51
|
Shi M, Maique J, Shepard S, Li P, Seli O, Moe OW, Chang Hu M. In vivo evidence for therapeutic applications of beclin 1 to promote recovery and inhibit fibrosis after acute kidney injury. Kidney Int 2022; 101:63-78. [PMID: 34736972 PMCID: PMC8741729 DOI: 10.1016/j.kint.2021.09.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 01/18/2023]
Abstract
Autophagy regulator beclin 1 activity determines the severity of kidney damage induced by ischemia reperfusion injury, but its role in kidney recovery and fibrosis are unknown and its therapeutic potentials have not been tested. Here, we explored beclin 1 effects on kidney fibrosis in three models of acute kidney injury (AKI)-ischemia reperfusion injury, cisplatin kidney toxicity, and unilateral ureteric obstruction in mouse strains with three levels of beclin 1 function: normal (wild type), low (heterozygous global deletion of beclin 1, Becn1+/-), and high beclin 1 activity (knockin gain-of-function mutant Becn1, Becn1FA). Fourteen days after AKI induction, heterozygous mice had more, but knockin mice had less kidney fibrosis than wild-type mice did. One day after ischemia reperfusion injury, heterozygous pan-kidney tubular Becn1 null mice had more severe kidney damage than homozygous distal tubular Becn1 null mice did, which was similar to the wild-type mice, implying that proximal tubular beclin 1 protects the kidney against ischemia reperfusion injury. By 14 days, both pan-kidney heterozygous Becn1 null and distal tubular homozygous Becn1 null mice had poorer kidney recovery than wild-type mice did. Injection of beclin 1 peptides increased cell proliferation in kidney tubules in normal mice. Beclin 1 peptides injection either before or after (2-5 days) ischemia reperfusion injury protected the kidney from injury and suppressed kidney fibrosis. Thus, both endogenous beclin 1 protein expression in kidney tubules and exogenous beclin 1 peptides are kidney protective via attenuation of acute kidney damage, promotion of cell proliferation, and inhibition of kidney fibrosis, consequently improving kidney recovery post-AKI. Hence, exogenous beclin 1 peptide may be a potential new therapy for AKI.
Collapse
Affiliation(s)
- Mingjun Shi
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research
| | - Jenny Maique
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research
| | - Sierra Shepard
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research
| | - Peng Li
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research
| | - Olivia Seli
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research
| | - Orson W. Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,Address for reprint request and other correspondence: Ming Chang Hu, MD, PhD, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 USA, or Orson W. Moe, MD, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 USA,
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA,Address for reprint request and other correspondence: Ming Chang Hu, MD, PhD, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 USA, or Orson W. Moe, MD, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 USA,
| |
Collapse
|
52
|
Affiliation(s)
- Parker C Wilson
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
53
|
Generation of Induced Nephron Progenitor-like Cells from Human Urine-Derived Cells. Int J Mol Sci 2021; 22:ijms222413449. [PMID: 34948246 PMCID: PMC8708572 DOI: 10.3390/ijms222413449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Regenerative medicine strategies employing nephron progenitor cells (NPCs) are a viable approach that is worthy of substantial consideration as a promising cell source for kidney diseases. However, the generation of induced nephron progenitor-like cells (iNPCs) from human somatic cells remains a major challenge. Here, we describe a novel method for generating NPCs from human urine-derived cells (UCs) that can undergo long-term expansion in a serum-free condition. Results: Here, we generated iNPCs from human urine-derived cells by forced expression of the transcription factors OCT4, SOX2, KLF4, c-MYC, and SLUG, followed by exposure to a cocktail of defined small molecules. These iNPCs resembled human embryonic stem cell-derived NPCs in terms of their morphology, biological characteristics, differentiation potential, and global gene expression and underwent a long-term expansion in serum-free conditions. Conclusion: This study demonstrates that human iNPCs can be readily generated and expanded, which will facilitate their broad applicability in a rapid, efficient, and patient-specific manner, particularly holding the potential as a transplantable cell source for patients with kidney disease.
Collapse
|
54
|
Ungricht R, Guibbal L, Lasbennes MC, Orsini V, Beibel M, Waldt A, Cuttat R, Carbone W, Basler A, Roma G, Nigsch F, Tchorz JS, Hoepfner D, Hoppe PS. Genome-wide screening in human kidney organoids identifies developmental and disease-related aspects of nephrogenesis. Cell Stem Cell 2021; 29:160-175.e7. [PMID: 34847364 DOI: 10.1016/j.stem.2021.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/13/2021] [Accepted: 11/01/2021] [Indexed: 12/27/2022]
Abstract
Human organoids allow the study of proliferation, lineage specification, and 3D tissue development. Here we present a genome-wide CRISPR screen in induced pluripotent stem cell (iPSC)-derived kidney organoids. The combination of inducible genome editing, longitudinal sampling, and endpoint sorting of tubular and stromal cells generated a complex, high-quality dataset uncovering a broad spectrum of insightful biology from early development to "adult" epithelial morphogenesis. Our functional dataset allows improving mesoderm induction by ROCK inhibition, contains monogenetic and complex trait kidney disease genes, confirms two additional congenital anomalies of the kidney and urinary tract (CAKUT) genes (CCDC170 and MYH7B), and provides a large candidate list of ciliopathy-related genes. Finally, identification of a cis-inhibitory effect of Jagged1 controlling epithelial proliferation shows how mosaic knockouts in pooled CRISPR screening can reveal ways of communication between heterogeneous cell populations in complex tissues. These data serve as a rich resource for the kidney research community and as a benchmark for future iPSC-derived organoid CRISPR screens.
Collapse
Affiliation(s)
- Rosemarie Ungricht
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Laure Guibbal
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | | | - Vanessa Orsini
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Martin Beibel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Annick Waldt
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Rachel Cuttat
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Walter Carbone
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Anne Basler
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Florian Nigsch
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Dominic Hoepfner
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Philipp S Hoppe
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland.
| |
Collapse
|
55
|
Nielsen ML, Mundt MC, Lildballe DL, Rasmussen M, Sunde L, Torres VE, Harris PC, Birn H. Functional megalin is expressed in renal cysts in a mouse model of adult polycystic kidney disease. Clin Kidney J 2021; 14:2420-2427. [PMID: 34754438 PMCID: PMC8572980 DOI: 10.1093/ckj/sfab088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the progressive growth of cysts and a decline of renal function. The clinical feasibility of the number of potential disease-modifying drugs is limited by systemic adverse effects. We hypothesize that megalin, a multiligand endocytic receptor expressed in the proximal tubule, may be used to facilitate drug uptake into cysts, thereby allowing for greater efficacy and fewer side effects. Methods The cyst expression of various tubular markers, including megalin and aquaporin 2 (AQP2), was analysed by immunohistochemistry (IHC) of kidney sections from the ADPKD mouse model (PKD1RC/RC) at different post-natal ages. The endocytic function of megalin in cysts was examined by IHC of kidney tissue from mice injected with the megalin ligand aprotinin. Results Cyst lining epithelial cells expressing megalin were observed at all ages; however, the proportion decreased with age. Concomitantly, an increasing proportion of cysts revealed expression of AQP2, partial expression of megalin and/or AQP2 or no expression of the examined markers. Endocytic uptake of aprotinin was evident in megalin-positive cysts, but only in those that remained connected to the renal tubular system. Conclusions Megalin-expressing cysts were observed at all ages, but the proportion decreased with age, possibly due to a switch in tubular origin, a merging of cysts of different tubular origin and/or a change in the expression pattern of cyst lining cells. Megalin expressed in cysts was functional, suggesting that megalin-mediated endocytosis is a potential mechanism for drug targeting in ADPKD if initiated early in the disease.
Collapse
Affiliation(s)
| | - Mia C Mundt
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Dorte L Lildballe
- Department of Molecular Medine, Aarhus University Hospital, Aarhus N, Denmark
| | - Maria Rasmussen
- Department of Clinical Genetics, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Lone Sunde
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Vicente E Torres
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Peter C Harris
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Henrik Birn
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
56
|
Yan LJ, Allen DC. Cadmium-Induced Kidney Injury: Oxidative Damage as a Unifying Mechanism. Biomolecules 2021; 11:1575. [PMID: 34827573 PMCID: PMC8615899 DOI: 10.3390/biom11111575] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023] Open
Abstract
Cadmium is a nonessential metal that has heavily polluted the environment due to human activities. It can be absorbed into the human body via the gastrointestinal tract, respiratory tract, and the skin, and can cause chronic damage to the kidneys. The main site where cadmium accumulates and causes damage within the nephrons is the proximal tubule. This accumulation can induce dysfunction of the mitochondrial electron transport chain, leading to electron leakage and production of reactive oxygen species (ROS). Cadmium may also impair the function of NADPH oxidase, resulting in another source of ROS. These ROS together can cause oxidative damage to DNA, proteins, and lipids, triggering epithelial cell death and a decline in kidney function. In this article, we also reviewed evidence that the antioxidant power of plant extracts, herbal medicines, and pharmacological agents could ameliorate cadmium-induced kidney injury. Finally, a model of cadmium-induced kidney injury, centering on the notion that oxidative damage is a unifying mechanism of cadmium renal toxicity, is also presented. Given that cadmium exposure is inevitable, further studies using animal models are warranted for a detailed understanding of the mechanism underlying cadmium induced ROS production, and for the identification of more therapeutic targets.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | | |
Collapse
|
57
|
Fu H, Gui Y, Liu S, Wang Y, Bastacky SI, Qiao Y, Zhang R, Bonin C, Hargis G, Yu Y, Kreutzer DL, Biswas PS, Zhou Y, Wang Y, Tian XJ, Liu Y, Zhou D. The hepatocyte growth factor/c-met pathway is a key determinant of the fibrotic kidney local microenvironment. iScience 2021; 24:103112. [PMID: 34622165 PMCID: PMC8479790 DOI: 10.1016/j.isci.2021.103112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/20/2021] [Accepted: 09/08/2021] [Indexed: 11/25/2022] Open
Abstract
The kidney local microenvironment (KLM) plays a critical role in the pathogenesis of kidney fibrosis. However, the composition and regulation of a fibrotic KLM remain unclear. Through a multidisciplinary approach, we investigated the roles of the hepatocyte growth factor/c-met signaling pathway in regulating KLM formation in various chronic kidney disease (CKD) models. We performed a retrospective analysis of single-cell RNA sequencing data and determined that tubular epithelial cells and macrophages are two major cell populations in a fibrotic kidney. We then created a mathematical model that predicted loss of c-met in tubular cells would cause greater responses to injury than loss of c-met in macrophages. By generating c-met conditional knockout mice, we validated that loss of c-met influences epithelial plasticity, myofibroblast activation, and extracellular matrix synthesis/degradation, which ultimately determined the characteristics of the fibrotic KLM. Our findings open the possibility of designing effective therapeutic strategies to retard CKD.
Collapse
Affiliation(s)
- Haiyan Fu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuan Gui
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yuanyuan Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sheldon Ira Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yi Qiao
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Christopher Bonin
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Geneva Hargis
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Yanbao Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Donald L. Kreutzer
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Partha Sarathi Biswas
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
58
|
Tubular Cell Dropout in Preimplantation Deceased Donor Biopsies as a Predictor of Delayed Graft Function. Transplant Direct 2021; 7:e716. [PMID: 34476295 PMCID: PMC8384397 DOI: 10.1097/txd.0000000000001168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/16/2021] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
Supplemental Digital Content is available in the text. Background. Delayed graft function (DGF) affects over 25% of deceased donor kidney transplants (DDKTs) and is associated with increased cost, worsened graft outcomes, and mortality. While approaches to preventing DGF have focused on minimizing cold ischemia, donor factors such as acute tubular injury can influence risk. There are currently no pharmacologic therapies to modify DGF risk or promote repair, in part due to our incomplete understanding of the biology of preimplantation tubular injury. Methods. We collected intraoperative, preimplantation kidney biopsies from 11 high-risk deceased donors and 10 living donors and followed transplant recipients for graft function. We performed quantitative high-dimensional histopathologic analysis using imaging mass cytometry to determine the cellular signatures that distinguished deceased and living donor biopsies as well as deceased donor biopsies which either did or did not progress to DGF. Results. We noted decreased tubular cells (P < 0.0001) and increased macrophage infiltration (P = 0.0037) in high-risk DDKT compared with living donor biopsies. For those high-risk DDKTs that developed postimplant DGF (n = 6), quantitative imaging mass cytometry analysis showed a trend toward reduced tubular cells (P = 0.02) and increased stromal cells (P = 0.04) versus those that did not (n = 5). Notably, these differences were not identified by conventional histopathologic evaluation. Conclusions. The current study identifies donor tubular cell loss as a precursor of DGF pathogenesis and highlights an area for further investigation and potential therapeutic intervention.
Collapse
|
59
|
Yuan Q, Lv Y, Ding H, Ke Q, Shi C, Luo J, Jiang L, Yang J, Zhou Y. CPT1α maintains phenotype of tubules via mitochondrial respiration during kidney injury and repair. Cell Death Dis 2021; 12:792. [PMID: 34392303 PMCID: PMC8364553 DOI: 10.1038/s41419-021-04085-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022]
Abstract
Impaired energy metabolism in proximal tubular epithelial cells (PTECs) is strongly associated with various kidney diseases. Here, we characterized proximal tubular phenotype alternations during kidney injury and repair in a mouse model of folic acid nephropathy, in parallel, identified carnitine palmitoyltransferase 1α (CPT1α) as an energy stress response accompanied by renal tubular dedifferentiation. Genetic ablation of Cpt1α aggravated the tubular injury and interstitial fibrosis and hampered kidney repair indicate that CPT1α is vital for the preservation and recovery of tubular phenotype. Our data showed that the lipid accumulation and mitochondrial mass reduction induced by folic acid were persistent and became progressively more severe in PTECs without CPT1α. Interference of CPT1α reduced capacities of mitochondrial respiration and ATP production in PTECs, and further sensitized cells to folic acid-induced phenotypic changes. On the contrary, overexpression of CPT1α protected mitochondrial respiration and prevented against folic acid-induced tubular cell damage. These findings link CPT1α to intrinsic mechanisms regulating the mitochondrial respiration and phenotype of kidney tubules that may contribute to renal pathology during injury and repair.
Collapse
Affiliation(s)
- Qi Yuan
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yunhui Lv
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Ding
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qingqing Ke
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Caifeng Shi
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Luo
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Jiang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yang Zhou
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
60
|
Sarró E, Durán M, Rico A, Bou-Teen D, Fernández-Majada V, Croatt AJ, Nath KA, Salcedo MT, Gundelach JH, Batlle D, Bram RJ, Meseguer A. Cyclophilins A and B oppositely regulate renal tubular epithelial cell phenotype. J Mol Cell Biol 2021; 12:499-514. [PMID: 32162654 PMCID: PMC7493029 DOI: 10.1093/jmcb/mjaa005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 01/29/2020] [Accepted: 03/06/2020] [Indexed: 11/23/2022] Open
Abstract
Restoration of kidney tubular epithelium following sublethal injury sequentially involves partial epithelial–mesenchymal transition (pEMT), proliferation, and further redifferentiation into specialized tubule epithelial cells (TECs). Because the immunosuppressant cyclosporine-A produces pEMT in TECs and inhibits the peptidyl-prolyl isomerase (PPIase) activity of cyclophilin (Cyp) proteins, we hypothesized that cyclophilins could regulate TEC phenotype. Here we demonstrate that in cultured TECs, CypA silencing triggers loss of epithelial features and enhances transforming growth factor β (TGFβ)-induced EMT in association with upregulation of epithelial repressors Slug and Snail. This pro-epithelial action of CypA relies on its PPIase activity. By contrast, CypB emerges as an epithelial repressor, because CypB silencing promotes epithelial differentiation, prevents TGFβ-induced EMT, and induces tubular structures in 3D cultures. In addition, in the kidneys of CypB knockout mice subjected to unilateral ureteral obstruction, inflammatory and pro-fibrotic events were attenuated. CypB silencing/knockout leads to Slug, but not Snail, downregulation. CypB support of Slug expression depends on its endoplasmic reticulum location, where it interacts with calreticulin, a calcium-buffering chaperone related to Slug expression. As CypB silencing reduces ionomycin-induced calcium release and Slug upregulation, we suggest that Slug expression may rely on CypB modulation of calreticulin-dependent calcium signaling. In conclusion, this work uncovers new roles for CypA and CypB in modulating TEC plasticity and identifies CypB as a druggable target potentially relevant in promoting kidney repair.
Collapse
Affiliation(s)
- Eduard Sarró
- Renal Physiopathology Group, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute, 08035 Barcelona, Spain
| | - Mónica Durán
- Renal Physiopathology Group, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute, 08035 Barcelona, Spain
| | - Ana Rico
- Renal Physiopathology Group, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute, 08035 Barcelona, Spain
| | - Diana Bou-Teen
- Cardiovascular Diseases Group, Vall d'Hebron Research Institute, 08035 Barcelona, Spain
| | - Vanesa Fernández-Majada
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Anthony J Croatt
- Division of Nephrology and Hypertension and Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Karl A Nath
- Division of Nephrology and Hypertension and Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Maria Teresa Salcedo
- Department of Pathology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Justin H Gundelach
- Department of Pediatric and Adolescent Medicine, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel Batlle
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Richard J Bram
- Department of Pediatric and Adolescent Medicine, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Anna Meseguer
- Renal Physiopathology Group, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute, 08035 Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III-FEDER, 28040 Madrid, Spain
| |
Collapse
|
61
|
Prudovsky I. Cellular Mechanisms of FGF-Stimulated Tissue Repair. Cells 2021; 10:cells10071830. [PMID: 34360000 PMCID: PMC8304273 DOI: 10.3390/cells10071830] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/10/2023] Open
Abstract
Growth factors belonging to the FGF family play important roles in tissue and organ repair after trauma. In this review, I discuss the regulation by FGFs of the aspects of cellular behavior important for reparative processes. In particular, I focus on the FGF-dependent regulation of cell proliferation, cell stemness, de-differentiation, inflammation, angiogenesis, cell senescence, cell death, and the production of proteases. In addition, I review the available literature on the enhancement of FGF expression and secretion in damaged tissues resulting in the increased FGF supply required for tissue repair.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, 81 Research Dr., Scarborough, ME 04074, USA
| |
Collapse
|
62
|
Codina S, Manonelles A, Tormo M, Sola A, Cruzado JM. Chronic Kidney Allograft Disease: New Concepts and Opportunities. Front Med (Lausanne) 2021; 8:660334. [PMID: 34336878 PMCID: PMC8316649 DOI: 10.3389/fmed.2021.660334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is increasing in most countries and kidney transplantation is the best option for those patients requiring renal replacement therapy. Therefore, there is a significant number of patients living with a functioning kidney allograft. However, progressive kidney allograft functional deterioration remains unchanged despite of major advances in the field. After the first post-transplant year, it has been estimated that this chronic allograft damage may cause a 5% graft loss per year. Most studies focused on mechanisms of kidney graft damage, especially on ischemia-reperfusion injury, alloimmunity, nephrotoxicity, infection and disease recurrence. Thus, therapeutic interventions focus on those modifiable factors associated with chronic kidney allograft disease (CKaD). There are strategies to reduce ischemia-reperfusion injury, to improve the immunologic risk stratification and monitoring, to reduce calcineurin-inhibitor exposure and to identify recurrence of primary renal disease early. On the other hand, control of risk factors for chronic disease progression are particularly relevant as kidney transplantation is inherently associated with renal mass reduction. However, despite progress in pathophysiology and interventions, clinical advances in terms of long-term kidney allograft survival have been subtle. New approaches are needed and probably a holistic view can help. Chronic kidney allograft deterioration is probably the consequence of damage from various etiologies but can be attenuated by kidney repair mechanisms. Thus, besides immunological and other mechanisms of damage, the intrinsic repair kidney graft capacity should be considered to generate new hypothesis and potential therapeutic targets. In this review, the critical risk factors that define CKaD will be discussed but also how the renal mechanisms of regeneration could contribute to a change chronic kidney allograft disease paradigm.
Collapse
Affiliation(s)
- Sergi Codina
- Department of Nephrology, Hospital Universitari Bellvitge, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Manonelles
- Department of Nephrology, Hospital Universitari Bellvitge, Barcelona, Spain
| | - Maria Tormo
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Sola
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M. Cruzado
- Department of Nephrology, Hospital Universitari Bellvitge, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
63
|
Higgins CE, Tang J, Higgins SP, Gifford CC, Mian BM, Jones DM, Zhang W, Costello A, Conti DJ, Samarakoon R, Higgins PJ. The Genomic Response to TGF-β1 Dictates Failed Repair and Progression of Fibrotic Disease in the Obstructed Kidney. Front Cell Dev Biol 2021; 9:678524. [PMID: 34277620 PMCID: PMC8284093 DOI: 10.3389/fcell.2021.678524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Tubulointerstitial fibrosis is a common and diagnostic hallmark of a spectrum of chronic renal disorders. While the etiology varies as to the causative nature of the underlying pathology, persistent TGF-β1 signaling drives the relentless progression of renal fibrotic disease. TGF-β1 orchestrates the multifaceted program of kidney fibrogenesis involving proximal tubular dysfunction, failed epithelial recovery or re-differentiation, capillary collapse and subsequent interstitial fibrosis eventually leading to chronic and ultimately end-stage disease. An increasing complement of non-canonical elements function as co-factors in TGF-β1 signaling. p53 is a particularly prominent transcriptional co-regulator of several TGF-β1 fibrotic-response genes by complexing with TGF-β1 receptor-activated SMADs. This cooperative p53/TGF-β1 genomic cluster includes genes involved in cellular proliferative control, survival, apoptosis, senescence, and ECM remodeling. While the molecular basis for this co-dependency remains to be determined, a subset of TGF-β1-regulated genes possess both p53- and SMAD-binding motifs. Increases in p53 expression and phosphorylation, moreover, are evident in various forms of renal injury as well as kidney allograft rejection. Targeted reduction of p53 levels by pharmacologic and genetic approaches attenuates expression of the involved genes and mitigates the fibrotic response confirming a key role for p53 in renal disorders. This review focuses on mechanisms underlying TGF-β1-induced renal fibrosis largely in the context of ureteral obstruction, which mimics the pathophysiology of pediatric unilateral ureteropelvic junction obstruction, and the role of p53 as a transcriptional regulator within the TGF-β1 repertoire of fibrosis-promoting genes.
Collapse
Affiliation(s)
- Craig E. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Jiaqi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Stephen P. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Cody C. Gifford
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Badar M. Mian
- The Urological Institute of Northeastern New York, Albany, NY, United States
- Division of Urology, Department of Surgery, Albany Medical College, Albany, NY, United States
| | - David M. Jones
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY, United States
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Angelica Costello
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - David J. Conti
- Division of Transplantation Surgery, Department of Surgery, Albany Medical College, Albany, NY, United States
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
- The Urological Institute of Northeastern New York, Albany, NY, United States
- Division of Urology, Department of Surgery, Albany Medical College, Albany, NY, United States
| |
Collapse
|
64
|
Single-nuclear transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to acute kidney injury. Proc Natl Acad Sci U S A 2021; 118:2026684118. [PMID: 34183416 PMCID: PMC8271768 DOI: 10.1073/pnas.2026684118] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A single acute kidney injury event increases the risk of progression to chronic kidney disease (CKD). Combining single-nucleus RNA sequencing with genetic tracing of injured proximal tubule cells identified a spatially dynamic, evolving injury response following ischemia–reperfusion injury. Failed proximal tubule repair leads to the persistence of a profibrotic, proinflammatory Vcam1+/Ccl2+ cell type exhibiting a senescence-associated secretory phenotype and a marked transcriptional activation of NF-κB and AP-1 pathway signatures, but no signs of G2/M cell cycle arrest. Insights from this study can inform strategies to improve renal repair and prevent CKD progression. Acute kidney injury (AKI), commonly caused by ischemia, sepsis, or nephrotoxic insult, is associated with increased mortality and a heightened risk of chronic kidney disease (CKD). AKI results in the dysfunction or death of proximal tubule cells (PTCs), triggering a poorly understood autologous cellular repair program. Defective repair associates with a long-term transition to CKD. We performed a mild-to-moderate ischemia–reperfusion injury (IRI) to model injury responses reflective of kidney injury in a variety of clinical settings, including kidney transplant surgery. Single-nucleus RNA sequencing of genetically labeled injured PTCs at 7-d (“early”) and 28-d (“late”) time points post-IRI identified specific gene and pathway activity in the injury–repair transition. In particular, we identified Vcam1+/Ccl2+ PTCs at a late injury stage distinguished by marked activation of NF-κB–, TNF-, and AP-1–signaling pathways. This population of PTCs showed features of a senescence-associated secretory phenotype but did not exhibit G2/M cell cycle arrest, distinct from other reports of maladaptive PTCs following kidney injury. Fate-mapping experiments identified spatially and temporally distinct origins for these cells. At the cortico-medullary boundary (CMB), where injury initiates, the majority of Vcam1+/Ccl2+ PTCs arose from early replicating PTCs. In contrast, in cortical regions, only a subset of Vcam1+/Ccl2+ PTCs could be traced to early repairing cells, suggesting late-arising sites of secondary PTC injury. Together, these data indicate even moderate IRI is associated with a lasting injury, which spreads from the CMB to cortical regions. Remaining failed-repair PTCs are likely triggers for chronic disease progression.
Collapse
|
65
|
Nishida K, Watanabe H, Murata R, Tokumaru K, Fujimura R, Oshiro S, Nagasaki T, Miyahisa M, Hiramoto Y, Nosaki H, Imafuku T, Maeda H, Fukagawa M, Maruyama T. Recombinant Long-Acting Thioredoxin Ameliorates AKI to CKD Transition via Modulating Renal Oxidative Stress and Inflammation. Int J Mol Sci 2021; 22:ijms22115600. [PMID: 34070521 PMCID: PMC8199127 DOI: 10.3390/ijms22115600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
An effective strategy is highly desirable for preventing acute kidney injury (AKI) to chronic kidney disease (CKD) transition. Thioredoxin-1 (Trx), a redox-active protein that has anti-oxidative and anti-inflammatory properties, would be a candidate for this but its short half-life limits its clinical application. In this study, we examined the renoprotective effect of long-acting Trx that is comprised of human albumin and Trx (HSA-Trx) against AKI to CKD transition. AKI to CKD mice were created by renal ischemia-reperfusion (IR). From day 1 to day 14 after renal IR, the recovery of renal function was accelerated by HSA-Trx administration. On day 14, HSA-Trx reduced renal fibrosis compared with PBS treatment. At the early phase of fibrogenesis (day 7), HSA-Trx treatment suppressed renal oxidative stress, pro-inflammatory cytokine production and macrophage infiltration, thus ameliorating tubular injury and fibrosis. In addition, HSA-Trx treatment inhibited G2/M cell cycle arrest and apoptosis in renal tubular cells. While renal Trx protein levels were decreased after renal IR, the levels were recovered by HSA-Trx treatment. Together, HSA-Trx has potential for use in the treatment of AKI to CKD transition via its effects of modulating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Kento Nishida
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
- Correspondence: (H.W.); (T.M.); Tel.: +81-96-371-4855 (H.W.); +81-96-371-4150 (T.M.); Fax: +81-96-371-4855 (H.W.); +81-96-371-4153 (T.M.)
| | - Ryota Murata
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Kai Tokumaru
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Rui Fujimura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Shun Oshiro
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Masako Miyahisa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Yuto Hiramoto
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Hiroto Nosaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Tadashi Imafuku
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara 259-1193, Japan;
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
- Correspondence: (H.W.); (T.M.); Tel.: +81-96-371-4855 (H.W.); +81-96-371-4150 (T.M.); Fax: +81-96-371-4855 (H.W.); +81-96-371-4153 (T.M.)
| |
Collapse
|
66
|
Aquaporins implicated in the cell proliferation and the signaling pathways of cell stemness. Biochimie 2021; 188:52-60. [PMID: 33894294 DOI: 10.1016/j.biochi.2021.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022]
Abstract
Aquaporins (AQPs) are water channel proteins facilitating passive transport of water and other small molecules across biomembranes. Regulation of osmotic homeostasis via AQPs is accompanied by dynamic participation of various cellular signaling pathways. Recently emerging evidence reveals that functional roles of AQPs are further extended from the osmotic regulation via water permeation into the cell proliferation and differentiation. In particular, anomalous expression of AQPs has been demonstrated in various types of cancer cells and cancer stem-like cells and it has been proposed as markers for proliferation and progression of cancer cells. Thus, a more comprehensive view on AQPs could bring a great interest in the cell stemness accompanied by the expression of AQPs. AQPs are broadly expressed across tissues and cells in a cell type- and lineage-specific manner during development via spatiotemporal transcriptional regulation. Moreover, AQPs are expressed in various adult stem cells and cells associated with a stem cell niche as well as cancer stem-like cells. However, the expression and regulatory mechanisms of AQP expression in stem cells have not been well understood. This review highlighted the AQPs expression in stem cell niches/stem cells and the involvement of AQPs in the cell proliferation and signaling pathways associated with cell stemness.
Collapse
|
67
|
Muto Y, Wilson PC, Ledru N, Wu H, Dimke H, Waikar SS, Humphreys BD. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat Commun 2021; 12:2190. [PMID: 33850129 PMCID: PMC8044133 DOI: 10.1038/s41467-021-22368-w] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
The integration of single cell transcriptome and chromatin accessibility datasets enables a deeper understanding of cell heterogeneity. We performed single nucleus ATAC (snATAC-seq) and RNA (snRNA-seq) sequencing to generate paired, cell-type-specific chromatin accessibility and transcriptional profiles of the adult human kidney. We demonstrate that snATAC-seq is comparable to snRNA-seq in the assignment of cell identity and can further refine our understanding of functional heterogeneity in the nephron. The majority of differentially accessible chromatin regions are localized to promoters and a significant proportion are closely associated with differentially expressed genes. Cell-type-specific enrichment of transcription factor binding motifs implicates the activation of NF-κB that promotes VCAM1 expression and drives transition between a subpopulation of proximal tubule epithelial cells. Our multi-omics approach improves the ability to detect unique cell states within the kidney and redefines cellular heterogeneity in the proximal tubule and thick ascending limb.
Collapse
Affiliation(s)
- Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Parker C Wilson
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicolas Ledru
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Sushrut S Waikar
- Section of Nephrology, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
68
|
Miguel V, Ramos R, García-Bermejo L, Rodríguez-Puyol D, Lamas S. The program of renal fibrogenesis is controlled by microRNAs regulating oxidative metabolism. Redox Biol 2021; 40:101851. [PMID: 33465566 PMCID: PMC7815809 DOI: 10.1016/j.redox.2020.101851] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Excessive accumulation of extracellular matrix (ECM) is the hallmark of fibrotic diseases. In the kidney, it is the final common pathway of prevalent diseases, leading to chronic renal failure. While cytokines such as TGF-β play a fundamental role in myofibroblast transformation, recent work has shown that mitochondrial dysfunction and defective fatty acid oxidation (FAO), which compromise the main source of energy for renal tubular epithelial cells, have been proposed to be fundamental contributors to the development and progression of kidney fibrosis. MicroRNAs (miRNAs), which regulate gene expression post-transcriptionally, have been reported to control renal fibrogenesis. To identify miRNAs involved in the metabolic derangement of renal fibrosis, we performed a miRNA array screen in the mouse model of unilateral ureteral obstruction (UUO). MiR-150-5p and miR-495-3p were selected for their link to human pathology, their role in mitochondrial metabolism and their targeting of the fatty acid shuttling enzyme CPT1A. We found a 2- and 4-fold upregulation of miR-150-5p and miR-495-5p, respectively, in both the UUO and the folic acid induced nephropathy (FAN) models, while TGF-β1 upregulated their expressions in the human renal tubular epithelial cell line HKC-8. These miRNAs synergized with TGF-β regarding its pro-fibrotic effect by enhancing the fibrosis-associated markers Acta2, Col1α1 and Fn1. Bioenergetics studies showed a reduction of FAO-associated oxygen consumption rate (OCR) in HKC-8 cells in the presence of both miRNAs. Consistently, expression levels of their mitochondrial-related target genes CPT1A, PGC1α and the mitochondrial transcription factor A (TFAM), were reduced by half in renal epithelial cells exposed to these miRNAs. By contrast, we did not detect changes in mitochondrial mass and transmembrane potential (ΔѰm) or mitochondrial superoxide radical anion production. Our data support that miR-150 and miR-495 may contribute to renal fibrogenesis by aggravating the metabolic failure critically involved in tubular epithelial cells, ultimately leading to fibrosis.
Collapse
Affiliation(s)
- Verónica Miguel
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain.
| | - Ricardo Ramos
- Genomic Facility, Parque Científico de Madrid, Madrid, Spain
| | - Laura García-Bermejo
- Department of Pathology, Hospital Universitario "Ramón y Cajal", IRYCIS, Madrid, Spain
| | - Diego Rodríguez-Puyol
- Department of Medicine and Medical Specialties, Research Foundation of the University Hospital "Príncipe de Asturias," IRYCIS, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain.
| |
Collapse
|
69
|
Jadlowiec CC, Hanna WA, Ninan J, Ryan MS, Das DM, Smith M, Khamash H, Mathur AK, Singer A, Moss A, Reddy KS, Heilman RL. Transplant outcomes using kidneys from high KDPI acute kidney injury donors. Clin Transplant 2021; 35:e14279. [PMID: 33690907 DOI: 10.1111/ctr.14279] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/11/2021] [Accepted: 02/27/2021] [Indexed: 11/28/2022]
Abstract
Kidney transplant (KT) outcomes from high kidney donor profile index (KDPI ≥85%) donors with acute kidney injury (AKI) remain underreported. KT from 172 high KDPI Acute Kidney Injury Network (AKIN) stage 0-1 donors and 76 high KDPI AKIN stage 2-3 donors from a single center were retrospectively assessed. The AKIN 2-3 cohort had more delayed graft function (71% vs. 37%, p < .001). At one year, there were no differences in the estimated glomerular filtration rate (44 ± 17 vs. 46 ± 18, p = .42) or fibrosis on protocol biopsy (ci, p = .85). Donor terminal creatinine (p = .59) and length of delayed graft function (p = .39) did not impact one-year eGFR. There were more primary nonfunction (PNF) events in the high KDPI AKIN 2-3 group (5.3% vs. 0.6%, p = .02). With a median follow-up of 3.8 years, one-year death-censored graft failure was 3.5% for AKIN 0-1 and 14.5% for AKIN 2-3 (HR 2.40, 95% CI 1.24-4.63, p = .01). Although AKIN stage 2-3 high KDPI kidneys had comparable one-year eGFR to AKIN stage 0-1 high KDPI kidneys, there were more PNF occurrences and one-year death-censored graft survival was reduced. Given these findings, additional precautions should be undertaken when assessing and utilizing kidneys from severe AKI high KDPI donors.
Collapse
Affiliation(s)
| | - Wael A Hanna
- Division of Nephrology, Mayo Clinic, Phoenix, AZ, USA
| | - Jacob Ninan
- Division of Nephrology, Mayo Clinic, Phoenix, AZ, USA
| | - Margaret S Ryan
- Division of Anatomic Pathology, Mayo Clinic, Phoenix, AZ, USA
| | - Devika M Das
- Alix School of Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Maxwell Smith
- Division of Anatomic Pathology, Mayo Clinic, Phoenix, AZ, USA
| | - Hasan Khamash
- Division of Nephrology, Mayo Clinic, Phoenix, AZ, USA
| | - Amit K Mathur
- Division of Transplant Surgery, Mayo Clinic, Phoenix, AZ, USA
| | - Andrew Singer
- Division of Transplant Surgery, Mayo Clinic, Phoenix, AZ, USA
| | - Adyr Moss
- Division of Transplant Surgery, Mayo Clinic, Phoenix, AZ, USA
| | - Kunam S Reddy
- Division of Transplant Surgery, Mayo Clinic, Phoenix, AZ, USA
| | | |
Collapse
|
70
|
Kajiwara K, Yamano S, Aoki K, Okuzaki D, Matsumoto K, Okada M. CDCP1 promotes compensatory renal growth by integrating Src and Met signaling. Life Sci Alliance 2021; 4:4/4/e202000832. [PMID: 33574034 PMCID: PMC7893822 DOI: 10.26508/lsa.202000832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
CDCP1 promotes HGF-induced compensatory renal growth by focally and temporally integrating Src and Met-STAT3 signaling in lipid rafts. Compensatory growth of organs after loss of their mass and/or function is controlled by hepatocyte growth factor (HGF), but the underlying regulatory mechanisms remain elusive. Here, we show that CUB domain-containing protein 1 (CDCP1) promotes HGF-induced compensatory renal growth. Using canine kidney cells as a model of renal tubules, we found that HGF-induced temporal up-regulation of Src activity and its scaffold protein, CDCP1, and that the ablation of CDCP1 robustly abrogated HGF-induced phenotypic changes, such as morphological changes and cell growth/proliferation. Mechanistic analyses revealed that up-regulated CDCP1 recruits Src into lipid rafts to activate STAT3 associated with the HGF receptor Met, and activated STAT3 induces the expression of matrix metalloproteinases and mitogenic factors. After unilateral nephrectomy in mice, the Met-STAT3 signaling is transiently up-regulated in the renal tubules of the remaining kidney, whereas CDCP1 ablation attenuates regenerative signaling and significantly suppresses compensatory growth. These findings demonstrate that CDCP1 plays a crucial role in controlling compensatory renal growth by focally and temporally integrating Src and Met signaling.
Collapse
Affiliation(s)
- Kentaro Kajiwara
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shotaro Yamano
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa, Japan
| | - Kazuhiro Aoki
- Division of Quantitative Biology, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
71
|
Dhillon P, Park J, Hurtado Del Pozo C, Li L, Doke T, Huang S, Zhao J, Kang HM, Shrestra R, Balzer MS, Chatterjee S, Prado P, Han SY, Liu H, Sheng X, Dierickx P, Batmanov K, Romero JP, Prósper F, Li M, Pei L, Kim J, Montserrat N, Susztak K. The Nuclear Receptor ESRRA Protects from Kidney Disease by Coupling Metabolism and Differentiation. Cell Metab 2021; 33:379-394.e8. [PMID: 33301705 PMCID: PMC9259369 DOI: 10.1016/j.cmet.2020.11.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/28/2020] [Accepted: 11/12/2020] [Indexed: 01/13/2023]
Abstract
Kidney disease is poorly understood because of the organ's cellular diversity. We used single-cell RNA sequencing not only in resolving differences in injured kidney tissue cellular composition but also in cell-type-specific gene expression in mouse models of kidney disease. This analysis highlighted major changes in cellular diversity in kidney disease, which markedly impacted whole-kidney transcriptomics outputs. Cell-type-specific differential expression analysis identified proximal tubule (PT) cells as the key vulnerable cell type. Through unbiased cell trajectory analyses, we show that PT cell differentiation is altered in kidney disease. Metabolism (fatty acid oxidation and oxidative phosphorylation) in PT cells showed the strongest and most reproducible association with PT cell differentiation and disease. Coupling of cell differentiation and the metabolism was established by nuclear receptors (estrogen-related receptor alpha [ESRRA] and peroxisomal proliferation-activated receptor alpha [PPARA]) that directly control metabolic and PT-cell-specific gene expression in mice and patient samples while protecting from kidney disease in the mouse model.
Collapse
Affiliation(s)
- Poonam Dhillon
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jihwan Park
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; School of Life Sciences, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea.
| | - Carmen Hurtado Del Pozo
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Lingzhi Li
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shizheng Huang
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Juanjuan Zhao
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hyun Mi Kang
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Laboratory of Disease Modeling and Therapeutics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Rojesh Shrestra
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael S Balzer
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shatakshee Chatterjee
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Patricia Prado
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Seung Yub Han
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongbo Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xin Sheng
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Pieterjan Dierickx
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kirill Batmanov
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Juan P Romero
- Cell Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Oncohematology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Hematology and Area of Cell Therapy, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Felipe Prósper
- Cell Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Oncohematology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Hematology and Area of Cell Therapy, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Mingyao Li
- Department of Epidemiology and Biostatistics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Liming Pei
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain.
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
72
|
Rudman-Melnick V, Adam M, Potter A, Chokshi SM, Ma Q, Drake KA, Schuh MP, Kofron JM, Devarajan P, Potter SS. Single-Cell Profiling of AKI in a Murine Model Reveals Novel Transcriptional Signatures, Profibrotic Phenotype, and Epithelial-to-Stromal Crosstalk. J Am Soc Nephrol 2020; 31:2793-2814. [PMID: 33115917 DOI: 10.1681/asn.2020010052] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Current management of AKI, a potentially fatal disorder that can also initiate or exacerbate CKD, is merely supportive. Therefore, deeper understanding of the molecular pathways perturbed in AKI is needed to identify targets with potential to lead to improved treatment. METHODS We performed single-cell RNA sequencing (scRNA-seq) with the clinically relevant unilateral ischemia-reperfusion murine model of AKI at days 1, 2, 4, 7, 11, and 14 after AKI onset. Using real-time quantitative PCR, immunofluorescence, Western blotting, and both chromogenic and single-molecule in situ hybridizations, we validated AKI signatures in multiple experiments. RESULTS Our findings show the time course of changing gene expression patterns for multiple AKI stages and all renal cell types. We observed elevated expression of crucial injury response factors-including kidney injury molecule-1 (Kim1), lipocalin 2 (Lcn2), and keratin 8 (Krt8)-and of several novel genes (Ahnak, Sh3bgrl3, and Col18a1) not previously examined in kidney pathologies. AKI induced proximal tubule dedifferentiation, with a pronounced nephrogenic signature represented by Sox4 and Cd24a. Moreover, AKI caused the formation of "mixed-identity cells" (expressing markers of different renal cell types) that are normally seen only during early kidney development. The injured tubules acquired a proinflammatory and profibrotic phenotype; moreover, AKI dramatically modified ligand-receptor crosstalk, with potential pathologic epithelial-to-stromal interactions. Advancing age in AKI onset was associated with maladaptive response and kidney fibrosis. CONCLUSIONS The scRNA-seq, comprehensive, cell-specific profiles provide a valuable resource for examining molecular pathways that are perturbed in AKI. The results fully define AKI-associated dedifferentiation programs, potential pathologic ligand-receptor crosstalk, novel genes, and the improved injury response in younger mice, and highlight potential targets of kidney injury.
Collapse
Affiliation(s)
- Valeria Rudman-Melnick
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Andrew Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Saagar M Chokshi
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Qing Ma
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Keri A Drake
- Division of Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Meredith P Schuh
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - J Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| |
Collapse
|
73
|
Li Y, Zhai P, Zheng Y, Zhang J, Kellum JA, Peng Z. Csf2 Attenuated Sepsis-Induced Acute Kidney Injury by Promoting Alternative Macrophage Transition. Front Immunol 2020; 11:1415. [PMID: 32733471 PMCID: PMC7358306 DOI: 10.3389/fimmu.2020.01415] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a systemic inflammatory state that occurs in response to infection and significantly increases mortality in combination with acute kidney injury (AKI). Macrophages accumulate in the kidney after injury and undergo a transition from a proinflammatory (M1) phenotype to an alternatively activated (M2) phenotype that is required for normal repair. However, the specific signals that regulate the transition from the M1 to M2 phenotype in vivo are unknown. Here, we found an unexpected role of Colony stimulating factor 2 (Csf2) in controlling macrophage transition in vitro and in a mouse model of sepsis induced by cecal ligation and puncture (CLP). We first co-cultured human M1 macrophages with HK-2 cells and characterized cytokine/chemokine profiles via Luminex. Of the cytokines and chemokines that were overexpressed in medium from M1 macrophages cocultured with human kidney-2 (HK-2) cells compared with that from M1 macrophages cultured alone, Csf2 and IL6 showed the greatest increases. Csf2 was exclusively secreted by HK-2 cells but not by M1 macrophages. Furthermore, recombinant human Csf2 protein promoted transition of M1 macrophages to the M2 phenotype in a dose and time-dependent manner. The apoptosis and reactive oxygen species (ROS) release induced by M1 macrophages in HK-2 cells was attenuated after exposure to exogenous Csf2. In addition, the switch from the proinflammatory M1 phenotype to the M2 phenotype occurred via the p-Stat5 pathway, which was activated by Csf2. Importantly, we found that intraperitoneal injection of a Csf2-neutralizing antibody after CLP aggravated kidney injury and suppressed tubular proliferation, subsequently decreasing survival. However, administration of recombinant mouse Csf2 protein could rescue mice with sepsis. Together, our results indicate that Csf2 plays critical roles in regulating macrophage transition via activation of p-STAT5. These data form a foundation upon which new therapeutic strategies can be designed to improve the therapeutic efficacy of cytokine-based treatments for sepsis-induced AKI.
Collapse
Affiliation(s)
- Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pan Zhai
- Department of Neurology, Hubei Province Hospital of Tradition Chinese Medicine, Wuhan, China
| | - Yawen Zheng
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - John A Kellum
- Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
74
|
Kirita Y, Wu H, Uchimura K, Wilson PC, Humphreys BD. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. Proc Natl Acad Sci U S A 2020; 117:15874-15883. [PMID: 32571916 PMCID: PMC7355049 DOI: 10.1073/pnas.2005477117] [Citation(s) in RCA: 364] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
After acute kidney injury (AKI), patients either recover or alternatively develop fibrosis and chronic kidney disease. Interactions between injured epithelia, stroma, and inflammatory cells determine whether kidneys repair or undergo fibrosis, but the molecular events that drive these processes are poorly understood. Here, we use single nucleus RNA sequencing of a mouse model of AKI to characterize cell states during repair from acute injury. We identify a distinct proinflammatory and profibrotic proximal tubule cell state that fails to repair. Deconvolution of bulk RNA-seq datasets indicates that this failed-repair proximal tubule cell (FR-PTC) state can be detected in other models of kidney injury, increasing during aging in rat kidney and over time in human kidney allografts. We also describe dynamic intercellular communication networks and discern transcriptional pathways driving successful vs. failed repair. Our study provides a detailed description of cellular responses after injury and suggests that the FR-PTC state may represent a therapeutic target to improve repair.
Collapse
Affiliation(s)
- Yuhei Kirita
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110
- Department of Nephrology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110
| | - Kohei Uchimura
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110
| | - Parker C Wilson
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110;
- Department of Developmental Biology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110
| |
Collapse
|
75
|
Wilflingseder J, Willi M, Lee HK, Olauson H, Jankowski J, Ichimura T, Erben R, Valerius MT, Hennighausen L, Bonventre JV. Enhancer and super-enhancer dynamics in repair after ischemic acute kidney injury. Nat Commun 2020; 11:3383. [PMID: 32636391 PMCID: PMC7341735 DOI: 10.1038/s41467-020-17205-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/09/2020] [Indexed: 12/21/2022] Open
Abstract
The endogenous repair process can result in recovery after acute kidney injury (AKI) with adaptive proliferation of tubular epithelial cells, but repair can also lead to fibrosis and progressive kidney disease. There is currently limited knowledge about transcriptional regulators regulating these repair programs. Herein we establish the enhancer and super-enhancer landscape after AKI by ChIP-seq in uninjured and repairing kidneys on day two after ischemia reperfusion injury (IRI). We identify key transcription factors including HNF4A, GR, STAT3 and STAT5, which show specific binding at enhancer and super-enhancer sites, revealing enhancer dynamics and transcriptional changes during kidney repair. Loss of bromodomain-containing protein 4 function before IRI leads to impaired recovery after AKI and increased mortality. Our comprehensive analysis of epigenetic changes after kidney injury in vivo has the potential to identify targets for therapeutic intervention. Importantly, our data also call attention to potential caveats involved in use of BET inhibitors in patients at risk for AKI.
Collapse
Affiliation(s)
- Julia Wilflingseder
- Brigham and Women's Hospital, Renal Division, Harvard Medical School, 4 Blackfan Circle, Boston, MA, 02115, USA.
- Laboratory of Genetics and Physiology, NIDDK, NIH, 8 Center Dr, Bethesda, MD, 20814, USA.
- Department of Physiology and Pathophysiology, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Michaela Willi
- Laboratory of Genetics and Physiology, NIDDK, NIH, 8 Center Dr, Bethesda, MD, 20814, USA
| | - Hye Kyung Lee
- Laboratory of Genetics and Physiology, NIDDK, NIH, 8 Center Dr, Bethesda, MD, 20814, USA
| | - Hannes Olauson
- Brigham and Women's Hospital, Renal Division, Harvard Medical School, 4 Blackfan Circle, Boston, MA, 02115, USA
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Solnavägen 1, 171 77, Stockholm, Sweden
| | - Jakub Jankowski
- Laboratory of Genetics and Physiology, NIDDK, NIH, 8 Center Dr, Bethesda, MD, 20814, USA
- Department of Physiology and Pathophysiology, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Takaharu Ichimura
- Brigham and Women's Hospital, Renal Division, Harvard Medical School, 4 Blackfan Circle, Boston, MA, 02115, USA
| | - Reinhold Erben
- Department of Physiology and Pathophysiology, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - M Todd Valerius
- Brigham and Women's Hospital, Renal Division, Harvard Medical School, 4 Blackfan Circle, Boston, MA, 02115, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, NIDDK, NIH, 8 Center Dr, Bethesda, MD, 20814, USA
| | - Joseph V Bonventre
- Brigham and Women's Hospital, Renal Division, Harvard Medical School, 4 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
76
|
Cain MP, Hernandez BJ, Chen J. Quantitative single-cell interactomes in normal and virus-infected mouse lungs. Dis Model Mech 2020; 13:dmm044404. [PMID: 32461220 PMCID: PMC7328136 DOI: 10.1242/dmm.044404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Mammalian organs consist of diverse, intermixed cell types that signal to each other via ligand-receptor interactions - an interactome - to ensure development, homeostasis and injury-repair. Dissecting such intercellular interactions is facilitated by rapidly growing single-cell RNA sequencing (scRNA-seq) data; however, existing computational methods are often not readily adaptable by bench scientists without advanced programming skills. Here, we describe a quantitative intuitive algorithm, coupled with an optimized experimental protocol, to construct and compare interactomes in control and Sendai virus-infected mouse lungs. A minimum of 90 cells per cell type compensates for the known gene dropout issue in scRNA-seq and achieves comparable sensitivity to bulk RNA sequencing. Cell lineage normalization after cell sorting allows cost-efficient representation of cell types of interest. A numeric representation of ligand-receptor interactions identifies, as outliers, known and potentially new interactions as well as changes upon viral infection. Our experimental and computational approaches can be generalized to other organs and human samples.
Collapse
Affiliation(s)
- Margo P Cain
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Belinda J Hernandez
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
77
|
Liu Z, Tan RJ, Liu Y. The Many Faces of Matrix Metalloproteinase-7 in Kidney Diseases. Biomolecules 2020; 10:960. [PMID: 32630493 PMCID: PMC7356035 DOI: 10.3390/biom10060960] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinase-7 (MMP-7) is a secreted zinc-dependent endopeptidase that is implicated in regulating kidney homeostasis and diseases. MMP-7 is produced as an inactive zymogen, and proteolytic cleavage is required for its activation. MMP-7 is barely expressed in normal adult kidney but upregulated in acute kidney injury (AKI) and chronic kidney disease (CKD). The expression of MMP-7 is transcriptionally regulated by Wnt/β-catenin and other cues. As a secreted protein, MMP-7 is present and increased in the urine of patients, and its levels serve as a noninvasive biomarker for predicting AKI prognosis and monitoring CKD progression. Apart from degrading components of the extracellular matrix, MMP-7 also cleaves a wide range of substrates, such as E-cadherin, Fas ligand, and nephrin. As such, it plays an essential role in regulating many cellular processes, such as cell proliferation, apoptosis, epithelial-mesenchymal transition, and podocyte injury. The function of MMP-7 in kidney diseases is complex and context-dependent. It protects against AKI by priming tubular cells for survival and regeneration but promotes kidney fibrosis and CKD progression. MMP-7 also impairs podocyte integrity and induces proteinuria. In this review, we summarized recent advances in our understanding of the regulation, role, and mechanisms of MMP-7 in the pathogenesis of kidney diseases. We also discussed the potential of MMP-7 as a biomarker and therapeutic target in a clinical setting.
Collapse
Affiliation(s)
- Zhao Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Roderick J. Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
78
|
Ranganathan S, Kumar S, Mohanty SS, Jolly MK, Rangarajan A. Cellular Plasticity in Matrix-attached and -Detached Cells: Implications in Metastasis. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00179-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
79
|
Yousef Yengej FA, Jansen J, Rookmaaker MB, Verhaar MC, Clevers H. Kidney Organoids and Tubuloids. Cells 2020; 9:E1326. [PMID: 32466429 PMCID: PMC7349753 DOI: 10.3390/cells9061326] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
In the past five years, pluripotent stem cell (PSC)-derived kidney organoids and adult stem or progenitor cell (ASC)-based kidney tubuloids have emerged as advanced in vitro models of kidney development, physiology, and disease. PSC-derived organoids mimic nephrogenesis. After differentiation towards the kidney precursor tissues ureteric bud and metanephric mesenchyme, their reciprocal interaction causes self-organization and patterning in vitro to generate nephron structures that resemble the fetal kidney. ASC tubuloids on the other hand recapitulate renewal and repair in the adult kidney tubule and give rise to long-term expandable and genetically stable cultures that consist of adult proximal tubule, loop of Henle, distal tubule, and collecting duct epithelium. Both organoid types hold great potential for: (1) studies of kidney physiology, (2) disease modeling, (3) high-throughput screening for drug efficacy and toxicity, and (4) regenerative medicine. Currently, organoids and tubuloids are successfully used to model hereditary, infectious, toxic, metabolic, and malignant kidney diseases and to screen for effective therapies. Furthermore, a tumor tubuloid biobank was established, which allows studies of pathogenic mutations and novel drug targets in a large group of patients. In this review, we discuss the nature of kidney organoids and tubuloids and their current and future applications in science and medicine.
Collapse
Affiliation(s)
- Fjodor A. Yousef Yengej
- Hubrecht Institute—Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.B.R.); (M.C.V.)
| | - Jitske Jansen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 24, 6500 HB Nijmegen, The Netherlands;
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children’s Hospital, Geert Grooteplein 24, 6500 HB Nijmegen, The Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.B.R.); (M.C.V.)
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.B.R.); (M.C.V.)
| | - Hans Clevers
- Hubrecht Institute—Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
| |
Collapse
|
80
|
Abstract
The pathophysiology of cellular injury and repair has been extensively studied in acute kidney injury (AKI) for more than 70 years. Although a great deal of knowledge has been generated, a debate over the importance of repairing damaged cells versus replacing them by proliferation remains. In this issue of the JCI, Kishi et al. demonstrate that following kidney epithelial cell injury, DNA repair, rather than cell proliferation, plays the central role in recovery and longevity by minimizing apoptosis, G2/M cell-cycle arrest, and subsequent fibrosis. This has important therapeutic implications and highlights the need for more sensitive techniques to evaluate functional, structural, and molecular recovery following injury.
Collapse
|
81
|
Assmus AM, Mullins JJ, Brown CM, Mullins LJ. Cellular plasticity: A mechanism for homeostasis in the kidney. Acta Physiol (Oxf) 2020; 229:e13447. [PMID: 31991057 DOI: 10.1111/apha.13447] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/30/2022]
Abstract
Cellular plasticity is a topical subject with interest spanning a wide range of fields from developmental biology to regenerative medicine. Even the nomenclature is a subject of debate, and the underlying mechanisms are still under investigation. On top of injury repair, cell plasticity is a constant physiological process in adult organisms and tissues, in response to homeostatic challenges. In this review we discuss two examples of plasticity for the maintenance of homeostasis in the renal system-namely the renin-producing juxtaglomerular cells (JG cells) and cortical collecting duct (CCD) cells. JG cells show plasticity through recruitment mechanisms, answering the demand for an increase in renin production. In the CCD, cells appear to have the ability to transdifferentiate between principal and intercalated cells to help maintain the highly regulated solute transport levels of that segment. These two cases highlight the complexity of plasticity processes and the role they can play in the kidney.
Collapse
Affiliation(s)
- Adrienne M. Assmus
- The University of Edinburgh ‐ Cardiovascular Science (CVS) Queen's Medical Research Institute Edinburgh Scotland UK
| | - John J. Mullins
- The University of Edinburgh ‐ Cardiovascular Science (CVS) Queen's Medical Research Institute Edinburgh Scotland UK
| | - Cara M. Brown
- The University of Edinburgh ‐ Cardiovascular Science (CVS) Queen's Medical Research Institute Edinburgh Scotland UK
| | - Linda J. Mullins
- The University of Edinburgh ‐ Cardiovascular Science (CVS) Queen's Medical Research Institute Edinburgh Scotland UK
| |
Collapse
|
82
|
Soofi A, Kutschat AP, Azam M, Laszczyk AM, Dressler GR. Regeneration after acute kidney injury requires PTIP-mediated epigenetic modifications. JCI Insight 2020; 5:130204. [PMID: 31917689 DOI: 10.1172/jci.insight.130204] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 01/03/2020] [Indexed: 01/25/2023] Open
Abstract
A terminally differentiated cellular phenotype is thought to be maintained, at least in part, by both active and repressive histone marks. However, it is unclear whether regenerating cells after injury need to replicate such epigenetic marks to recover. To test whether renal epithelial cell regeneration is dependent on histone H3K4 methylation, we generated a mouse model that deleted the Paxip1 gene in mature renal proximal tubules. Paxip1 encodes PTIP, an essential protein in the Mll3/4 histone H3K4 methyltransferase complex. Mice with PTIP deletions in the adult kidney proximal tubules were viable and fertile. Upon acute kidney injury, such mice failed to regenerate damaged tubules, leading to scarring and interstitial fibrosis. The inability to repair damage was likely due to a failure to reenter mitosis and reactivate regulatory genes such as Sox9. PTIP deletion reduced histone H3K4 methylation in uninjured adult kidneys but did not significantly affect function or the expression of epithelial specific markers. Strikingly, cell lineage tracing revealed that surviving PTIP mutant cells could alter their phenotype and lose epithelial markers. These data demonstrate that PTIP and associated MLL3/4-mediated histone methylation are needed for regenerating proximal tubules and to maintain or reestablish the cellular epithelial phenotype.
Collapse
|
83
|
Ashammakhi N, Darabi MA, Çelebi-Saltik B, Tutar R, Hartel MC, Lee J, Hussein S, Goudie MJ, Cornelius MB, Dokmeci MR, Khademhosseini A. Microphysiological Systems: Next Generation Systems for Assessing Toxicity and Therapeutic Effects of Nanomaterials. SMALL METHODS 2020; 4:1900589. [PMID: 33043130 PMCID: PMC7546538 DOI: 10.1002/smtd.201900589] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Indexed: 05/27/2023]
Abstract
Microphysiological systems, also known as organ-on-a-chip platforms, show promise for the development of new testing methods that can be more accurate than both conventional two-dimensional cultures and costly animal studies. The development of more intricate microphysiological systems can help to better mimic the human physiology and highlight the systemic effects of different drugs and materials. Nanomaterials are among a technologically important class of materials used for diagnostic, therapeutic, and monitoring purposes; all of which and can be tested using new organ-on-a-chip systems. In addition, the toxicity of nanomaterials which have entered the body from ambient air or diet can have deleterious effects on various body systems. This in turn can be studied in newly developed microphysiological systems. While organ-on-a-chip models can be useful, they cannot pick up secondary and systemic toxicity. Thus, the utilization of multi-organ-on-a-chip systems for advancing nanotechnology will largely be reflected in the future of drug development, toxicology studies and precision medicine. Various aspects of related studies, current challenges, and future perspectives are discussed in this paper.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Betül Çelebi-Saltik
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Sihhiye, Ankara, Turkey
| | - Rumeysa Tutar
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Chemistry, Faculty of Engineering, Istanbul University Cerrahpasa, Avcilar-Istanbul, Turkey
| | - Martin C. Hartel
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California, USA
| | - Junmin Lee
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Saber Hussein
- Wright State University, Boonshoft School of Medicine, 3640 Colonel Glenn Hwy, Dayton, OH 45435, Ohio, USA
| | - Marcus J. Goudie
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Mercedes Brianna Cornelius
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California, USA
- Department of Chemistry, University of California, Los Angeles, California, USA
| | - Mehmet R. Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
84
|
Andrianova NV, Buyan MI, Zorova LD, Pevzner IB, Popkov VA, Babenko VA, Silachev DN, Plotnikov EY, Zorov DB. Kidney Cells Regeneration: Dedifferentiation of Tubular Epithelium, Resident Stem Cells and Possible Niches for Renal Progenitors. Int J Mol Sci 2019; 20:ijms20246326. [PMID: 31847447 PMCID: PMC6941132 DOI: 10.3390/ijms20246326] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
A kidney is an organ with relatively low basal cellular regenerative potential. However, renal cells have a pronounced ability to proliferate after injury, which undermines that the kidney cells are able to regenerate under induced conditions. The majority of studies explain yielded regeneration either by the dedifferentiation of the mature tubular epithelium or by the presence of a resident pool of progenitor cells in the kidney tissue. Whether cells responsible for the regeneration of the kidney initially have progenitor properties or if they obtain a “progenitor phenotype” during dedifferentiation after an injury, still stays the open question. The major stumbling block in resolving the issue is the lack of specific methods for distinguishing between dedifferentiated cells and resident progenitor cells. Transgenic animals, single-cell transcriptomics, and other recent approaches could be powerful tools to solve this problem. This review examines the main mechanisms of kidney regeneration: dedifferentiation of epithelial cells and activation of progenitor cells with special attention to potential niches of kidney progenitor cells. We attempted to give a detailed description of the most controversial topics in this field and ways to resolve these issues.
Collapse
Affiliation(s)
- Nadezda V. Andrianova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Marina I. Buyan
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Valentina A. Babenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991 Moscow, Russia
- Correspondence: (E.Y.P.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Correspondence: (E.Y.P.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| |
Collapse
|
85
|
Chang-Panesso M, Kadyrov FF, Lalli M, Wu H, Ikeda S, Kefaloyianni E, Abdelmageed MM, Herrlich A, Kobayashi A, Humphreys BD. FOXM1 drives proximal tubule proliferation during repair from acute ischemic kidney injury. J Clin Invest 2019; 129:5501-5517. [PMID: 31710314 PMCID: PMC6877314 DOI: 10.1172/jci125519] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
The proximal tubule has a remarkable capacity for repair after acute injury, but the cellular lineage and molecular mechanisms underlying this repair response are incompletely understood. Here, we developed a Kim1-GFPCreERt2 knockin mouse line (Kim1-GCE) in order to perform genetic lineage tracing of dedifferentiated cells while measuring the cellular transcriptome of proximal tubule during repair. Acutely injured genetically labeled clones coexpressed KIM1, VIMENTIN, SOX9, and KI67, indicating a dedifferentiated and proliferative state. Clonal analysis revealed clonal expansion of Kim1+ cells, indicating that acutely injured, dedifferentiated proximal tubule cells, rather than fixed tubular progenitor cells, account for repair. Translational profiling during injury and repair revealed signatures of both successful and unsuccessful maladaptive repair. The transcription factor Foxm1 was induced early in injury, was required for epithelial proliferation in vitro, and was dependent on epidermal growth factor receptor (EGFR) stimulation. In conclusion, dedifferentiated proximal tubule cells effect proximal tubule repair, and we reveal an EGFR/FOXM1-dependent signaling pathway that drives proliferative repair after injury.
Collapse
Affiliation(s)
| | | | - Matthew Lalli
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, and
| | - Shiyo Ikeda
- Division of Nephrology, Department of Medicine, and
| | | | - Mai M. Abdelmageed
- Division of Nephrology, Department of Medicine, and
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, British University in Egypt, Cairo, Egypt
| | | | - Akio Kobayashi
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, and
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
86
|
Fierro-Fernández M, Miguel V, Márquez-Expósito L, Nuevo-Tapioles C, Herrero JI, Blanco-Ruiz E, Tituaña J, Castillo C, Cannata P, Monsalve M, Ruiz-Ortega M, Ramos R, Lamas S. MiR-9-5p protects from kidney fibrosis by metabolic reprogramming. FASEB J 2019; 34:410-431. [PMID: 31914684 DOI: 10.1096/fj.201901599rr] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression posttranscriptionally and control biological processes (BPs), including fibrogenesis. Kidney fibrosis remains a clinical challenge and miRNAs may represent a valid therapeutic avenue. We show that miR-9-5p protected from renal fibrosis in the mouse model of unilateral ureteral obstruction (UUO). This was reflected in reduced expression of pro-fibrotic markers, decreased number of infiltrating monocytes/macrophages, and diminished tubular epithelial cell injury and transforming growth factor-beta 1 (TGF-β1)-dependent de-differentiation in human kidney proximal tubular (HKC-8) cells. RNA-sequencing (RNA-Seq) studies in the UUO model revealed that treatment with miR-9-5p prevented the downregulation of genes related to key metabolic pathways, including mitochondrial function, oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), and glycolysis. Studies in human tubular epithelial cells demonstrated that miR-9-5p impeded TGF-β1-induced bioenergetics derangement. The expression of the FAO-related axis peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α)-peroxisome proliferator-activated receptor alpha (PPARα) was reduced by UUO, although preserved by the administration of miR-9-5p. We found that in mice null for the mitochondrial master regulator PGC-1α, miR-9-5p was unable to promote a protective effect in the UUO model. We propose that miR-9-5p elicits a protective response to chronic kidney injury and renal fibrosis by inducing reprogramming of the metabolic derangement and mitochondrial dysfunction affecting tubular epithelial cells.
Collapse
Affiliation(s)
- Marta Fierro-Fernández
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Verónica Miguel
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | | | - Cristina Nuevo-Tapioles
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - J Ignacio Herrero
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Eva Blanco-Ruiz
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Jessica Tituaña
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | | | - Pablo Cannata
- Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (UAM), Madrid, Spain
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols", (CSIC-UAM), Madrid, Spain
| | - Marta Ruiz-Ortega
- Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (UAM), Madrid, Spain
| | - Ricardo Ramos
- Servicio de Genómica, Fundación Parque Científico de Madrid, Madrid, Spain
| | - Santiago Lamas
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| |
Collapse
|
87
|
Molecular Mechanisms of the Acute Kidney Injury to Chronic Kidney Disease Transition: An Updated View. Int J Mol Sci 2019; 20:ijms20194941. [PMID: 31590461 PMCID: PMC6801733 DOI: 10.3390/ijms20194941] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence has demonstrated the bidirectional link between acute kidney injury (AKI) and chronic kidney disease (CKD) such that, in the clinical setting, the new concept of a unified syndrome has been proposed. The pathophysiological reasons, along with the cellular and molecular mechanisms, behind the ability of a single, acute, apparently self-limiting event to drive chronic kidney disease progression are yet to be explained. This acute injury could promote progression to chronic disease through different pathways involving the endothelium, the inflammatory response and the development of fibrosis. The interplay among endothelial cells, macrophages and other immune cells, pericytes and fibroblasts often converge in the tubular epithelial cells that play a central role. Recent evidence has strengthened this concept by demonstrating that injured tubules respond to acute tubular necrosis through two main mechanisms: The polyploidization of tubular cells and the proliferation of a small population of self-renewing renal progenitors. This alternative pathophysiological interpretation could better characterize functional recovery after AKI.
Collapse
|
88
|
Higgins CE, Tang J, Mian BM, Higgins SP, Gifford CC, Conti DJ, Meldrum KK, Samarakoon R, Higgins PJ. TGF-β1-p53 cooperativity regulates a profibrotic genomic program in the kidney: molecular mechanisms and clinical implications. FASEB J 2019; 33:10596-10606. [PMID: 31284746 PMCID: PMC6766640 DOI: 10.1096/fj.201900943r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease affects >15% of the U.S. population and >850 million individuals worldwide. Fibrosis is the common outcome of many chronic renal disorders and, although the etiology varies (i.e., diabetes, hypertension, ischemia, acute injury, and urologic obstructive disorders), persistently elevated renal TGF-β1 levels result in the relentless progression of fibrotic disease. TGF-β1 orchestrates the multifaceted program of renal fibrogenesis involving proximal tubular dysfunction, failed epithelial recovery and redifferentiation, and subsequent tubulointerstitial fibrosis, eventually leading to chronic renal disease. Recent findings implicate p53 as a cofactor in the TGF-β1-induced signaling pathway and a transcriptional coregulator of several TGF-β1 profibrotic response genes by complexing with receptor-activated SMADs, which are homologous to the small worms (SMA) and Drosophilia mothers against decapentaplegic (MAD) gene families. The cooperative p53-TGF-β1 genomic cluster includes genes involved in cell growth control and extracellular matrix remodeling [e.g., plasminogen activator inhibitor-1 (PAI-1; serine protease inhibitor, clade E, member 1), connective tissue growth factor, and collagen I]. Although the molecular basis for this codependency is unclear, many TGF-β1-responsive genes possess p53 binding motifs. p53 up-regulation and increased p53 phosphorylation; moreover, they are evident in nephrotoxin- and ischemia/reperfusion-induced injury, diabetic nephropathy, ureteral obstructive disease, and kidney allograft rejection. Pharmacologic and genetic approaches that target p53 attenuate expression of the involved genes and mitigate the fibrotic response, confirming a key role for p53 in renal disorders. This review focuses on mechanisms whereby p53 functions as a transcriptional regulator within the TGF-β1 cluster with an emphasis on the potent fibrosis-promoting PAI-1 gene.-Higgins, C. E., Tang, J., Mian, B. M., Higgins, S. P., Gifford, C. C., Conti, D. J., Meldrum, K. K., Samarakoon, R., Higgins, P. J. TGF-β1-p53 cooperativity regulates a profibrotic genomic program in the kidney: molecular mechanisms and clinical implications.
Collapse
Affiliation(s)
- Craig E. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Jiaqi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Badar M. Mian
- The Urological Institute of Northeastern New York, Albany, New York, USA
- Division of Urology, Department of Surgery, Albany Medical College, Albany, New York, USA
| | - Stephen P. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Cody C. Gifford
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - David J. Conti
- Division of Transplantation Surgery, Department of Surgery, Albany Medical College, Albany, New York, USA
| | - Kirstan K. Meldrum
- Division of Pediatric Urology, Central Michigan University, Mount Pleasant, Michigan, USA
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
- The Urological Institute of Northeastern New York, Albany, New York, USA
- Division of Urology, Department of Surgery, Albany Medical College, Albany, New York, USA
| |
Collapse
|
89
|
Abstract
The zebrafish kidney has been used effectively for studying kidney development, repair and disease. New gene editing capability makes it a more versatile in vivo vertebrate model system to investigate renal epithelial cells in their native environment. In this chapter we focus on dissecting gene function in basic cellular biology of renal epithelial cells, including lumen formation and cell polarity, in intact zebrafish embryos.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United states
| | - Wenyan Xu
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United states
| | - Stephanie Jerman
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United states
| | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United states.
| |
Collapse
|
90
|
Kirita Y, Chang-Panesso M, Humphreys BD. Recent Insights into Kidney Injury and Repair from Transcriptomic Analyses. Nephron Clin Pract 2019; 143:162-165. [PMID: 31112966 PMCID: PMC6821561 DOI: 10.1159/000500638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 12/26/2022] Open
Abstract
Injured tubular epithelium exhibits cellular plasticity in that it can dedifferentiate, reenter the cell cycle, and subsequently either redifferentiate or adopt a chronically injured phenotype. Although some nephrogenic genes are reexpressed during injury and repair, developmental pathways are only partially recapitulated and the process is more accurately viewed as an entirely new program intrinsic to the regenerative response to injury. Recent advances in our understanding of the molecular circuitry underpinning epithelial plasticity have come from bulk, cell-specific, and single-cell transcriptomic analyses. These results have begun to define the signaling pathways and gene regulatory networks governing the epithelial injury response. In this review, we highlight recent transcriptomic analyses in kidney injury, repair and fibrosis, and outline the ways that these studies are improving our understanding of kidney regeneration.
Collapse
Affiliation(s)
- Yuhei Kirita
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Monica Chang-Panesso
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA,
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA,
| |
Collapse
|
91
|
Fu H, Zhou D, Zhu H, Liao J, Lin L, Hong X, Hou FF, Liu Y. Matrix metalloproteinase-7 protects against acute kidney injury by priming renal tubules for survival and regeneration. Kidney Int 2019; 95:1167-1180. [PMID: 30878215 PMCID: PMC6478554 DOI: 10.1016/j.kint.2018.11.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/03/2023]
Abstract
Matrix metalloproteinase-7 (MMP-7) is a secreted endopeptidase that degrades a broad range of substrates. Recent studies have identified MMP-7 as an early biomarker to predict severe acute kidney injury (AKI) and poor outcomes after cardiac surgery; however, the role of MMP-7 in the pathogenesis of AKI is unknown. In this study, we investigated the expression of MMP-7 and the impact of MMP-7 deficiency in several models of AKI. MMP-7 was induced in renal tubules following ischemia/ reperfusion injury or cisplatin administration, and in folic acid-induced AKI. MMP-7 knockout mice experienced higher mortality, elevated serum creatinine, and more severe histologic lesions after ischemic or toxic insults. Tubular apoptosis and interstitial inflammation were more prominent in MMP-7 knockout kidneys. These histologic changes were accompanied by increased expression of FasL and other components of the extrinsic apoptotic pathway, as well as increased expression of pro-inflammatory chemokines. In a rescue experiment, exogenous MMP-7 ameliorated kidney injury in MMP-7 knockout mice after ischemia/reperfusion. In vitro, MMP-7 protected tubular epithelial cells against apoptosis by directly degrading FasL. In isolated tubules ex vivo, MMP-7 promoted cell proliferation by degrading E-cadherin and thereby liberating β-catenin, priming renal tubules for regeneration. Taken together, these results suggest that induction of MMP-7 is protective in AKI by degrading FasL and mobilizing β-catenin, thereby priming kidney tubules for survival and regeneration.
Collapse
Affiliation(s)
- Haiyan Fu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haili Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Liao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Lin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
92
|
Sabapathy V, Cheru NT, Corey R, Mohammad S, Sharma R. A Novel Hybrid Cytokine IL233 Mediates regeneration following Doxorubicin-Induced Nephrotoxic Injury. Sci Rep 2019; 9:3215. [PMID: 30824764 PMCID: PMC6397151 DOI: 10.1038/s41598-019-39886-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/04/2019] [Indexed: 12/15/2022] Open
Abstract
Kidney injury, whether due to ischemic insults or chemotherapeutic agents, is exacerbated by inflammation, whereas Tregs are protective. We recently showed that IL-2 and IL-33, especially as a hybrid cytokine (IL233 - bearing IL-2 and IL-33 activities in one molecule), potentiated Tregs and group 2 innate lymphoid cells (ILC2) to prevent renal injury. Recent studies have indicated a reparative function for Tregs and ILC2. Here, using doxorubicin-induced nephrotoxic renal injury model, we investigated whether IL233 administration either before, late or very late after renal injury can restore kidney structure and function. We found that IL233 treatment even 2-weeks post-doxorubicin completely restored kidney function accompanied with an increase Treg and ILC2 in lymphoid and renal compartments, augmented anti-inflammatory cytokines and attenuated proinflammatory cytokine levels. IL233 treated mice had reduced inflammation, kidney injury (Score values - saline: 3.34 ± 0.334; IL233 pre: 0.42 ± 0.162; IL233 24 hrs: 1.34 ± 0.43; IL233 1 week: 1.2 ± 0.41; IL233 2 week: 0.47 ± 0.37; IL233 24 hrs + PC61: 3.5 ± 0.74) and fibrosis in all treatment regimen as compared to saline controls. Importantly, mice treated with IL233 displayed a reparative program in the kidneys, as evidenced by increased expression of genes for renal progenitor-cells and nephron segments. Our findings present the first evidence of an immunoregulatory cytokine, IL233, which could be a potent therapeutic strategy that augments Treg and ILC2 to not only inhibit renal injury, but also promote regeneration.
Collapse
Affiliation(s)
- Vikram Sabapathy
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA
| | - Nardos Tesfaye Cheru
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA
| | - Rebecca Corey
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA
| | - Saleh Mohammad
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA
| | - Rahul Sharma
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA.
| |
Collapse
|
93
|
Abstract
Periostin is a matricellular protein that is expressed in several tissues during embryonic development; however, its expression in adults is mostly restricted to collagen-rich connective tissues. Periostin is expressed only briefly during kidney development, but it is not normally detected in the adult kidney. Recent evidence has revealed that periostin is aberrantly expressed in several forms of chronic kidney disease (CKD), and that its expression correlates with the degree of interstitial fibrosis and the decline in renal function. Polycystic kidney disease (PKD), a genetic disorder, is characterized by the formation of numerous fluid-filled cysts in the kidneys. Periostin is secreted by the cyst epithelial cells and accumulates within the extracellular matrix adjacent to the cysts. In PKD mice, periostin overexpression accelerates cyst growth and contributes to structural changes in the kidneys, including interstitial fibrosis. Recent evidence suggests that periostin is a tissue repair molecule; however, its role in repair following acute kidney injury has not been investigated. It is thought that persistent expression of this protein in CKD contributes importantly to tubulointerstitial fibrosis and the progressive decline in renal function. Future studies to define the diverse actions of periostin during kidney injury may lead to effective therapies to slow PKD progression and possibly prevent the development of CKD. This chapter reviews the current literature on the expression of periostin in PKD and other forms of CKD, mechanisms for periostin stimulated cyst growth, its potential role in extracellular matrix production and renal fibrosis, and the evidence for periostin as a novel biomarker for kidney disease.
Collapse
Affiliation(s)
- Darren P Wallace
- Departments of Internal Medicine and Molecular and Integrative Physiology, and The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
94
|
Su TT. Cellular plasticity, caspases and autophagy; that which does not kill us, well, makes us different. Open Biol 2018; 8:rsob.180157. [PMID: 30487302 PMCID: PMC6282069 DOI: 10.1098/rsob.180157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
The ability to regenerate is a fundamental requirement for tissue homeostasis. Regeneration draws on three sources of cells. First and best-studied are dedicated stem/progenitor cells. Second, existing cells may proliferate to compensate for the lost cells of the same type. Third, a different cell type may change fate to compensate for the lost cells. This review focuses on regeneration of the third type and will discuss the contributions by post-transcriptional mechanisms including the emerging evidence for cell-autonomous and non-lethal roles of cell death pathways.
Collapse
Affiliation(s)
- Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO 80309-0347, USA .,University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, 13001 E. 17th Pl., Aurora, CO 80045, USA
| |
Collapse
|
95
|
Coelho S, Cabral G, Lopes JA, Jacinto A. Renal regeneration after acute kidney injury. Nephrology (Carlton) 2018; 23:805-814. [PMID: 29575280 DOI: 10.1111/nep.13256] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2018] [Indexed: 12/28/2022]
Abstract
Acute kidney injury is common and associated with negative renal and patient outcomes. The human kidney has a real but limited regeneration capacity. Understanding renal regeneration may allow us to manipulate this process and thus develop therapeutic weapons to improve patients' outcome. In the first part of this paper we discuss the clinical factors associated with renal recovery: baseline patient particularities, acute kidney injury characteristics and the medical approach taken in the short and long-term. In the second part, the cellular and molecular mechanisms underlying renal regeneration are explored. The immune system seems to have an important role, first promoting inflammation and then tissue healing. Other players, such as cellular senescence, mitochondrial dysfunction, renal haemodynamics and metabolic reprogramming also have a role in renal regeneration. We aim to develop a short review of renal regeneration, offering a holistic view of this process.
Collapse
Affiliation(s)
- Silvia Coelho
- Intensive Care Department, Hospital Fernando Fonseca, EPE, Amadora, Portugal.,CEDOC - Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal
| | - Guadalupe Cabral
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal
| | - José A Lopes
- Division of Nephrology and Renal Transplantation, Department of Medicine Centro Hospitalar Lisboa Norte, EPE, Lisbon, Portugal
| | - António Jacinto
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal
| |
Collapse
|
96
|
Abdullah C, Duronio RJ. The many fates of tissue regeneration. PLoS Genet 2018; 14:e1007728. [PMID: 30462634 PMCID: PMC6248895 DOI: 10.1371/journal.pgen.1007728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Christopher Abdullah
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- SPIRE Postdoctoral Fellowship Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert J. Duronio
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
97
|
Verghese S, Su TT. Ionizing radiation induces stem cell-like properties in a caspase-dependent manner in Drosophila. PLoS Genet 2018; 14:e1007659. [PMID: 30462636 PMCID: PMC6248896 DOI: 10.1371/journal.pgen.1007659] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/27/2018] [Indexed: 11/18/2022] Open
Abstract
Cancer treatments including ionizing radiation (IR) can induce cancer stem cell-like properties in non-stem cancer cells, an outcome that can interfere with therapeutic success. Yet, we understand little about what consequences of IR induces stem cell like properties and why some cancer cells show this response but not others. In previous studies, we identified a pool of epithelial cells in Drosophila larval wing discs that display IR-induced stem cell-like properties. These cells are resistant to killing by IR and, after radiation damage, change fate and translocate to regenerate parts of the disc that suffered more cell death. Here, we report the identification of two new pools of cells with IR-induced regenerative capability. We addressed how IR exposure results in the induction of stem cell-like behavior, and found a requirement for IR-induced caspase activity and for Zfh2, a transcription factor and an effector in the JAK/STAT pathway. Unexpectedly, the requirement for caspase activity was cell-autonomous within cell populations that display regenerative behavior. We propose a model in which the requirement for caspase activity and Zfh2 can be explained by apoptotic and non-apoptotic functions of caspases in the induction of stem cell-like behavior. Ionizing Radiation (IR), alone or in combination with other therapies, is used to treat an estimated half of all cancer patients. Yet, we understand little about why some tumors cells respond to treatment while others grow back (regenerate). We identified specific pools of cells within a Drosophila organ that are capable of regeneration after damage by IR. We also identified what it is about IR damage that allows these cells to regenerate. These results help us understand how tissues regenerate after IR damage and will aid in designing better therapies that involve radiation.
Collapse
Affiliation(s)
- Shilpi Verghese
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, United States of America
| | - Tin Tin Su
- University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, Aurora, CO, United States of America
- * E-mail:
| |
Collapse
|
98
|
Khamchun S, Thongboonkerd V. Cell cycle shift from G0/G1 to S and G2/M phases is responsible for increased adhesion of calcium oxalate crystals on repairing renal tubular cells at injured site. Cell Death Discov 2018; 4:106. [PMID: 30774989 PMCID: PMC6374384 DOI: 10.1038/s41420-018-0123-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/24/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022] Open
Abstract
Renal tubular cell injury can enhance calcium oxalate monohydrate (COM) crystal adhesion at the injured site and thus may increase the stone risk. Nevertheless, underlying mechanism of such enhancement remained unclear. In the present study, confluent MDCK renal tubular cell monolayers were scratched to allow cells to proliferate and repair the injured site. At 12-h post-scratch, the repairing cells had significant increases in crystal adhesion capacity and cell proliferation as compared to the control. Cell cycle analysis using flow cytometry demonstrated that the repairing cells underwent cell cycle shift from G0/G1 to S and G2/M phases. Cyclosporin A (CsA) and hydroxyurea (HU) at sub-toxic doses caused cell cycle shift mimicking that observed in the repairing cells. Crystal-cell adhesion assay confirmed the increased crystal adhesion capacity of the CsA-treated and HU-treated cells similar to that of the repairing cells. These findings provide evidence indicating that cell cycle shift from G0/G1 to S and G2/M phases is responsible, at least in part, for the increased adhesion of COM crystals on repairing renal tubular cells at the injured site.
Collapse
Affiliation(s)
- Supaporn Khamchun
- 1Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,2Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- 1Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,3Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
99
|
Raman A, Parnell SC, Zhang Y, Reif GA, Dai Y, Khanna A, Daniel E, White C, Vivian JL, Wallace DP. Periostin overexpression in collecting ducts accelerates renal cyst growth and fibrosis in polycystic kidney disease. Am J Physiol Renal Physiol 2018; 315:F1695-F1707. [PMID: 30332313 DOI: 10.1152/ajprenal.00246.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In polycystic kidney disease (PKD), persistent activation of cell proliferation and matrix production contributes to cyst growth and fibrosis, leading to progressive deterioration of renal function. Previously, we showed that periostin, a matricellular protein involved in tissue repair, is overexpressed by cystic epithelial cells of PKD kidneys. Periostin binds αVβ3-integrins and activates integrin-linked kinase (ILK), leading to Akt/mammalian target of rapamycin (mTOR)-mediated proliferation of human PKD cells. By contrast, periostin does not stimulate the proliferation of normal human kidney cells. This difference in the response to periostin is due to elevated expression of αVβ3-integrins by cystic cells. To determine whether periostin accelerates cyst growth and fibrosis, we generated mice with conditional overexpression of periostin in the collecting ducts (CDs). Ectopic CD expression of periostin was not sufficient to induce cyst formation or fibrosis in wild-type mice. However, periostin overexpression in pcy/pcy ( pcy) kidneys significantly increased mTOR activity, cell proliferation, cyst growth, and interstitial fibrosis; and accelerated the decline in renal function. Moreover, CD-specific overexpression of periostin caused a decrease in the survival of pcy mice. These pathological changes were accompanied by increased renal expression of vimentin, α-smooth muscle actin, and type I collagen. We also found that periostin increased gene expression of pathways involved in repair, including integrin and growth factor signaling and ECM production, and it stimulated focal adhesion kinase, Rho GTPase, cytoskeletal reorganization, and migration of PKD cells. These results suggest that periostin stimulates signaling pathways involved in an abnormal tissue repair process that contributes to cyst growth and fibrosis in PKD.
Collapse
Affiliation(s)
- Archana Raman
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
| | - Stephen C Parnell
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas
| | - Yan Zhang
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Gail A Reif
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Yuqiao Dai
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Aditi Khanna
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Emily Daniel
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Corey White
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Jay L Vivian
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Darren P Wallace
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| |
Collapse
|
100
|
Hamzawy M, Gouda SAA, Rashed L, Morcos MA, Shoukry H, Sharawy N. 22-oxacalcitriol prevents acute kidney injury via inhibition of apoptosis and enhancement of autophagy. Clin Exp Nephrol 2018; 23:43-55. [PMID: 29968126 DOI: 10.1007/s10157-018-1614-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The pathophysiology of ischemic acute kidney injury (AKI) is thought to include a complex interplay between tubular cell damage and regeneration. Several lines of evidences suggest a potential renoprotective effect of vitamin D. In this study, we investigated the effect of 22-oxacalcitriol (OCT), a synthetic vitamin D analogue, on renal fate in a rat model of ischemia reperfusion injury (IRI) induced acute kidney injury (AKI). METHODS 22-oxacalcitriol (OCT) was administered via intraperitoneal (IP) injection before ischemia, and continued after IRI that was performed through bilateral clamping of the renal pedicles. 96 h after reperfusion, rats were sacrificed for the evaluation of autophagy, apoptosis, and cell cycle arrest. Additionally, assessments of toll-like receptors (TLR), interferon gamma (IFN-g) and sodium-hydrogen exchanger-1 (NHE-1) were also performed to examine their relations to OCT-mediated cell response. RESULTS Treatment with OCT-attenuated functional deterioration and histological damage in IRI induced AKI, and significantly decreased cell apoptosis and fibrosis. In comparison with IRI rats, OCT + IRI rats manifested a significant exacerbation of autophagy as well as reduced cell cycle arrest. Moreover, the administration of OCT decreased IRI-induced upregulation of TLR4, IFN-g and NHE-1. CONCLUSION These results demonstrate that treatment with OCT has a renoprotective effect in ischemic AKI, possibly by suppressing cell loss. Changes in the expression of IFN-g and NHE-1 could partially link OCT to the cell survival-promoted effects.
Collapse
Affiliation(s)
- Magda Hamzawy
- Department of Physiology, Faculty of Medicine, Kasr El-Aini, Cairo University, AlSaray Street, Cairo, 11562, Egypt
| | - Sarah Ali Abdelhameed Gouda
- Department of Physiology, Faculty of Medicine, Kasr El-Aini, Cairo University, AlSaray Street, Cairo, 11562, Egypt
| | - Laila Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mary Attia Morcos
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba Shoukry
- Department of Physiology, Faculty of Medicine, Kasr El-Aini, Cairo University, AlSaray Street, Cairo, 11562, Egypt
| | - Nivin Sharawy
- Department of Physiology, Faculty of Medicine, Kasr El-Aini, Cairo University, AlSaray Street, Cairo, 11562, Egypt. .,Cairo University Hospitals, Cairo, Egypt.
| |
Collapse
|