51
|
Verbelen C, Antikainen J, Korhonen TK, Dufrêne YF. Exploring the molecular forces within and between CbsA S-layer proteins using single molecule force spectroscopy. Ultramicroscopy 2007; 107:1004-11. [PMID: 17560030 DOI: 10.1016/j.ultramic.2007.02.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 02/09/2007] [Indexed: 11/23/2022]
Abstract
We used single molecule atomic force microscopy (AFM) to gain insight into the molecular forces driving the folding and assembly of the S-layer protein CbsA. Force curves recorded between tips and supports modified with CbsA proteins showed sawtooth patterns with multiple force peaks of 58+/-26pN that we attribute to the unfolding of alpha-helices, in agreement with earlier secondary structure predictions. The average unfolding force increased with the pulling speed but was independent on the interaction time. Force curves obtained for CbsA peptides truncated in their C-terminal region showed similar periodic features, except that fewer force peaks were seen. Furthermore, the average unfolding force was 83+/-45pN, suggesting the domains were more stable. By contrast, cationic peptides truncated in their N-terminal region showed single force peaks of 366+/-149pN, presumably reflecting intermolecular electrostatic bridges rather than unfolding events. Interestingly, these large intermolecular forces increased not only with pulling speed but also with interaction time. We expect that the intra- and intermolecular forces measured here may play a significant role in controlling the stability and assembly of the CbsA protein.
Collapse
Affiliation(s)
- Claire Verbelen
- Unité de chimie des interfaces, Université catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
52
|
Gilbert Y, Deghorain M, Wang L, Xu B, Pollheimer PD, Gruber HJ, Errington J, Hallet B, Haulot X, Verbelen C, Hols P, Dufrêne YF. Single-molecule force spectroscopy and imaging of the vancomycin/D-Ala-D-Ala interaction. NANO LETTERS 2007; 7:796-801. [PMID: 17316058 DOI: 10.1021/nl0700853] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The clinically important vancomycin antibiotic inhibits the growth of pathogens such as Staphylococcus aureus by blocking cell wall synthesis through specific recognition of nascent peptidoglycan terminating in D-Ala-D-Ala. Here, we demonstrate the ability of single-molecule atomic force microscopy with antibiotic-modified tips to measure the specific binding forces of vancomycin and to map individual ligands on living bacteria. The single-molecule approach presented here provides new opportunities for understanding the binding mechanisms of antibiotics and for exploring the architecture of bacterial cell walls.
Collapse
Affiliation(s)
- Yann Gilbert
- Unité de Chimie des Interfaces, Université catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Barsegov V, Thirumalai D. Dynamic Competition between Catch and Slip Bonds in Selectins Bound to Ligands. J Phys Chem B 2006; 110:26403-12. [PMID: 17181300 DOI: 10.1021/jp0653306] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atomic force measurements of unbinding rates (or off-rates) of ligands bound to a class of cell adhesion molecules from the selectin family show a transition from catch to slip bonds as the value of external force (f) is increased. At low forces (<10 pN), the unbinding rates decrease (catch regime), while, at high forces, the rates increase in accord with the Bell model (slip regime). The energy landscape underlying the catch-slip transition can be captured by a two-state model that considers the possibility of redistribution of population from the force-free bound state to the force-stabilized bound state. The excellent agreement between theory and experiments is used to extract the parameters characterizing the energy landscape of the complex by fitting the calculated curves to lifetime data (obtained at constant f) for the monomeric form of PSGL-1 (sPSGL-1). We used the constant force parameters to predict the distributions of unbinding times and unbinding forces as a function of the loading rate. The general two-state model, which also correctly predicts the absence of catch bonds in the binding of antibodies to selectins, is used to resolve the energy landscape parameters characterizing adhesive interactions of P- and L-selectins with physiological ligands such as sPSGL-1 and endoglycan and antibodies such as G1 and DREG56. Despite high sequence similarity, the underlying shapes of the energy landscape of P-selectin and L-selectin interacting with sPSGL-1 are markedly different. The underlying energy landscape of the selectin cell adhesion complex is sensitive to the nature of the ligand. The unified description of selectins bound to physiological ligands and antibodies in conjunction with experimental data can be used to extract the key parameters that describe the dynamics of cell adhesion complexes.
Collapse
Affiliation(s)
- V Barsegov
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA.
| | | |
Collapse
|
54
|
Zachariae U, Grubmüller H. A highly strained nuclear conformation of the exportin Cse1p revealed by molecular dynamics simulations. Structure 2006; 14:1469-78. [PMID: 16962977 DOI: 10.1016/j.str.2006.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 07/20/2006] [Accepted: 08/01/2006] [Indexed: 10/24/2022]
Abstract
To investigate the stability of the open nuclear state of the exportin Cse1p and its closing mechanism at the atomic level, we have performed multiple molecular dynamics simulations. The simulations revealed a strikingly fast transition of Cse1p from the open conformation to the closed cytoplasmic form, consistent with the proposal that Cse1p represents a "spring-loaded molecule." The structure of the ring-shaped state obtained in the simulations is remarkably close to the crystal structure of the cytoplasmic state, though the open nuclear structure was used as the only input. The conformational change is initially driven by release of strain due to RanGTP/importin-alpha binding. Subsequently, a stable closed state is formed, driven by attraction of electrostatically complementary interfaces. These results are consistent with and extend previous proposals. Reverse-charge and neutral mutants remained in an open state. The simulations predict a detailed reaction pathway and resolve the role of suggested hinge regions.
Collapse
Affiliation(s)
- Ulrich Zachariae
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | |
Collapse
|
55
|
Krasnoslobodtsev AV, Shlyakhtenko LS, Lyubchenko YL. Probing Interactions within the synaptic DNA-SfiI complex by AFM force spectroscopy. J Mol Biol 2006; 365:1407-16. [PMID: 17125791 PMCID: PMC1847770 DOI: 10.1016/j.jmb.2006.10.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 09/15/2006] [Accepted: 10/12/2006] [Indexed: 10/24/2022]
Abstract
SfiI belongs to a family of restriction enzymes that function as tetramers, binding two recognition regions for the DNA cleavage reaction. The SfiI protein is an attractive and convenient model for studying synaptic complexes between DNA and proteins capable of site-specific binding. The enzymatic action of SfiI has been very well characterized. However, the properties of the complex before the cleavage reaction are not clear. We used single-molecule force spectroscopy to analyze the strength of interactions within the SfiI-DNA complex. In these experiments, the stability of the synaptic complex formed by the enzyme and two DNA duplexes was probed in a series of approach-retraction cycles. In order to do this, one duplex was tethered to the surface and the other was tethered to the probe. The complex was formed by the protein present in the solution. An alternative setup, in which the protein was anchored to the surface, allowed us to probe the stability of the complex formed with only one duplex in the approach-retraction experiments, with the duplex immobilized at the probe tip. Both types of complexes are characterized by similar rupture forces. The stability of the complex was determined by measuring the dependence of rupture forces on force loading rates (dynamic force spectroscopy) and the results suggest that the dissociation reaction of the SfiI-DNA complex has a single energy barrier along the dissociation path. Dynamic force spectroscopy was instrumental in revealing the role of the 5 bp spacer region within the palindromic recognition site on DNA-SfiI in the stability of the complex. The data show that, although the change of non-specific sequence does not alter the position of the activation barrier, it changes values of the off rates significantly.
Collapse
|
56
|
Shahin V. Route of glucocorticoid-induced macromolecules across the nuclear envelope as viewed by atomic force microscopy. Pflugers Arch 2006; 453:1-9. [PMID: 16736207 DOI: 10.1007/s00424-006-0102-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
Glucocorticoids are vital steroid hormones. The physiologic activities of these hydrophobic molecules predominantly require translocation of glucocorticoid-initiated macromolecules (GIMs), proteins and mRNA transcripts, in and out of the nucleus, respectively. The bidirectional transport of GIMs is mediated by nuclear pore complexes (NPCs) that span the nuclear envelope at regular distances. The transport proceeds through the NPC central channel, whose interior is lined up by hydrophobic proteins. The NPC channel is assumed to dilate while hydrophobic cargos are being translocated through. Upon glucocorticoid injection into a glucocorticoid-sensitive cell, Xenopus laevis oocyte, and using atomic force microscopy, we have recently unraveled the long unexplored paths that GIMs take through the nuclear envelope and described interactions of GIMs with NPCs. In so doing, surprising and intriguing observations were made and the following conclusions were drawn: glucocorticoid-initiated proteins evoke NPC channel dilation before physical interaction with the NPC. NPC channel dilation is apparently transmitted through binding of glucocorticoid-induced proteins to NPC-associated filaments or yet unknown structures in the cytoplasmic nuclear envelope surface. The transport of both proteins and ribonucleoproteins seems to be non-randomly confined to local areas on either nuclear envelope site, the so-called hot spots.
Collapse
Affiliation(s)
- Victor Shahin
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
57
|
Gemmen GJ, Millin R, Smith DE. DNA looping by two-site restriction endonucleases: heterogeneous probability distributions for loop size and unbinding force. Nucleic Acids Res 2006; 34:2864-77. [PMID: 16723432 PMCID: PMC1474071 DOI: 10.1093/nar/gkl382] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proteins interacting at multiple sites on DNA via looping play an important role in many fundamental biochemical processes. Restriction endonucleases that must bind at two recognition sites for efficient activity are a useful model system for studying such interactions. Here we used single DNA manipulation to study sixteen known or suspected two-site endonucleases. In eleven cases (BpmI, BsgI, BspMI, Cfr10I, Eco57I, EcoRII, FokI, HpaII, NarI, Sau3AI and SgrAI) we found that substitution of Ca2+ for Mg2+ blocked cleavage and enabled us to observe stable DNA looping. Forced disruption of these loops allowed us to measure the frequency of looping and probability distributions for loop size and unbinding force for each enzyme. In four cases we observed bimodal unbinding force distributions, indicating conformational heterogeneity and/or complex binding energy landscapes. Measured unlooping events ranged in size from 7 to 7500 bp and the most probable size ranged from less than 75 bp to nearly 500 bp, depending on the enzyme. In most cases the size distributions were in much closer agreement with theoretical models that postulate sharp DNA kinking than with classical models of DNA elasticity. Our findings indicate that DNA looping is highly variable depending on the specific protein and does not depend solely on the mechanical properties of DNA.
Collapse
Affiliation(s)
| | | | - Douglas E. Smith
- To whom correspondence should be addressed. Tel: +1 858 534 5241;
| |
Collapse
|
58
|
Hinterdorfer P, Dufrêne YF. Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 2006; 3:347-55. [PMID: 16628204 DOI: 10.1038/nmeth871] [Citation(s) in RCA: 705] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Because of its piconewton force sensitivity and nanometer positional accuracy, the atomic force microscope (AFM) has emerged as a powerful tool for exploring the forces and the dynamics of the interaction between individual ligands and receptors, either on isolated molecules or on cellular surfaces. These studies require attaching specific biomolecules or cells on AFM tips and on solid supports and measuring the unbinding forces between the modified surfaces using AFM force spectroscopy. In this review, we describe the current methodology for molecular recognition studies using the AFM, with an emphasis on strategies available for preparing AFM tips and samples, and on procedures for detecting and localizing single molecular recognition events.
Collapse
Affiliation(s)
- Peter Hinterdorfer
- Institute for Biophysics, Johannes Kepler University of Linz, Altenbergerstr. 69, A-4040 Linz, Austria.
| | | |
Collapse
|
59
|
Abstract
Nanomanipulation of individual RNA molecules, using laser optical tweezers, has made it possible to infer the major features of their energy landscape. Time-dependent mechanical unfolding trajectories, measured at a constant stretching force (f(S)) of simple RNA structures (hairpins and three-helix junctions) sandwiched between RNA/DNA hybrid handles show that they unfold in a reversible all-or-none manner. To provide a molecular interpretation of the experiments we use a general coarse-grained off-lattice Gō-like model, in which each nucleotide is represented using three interaction sites. Using the coarse-grained model we have explored forced-unfolding of RNA hairpin as a function of f(S) and the loading rate (r(f)). The simulations and theoretical analysis have been done both with and without the handles that are explicitly modeled by semiflexible polymer chains. The mechanisms and timescales for denaturation by temperature jump and mechanical unfolding are vastly different. The directed perturbation of the native state by f(S) results in a sequential unfolding of the hairpin starting from their ends, whereas thermal denaturation occurs stochastically. From the dependence of the unfolding rates on r(f) and f(S) we show that the position of the unfolding transition state is not a constant but moves dramatically as either r(f) or f(S) is changed. The transition-state movements are interpreted by adopting the Hammond postulate for forced-unfolding. Forced-unfolding simulations of RNA, with handles attached to the two ends, show that the value of the unfolding force increases (especially at high pulling speeds) as the length of the handles increases. The pathways for refolding of RNA from stretched initial conformation, upon quenching f(S) to the quench force f(Q), are highly heterogeneous. The refolding times, upon force-quench, are at least an order-of-magnitude greater than those obtained by temperature-quench. The long f(Q)-dependent refolding times starting from fully stretched states are analyzed using a model that accounts for the microscopic steps in the rate-limiting step, which involves the trans to gauche transitions of the dihedral angles in the GAAA tetraloop. The simulations with explicit molecular model for the handles show that the dynamics of force-quench refolding is strongly dependent on the interplay of their contour length and persistence length and the RNA persistence length. Using the generality of our results, we also make a number of precise experimentally testable predictions.
Collapse
Affiliation(s)
- Changbong Hyeon
- Biophysics Program Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, USA
| | | |
Collapse
|
60
|
Fradin C, Zbaida D, Elbaum M. Dissociation of nuclear import cargo complexes by the protein Ran: a fluorescence correlation spectroscopy study. C R Biol 2005; 328:1073-82. [PMID: 16314286 DOI: 10.1016/j.crvi.2005.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 10/01/2005] [Accepted: 10/03/2005] [Indexed: 11/27/2022]
Abstract
In nucleated cells, proteins designed for nuclear import form complexes with soluble nuclear transport receptors prior to translocation across the nuclear envelope. The directionality of transport is due to the asymmetric distribution of the protein Ran, which dissociates import cargo complexes only in its nuclear RanGTP form. Using fluorescence correlation spectroscopy, we have studied the stability of cargo complexes in solution in the presence and in the absence of RanGTP. We find that RanGTP has a higher affinity for the major import receptor, the importin alpha/beta heterodimer, when importin alpha does not carry a cargo, suggesting that some nuclear transport targets might be preferentially released.
Collapse
Affiliation(s)
- Cécile Fradin
- Department of Physics and Astronomy, 1280 Main St. W, Hamilton, ON, L8S4M1, Canada.
| | | | | |
Collapse
|
61
|
Tunnicliffe RB, Waby JL, Williams RJ, Williamson MP. An Experimental Investigation of Conformational Fluctuations in Proteins G and L. Structure 2005; 13:1677-84. [PMID: 16271891 DOI: 10.1016/j.str.2005.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 07/28/2005] [Accepted: 08/02/2005] [Indexed: 11/21/2022]
Abstract
The B1 domains of streptococcal proteins G and L are structurally similar, but they have different sequences and they fold differently. We have measured their NMR spectra at variable temperature using a range of concentrations of denaturant. Many residues have curved amide proton temperature dependence, indicating that they significantly populate alternative, locally unfolded conformations. The results, therefore, provide a view of the locations of low-lying, locally unfolded conformations. They indicate approximately 4-6 local minima for each protein, all within ca. 2.5 kcal/mol of the native state, implying a locally rough energy landscape. Comparison with folding data for these proteins shows that folding involves most molecules traversing a similar path, once a transition state containing a beta hairpin has been formed, thereby defining a well-populated pathway down the folding funnel. The hairpin that directs the folding pathway differs for the two proteins and remains the most stable part of the folded protein.
Collapse
Affiliation(s)
- Richard B Tunnicliffe
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | | | |
Collapse
|
62
|
Nevo R, Brumfeld V, Kapon R, Hinterdorfer P, Reich Z. Direct measurement of protein energy landscape roughness. EMBO Rep 2005; 6:482-6. [PMID: 15864299 PMCID: PMC1299309 DOI: 10.1038/sj.embor.7400403] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 02/23/2005] [Accepted: 03/24/2005] [Indexed: 11/09/2022] Open
Abstract
The energy landscape of proteins is thought to have an intricate, corrugated structure. Such roughness should have important consequences on the folding and binding kinetics of proteins, as well as on their equilibrium fluctuations. So far, no direct measurement of protein energy landscape roughness has been made. Here, we combined a recent theory with single-molecule dynamic force spectroscopy experiments to extract the overall energy scale of roughness epsilon for a complex consisting of the small GTPase Ran and the nuclear transport receptor importin-beta. The results gave epsilon > 5k(B)T, indicating a bumpy energy surface, which is consistent with the ability of importin-beta to accommodate multiple conformations and to interact with different, structurally distinct ligands.
Collapse
Affiliation(s)
- Reinat Nevo
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vlad Brumfeld
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ruti Kapon
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Peter Hinterdorfer
- Institute for Biophysics, University of Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Ziv Reich
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
- Tel: +972 8 934 2982; Fax: +972 8 934 6010; E-mail:
| |
Collapse
|
63
|
Brockwell DJ, Beddard GS, Paci E, West DK, Olmsted PD, Smith DA, Radford SE. Mechanically unfolding the small, topologically simple protein L. Biophys J 2005; 89:506-19. [PMID: 15863479 PMCID: PMC1366550 DOI: 10.1529/biophysj.105.061465] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
beta-sheet proteins are generally more able to resist mechanical deformation than alpha-helical proteins. Experiments measuring the mechanical resistance of beta-sheet proteins extended by their termini led to the hypothesis that parallel, directly hydrogen-bonded terminal beta-strands provide the greatest mechanical strength. Here we test this hypothesis by measuring the mechanical properties of protein L, a domain with a topology predicted to be mechanically strong, but with no known mechanical function. A pentamer of this small, topologically simple protein is resistant to mechanical deformation over a wide range of extension rates. Molecular dynamics simulations show the energy landscape for protein L is highly restricted for mechanical unfolding and that this protein unfolds by the shearing apart of two structural units in a mechanism similar to that proposed for ubiquitin, which belongs to the same structural class as protein L, but unfolds at a significantly higher force. These data suggest that the mechanism of mechanical unfolding is conserved in proteins within the same fold family and demonstrate that although the topology and presence of a hydrogen-bonded clamp are of central importance in determining mechanical strength, hydrophobic interactions also play an important role in modulating the mechanical resistance of these similar proteins.
Collapse
Affiliation(s)
- David J Brockwell
- School of Biochemistry and Microbiology, Institute of Molecular Biophysics, Centre for Chemical Dynamics, University of Leeds, Leeds, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
64
|
Barsegov V, Thirumalai D. Dynamics of unbinding of cell adhesion molecules: transition from catch to slip bonds. Proc Natl Acad Sci U S A 2005; 102:1835-9. [PMID: 15701706 PMCID: PMC548539 DOI: 10.1073/pnas.0406938102] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The unbinding dynamics of complexes involving cell-adhesion molecules depends on the specific ligands. Atomic force microscopy measurements have shown that for the specific P-selectin-P-selectin glycoprotein ligand (sPSGL-1) the average bond lifetime t initially increases (catch bonds) at low (< or =10 pN) constant force, f, and decreases when f > 10 pN (slip bonds). In contrast, for the complex with G1 anti-P-selectin monoclonal antibody t monotonically decreases with f. To quantitatively map the energy landscape of such complexes we use a model that considers the possibility of redistribution of population from one force-free state to another force-stabilized bound state. The excellent agreement between theory and experiments allows us to extract energy landscape parameters by fitting the calculated curves to the lifetime measurements for both sPSGL-1 and G1. Surprisingly, the unbinding transition state for P-selectin-G1 complex is close (0.32 nm) to the bound state, implying that the interaction is brittle, i.e., once deformed, the complex fractures. In contrast, the unbinding transition state of the P-selectin-sPSGL-1 complex is far (approximately 1.5 nm) from the bound state, indicative of a compliant structure. Constant f energy landscape parameters are used to compute the distributions of unbinding times and unbinding forces as a function of the loading rate, rf. For a given rf, unbinding of sPSGL-1 occurs over a broader range of f with the most probable f being an order of magnitude less than for G1. The theory for cell adhesion complexes can be used to predict the outcomes of unbinding of other protein-protein complexes.
Collapse
Affiliation(s)
- V Barsegov
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
65
|
Kienberger F, Kada G, Mueller H, Hinterdorfer P. Single Molecule Studies of Antibody–Antigen Interaction Strength Versus Intra-molecular Antigen Stability. J Mol Biol 2005; 347:597-606. [PMID: 15755453 DOI: 10.1016/j.jmb.2005.01.042] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 01/18/2005] [Indexed: 11/21/2022]
Abstract
We investigated molecular recognition of antibodies to membrane-antigens and extraction of the antigens out of membranes at the single molecule level. Using dynamic force microscopy imaging and enzyme immunoassay, binding of anti-sendai antibodies to sendai-epitopes genetically fused into bacteriorhodopsin molecules from purple membranes were detected under physiological conditions. The antibody/antigen interaction strength of 70-170 pN at loading rates of 2-50 nN/second yielded a barrier width of x = 0.12 nm and a kinetic off-rate (corresponding to the barrier height) of k(off) = 6s(-1), respectively. Bacteriorhodopsin unfolding revealed a characteristic intra-molecular force pattern, in which wild-type and sendai-bacteriorhodopsin molecules were clearly distinguishable in their length distributions, originating from the additional 13 amino acid residues epitope in sendai purple membranes. The inter-molecular antibody/antigen unbinding force was significantly lower than the force required to mechanically extract the binding epitope-containing helix pair out of the membrane and unfold it (126 pN compared to 204 pN at the same loading rate), meeting the expectation that inter-molecular unbinding forces are weaker than intra-molecular unfolding forces responsible for stabilizing native conformations of proteins.
Collapse
Affiliation(s)
- Ferry Kienberger
- Institute for Biophysics, University of Linz, Altenbergerstr. 69, A-4040 Linz, Austria
| | | | | | | |
Collapse
|
66
|
Nevo R, Brumfeld V, Elbaum M, Hinterdorfer P, Reich Z. Direct discrimination between models of protein activation by single-molecule force measurements. Biophys J 2005; 87:2630-4. [PMID: 15454457 PMCID: PMC1304681 DOI: 10.1529/biophysj.104.041889] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The limitations imposed on the analyses of complex chemical and biological systems by ensemble averaging can be overcome by single-molecule experiments. Here, we used a single-molecule technique to discriminate between two generally accepted mechanisms of a key biological process--the activation of proteins by molecular effectors. The two mechanisms, namely induced-fit and population-shift, are normally difficult to discriminate by ensemble approaches. As a model, we focused on the interaction between the nuclear transport effector, RanBP1, and two related complexes consisting of the nuclear import receptor, importin beta, and the GDP- or GppNHp-bound forms of the small GTPase, Ran. We found that recognition by the effector proceeds through either an induced-fit or a population-shift mechanism, depending on the substrate, and that the two mechanisms can be differentiated by the data.
Collapse
Affiliation(s)
- Reinat Nevo
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
67
|
Helmreich EJM. Structural flexibility of small GTPases. Can it explain their functional versatility? Biol Chem 2005; 385:1121-36. [PMID: 15653425 DOI: 10.1515/bc.2004.146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multiple interactions with many different partners are responsible for the amazing functional versatility of proteins, especially those participating in cellular regulation. The structural properties that could facilitate multiple interactions are examined for small GTPases. The role of cellular constraints, compartmentation and scaffolds on protein-protein interactions is considered.
Collapse
Affiliation(s)
- Ernst J M Helmreich
- The Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
68
|
|
69
|
Abstract
To reconcile the observed selectivity and the high rate of translocation of cargo-importin complexes through nuclear pores, we propose that the core of the nuclear pore complex is blocked by a metastable network of phenylalanine and glycine nucleoporins. Although the network arrests the unfacilitated passage of objects larger than its mesh size, cargo-importin complexes act as catalysts that reduce the free energy barrier between the cross-linked and the dissociated states of the Nups, and open the network. Using Brownian dynamics simulations we calculate the distribution of passage times through the network for inert particles and cargo-importin complexes of different sizes and discuss the implications of our results for experiments on translocation of proteins through the nuclear pore complex.
Collapse
Affiliation(s)
- T Kustanovich
- Department of Physics, Bar Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
70
|
Abstract
Nuclear pore complexes (NPCs) mediate the active transport of large substrates and allow the passive diffusion of small molecules into the nucleus of eukaryotic cells. The EMBO Workshop on the Mechanisms of Nuclear Transport focused on NPCs and on the soluble nucleocytoplasmic transport machinery. This meeting, organized by Valérie Doye (Institut Curie, Paris) and Ed Hurt (University of Heidelberg), was held within view of Mount Etna at Taormina, Sicily (November 1-5, 2003). Presentations emphasized the dynamic properties of the nuclear trafficking machinery, and demonstrated the continuity of nuclear transport with processes in the nucleus and cytoplasm.
Collapse
Affiliation(s)
- Maureen A Powers
- Department of Cell Biology, Emory University School of Medicine, 455 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA.
| | | |
Collapse
|
71
|
Goh CS, Milburn D, Gerstein M. Conformational changes associated with protein–protein interactions. Curr Opin Struct Biol 2004; 14:104-9. [PMID: 15102456 DOI: 10.1016/j.sbi.2004.01.005] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Motions related to protein-protein binding events can be surveyed from the perspective of the Database of Macromolecular Movements. There are a number of alternative conceptual models that describe these events, particularly induced fit and pre-existing equilibrium. There is evidence for both alternatives from recent studies of conformational change. However, there is increasing support for the pre-existing equilibrium model, whereby proteins are found to simultaneously exist in populations of diverse conformations.
Collapse
Affiliation(s)
- Chern-Sing Goh
- Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | | | | |
Collapse
|
72
|
Merlino A, Vitagliano L, Sica F, Zagari A, Mazzarella L. Population shift vs induced fit: The case of bovine seminal ribonuclease swapping dimer. Biopolymers 2004; 73:689-95. [PMID: 15048772 DOI: 10.1002/bip.20016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bovine seminal ribonuclease (BS-RNase) is a unique member of the pancreatic-like ribonuclease superfamily. This enzyme exists as two conformational isomers with distinctive biological properties. The structure of the major isomer is characterized by the swapping of the N-terminal segment (MxM BS-RNase). In this article, the crystal structures of the ligand-free MxM BS-RNase and its complex with 2'-deoxycitidylyl(3',5')-2'-deoxyadenosine derived from isomorphous crystals have been refined. Interestingly, the comparison between this novel ligand-free form and the previously published sulfate-bound structure reveals significant differences. In particular, the ligand-free MxM BS-RNase is closer to the structure of MxM BS-RNase productive complexes than to the sulfate-bound form. These results reveal that MxM BS-RNase presents a remarkable flexibility, despite the structural constraints of the interchain disulfide bridges and the swapping of the N-terminal helices. These findings have important implications to the ligand binding mechanism of MxM BS-RNase. Indeed, a population shift rather than a substrate-induced conformational transition may occur in the MxM BS-RNase ligand binding process.
Collapse
Affiliation(s)
- Antonello Merlino
- Dipartimento di Chimica, Università degli Studi di Napoli Federico II, Via Cynthia, 80126 Napoli, Italy
| | | | | | | | | |
Collapse
|