72
|
Droplet Digital PCR-Based Detection and Quantification of GyrA Thr-86-Ile Mutation Based Fluoroquinolone-Resistant Campylobacter jejuni. Microbiol Spectr 2022; 10:e0276921. [PMID: 35412390 PMCID: PMC9045142 DOI: 10.1128/spectrum.02769-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fluoroquinolone (FQ)-resistant Campylobacter jejuni is a serious problem worldwide that limits effective treatment of infections. The traditional detection method depends on bacterial isolation and MIC testing, or traditional PCR, which is time-consuming and hard to identify the FQ-resistant C. jejuni in a high abundance wild-type background. This study aimed to develop a rapid and accurate ddPCR assay to detect FQ-resistant C. jejuni mutants based on the crucial resistance mutation C257T (Thr-86-Ile) in gyrA. Our ddPCR gyrA assay showed high specificity and accuracy. Sanger sequencing and the qPCR assay could only recognize gyrA mutant sequences when the ratios of wild-type/mutant were 1:1 or 10:1, respectively. Our ddPCR gyrA assay was able to detect gyrA mutant sequences in the mixtures with up to at least 1000:1 wild-type/mutant ratios, which suggested a significant advantage to distinguish the low mutant signal from the wild-type background. We further monitored the occurrence of gyrA mutations under ciprofloxacin pressure using our ddPCR gyrA assay, and clearly showed that the transition of a dominant C. jejuni subpopulation from wild-type to gyrA C257T mutant, resulting in FQ-resistance. We tested 52 samples from live chickens and retail chicken meat and showed that four samples contained wild-type/mutant mixtures comprising 1.7%, 28.6%, 53.3%, and 87.0% gyrA C257T mutants, respectively. These results demonstrated that the ddPCR gyrA assay was a highly sensitive alternative method to distinguish and quantify FQ-resistant C. jejuni infections that could help guide the appropriate use of FQs in clinical practice. IMPORTANCECampylobacter jejuni is considered to be the leading cause of human bacterial gastroenteritis worldwide, and fluoroquinolones (FQs) are the main choices for the treatment of bacterial gastroenteritis in clinical practice. In theory, antimicrobial susceptibility testing should help us to choose the most appropriate drugs for the treatment. However, to test the susceptibility of C. jejuni to FQs, the standardized method is bacteria isolation and MIC measurement, which will take more than 4 days. In addition, a low abundance of FQ-resistant C. jejuni is also hardly distinguished from a high abundance of wild-type background in the mixed infection. Therefore, the development of rapid and accurate detection technology for FQ-resistant C. jejuni is very important. This study provided a ddPCR gyrA assay, which is a highly sensitive alternative method to distinguish and quantify FQ-resistant C. jejuni infections that may help guide the appropriate use of FQs both in veterinary and human clinical practice.
Collapse
|
73
|
Brudvig JM, Cluett MM, Gensterblum-Miller EU, Chen J, Bell JA, Mansfield LS. Th1/Th17-mediated Immunity and Protection from Peripheral Neuropathy in Wildtype and IL10 -/- BALB/c Mice Infected with a Guillain-Barré Syndrome-associated Campylobacter jejuni Strain. Comp Med 2022; 72:63-77. [PMID: 35272743 PMCID: PMC9084571 DOI: 10.30802/aalas-cm-21-000059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/07/2021] [Accepted: 09/03/2021] [Indexed: 11/05/2022]
Abstract
Campylobacter jejuni is an important cause of bacterial gastroenteritis worldwide and is linked to Guillain-Barré syndrome (GBS), a debilitating postinfectious polyneuropathy. The immunopathogenesis of GBS involves the generation of antibodies that are cross reactive to C. jejuni lipooligosaccharide and structurally similar peripheral nerve gangliosides. Both the C. jejuni infecting strain and host factors contribute to GBS development. GBS pathogenesis is associated with Th2-mediated responses in patients. Moreover, induction of IgG1 antiganglioside antibodies in association with colonic Th2-mediated immune responses has been reported in C. jejuni-infected C57BL/6 IL10-/- mice at 4 to 6 wk after infection. We hypothesized that, due to their Th2 immunologic bias, BALB/c mice would develop autoantibodies and signs of peripheral neuropathy after infection with a GBS patient-derived strain of C. jejuni (strain 260.94). WT and IL10-/- BALB/c mice were orally inoculated with C. jejuni 260.94, phenotyped weekly for neurologic deficits, and euthanized after 5 wk. Immune responses were assessed as C. jejuni-specific and antiganglioside antibodies in plasma and cytokine production and histologic lesions in the proximal colon. Peripheral nerve lesions were assessed in dorsal root ganglia and their afferent nerve fibers by scoring immunohistochemically labeled macrophages through morphometry. C. jejuni 260.94 stably colonized both WT and IL10-/- mice and induced systemic Th1/Th17-mediated immune responses with significant increases in C. jejuni-specific IgG2a, IgG2b, and IgG3 plasma antibodies. However, C. jejuni 260.94 did not induce IgG1 antiganglioside antibodies, colitis, or neurologic deficits or peripheral nerve lesions in WT or IL10-/- mice. Both WT and IL10-/- BALB/c mice showed relative protection from development of Th2-mediated immunity and antiganglioside antibodies as compared with C57BL/6 IL10-/- mice. Therefore, BALB/c mice infected with C. jejuni 260.94 are not an effective disease model but provide the opportunity to study the role of immune mechanisms and host genetic background in the susceptibility to post infectious GBS.
Collapse
Affiliation(s)
- Jean M Brudvig
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, Michigan; College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Matthew M Cluett
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Elizabeth U Gensterblum-Miller
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; College of Veterinary Medicine, Michigan State University, East Lansing, Michiga
| | - James Chen
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; College of Veterinary Medicine, Michigan State University, East Lansing, Michiga
| | - Julia A Bell
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; College of Veterinary Medicine, Michigan State University, East Lansing, Michiga
| | - Linda S Mansfield
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, Michigan; College of Veterinary Medicine, Michigan State University, East Lansing, Michigan; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan;,
| |
Collapse
|
74
|
A New Variant of the aadE-sat4-aphA-3 Gene Cluster Found in a Conjugative Plasmid from a MDR Campylobacter jejuni Isolate. Antibiotics (Basel) 2022; 11:antibiotics11040466. [PMID: 35453217 PMCID: PMC9032879 DOI: 10.3390/antibiotics11040466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Campylobacter jejuni is a foodborne pathogen causing bacterial gastroenteritis, with the highest incidence reported in Europe. The prevalence of antibiotic resistance in C. jejuni, as well as in many other bacterial pathogens, has increased over the last few years. In this report, we describe the presence of a plasmid in a multi-drug-resistant C. jejuni strain isolated from a gastroenteritis patient. Mating experiments demonstrated the transference of this genetic element (pCjH01) among C. jejuni by plasmid conjugation. The pCjH01 plasmid was sequenced and assembled, revealing high similarity (97% identity) with pTet, a described tetracycline resistance encoding plasmid. pCjH01 (47.7 kb) is a mosaic plasmid composed of a pTet backbone that has acquired two discrete DNA regions. Remarkably, one of the acquired sequences carried an undescribed variant of the aadE-sat4-aphA-3 gene cluster, providing resistance to at least kanamycin and gentamycin. Aside from the antibiotic resistance genes, the cluster also carries genes coding for putative regulators, such as a sigma factor of the RNA polymerase and an antisigma factor. Homology searches suggest that Campylobacter exchanges genetic material with distant G-positive bacterial genera.
Collapse
|
75
|
Simms AJ, Kobayashi T, Schwartzhoff PV, Sekar P. Prosthetic hip infection due to Campylobacter jejuni. BMJ Case Rep 2022; 15:e248240. [PMID: 35272991 PMCID: PMC8915350 DOI: 10.1136/bcr-2021-248240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2022] [Indexed: 11/03/2022] Open
Abstract
A woman in her 60s with a left hip prosthesis was presented with left hip pain and fever. She had an elevated white blood cell count and inflammatory markers. Synovial fluid Gram stain demonstrated curved Gram-negative rods identified as Campylobacter jejuni The patient initially refused surgery and after 3 months underwent one-stage exchange after which she was treated with 12 weeks of levofloxacin. Her inflammatory markers normalised and she was clinically doing well at her 6-month follow-up. C. jejuni is a rare cause of prosthetic joint infection and should be included in the differential diagnosis when a patient has risk factors even without significant preceding gastrointestinal symptoms. Per most recent Infectious Diseases Society of America guidelines, treatment after one-stage revision includes 4-6 weeks of intravenous antimicrobials followed by possible oral suppression therapy, while the European guidelines recommend 12 weeks of orally bioavailable antibiotics.
Collapse
Affiliation(s)
- Andrew Joseph Simms
- Internal Medicine, Infectious Diseases, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Takaaki Kobayashi
- Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Patrick V Schwartzhoff
- Internal Medicine, Carver College of Medicine, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Poorani Sekar
- Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
76
|
Riegert AS, Narindoshvili T, Raushel FM. Discovery and Functional Characterization of a Clandestine ATP-Dependent Amidoligase in the Biosynthesis of the Capsular Polysaccharide from Campylobacter jejuni. Biochemistry 2022; 61:117-124. [PMID: 34951304 PMCID: PMC9619395 DOI: 10.1021/acs.biochem.1c00707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Campylobacter jejuni is a Gram-negative, pathogenic bacterium that is commensal in poultry. Infection of C. jejuni leads to campylobacteriosis, the leading cause of gastroenteritis worldwide. Coating the surface of C. jejuni is a thick layer of sugar molecules known as the capsular polysaccharide (CPS). The CPS of C. jejuni NCTC 11168 (HS:2) is composed of a repeating unit of d-glycero-l-gluco-heptose, d-glucuronate, d-N-acetyl-galactosamine, and d-ribose. The glucuronate is further amidated with either ethanolamine or serinol, but it is unknown how this new amide bond is formed. Sequence similarity networks were used to identify a candidate enzyme for amide bond formation during the biosynthesis of the CPS of C. jejuni. The C-terminal domain of Cj1438 was shown to catalyze amide bond formation using MgATP and d-glucuronate in the presence of either ethanolamine phosphate or (S)-serinol phosphate. Product formation was verified using 31P NMR spectroscopy and ESI mass spectrometry, and the kinetic constants determined using a coupled enzyme assay by measuring the rate of ADP formation. This work represents the first functional characterization of an ATP-dependent amidoligase in the formation of amide bonds in the biosynthetic pathway for the assembly of the CPS in C. jejuni.
Collapse
Affiliation(s)
- Alexander S. Riegert
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Tamari Narindoshvili
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States
| | - Frank M. Raushel
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, United States.,Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States.,Corresponding Author: Frank M. Raushel – Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States; , phone: 1-979-845-3373
| |
Collapse
|
77
|
Mazumder L, Hasan M, Rus'd AA, Islam MA. In-silico characterization and structure-based functional annotation of a hypothetical protein from Campylobacter jejuni involved in propionate catabolism. Genomics Inform 2022; 19:e43. [PMID: 35012287 PMCID: PMC8752978 DOI: 10.5808/gi.21043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni is one of the most prevalent organisms associated with foodborne illness across the globe causing campylobacteriosis and gastritis. Many proteins of C. jejuni are still unidentified. The purpose of this study was to determine the structure and function of a non-annotated hypothetical protein (HP) from C. jejuni. A number of properties like physiochemical characteristics, 3D structure, and functional annotation of the HP (accession No. CAG2129885.1) were predicted using various bioinformatics tools followed by further validation and quality assessment. Moreover, the protein-protein interactions and active site were obtained from the STRING and CASTp server, respectively. The hypothesized protein possesses various characteristics including an acidic pH, thermal stability, water solubility, and cytoplasmic distribution. While alpha-helix and random coil structures are the most prominent structural components of this protein, most of it is formed of helices and coils. Along with expected quality, the 3D model has been found to be novel. This study has identified the potential role of the HP in 2-methylcitric acid cycle and propionate catabolism. Furthermore, protein-protein interactions revealed several significant functional partners. The in-silico characterization of this protein will assist to understand its molecular mechanism of action better. The methodology of this study would also serve as the basis for additional research into proteomic and genomic data for functional potential identification.
Collapse
Affiliation(s)
- Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
| | | | - Ahmed Abu Rus'd
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
| | | |
Collapse
|
78
|
Abstract
The bacterial flagellum is a large macromolecular assembly that acts as propeller, providing motility through the rotation of a long extracellular filament. It is composed of over 20 different proteins, many of them highly oligomeric. Accordingly, it has attracted a huge amount of interest amongst researchers and the wider public alike. Nonetheless, most of its molecular details had long remained elusive.This however has changed recently, with the emergence of cryo-EM to determine the structure of protein assemblies at near-atomic resolution. Within a few years, the atomic details of most of the flagellar components have been elucidated, revealing not only its overall architecture but also the molecular details of its rotation mechanism. However, many questions remained unaddressed, notably on the complexity of the assembly of such an intricate machinery.In this chapter, we review the current state of our understanding of the bacterial flagellum structure, focusing on the recent development from cryo-EM. We also highlight the various elements that still remain to be fully characterized. Finally, we summarize the existing model for flagellum assembly and discuss some of the outstanding questions that are still pending in our understanding of the diversity of assembly pathways.
Collapse
Affiliation(s)
- Natalie S Al-Otaibi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Julien R C Bergeron
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
79
|
Okoye JC, Bellamy-Carter J, Oldham NJ, Oldfield NJ, Mahdavi J, Soultanas P. Ferric quinate (QPLEX) interacts with the major outer membrane protein (MOMP) of Campylobacter jejuni and enters through the porin channel into the periplasmic space. Comput Struct Biotechnol J 2022; 20:5355-5363. [PMID: 36212543 PMCID: PMC9522878 DOI: 10.1016/j.csbj.2022.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
Ferric chelates like ferric tyrosinate (TYPLEX) and the closely related ferric quinate (QPLEX) are structural mimics of bacterial siderophores. TYPLEX has been trialled as a feed additive in farming of commercial broilers, reducing Campylobacter loads by 2–3 log10 and leading to faster growth and better feed consumption. These ferric chelates offer a good alternative feed additive to antibiotics helping to reduce the indiscriminate use of preventative antibiotics in broiler farming to control Campylobacter infections. In this study, we show that QPLEX binds to the Major Outer Membrane Protein (MOMP) of C. jejuni NCTC11168. MOMP is an essential and abundant outer membrane porin on the surface of the bacteria, acting as an adhesin to help establish infection by mediating attachment of C. jejuni onto the gut epithelium of broilers and establish infection. Using carbene footprinting, we map the MOMP-QPLEX interaction and show by complementary in silico docking that QPLEX enters the porin channel through interactions at the extracellular face, translocates down the channel through a dipole transverse electric field towards the opposite end and is released into the periplasm at the intracellular face of MOMP. Our studies suggest a potential mechanism for the non-antibiotic anti-Campylobacter activity of these ferric chelates.
Collapse
Affiliation(s)
- Jennifer C. Okoye
- School of Chemistry, Biodiscovery Institute, University of Nottingham, University Park NG7 2RD, United Kingdom
| | | | - Neil J. Oldham
- School of Chemistry, University of Nottingham, University Park NG7 2RD, United Kingdom
| | - Neil J. Oldfield
- School of Life Sciences, University of Nottingham, University Park NG7 2RD, United Kingdom
| | - Jafar Mahdavi
- School of Chemistry, Biodiscovery Institute, University of Nottingham, University Park NG7 2RD, United Kingdom
| | - Panos Soultanas
- School of Chemistry, Biodiscovery Institute, University of Nottingham, University Park NG7 2RD, United Kingdom
- Corresponding author.
| |
Collapse
|
80
|
Sørensen MCH, Gencay YE, Fanger F, Chichkova MAT, Mazúrová M, Klumpp J, Nielsen EM, Brøndsted L. Identification of Novel Phage Resistance Mechanisms in Campylobacter jejuni by Comparative Genomics. Front Microbiol 2022; 12:780559. [PMID: 34970240 PMCID: PMC8713573 DOI: 10.3389/fmicb.2021.780559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/09/2021] [Indexed: 12/03/2022] Open
Abstract
Phages infecting Campylobacter jejuni are considered a promising intervention strategy at broiler farms, yet phage sensitivity of naturally occurring poultry isolates is not well studied. Here, we investigated phage sensitivity and identified resistance mechanisms of C. jejuni strains originating from Danish broilers belonging to the most prevalent MLST (ST) types. Determining plaque formation of 51 phages belonging to Fletchervirus or Firehammervirus showed that 21 out of 31 C. jejuni strains were susceptible to at least one phage. While C. jejuni ST-21 strains encoded the common phase variable O-methyl phosphoramidate (MeOPN) receptor of the Fletchervirus and were only infected by these phages, ST-45 strains did not encode this receptor and were exclusively infected by Firehammervirus phages. To identify internal phage resistance mechanism in ST-21 strains, we performed comparative genomics of two strains, CAMSA2002 sensitive to almost all Fletchervirus phages and CAMSA2038, resistant to all 51 phages. The strains encoded diverse clustered regularly interspaced short palindromic repeats (CRISPR) spacers but none matched the tested phages. Sequence divergence was also observed in a predicted SspE homolog and putative restriction modification systems including a methyl-specific McrBC endonuclease. Furthermore, when mcrB was deleted, CAMSA2038 became sensitive to 17 out of 43 phages, three being Firehammervirus phages that otherwise did not infect any ST-21 strains. Yet, 16 phages demonstrated significantly lower efficiencies of plating on the mcrB mutant suggesting additional resistance mechanism still restricting phage propagation in CAMSA2038. Thus, our work demonstrates that C. jejuni isolates originating from broilers may have acquired several resistance mechanisms to successfully prevent phage infection in their natural habitat.
Collapse
Affiliation(s)
- Martine C H Sørensen
- Food Safety and Zoonoses, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yilmaz Emre Gencay
- Food Safety and Zoonoses, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Florian Fanger
- Food Safety and Zoonoses, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mariana A T Chichkova
- Food Safety and Zoonoses, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mária Mazúrová
- Food Safety and Zoonoses, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jochen Klumpp
- Institute for Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Eva M Nielsen
- Foodborne Infections, Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Lone Brøndsted
- Food Safety and Zoonoses, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
81
|
Korchagina AA, Koroleva E, Tumanov AV. Innate Lymphoid Cells in Response to Intracellular Pathogens: Protection Versus Immunopathology. Front Cell Infect Microbiol 2021; 11:775554. [PMID: 34938670 PMCID: PMC8685334 DOI: 10.3389/fcimb.2021.775554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a heterogeneous group of cytokine-producing lymphocytes which are predominantly located at mucosal barrier surfaces, such as skin, lungs, and gastrointestinal tract. ILCs contribute to tissue homeostasis, regulate microbiota-derived signals, and protect against mucosal pathogens. ILCs are classified into five major groups by their developmental origin and distinct cytokine production. A recently emerged intriguing feature of ILCs is their ability to alter their phenotype and function in response to changing local environmental cues such as pathogen invasion. Once the pathogen crosses host barriers, ILCs quickly activate cytokine production to limit the spread of the pathogen. However, the dysregulated ILC responses can lead to tissue inflammation and damage. Furthermore, the interplay between ILCs and other immune cell types shapes the outcome of the immune response. Recent studies highlighted the important role of ILCs for host defense against intracellular pathogens. Here, we review recent advances in understanding the mechanisms controlling protective and pathogenic ILC responses to intracellular pathogens. This knowledge can help develop new ILC-targeted strategies to control infectious diseases and immunopathology.
Collapse
Affiliation(s)
- Anna A Korchagina
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ekaterina Koroleva
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
82
|
The cost of bacterial predation via type VI secretion system leads to predator extinction under environmental stress. iScience 2021; 24:103507. [PMID: 34934926 PMCID: PMC8654991 DOI: 10.1016/j.isci.2021.103507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
As a common gut pathogen, Campylobacter jejuni (C. jejuni) harbors the Type VI Secretion System (T6SS) that injects toxic effectors into neighboring cells, modulating microbial competitions in the harsh gut environment. Using bile salt as a natural stressor and T6SS-positive C. jejuni as a predator, we show that T6SS activity could entail a cost during bacterial predation under environmental stress. Our data suggest bile salt influx and subsequent DNA damage due to the prey-driven activation of the T6SS. We further combined experiments and mathematical modeling to explore how the stress-induced “predation cost” determines ecological outcomes. Consistent with a population-dynamics model, we found predator extinction above a critical bile salt concentration and prey-predator coexistence below this level. Moreover, we utilized the predation cost as an effective strategy facilitating host defense against C. jejuni infection. Together, we elucidate how predator dominance versus extinction emerges from the interplay between environmental stress and the T6SS machinery. Campylobacter jejuni uses Type VI secretion system (T6SS) to kill prey bacteria Under bile salt stress, activated T6SS may promote bile salt uptake and DNA damage T6SS-dependent predation by C. jejuni thus entails a “predation cost” under stress The predation cost leads to predator extinction and host defense against C. jejuni
Collapse
|
83
|
Callahan SM, Johnson JG. Transposon-Based Identification of Factors That Promote Campylobacter jejuni Nuclease Activity. Curr Protoc 2021; 1:e293. [PMID: 34875141 DOI: 10.1002/cpz1.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nucleases are ubiquitous in pathogens and allow bacteria to acquire nucleotide nutrients, take up foreign DNA, induce tissue damage, degrade neutrophil extracellular traps, and modulate the host inflammatory response. Furthermore, nucleases can modulate numerous bacterial virulence factors, promoting bacterial growth and disease. To understand how bacteria can produce nucleases, an unbiased approach is needed to identify these systems. Campylobacter jejuni is the leading cause of bacterial-derived gastroenteritis and utilizes numerous systems to damage host DNA. Therefore, it is imperative to identify C. jejuni nucleases to understand the molecular mechanism of both infection and pathology. Detailed protocols for a transposon insertion sequencing-based DNase agar screen, a quantitative PCR nuclease screen, and PCR transposon insertion confirmation are included in this article. © 2021 Wiley Periodicals LLC. Basic Protocol 1: DNase agar colony screen of Campylobacter jejuni transposon insertion sequencing library isolates Basic Protocol 2: Quantitative PCR nuclease screen of transposon insertion sequencing library isolates Basic Protocol 3: PCR transposon insertion confirmation.
Collapse
Affiliation(s)
- Sean M Callahan
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee
| | - Jeremiah G Johnson
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
84
|
Svensson SL, Sharma CM. RNase III-mediated processing of a trans-acting bacterial sRNA and its cis-encoded antagonist. eLife 2021; 10:69064. [PMID: 34843430 PMCID: PMC8687705 DOI: 10.7554/elife.69064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/28/2021] [Indexed: 12/27/2022] Open
Abstract
Bacterial small RNAs (sRNAs) are important post-transcriptional regulators in stress responses and virulence. They can be derived from an expanding list of genomic contexts, such as processing from parental transcripts by RNase E. The role of RNase III in sRNA biogenesis is less well understood despite its well-known roles in rRNA processing, RNA decay, and cleavage of sRNA-mRNA duplexes. Here, we show that RNase III processes a pair of cis-encoded sRNAs (CJnc190 and CJnc180) of the food-borne pathogen Campylobacter jejuni. While CJnc180 processing by RNase III requires CJnc190, RNase III processes CJnc190 independent of CJnc180 via cleavage of an intramolecular duplex. We also show that CJnc190 directly represses translation of the colonization factor PtmG by targeting a G-rich ribosome-binding site, and uncover that CJnc180 is a cis-acting antagonist of CJnc190, indirectly affecting ptmG regulation. Our study highlights a role for RNase III in sRNA biogenesis and adds cis-encoded RNAs to the expanding diversity of transcripts that can antagonize bacterial sRNAs.
Collapse
Affiliation(s)
- Sarah Lauren Svensson
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Cynthia Mira Sharma
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
85
|
Ohadi E, Bakhshi B, Kalani BS, Talebi M, Irajian G. Transcriptome analysis of biofilm formation under aerobic and microaerobic conditions in clinical isolates of Campylobacter spp. Res Vet Sci 2021; 142:24-30. [PMID: 34847463 DOI: 10.1016/j.rvsc.2021.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 07/29/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
It has been well documented that Campylobacter is the leading cause of foodborne infections and bacterial enteritis in high-income countries. The gastrointestinal tract of most warm-blooded animals, such as mammals and poultry, is prone to this pathogen. Infections caused by this bacterium in humans have usually been associated with the consumption of contaminated poultry meat. The important point about Campylobacter is that this bacterium has adapted to harsh environmental conditions along the food chain (poultry digestive tract to the consumer's plate) and developed an adapted mechanism to those conditions. This study aimed to compare the ability of Campylobacter jejuni and Campylobacter coli strains to form biofilms under aerobic and microaerobic conditions. The presence and expression of flab, FliS, DnaK, luxs, CsrA, Cj0688, and cosR genes involved in biofilm formation were investigated. Finally, the correlation between the biofilm forming ability of Campylobacter isolates and the presence/expression of selected genes has been explored. A significant correlation was observed between the presence and expression of some genes and the degree of biofilm formation in C. jejuni and C. coli isolates. A strong biofilm production was detected in strains harboring all selected genes with greater expression levels. The ability of C. jejuni and C. coli strains in biofilm formation is associated with the coordinated function and convergent expression of the selected genes. Seemingly, stress response- and motility-related genes have the most involvement in biofilm formation of C. jejuni and C. coli strains, while other genes have an accessory role in this phenomenon.
Collapse
Affiliation(s)
- Elnaz Ohadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Behrooz Sadeghi Kalani
- Department of Medical Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Malihe Talebi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Irajian
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
86
|
Hansen ZA, Cha W, Nohomovich B, Newton DW, Lephart P, Salimnia H, Khalife W, Shade A, Rudrik JT, Manning SD. Comparing gut resistome composition among patients with acute Campylobacter infections and healthy family members. Sci Rep 2021; 11:22368. [PMID: 34785751 PMCID: PMC8595376 DOI: 10.1038/s41598-021-01927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/02/2021] [Indexed: 12/04/2022] Open
Abstract
Campylobacter commonly causes foodborne infections and antibiotic resistance is an imminent concern. It is not clear, however, if the human gut 'resistome' is affected by Campylobacter during infection. Application of shotgun metagenomics on stools from 26 cases with Campylobacter infections and 44 healthy family members (controls) identified 406 unique antibiotic resistance genes (ARGs) representing 153 genes/operons, 40 mechanisms, and 18 classes. Cases had greater ARG richness (p < 0.0001) and Shannon diversity (p < 0.0001) than controls with distinct compositions (p = 0.000999; PERMANOVA). Cases were defined by multidrug resistance genes and were dominated by Proteobacteria (40.8%), specifically those representing Escherichia (20.9%). Tetracycline resistance genes were most abundant in controls, which were dominated by Bacteroidetes (45.3%) and Firmicutes (44.4%). Hierarchical clustering of cases identified three clusters with distinct resistomes. Case clusters 1 and 3 differed from controls containing more urban and hospitalized patients. Relative to family members of the same household, ARG composition among matched cases was mostly distinct, though some familial controls had similar profiles that could be explained by a shorter time since exposure to the case. Together, these data indicate that Campylobacter infection is associated with an altered resistome composition and increased ARG diversity, raising concerns about the role of infection in the spread of resistance determinants.
Collapse
Affiliation(s)
- Zoe A Hansen
- Departments of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Wonhee Cha
- Departments of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Brian Nohomovich
- Departments of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Paul Lephart
- University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | - Ashley Shade
- Departments of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
- Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA
| | - James T Rudrik
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI, 48913, USA
| | - Shannon D Manning
- Departments of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
87
|
Evidence of MHC class I and II influencing viral and helminth infection via the microbiome in a non-human primate. PLoS Pathog 2021; 17:e1009675. [PMID: 34748618 PMCID: PMC8601626 DOI: 10.1371/journal.ppat.1009675] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/18/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023] Open
Abstract
Until recently, the study of major histocompability complex (MHC) mediated immunity has focused on the direct link between MHC diversity and susceptibility to parasite infection. However, MHC genes can also influence host health indirectly through the sculpting of the bacterial community that in turn shape immune responses. We investigated the links between MHC class I and II gene diversity gut microbiome diversity and micro- (adenovirus, AdV) and macro- (helminth) parasite infection probabilities in a wild population of non-human primates, mouse lemurs of Madagascar. This setup encompasses a plethora of underlying interactions between parasites, microbes and adaptive immunity in natural populations. Both MHC classes explained shifts in microbiome composition and the effect was driven by a few select microbial taxa. Among them were three taxa (Odoribacter, Campylobacter and Prevotellaceae-UCG-001) which were in turn linked to AdV and helminth infection status, correlative evidence of the indirect effect of the MHC via the microbiome. Our study provides support for the coupled role of MHC diversity and microbial flora as contributing factors of parasite infection. The selective pressure of the major histocompatibility complex (MHC) on microbial communities, and the potential role of this interaction in driving parasite resistance has been largely neglected. Using a natural population of the primate Microcebus griseorufus, we provide correlative evidence of two outstanding findings: that MHCI and MHCII diversity shapes the composition of the gut microbiota; and that select taxa associated with MHC diversity predicted adenovirus and helminth infection status. Our study highlights the importance of incorporating the microbiome when investigating parasite-mediated MHC selection.
Collapse
|
88
|
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, is a facultative intracellular pathogen that survives inside phagocytic host cells by establishing a protected replication niche, termed the "Legionella-containing vacuole" (LCV). To form an LCV and subvert pivotal host pathways, L. pneumophila employs a type IV secretion system (T4SS), which translocates more than 300 different effector proteins into the host cell. The L. pneumophila T4SS complex has been shown to span the bacterial cell envelope at the bacterial poles. However, the interactions between the T4SS and the LCV membrane are not understood. Using cryo-focused ion beam milling, cryo-electron tomography, and confocal laser scanning fluorescence microscopy, we show that up to half of the intravacuolar L. pneumophila bacteria tether their cell pole to the LCV membrane. Tethering coincides with the presence and function of T4SSs and likely promotes the establishment of distinct contact sites between T4SSs and the LCV membrane. Contact sites are characterized by indentations in the limiting LCV membrane and localize juxtaposed to T4SS machineries. The data are in agreement with the notion that effector translocation occurs by close membrane contact rather than by an extended pilus. Our findings provide novel insights into the interactions of the L. pneumophila T4SS with the LCV membrane in situ. IMPORTANCE Legionnaires' disease is a life-threatening pneumonia, which is characterized by high fever, coughing, shortness of breath, muscle pain, and headache. The disease is caused by the amoeba-resistant bacterium L. pneumophila found in various soil and aquatic environments and is transmitted to humans via the inhalation of small bacteria-containing droplets. An essential virulence factor of L. pneumophila is a so-called "type IV secretion system" (T4SS), which, by injecting a plethora of "effector proteins" into the host cell, determines pathogen-host interactions and the formation of a distinct intracellular compartment, the "Legionella-containing vacuole" (LCV). It is unknown how the T4SS makes contact to the LCV membrane to deliver the effectors. In this study, we identify indentations in the host cell membrane in close proximity to functional T4SSs localizing at the bacterial poles. Our work reveals first insights into the architecture of Legionella-LCV contact sites.
Collapse
|
89
|
Musthafa KS, Sirirak T, Paosen S, Voravuthikunchai SP. Antimicrobial effect of Eleutherine americana bulb extract on the growth of Campylobacter jejuni in broiler meat. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00951-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
90
|
Panzenhagen P, Portes AB, dos Santos AMP, Duque SDS, Conte Junior CA. The Distribution of Campylobacter jejuni Virulence Genes in Genomes Worldwide Derived from the NCBI Pathogen Detection Database. Genes (Basel) 2021; 12:1538. [PMID: 34680933 PMCID: PMC8535712 DOI: 10.3390/genes12101538] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023] Open
Abstract
Campylobacter jejuni (C. jejuni) is responsible for 80% of human campylobacteriosis and is the leading cause of gastroenteritis globally. The relevant public health risks of C. jejuni are caused by particular virulence genes encompassing its virulome. We analyzed 40,371 publicly available genomes of C. jejuni deposited in the NCBI Pathogen Detection Database, combining their epidemiologic metadata with an in silico bioinformatics analysis to increase our current comprehension of their virulome from a global perspective. The collection presented a virulome composed of 126 identified virulence factors that were grouped in three clusters representing the accessory, the softcore, and the essential core genes according to their prevalence within the genomes. The multilocus sequence type distribution in the genomes was also investigated. An unexpected low prevalence of the full-length flagellin flaA and flaB locus of C. jejuni genomes was revealed, and an essential core virulence gene repertoire prevalent in more than 99.99% of genomes was identified. Altogether, this is a pioneer study regarding Campylobacter jejuni that has compiled a significant amount of data about the Multilocus Sequence Type and virulence factors concerning their global prevalence and distribution over this database.
Collapse
Affiliation(s)
- Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Ana Beatriz Portes
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Anamaria M. P. dos Santos
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Sheila da Silva Duque
- Collection of Campylobacter, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil;
| | - Carlos Adam Conte Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
91
|
Solís‐Soto L, Prabhakarankutty LK, García S, Ortíz‐Reyes Y, Heredia N. Controlling
Campylobacter jejuni
in vitro and in chicken using combinations of citrus‐based and trisodium phosphate formulations. J Food Saf 2021. [DOI: 10.1111/jfs.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Luisa Solís‐Soto
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas Universidad Autónoma de Nuevo León San Nicolás de los Garza Mexico
| | | | - Santos García
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas Universidad Autónoma de Nuevo León San Nicolás de los Garza Mexico
| | - Yaraymi Ortíz‐Reyes
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas Universidad Autónoma de Nuevo León San Nicolás de los Garza Mexico
| | - Norma Heredia
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas Universidad Autónoma de Nuevo León San Nicolás de los Garza Mexico
| |
Collapse
|
92
|
Versace G, Palombo M, Menon A, Scarlato V, Roncarati D. Feeling the Heat: The Campylobacter jejuni HrcA Transcriptional Repressor Is an Intrinsic Protein Thermosensor. Biomolecules 2021; 11:biom11101413. [PMID: 34680046 PMCID: PMC8533110 DOI: 10.3390/biom11101413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 01/16/2023] Open
Abstract
The heat-shock response, a universal protective mechanism consisting of a transcriptional reprogramming of the cellular transcriptome, results in the accumulation of proteins which counteract the deleterious effects of heat-stress on cellular polypeptides. To quickly respond to thermal stress and trigger the heat-shock response, bacteria rely on different mechanisms to detect temperature variations, which can involve nearly all classes of biological molecules. In Campylobacter jejuni the response to heat-shock is transcriptionally controlled by a regulatory circuit involving two repressors, HspR and HrcA. In the present work we show that the heat-shock repressor HrcA acts as an intrinsic protein thermometer. We report that a temperature upshift up to 42 °C negatively affects HrcA DNA-binding activity to a target promoter, a condition required for de-repression of regulated genes. Furthermore, we show that this impairment of HrcA binding at 42 °C is irreversible in vitro, as DNA-binding was still not restored by reversing the incubation temperature to 37 °C. On the other hand, we demonstrate that the DNA-binding activity of HspR, which controls, in combination with HrcA, the transcription of chaperones' genes, is unaffected by heat-stress up to 45 °C, portraying this master repressor as a rather stable protein. Additionally, we show that HrcA binding activity is enhanced by the chaperonin GroE, upon direct protein-protein interaction. In conclusion, the results presented in this work establish HrcA as a novel example of intrinsic heat-sensing transcriptional regulator, whose DNA-binding activity is positively modulated by the GroE chaperonin.
Collapse
Affiliation(s)
| | | | | | - Vincenzo Scarlato
- Correspondence: (V.S.); (D.R.); Tel.: +39-051-209-4204 (V.S.); +39-051-209-9320 (D.R.)
| | - Davide Roncarati
- Correspondence: (V.S.); (D.R.); Tel.: +39-051-209-4204 (V.S.); +39-051-209-9320 (D.R.)
| |
Collapse
|
93
|
Riegert AS, Narindoshvili T, Coricello A, Richards NGJ, Raushel FM. Functional Characterization of Two PLP-Dependent Enzymes Involved in Capsular Polysaccharide Biosynthesis from Campylobacter jejuni. Biochemistry 2021; 60:2836-2843. [PMID: 34505775 DOI: 10.1021/acs.biochem.1c00439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Campylobacter jejuni is a Gram-negative, pathogenic bacterium that causes campylobacteriosis, a form of gastroenteritis. C. jejuni is the most frequent cause of food-borne illness in the world, surpassing Salmonella and E. coli. Coating the surface of C. jejuni is a layer of sugar molecules known as the capsular polysaccharide that, in C. jejuni NCTC 11168, is composed of a repeating unit of d-glycero-l-gluco-heptose, d-glucuronic acid, d-N-acetyl-galactosamine, and d-ribose. The d-glucuronic acid moiety is further amidated with either serinol or ethanolamine. It is unknown how these modifications are synthesized and attached to the polysaccharide. Here, we report the catalytic activities of two previously uncharacterized, pyridoxal phosphate (PLP)-dependent enzymes, Cj1436 and Cj1437, from C. jejuni NCTC 11168. Using a combination of mass spectrometry and nuclear magnetic resonance, we determined that Cj1436 catalyzes the decarboxylation of l-serine phosphate to ethanolamine phosphate. Cj1437 was shown to catalyze the transamination of dihydroxyacetone phosphate to (S)-serinol phosphate in the presence of l-glutamate. The probable routes to the ultimate formation of the glucuronamide substructures in the capsular polysaccharides of C. jejuni are discussed.
Collapse
Affiliation(s)
- Alexander S Riegert
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Tamari Narindoshvili
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Adriana Coricello
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Nigel G J Richards
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Frank M Raushel
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, United States.,Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
94
|
Yamamoto S, Iyoda S, Ohnishi M. Stabilizing Genetically Unstable Simple Sequence Repeats in the Campylobacter jejuni Genome by Multiplex Genome Editing: a Reliable Approach for Delineating Multiple Phase-Variable Genes. mBio 2021; 12:e0140121. [PMID: 34425708 PMCID: PMC8437040 DOI: 10.1128/mbio.01401-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
Hypermutable simple sequence repeats (SSRs) are major drivers of phase variation in Campylobacter jejuni. The presence of multiple SSR-mediated phase-variable genes encoding enzymes that modify surface structures, including capsular polysaccharide (CPS) and lipooligosaccharide (LOS), generates extreme cell surface diversity within bacterial populations, thereby promoting adaptation to selective pressures in host environments. Therefore, genetically controlling SSR-mediated phase variation can be important for achieving stable and reproducible research on C. jejuni. Here, we show that natural "cotransformation" is an effective method for C. jejuni genome editing. Cotransformation is a trait of naturally competent bacteria that causes uptake/integration of multiple different DNA molecules, which has been recently adapted to multiplex genome editing by natural transformation (MuGENT), a method for introducing multiple mutations into the genomes of these bacteria. We found that cotransformation efficiently occurred in C. jejuni. To examine the feasibility of MuGENT in C. jejuni, we "locked" different polyG SSR tracts in strain NCTC11168 (which are located in the biosynthetic CPS/LOS gene clusters) into either the ON or OFF configurations. This approach, termed "MuGENT-SSR," enabled the generation of all eight edits within 2 weeks and the identification of a phase-locked strain with a highly stable type of Penner serotyping, a CPS-based serotyping scheme. Furthermore, extensive genome editing of this strain by MuGENT-SSR identified a phase-variable gene that determines the Penner serotype of NCTC11168. Thus, MuGENT-SSR provides a platform for genetic and phenotypic engineering of genetically unstable C. jejuni, making it a reliable approach for elucidating the mechanisms underlying phase-variable expression of specific phenotypes. IMPORTANCE Campylobacter jejuni is the leading bacterial cause of foodborne gastroenteritis in developed countries and occasionally progresses to the autoimmune disease Guillain-Barré syndrome. A relatively large number of hypermutable simple sequence repeat (SSR) tracts in the C. jejuni genome markedly decreases its phenotypic stability through reversible changes in the ON or OFF expression states of the genes in which they reside, a phenomenon called phase variation. Thus, controlling SSR-mediated phase variation can be important for achieving stable and reproducible research on C. jejuni. In this study, we developed a feasible and effective approach for genetically manipulate multiple SSR tracts in the C. jejuni genome using natural cotransformation, a trait of naturally transformable bacterial species that causes the uptake and integration of multiple different DNA molecules. This approach will greatly help to improve the genetic and phenotypic stability of C. jejuni to enable diverse applications in research and development.
Collapse
Affiliation(s)
- Shouji Yamamoto
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
95
|
Powell M, Blaskovich MAT, Hansford KA. Targeted Protein Degradation: The New Frontier of Antimicrobial Discovery? ACS Infect Dis 2021; 7:2050-2067. [PMID: 34259518 DOI: 10.1021/acsinfecdis.1c00203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Targeted protein degradation aims to hijack endogenous protein quality control systems to achieve direct knockdown of protein targets. This exciting technology utilizes event-based pharmacology to produce therapeutic outcomes, a feature that distinguishes it from classical occupancy-based inhibitor agents. Early degrader candidates display resilience to mutations while possessing potent nanomolar activity and high target specificity. Paired with the rapid advancement of our knowledge in the factors driving targeted degradation, the expansion of this style of therapeutic agent to a range of disease indications is eagerly awaited. In particular, the area of antibiotic discovery is sorely lacking in novel approaches, with the Antimicrobial Resistance (AMR) crisis looming as the next potential global health calamity. Here, the current advances in targeted protein degradation are highlighted, and potential approaches for designing novel antimicrobial protein degraders are proposed, ranging from adaptations of current strategies to completely novel approaches to targeted protein degradation.
Collapse
Affiliation(s)
- Matthew Powell
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Karl A. Hansford
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
96
|
Phenotypic and Molecular Patterns of Resistance among Campylobacter coli and Campylobacter jejuni Isolates, from Pig Farms. Animals (Basel) 2021; 11:ani11082394. [PMID: 34438851 PMCID: PMC8388618 DOI: 10.3390/ani11082394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Campylobacter spp. has been the leading cause of human diarrhea in EU since 2005. Although poultry and poultry meat are considered as the primary source of transmission of campylobacteriosis to humans, pigs can be a significant reservoir of the pathogen, as well. Moreover, the increase of antibiotic resistance in the specific pathogen, especially against fluroquinolones and macrolides is considered a significant threat for public health. The purpose of the current study was to evaluate and molecularly characterize the antimicrobial resistance of Campylobacter infection in pig farms in Greece at both phenotypic and molecular level. Abstract The purpose of this research was to characterize the antibiotic resistance patterns of Campylobacter spp. isolated from commercial farrow to finish farms in Greece, and analyze the relevant molecular resistance mechanisms among the resistant Campylobacter isolates. Susceptibility testing to five different classes of antibiotics was performed in 100 C. coli and 100 C. jejuni, previously isolated and identified. All isolates were found susceptible to meropenem. Very high rates of resistance were recorded for tetracyclines (84.5%), medium rates of resistance were recorded regarding quinolones (23%), and low and very low rates of resistance were identified for macrolides such as erythromycin and aminoglycosides (12% and 4%, respectively). Only 12.5% of the Campylobacter isolates displayed MDR. Regarding the molecular mechanisms of resistance, all ciprofloxacin resistant isolates hosted the mutant type Thr-86-Ile region of the quinolone resistance-determining region (QRDR) of the gyrA gene. In all erythromycin resistant isolates, the transitional mutations A2075G and A2074C in the 23S rRNA gene were only amplified. Molecular screening of tetracycline resistance genes indicated that the vast majority of Campylobacter isolates (92.3%) were positive for the tet(O) gene. In summary, these findings and especially the very high and medium rates of resistance for tetracyclines and fluroquinolones, respectively recommend that a continuous monitoring of Campylobacter isolates susceptibility in combination with the proper use of antimicrobials in livestock production is of great importance for public health.
Collapse
|
97
|
Cytolethal distending toxin: from genotoxin to a potential biomarker and anti-tumor target. World J Microbiol Biotechnol 2021; 37:150. [PMID: 34379213 DOI: 10.1007/s11274-021-03117-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Cytolethal Distending Toxin (CDT) belongs to the AB toxin family and is produced by a plethora of Gram-negative bacteria. Eight human-affecting enteropathogens harbor CDT that causes irritable bowel syndrome (IBS), dysentery, chancroid, and periodontitis worldwide. They have a novel molecular mode of action as they interfere in the eukaryotic cell-cycle progression leading to G2/M arrest and apoptosis. CDT, the first bacterial genotoxin described, is encoded in a single operon possessing three proteins, CdtA, CdtB, and CdtC. CdtA and CdtC are needed for the binding of the CDT toxin complex to the cholesterol-rich lipid domains of the host cell while the CdtB is the active moiety. Sequence and 3D structural-based analysis of CdtB showed similarities with nucleases and phosphatases, it was hypothesized that CdtB exercises a biochemical function identical to both these enzymes. CDT is secreted through the outer membrane vesicles from the producing bacteria. It is internalized in the target cells via clathrin-dependent endocytosis and translocated to the host cell nucleus through the Golgi complex and ER. This study discusses the virulence role of CDT, causing pathogenicity by acting as a tri-perditious complex in the CDT-producing species with an emphasis on its potential role as a biomarker and an anti-tumor agent.
Collapse
|
98
|
Sirtuin-dependent reversible lysine acetylation controls the activity of acetyl-Coenzyme A synthetase in Campylobacter jejuni. J Bacteriol 2021; 203:e0033321. [PMID: 34309396 DOI: 10.1128/jb.00333-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranslational modifications are mechanisms for rapid control of protein function used by cells from all domains of life. Acetylation of the epsilon amino group (Nε) of an active-site lysine of the AMP-forming acetyl-CoA synthetase (Acs) enzyme is the paradigm for the posttranslational control of the activity of metabolic enzymes. In bacteria, the alluded active-site lysine of Acs enzymes can be modified by a number of different GCN5-type N-acetyltransferases (GNATs). Acs activity is lost as a result of acetylation, and restored by deacetylation. Using a heterologous host, we show that Campylobacter jejuni NCTC11168 synthesizes enzymes that control Acs function by reversible lysine acetylation (RLA). This work validates the function of gene products encoded by the cj1537c, cj1715, and cj1050c loci, namely the AMP-forming acetate:CoA ligase (CjAcs), a type IV GCN5-type lysine acetyltransferase (GNAT, hereafter CjLatA), and a NAD+-dependent (class III) sirtuin deacylase (CjCobB), respectively. To our knowledge, these are the first in vivo and in vitro data on C. jejuni enzymes that control the activity of CjAcs. IMPORTANCE This work is important because it provides the experimental evidence needed to support the assignment of function to three key enzymes, two of which control the reversible posttranslational modification of an active-site lysyl residue of the central metabolic enzyme acetyl-CoA synthetase (CjAcs). We can now generate Campylobacter jejuni mutant strains defective in these functions, so we can establish the conditions in which this mode of regulation of CjAcs is triggered in this bacterium. Such knowledge may provide new therapeutic strategies for the control of this pathogen.
Collapse
|
99
|
Hu H, Santiveri M, Wadhwa N, Berg HC, Erhardt M, Taylor NMI. Structural basis of torque generation in the bi-directional bacterial flagellar motor. Trends Biochem Sci 2021; 47:160-172. [PMID: 34294545 DOI: 10.1016/j.tibs.2021.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022]
Abstract
The flagellar stator unit is an oligomeric complex of two membrane proteins (MotA5B2) that powers bi-directional rotation of the bacterial flagellum. Harnessing the ion motive force across the cytoplasmic membrane, the stator unit operates as a miniature rotary motor itself to provide torque for rotation of the flagellum. Recent cryo-electron microscopic (cryo-EM) structures of the stator unit provided novel insights into its assembly, function, and subunit stoichiometry, revealing the ion flux pathway and the torque generation mechanism. Furthermore, in situ cryo-electron tomography (cryo-ET) studies revealed unprecedented details of the interactions between stator unit and rotor. In this review, we summarize recent advances in our understanding of the structure and function of the flagellar stator unit, torque generation, and directional switching of the motor.
Collapse
Affiliation(s)
- Haidai Hu
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mònica Santiveri
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Navish Wadhwa
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Blvd, Cambridge, MA 02142, USA
| | - Howard C Berg
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Blvd, Cambridge, MA 02142, USA
| | - Marc Erhardt
- Institut für Biologie/Bakterienphysiologie, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
100
|
The Host Cellular Immune Response to Infection by Campylobacter Spp. and Its Role in Disease. Infect Immun 2021; 89:e0011621. [PMID: 34031129 DOI: 10.1128/iai.00116-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Campylobacter spp. are the leading cause of bacterium-derived gastroenteritis worldwide, impacting 96 million individuals annually. Unlike other bacterial pathogens of the gastrointestinal tract, Campylobacter spp. lack many of the classical virulence factors that are often associated with the ability to induce disease in humans, including an array of canonical secretion systems and toxins. Consequently, the clinical manifestations of human campylobacteriosis and its resulting gastrointestinal pathology are believed to be primarily due to the host immune response toward the bacterium. Further, while gastrointestinal infection is usually self-limiting, numerous postinfectious disorders can occur, including the development of Guillain-Barré syndrome, reactive arthritis, and irritable bowel syndrome. Because gastrointestinal disease likely results from the host immune response, the development of these postinfectious disorders may be due to dysregulation or misdirection of the same inflammatory response. As a result, it is becoming increasingly important to the Campylobacter field, and human health, that the cellular immune responses toward Campylobacter be better understood, including which immunological events are critical to the development of disease and the postinfectious disorders mentioned above. In this review, we collectively cover the cellular immune responses across susceptible hosts to Campylobacter jejuni infection, along with the tissue pathology and postinfectious disorders which may develop.
Collapse
|