51
|
Li X, Huang S, Yu T, Liang G, Liu H, Pu D, Peng N. MiR-140 modulates the inflammatory responses of Mycobacterium tuberculosis-infected macrophages by targeting TRAF6. J Cell Mol Med 2019; 23:5642-5653. [PMID: 31199066 PMCID: PMC6653720 DOI: 10.1111/jcmm.14472] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022] Open
Abstract
This study aimed to examine miR‐140 expression in clinical samples from tuberculosis (TB) patients and to explore the molecular mechanisms of miR‐140 in host‐bacterial interactions during Mycobacterium tuberculosis (M tb) infections. The miR‐140 expression and relevant mRNA expression were detected by quantitative real‐time PCR (qRT‐PCR); the protein expression levels were analysed by ELISA and western blot; M tb survival was measured by colony formation unit assay; potential interactions between miR‐140 and the 3′ untranslated region (UTR) of tumour necrosis factor receptor‐associated factor 6 (TRAF6) was confirmed by luciferase reporter assay. MiR‐140 was up‐regulated in the human peripheral blood mononuclear cells (PBMCs) from TB patients and in THP‐1 and U937 cells with M tb infection. Overexpression of miR‐140 promoted M tb survival; on the other hand, miR‐140 knockdown attenuated M tb survival. The pro‐inflammatory cytokines including interleukin 6, tumour necrosis‐α, interleukin‐1β and interferon‐γ were enhanced by M tb infection in THP‐1 and U937 cells. MiR‐140 overexpression reduced these pro‐inflammatory cytokines levels in THP‐1 and U937 cells with M tb infection; while knockdown of miR‐140 exerted the opposite actions. TRAF6 was identified to be a downstream target of miR‐140 and was negatively modulated by miR‐140. TRAF6 overexpression increased the pro‐inflammatory cytokines levels and partially restored the suppressive effects of miR‐140 overexpression on pro‐inflammatory cytokines levels in THP‐1 and U937 cells with M tb infection. In conclusion, our results implied that miR‐140 promoted M tb survival and reduced the pro‐inflammatory cytokines levels in macrophages with M tb infection partially via modulating TRAF6 expression.
Collapse
Affiliation(s)
- Xiaofei Li
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an City, China.,Department of Clinical Laboratory, The Third People's Hospital of Kunming City, Kunming, China
| | - Shan Huang
- Department of Clinical Laboratory, The Third People's Hospital of Kunming City, Kunming, China
| | - Tingting Yu
- Department of Clinical Laboratory, The Third People's Hospital of Kunming City, Kunming, China
| | - Guiliang Liang
- Department of Clinical Laboratory, The Third People's Hospital of Kunming City, Kunming, China
| | - Hongwei Liu
- Department of Clinical Laboratory, The Third People's Hospital of Kunming City, Kunming, China
| | - Dong Pu
- Department of Clinical Laboratory, The Third People's Hospital of Kunming City, Kunming, China
| | - Niancai Peng
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an City, China.,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an City, China
| |
Collapse
|
52
|
He Y, Deng F, Zhao S, Zhong S, Zhao J, Wang D, Chen X, Zhang J, Hou J, Zhang W, Ding L, Tang J, Zhou Z. Analysis of miRNA-mRNA network reveals miR-140-5p as a suppressor of breast cancer glycolysis via targeting GLUT1. Epigenomics 2019; 11:1021-1036. [PMID: 31184216 DOI: 10.2217/epi-2019-0072] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Aerobic glycolysis is characteristic of breast cancer. Comprehensive expression profiles of key proteins, their prognosis and detailed relationships between miRNAs and mRNAs remain unclear. Materials & methods: Oncomine database, Kaplan-Meier overall survival and miRNA-mRNA network analysis were performed. A key miRNA was identified and explored in vitro and in vivo. Results & conclusion: Eleven key glycolytic proteins were found with higher expression and poor prognosis: GLUT1, SLC2A5, HK1, PFKP, ALDOA, TPI1, GAPDH, PGK1, ENO1, GOT1 and GOT2. Seven miRNAs were predicted targeting 11 key glycolytic proteins: miR-140-5p, miR-3064-5p, miR-152-3p, miR-449b-5p, miR-449a, miR-194-5p and miR-34a-5p. Among them, miR-140-5p was found to be downregulated in breast cancer and directly targeted GLUT1, resulting in an antiglycolytic and antiproliferative effect.
Collapse
Affiliation(s)
- Yunjie He
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Fei Deng
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Shujie Zhao
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210019, PR China
| | - Shanliang Zhong
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, PR China
| | - Jianhua Zhao
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, PR China
| | - Dandan Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Xiu Chen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Jian Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Junchen Hou
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Wei Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Li Ding
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Jinhai Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, PR China
| |
Collapse
|
53
|
Liang Y, Song X, Li Y, Ma T, Su P, Guo R, Chen B, Zhang H, Sang Y, Liu Y, Duan Y, Zhang N, Li X, Zhao W, Wang L, Yang Q. Targeting the circBMPR2/miR-553/USP4 Axis as a Potent Therapeutic Approach for Breast Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:347-361. [PMID: 31302495 PMCID: PMC6626870 DOI: 10.1016/j.omtn.2019.05.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/12/2019] [Accepted: 05/12/2019] [Indexed: 12/21/2022]
Abstract
Emerging evidence suggests that circular RNAs (circRNAs) have crucial roles in various processes, including cancer development and progression. However, the functional roles of circRNAs in breast cancer remain to be elucidated. In this study, we identified a novel circRNA (named circBMPR2) whose expression was lower in breast cancer tissues with metastasis. Moreover, circBMPR2 expression was negatively associated with the motility of breast cancer cells and significantly downregulated in human breast cancer tissues. Functionally, we found that circBMPR2 knockdown effectively enhanced cell proliferation, migration, and invasion. Moreover, circBMPR2 knockdown promoted tamoxifen resistance of breast cancer cells through inhibiting tamoxifen-induced apoptosis, whereas circBMPR2 overexpression led to decreased tamoxifen resistance. Mechanistically, we demonstrated that circBMPR2 could abundantly sponge miR-553 and that miR-553 overexpression could attenuate the inhibitory effects caused by circBMPR2 overexpression. We also found that ubiquitin-specific protease 4 (USP4) was a direct target of miR-553, which functions as a tumor suppressor in breast cancer. Our findings demonstrated that circBMPR2 might function as a miR-553 sponge and then relieve the suppression of USP4 to inhibit the progression and tamoxifen resistance of breast cancer. Targeting this newly identified circRNA may help us to develop potential novel therapies for breast cancer patients.
Collapse
Affiliation(s)
- Yiran Liang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Shandong, China
| | - Xiaojin Song
- Department of Breast Surgery, Qilu Hospital, Shandong University, Shandong, China
| | - Yaming Li
- Department of Breast Surgery, Qilu Hospital, Shandong University, Shandong, China
| | - Tingting Ma
- Department of Breast Surgery, Qilu Hospital, Shandong University, Shandong, China
| | - Peng Su
- Department of Pathology, Qilu Hospital, Shandong University, Shandong, China
| | - Renbo Guo
- Department of Urology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong, China
| | - Bing Chen
- Pathology Tissue Bank, Qilu Hospital, Shandong University, Shandong, China
| | - Hanwen Zhang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Shandong, China
| | - Yuting Sang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Shandong, China
| | - Ying Liu
- Department of Breast Surgery, Qilu Hospital, Shandong University, Shandong, China
| | - Yi Duan
- Department of Breast Surgery, Qilu Hospital, Shandong University, Shandong, China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Shandong, China
| | - Xiaoyan Li
- Department of Breast Surgery, Qilu Hospital, Shandong University, Shandong, China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital, Shandong University, Shandong, China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital, Shandong University, Shandong, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Shandong, China; Pathology Tissue Bank, Qilu Hospital, Shandong University, Shandong, China.
| |
Collapse
|
54
|
Zhang QY, Men CJ, Ding XW. Upregulation of microRNA-140-3p inhibits epithelial-mesenchymal transition, invasion, and metastasis of hepatocellular carcinoma through inactivation of the MAPK signaling pathway by targeting GRN. J Cell Biochem 2019; 120:14885-14898. [PMID: 31044454 DOI: 10.1002/jcb.28750] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/28/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
Invasion and metastasis in hepatocellular carcinoma (HCC) results in poor prognosis. Human intervention in these pathological processes may benefit the treatment of HCC. The aim of the present study is to elucidate the mechanism of miR-140-3p affecting epithelial-mesenchymal transition (EMT), invasion, and metastasis in HCC. Microarray analysis was performed for differentially expressed genes screening. The target relationship between miR-140-3p and GRN was analyzed. Small interfering RNA (siRNA) against granulin (GRN) was synthesized. EMT markers were detected, and invasion and migration were evaluated in HCC cells introduced with a miR-140-3p inhibitor or mimic, or siRNA against GRN. A mechanistic investigation was conducted for the determination of mitogen-activated protein kinase (MAPK) signaling pathway-related genes and EMT markers (E-cadherin, N-cadherin, and Vimentin). GRN was highlighted as an upregulated gene in HCC. GRN was a target gene of miR-140-3p. Elevation of miR-140-3p or inhibition of GRN restrained the EMT process and suppressed the HCC cell migration and invasion. HCC cells treated with the miR-140-3p mimic or siRNA-GRN exhibited decreased GRN expression and downregulated the expressions of the MAPK signaling pathway-related genes, N-cadherin, and Vimentin but upregulated the expression of E-cadherin. GRN silencing can reverse the activation of the MAPK signaling pathway and induction of EMT mediated by miR-140-3p inhibition. Taken together, the results show that miR-140-3p confers suppression of the MAPK signaling pathway by targeting GRN, thus inhibiting EMT, invasion, and metastasis in HCC.
Collapse
Affiliation(s)
- Qiu-Yin Zhang
- Department of Gastroenterology, Tianjin First Central Hospital, Tianjin, PR China
| | - Chang-Jun Men
- Department of Gastroenterology, Tianjin First Central Hospital, Tianjin, PR China
| | - Xue-Wei Ding
- Department of Gastrointestinal Tumor Surgery, Tianjin Cancer Hospital, Tianjin, PR China
| |
Collapse
|
55
|
[MiR-140-3p Downregulation in Association with PDL-1 Overexpression in Many Cancers: A Review from the Literature Using Predictive Bioinformatics Tools]. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 988:225-233. [PMID: 28971402 DOI: 10.1007/978-3-319-56246-9_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Programmed death-ligand 1 (PD-L1) has been speculated to play a critical role in suppression of the immune system and it can be upregulated in cancer cells, which may allow cancers to evade the host immune system. MicroRNAs (miRNAs) are small non-coding RNA molecules (containing about 22 nucleotides), that function in RNA silencing and post-transcriptional regulation of gene expression. MiRNAs were found deregulated (upregulated or downregulated) and implicated in cancer development with various roles which depend on their gene target. Using targetscan web server prediction algorithm, we concluded that miR-140-3p is a targeting mirRNA with conserved consequential pairing of target region for PD-L1. Moreover, by reviewing all the available cancer studies in Pub/Medline about miR-140-3p, was found permanently down regulated. Furthermore, in recent immunotherapy related clinical trials in most cancers, evaluated PD-L1, it is found overexpressed. In the near future, in vitro or in vivo studies need to validate whether there is direct correlation between PD-L1 overexpression and miR-140-3p downregulation as targetscan performed algorithm predicted.
Collapse
|
56
|
Tomar D, Yadav AS, Kumar D, Bhadauriya G, Kundu GC. Non-coding RNAs as potential therapeutic targets in breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194378. [PMID: 31048026 DOI: 10.1016/j.bbagrm.2019.04.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
Paradigm shifting studies especially involving non-coding RNAs (ncRNAs) during last few decades have significantly changed the scientific perspectives regarding the complexity of cellular signalling pathways. Several studies have shown that the non-coding RNAs, initially ignored as transcriptional noise or products of erroneous transcription; actually regulate plethora of biological phenomena ranging from developmental processes to various diseases including cancer. Current strategies that are employed for the management of various cancers including that of breast fall short when their undesired side effects like Cancer Stem Cells (CSC) enrichment, low recurrence-free survival and development of drug resistance are taken into consideration. This review aims at exploring the potential role of ncRNAs as therapeutics in breast cancer, by providing a comprehensive understanding of their mechanism of action and function and their crucial contribution in regulating various aspects of breast cancer progression such as cell proliferation, angiogenesis, EMT, CSCs, drug resistance and metastasis. In addition, we also provide information about various strategies that can be employed or are under development to explore them as potential moieties that may be used for therapeutic intervention in breast cancer.
Collapse
Affiliation(s)
- Deepti Tomar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Amit S Yadav
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Garima Bhadauriya
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| |
Collapse
|
57
|
Interplay Between SOX9, Wnt/β-Catenin and Androgen Receptor Signaling in Castration-Resistant Prostate Cancer. Int J Mol Sci 2019; 20:ijms20092066. [PMID: 31027362 PMCID: PMC6540097 DOI: 10.3390/ijms20092066] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Androgen receptor (AR) signaling plays a key role not only in the initiation of prostate cancer (PCa) but also in its transition to aggressive and invasive castration-resistant prostate cancer (CRPC). However, the crosstalk of AR with other signaling pathways contributes significantly to the emergence and growth of CRPC. Wnt/β-catenin signaling facilitates ductal morphogenesis in fetal prostate and its anomalous expression has been linked with PCa. β-catenin has also been reported to form complex with AR and thus augment AR signaling in PCa. The transcription factor SOX9 has been shown to be the driving force of aggressive and invasive PCa cells and regulate AR expression in PCa cells. Furthermore, SOX9 has also been shown to propel PCa by the reactivation of Wnt/β-catenin signaling. In this review, we discuss the critical role of SOX9/AR/Wnt/β-catenin signaling axis in the development and progression of CRPC. The phytochemicals like sulforaphane and curcumin that can concurrently target SOX9, AR and Wnt/β-catenin signaling pathways in PCa may thus be beneficial in the chemoprevention of PCa.
Collapse
|
58
|
Ha J, Park C, Park S. PMAMCA: prediction of microRNA-disease association utilizing a matrix completion approach. BMC SYSTEMS BIOLOGY 2019; 13:33. [PMID: 30894171 PMCID: PMC6425656 DOI: 10.1186/s12918-019-0700-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 01/29/2019] [Indexed: 01/29/2023]
Abstract
Background Numerous experimental results have indicated that microRNAs (miRNAs) play a vital role in biological processes, as well as outbreaks of diseases at the molecular level. Despite their important role in biological processes, knowledge regarding specific functions of miRNAs in the development of human diseases is very limited. While attempting to solve this problem, many computational approaches have been proposed and attracted significant attention. However, most previous approaches suffer from the common problem of being inapplicable to new diseases without any known miRNA-disease associations. Results This paper proposes a novel method for inferring disease-miRNA associations utilizing a machine learning technique called matrix factorization, which is widely used in recommendation systems. In recommendation systems, the goal is to predict rating scores that a user might assign to specific items. By replacing users with miRNAs and items with diseases, we can efficiently predict miRNA-disease associations without seed miRNAs. As a result, our proposed model, called prediction of microRNA-disease association utilizing a matrix completion approach, achieves excellent performance compared to previous approaches with a reliable AUC value of 0.882 by implementing five-fold cross validation. Conclusions To the best of our knowledge, the proposed method applies the matrix completion technique to infer miRNA-disease associations and overcome the seed-miRNA problem negatively affects existing computational models. Electronic supplementary material The online version of this article (10.1186/s12918-019-0700-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jihwan Ha
- Department of Computer Science, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul, South Korea
| | - Chihyun Park
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, 9211 Euclid Ave., Cleveland, OH, 44106, USA
| | - Sanghyun Park
- Department of Computer Science, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul, South Korea.
| |
Collapse
|
59
|
Sun T, Song Y, Yu H, Luo X. Identification of lncRNA TRPM2-AS/miR-140-3p/PYCR1 axis's proliferates and anti-apoptotic effect on breast cancer using co-expression network analysis. Cancer Biol Ther 2019; 20:760-773. [PMID: 30810442 PMCID: PMC6605980 DOI: 10.1080/15384047.2018.1564563] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/09/2018] [Accepted: 12/25/2018] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is one of the most common malignancies occurring in women worldwide. Weighted gene co-expression network analysis (WGCNA) has not been widely utilized in uncovering the biomarkers which played pivotal roles in BC treatment. This study aimed to verify the proliferative and anti-apoptotic effect of lncRNA TRPM2-AS/miR-140-3p/PYCR1 axis on BC based on WGCNA. WGCNA was applied for determining hub genes using gene expression data gained from breast cancer and adjacent tissues which were downloaded from the Cancer Genome Atlas (TCGA) database. The correlative curves showed the correlation between OS/DFS of BC patients and TRPM2-AS expression or PYCR1 expression based on the data of survival rate of BC patients obtained from the TCGA database. QRT-PCR was employed in detecting the expression levels of TRPM2-AS, miR-140-3p and PYCR1, and western blot analysis was adopted for determination of protein expression level of PYCR1. Dual luciferase assay was applied to verify the targeting relationship between TRPM2-AS and miR-140-3p, as well as miR-140-3p and PYCR1. The roles of TRPM2-AS, miR-140-3p, and PYCR1 in proliferation, migration, and apoptosis of BC cell were identified by CCK-8 assay, cell migration assay and flow cytometry. Hub genes were also gained from WGCNA test. The prognostic study showed a significant negative correlation between the high expression of PYCR1 and TRPM2-AS and the BC survival. QRT-PCR demonstrated that PYCR1 and TRPM2-AS were both overexpressed, while miR-140-3p was greatly down-regulated in BC cell. In addition, it was validated by dual luciferase assay that miR-140-3p directly targeted both TRPM2-AS and PYCR1. Furthermore, down-regulation of TRPM2-AS and PYCR1 inhibited proliferation yet promoted apoptosis of BC cell, and up-regulation of miR-140-3p in BC cell showed the same tendency. Taken together, TRPM2-AS could promote proliferation and inhibit apoptosis of BC cell through TRPM2-AS/miR-140-3p/PYCR1 axis.
Collapse
Affiliation(s)
- Tong Sun
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Song
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hong Yu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiao Luo
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
60
|
Integrating random walk and binary regression to identify novel miRNA-disease association. BMC Bioinformatics 2019; 20:59. [PMID: 30691413 PMCID: PMC6350368 DOI: 10.1186/s12859-019-2640-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background In the last few decades, cumulative experimental researches have witnessed and verified the important roles of microRNAs (miRNAs) in the development of human complex diseases. Benefitting from the rapid growth both in the availability of miRNA-related data and the development of various analysis methodologies, up until recently, some computational models have been developed to predict human disease related miRNAs, efficiently and quickly. Results In this work, we proposed a computational model of Random Walk and Binary Regression-based MiRNA-Disease Association prediction (RWBRMDA). RWBRMDA extracted features for each miRNA from random walk with restart on the integrated miRNA similarity network for binary logistic regression to predict potential miRNA-disease associations. RWBRMDA obtained AUC of 0.8076 in the leave-one-out cross validation. Additionally, we carried out three different patterns of case studies on four human complex diseases. Specifically, Esophageal cancer and Prostate cancer were conducted as one kind of case study based on known miRNA-disease associations in HMDD v2.0 database. Out of the top 50 predicted miRNAs, 94 and 90% were respectively confirmed by recent experimental reports. To simulate new disease without known related miRNAs, the information of known Breast cancer related miRNAs was removed. As a result, 98% of the top 50 predicted miRNAs for Breast cancer were confirmed. Lymphoma, the verified ratio of which was 88%, was used to assess the prediction robustness of RWBRMDA based on the association records in HMDD v1.0 database. Conclusions We anticipated that RWBRMDA could benefit the future experimental investigations about the relation between human disease and miRNAs by generating promising and testable top-ranked miRNAs, and significantly reducing the effort and cost of identification works. Electronic supplementary material The online version of this article (10.1186/s12859-019-2640-9) contains supplementary material, which is available to authorized users.
Collapse
|
61
|
Chen X, Zhang DH, You ZH. A heterogeneous label propagation approach to explore the potential associations between miRNA and disease. J Transl Med 2018; 16:348. [PMID: 30537965 PMCID: PMC6290528 DOI: 10.1186/s12967-018-1722-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
Background Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA correlates with masses of critical biological processes and the occurrence, development, and diagnosis of human complex diseases. Nonetheless, the known miRNA-disease associations are still insufficient considering plenty of human miRNAs discovered now. Therefore, there is an urgent need for effective computational model predicting novel miRNA-disease association prediction to save time and money for follow-up biological experiments. Methods In this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to infer the possible miRNA-disease association. The strength of the data about lncRNA–miRNA association and lncRNA-disease association enabled HLPMDA to produce a better prediction. Results HLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 ± 0.0004 based on global and local leave-one-out cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved by experiment reports. Conclusions All the results adequately showed that HLPMDA is a recommendable miRNA-disease association prediction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers. Electronic supplementary material The online version of this article (10.1186/s12967-018-1722-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.
| | - De-Hong Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zhu-Hong You
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Ürümqi, 830011, China.
| |
Collapse
|
62
|
Distinct mechanisms by which two forms of miR-140 suppress the malignant properties of lung cancer cells. Oncotarget 2018; 9:36474-36491. [PMID: 30559931 PMCID: PMC6284864 DOI: 10.18632/oncotarget.26356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022] Open
Abstract
In this study we attempted to determine the molecular mechanisms underlying the two mature products of pre-miR-140 (3p and 5p) in malignant properties of lung cancer cells. The differential expression of the two forms of miR-140 in both NSCLC tissues and cell lines was determined by quantitative real-time PCR (qRT-PCR). The effects of the miR-140 mimics on the malignant properties of lung cancer cells were evaluated using invasion assay, adhesion assay, tubule formation assay and metabolite profiling. Biotin-miRNA pulldown and transcriptome profiling by RNA-seq were utilized to distinguish their mRNA targets of the miR-140 strands. Their downstream signalling pathways were unveiled using a high-throughput antibody array. Although both strands of the miR-140 are downregulated in the NSCLC, miR-140-3p is more predominant compared to miR-140-5p in lung cancer cell lines. Both miR-140 mimics suppress the invasion of lung cancer cells and the inhibitory effect of the miR-140 on adhesion is cell-dependent. Tumor conditioned media from A549 cells after treatment with miR-140-3p mimic reduce the tubule formation ability of the endothelial cells. Metabolite profiling indicates the alteration of glycine in both lung cancer cells following treatment with miR-140 mimics. The data from the RNA-sequencing and antibody array indicate that two miR-140 strands present different targeting and signalling profiles despite the existence of mutual targets such as IGF1R and FOS. In conclusion, two forms of miR-140 both suppress the malignant properties of lung cancer cells but through distinct and multiple mechanisms.
Collapse
|
63
|
Hannafon BN, Ding WQ. Functional Role of miRNAs in the Progression of Breast Ductal Carcinoma in Situ. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:966-974. [PMID: 30273605 DOI: 10.1016/j.ajpath.2018.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
Abstract
miRNAs are small RNAs that influence gene expression by targeting mRNAs. Depending on the function of their target genes, miRNAs may regulate the expression of oncogenes and tumor suppressors, thereby contributing to the promotion or inhibition of tumor progression. Ductal carcinoma in situ (DCIS), although often diagnosed as breast cancer, is a potential precursor to invasive ductal carcinoma. Many of the genetic events required for the invasive progression of DCIS occur at the preinvasive stage, and these events include changes in the expression of miRNAs. Aberrant expression of miRNAs can influence specific oncogenic or tumor-suppressive pathways required for breast cancer progression. miRNAs in DCIS have been shown to influence hormone signaling, cell-cell adhesion, epithelial-to-mesenchymal transition, transforming growth factor β signaling, maintenance of cancer stem cells, and modulation of the extracellular matrix. Additionally, extracellular DCIS miRNAs, such as those found in exosomes, may promote invasive progression by modifying the tumor microenvironment. Here, we review the miRNAs that have been identified in DCIS and how they may contribute to the progression to invasive disease. We also touch on the current state of miRNA therapy development, including the current challenges, and discuss the key future perspectives for research into miRNA function for the purpose of miRNA therapy development for DCIS.
Collapse
Affiliation(s)
- Bethany N Hannafon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
64
|
Yang S, Li H, Chen L. MicroRNA-140 attenuates myocardial ischemia-reperfusion injury through suppressing mitochondria-mediated apoptosis by targeting YES1. J Cell Biochem 2018; 120:3813-3821. [PMID: 30259997 DOI: 10.1002/jcb.27663] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022]
Abstract
Myocardial ischemia-reperfusion (I/R) injury is thought to have its detrimental role in coronary heart disease (CHD), which is considered as the foremost cause of death all over the world. However, molecular mechanism in the progression of myocardial I/R injury is still unclear. The goal of this study was to investigate the expression and function of microRNA-140 (miR-140) in the process of myocardial I/R injury. The miR-140 expression level was analyzed in the myocardium with I/R injury and control myocardium using quantitative real-time polymerase chain reaction. Then the relation between the level of miR-140 and YES proto-oncogene 1 (YES1) was also investigated via luciferase reporter assay. Assessment of myocardial infarct size measurement of serum myocardial enzymes and electron microscopy analysis were used for analyzing the effect of miR-140 on myocardial I/R injury. We also used Western blot analysis to examine the expression levels of the mitochondrial fission-related proteins, Drp1 and Fis1. miR-140 is downregulated, and YES1 is upregulated after myocardial I/R injury. Overexpression of miR-140 could reduce the increase related to myocardial I/R injury in infarct size and myocardial enzymes, and it also could inhibit the expression of proteins related to mitochondrial morphology and myocardial I/R-induced mitochondrial apoptosis by targeting YES1. Taken together, these findings may provide a novel insight into the molecular mechanism of miR-140 and YES1 in the progression of myocardial I/R injury. MiR-140 might become a promising therapeutic target for treating myocardial I/R injury.
Collapse
Affiliation(s)
- Shuguo Yang
- Department of Cardiology, Linyi Central Hospital, Linyi, Shandong, China
| | - Haide Li
- Department of Cardiology, Linyi Central Hospital, Linyi, Shandong, China
| | - Lianghua Chen
- Department of Cardiology, Shandong Provincial Hospital, Jinan, Shandong, China
| |
Collapse
|
65
|
Martin SL, Royston KJ, Tollefsbol TO. The Role of Non-Coding RNAs and Isothiocyanates in Cancer. Mol Nutr Food Res 2018; 62:e1700913. [PMID: 29532604 PMCID: PMC6248329 DOI: 10.1002/mnfr.201700913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/28/2018] [Indexed: 12/12/2022]
Abstract
Cancer is the second leading cause of mortalities in the United States, only exceeded by heart disease. Current cancer treatments include chemotherapy, surgery, and/or radiation. Due to the often harsh effects of current cancer therapies, investigators are focusing their efforts on cancer prevention mediated by dietary phytochemicals. Since the discovery that cancer can be initiated by and progressed through both genetic and epigenetic pathways, there has been a significant surge in studies on epigenetic effects mediated by nutritive compounds. Isothiocyanates, naturally occurring molecules found in cruciferous vegetables, have been documented to exhibit many anticarcinogenic activities. Although isothiocyanates have been extensively documented as key players in epigenetic processes such as DNA methylation and histone modifications, their effects on non-coding RNAs is understudied. Non-coding RNAs are molecules that target mRNA production and repress protein translation and are known to be dysregulated in various human malignancies. Studies have used non-coding RNAs as novel targets for exploration in cancer therapy. This review focuses on the exploration of isothiocyanates and their effect on non-coding RNAs in cancer prevention and therapy.
Collapse
Affiliation(s)
- Samantha L. Martin
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Kendra J. Royston
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
66
|
Kapinova A, Kubatka P, Golubnitschaja O, Kello M, Zubor P, Solar P, Pec M. Dietary phytochemicals in breast cancer research: anticancer effects and potential utility for effective chemoprevention. Environ Health Prev Med 2018; 23:36. [PMID: 30092754 PMCID: PMC6085646 DOI: 10.1186/s12199-018-0724-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022] Open
Abstract
Cancerous tissue transformation developing usually over years or even decades of life is a highly complex process involving strong stressors damaging DNA, chronic inflammation, comprehensive interaction between relevant molecular pathways, and cellular cross-talk within the neighboring tissues. Only the minor part of all cancer cases are caused by inborn predisposition; the absolute majority carry a sporadic character based on modifiable risk factors which play a central role in cancer prevention. Amongst most promising candidates for dietary supplements are bioactive phytochemicals demonstrating strong anticancer effects. Abundant evidence has been collected for beneficial effects of flavonoids, carotenoids, phenolic acids, and organosulfur compounds affecting a number of cancer-related pathways. Phytochemicals may positively affect processes of cell signaling, cell cycle regulation, oxidative stress response, and inflammation. They can modulate non-coding RNAs, upregulate tumor suppressive miRNAs, and downregulate oncogenic miRNAs that synergically inhibits cancer cell growth and cancer stem cell self-renewal. Potential clinical utility of the phytochemicals is discussed providing examples for chemoprevention against and therapy for human breast cancer. Expert recommendations are provided in the context of preventive medicine.
Collapse
Affiliation(s)
- A. Kapinova
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4C, 036 01 Martin, Slovak Republic
| | - P. Kubatka
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4C, 036 01 Martin, Slovak Republic
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01 Martin, Slovak Republic
| | - O. Golubnitschaja
- Radiological Clinic, Breast Cancer Research Center, Center for Integrated Oncology, Cologne-Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Str 25, 53105 Bonn, Germany
| | - M. Kello
- Faculty of Medicine, Department of Pharmacology, University of Pavol Jozef Šafárik, Trieda SNP 1, 040 11, Košice, Slovak Republic
| | - P. Zubor
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4C, 036 01 Martin, Slovak Republic
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollárova 2, 03601 Martin, Slovak Republic
| | - P. Solar
- Faculty of Medicine, Department of Medical Biology, University of Pavol Jozef Šafárik, Trieda SNP 1, 040 11 Košice, Slovak Republic
| | - M. Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01 Martin, Slovak Republic
| |
Collapse
|
67
|
Loginov VI, Filippova EA, Kurevlev SV, Fridman MV, Burdennyy AM, Braga EA. Suppressive and Hypermethylated MicroRNAs in the Pathogenesis of Breast Cancer. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418070086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
68
|
Wolfson B, Lo PK, Yao Y, Li L, Wang H, Zhou Q. Impact of miR-140 Deficiency on Non-Alcoholic Fatty Liver Disease. Mol Nutr Food Res 2018; 62:e1800189. [PMID: 29701903 PMCID: PMC6280970 DOI: 10.1002/mnfr.201800189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/23/2018] [Indexed: 12/13/2022]
Abstract
SCOPE We have previously shown that loss of miR-140 has a pro-fibrotic effect in the mammary gland. This study aims to investigate whether miR-140 loss and obesity act synergistically to promote non-alcoholic fatty liver disease (NAFLD), and to identify the underlying mechanisms. METHODS AND RESULTS Liver tissues were isolated from lean-fat-diet and high-fat-diet fed wild-type and miR-140 knockout mice. Using molecular staining and immunohistochemistry techniques, increased development of NAFLD and fibrotic indicators in miR-140 knockout mice were identified. Utilizing an in vitro model system, miR-140 was demonstrated to target TLR-4, and miR-140 overexpression was shown to be sufficient to inhibit palmitic acid signaling through the TLR-4/NFκB pathway. CONCLUSION These findings demonstrate that loss of miR-140 results in increased expression of TLR-4, sensitizing cells to palmitic acid signaling and in increased inflammatory activity through the TLR4/NFκB pathway. This signaling axis promotes NAFLD development in a high-fat diet context and indicates the potential utility of miR-140 rescue as a therapeutic strategy in NAFLD.
Collapse
Affiliation(s)
- Benjamin Wolfson
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Pang-Kuo Lo
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Yuan Yao
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21202, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21202, USA
| | - Qun Zhou
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| |
Collapse
|
69
|
Melzer C, von der Ohe J, Hass R. Concise Review: Crosstalk of Mesenchymal Stroma/Stem-Like Cells with Cancer Cells Provides Therapeutic Potential. Stem Cells 2018; 36:951-968. [PMID: 29603861 DOI: 10.1002/stem.2829] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/26/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Various direct and indirect cellular interactions between multi-functional mesenchymal stroma/stem-like cells (MSCs) and cancer cells contribute to increasing plasticity within the tumor tissue and its microenvironment. Direct and tight communication between MSC and cancer cells is based on membrane protein interactions and the exchange of large plasma membrane fragments also known as trogocytosis. An ultimate but rare direct interaction resumes in fusion of these two cellular partners resulting in the formation of new cancer hybrid cell populations. Alternatively, indirect interactions are displayed by the release of membranous vesicle-encapsulated microRNAs and proteins or soluble components such as molecular growth factors, hormones, chemo-/cytokines, and metabolites. Released single molecules as well as multivesicular bodies including exosomes and microvesicles can form local concentration gradients within the tumor microenvironment and are incorporated not only by adjacent neighboring cells but also affect distant target cells. The present Review will focus on vesicle-mediated indirect communication and on cancer cell fusion with direct contact between MSC and cancer cells. These different types of interaction are accompanied by functional interference and mutual acquisition of new cellular properties. Consequently, alterations in cancer cell functionalities paralleled by the capability to reorganize the tumor stroma can trigger changes in metastatic behavior and promote retrodifferentiation to develop new cancer stem-like cells. However, exosomes and microvesicles acting over long distances may also provide a tool with therapeutic potential when loaded with anti-tumor cargo. Stem Cells 2018;36:951-968.
Collapse
Affiliation(s)
- Catharina Melzer
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
70
|
Kong X, Zhang J, Li J, Shao J, Fang L. MiR-130a-3p inhibits migration and invasion by regulating RAB5B in human breast cancer stem cell-like cells. Biochem Biophys Res Commun 2018; 501:486-493. [PMID: 29746865 DOI: 10.1016/j.bbrc.2018.05.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
Breast cancer stem cells (BCSCs) constitute a subpopulation of tumor cells that express stem cell-associated markers and have a high capacity for tumor generation in vivo. MicroRNAs (miRNAs) are involved in tumorigenesis by regulating specific oncogenes and tumor suppressor genes, and their roles in BCSCs are becoming more apparent. We try to reveal the mechanism by which specific miRNA plays its function in BCSCs. Herein, we show that miR-130a-3p is down-regulated in human breast cancer tissues and exosomes from circulating blood. Overexpression of miR-130a-3p in BCSCs inhibited cellular proliferation, migration, and invasion, and silencing of miR-130a-3p had the opposite effects. We also confirmed that RAB5B is directly down-regulated by miR-130a-3p. Knockdown of RAB5B also inhibited cell proliferation, migration and invasion. Furthermore, we found that lower levels of exosome-derived miR-130a-3p are associated with lymph node metastasis and advanced TNM stage. Taken together, our results demonstrate that miR-130a-3p may act as a disease progression monitoring indicator and therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Xiangjie Kong
- Department of Urology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Junfeng Zhang
- Department of Breast and Thyroid, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jia Li
- Department of Breast and Thyroid, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jianfeng Shao
- Department of Urology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, China.
| | - Lin Fang
- Department of Breast and Thyroid, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
71
|
Non-coding RNAs in cancer stem cells. Cancer Lett 2018; 421:121-126. [PMID: 29331418 DOI: 10.1016/j.canlet.2018.01.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 12/20/2022]
|
72
|
Liu S, Dong H, Dai H, Liu D, Wang Z. MicroRNA-216b regulated proliferation and invasion of non-small cell lung cancer by targeting SOX9. Oncol Lett 2018; 15:10077-10083. [PMID: 29928377 DOI: 10.3892/ol.2018.8573] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022] Open
Abstract
Micro (mi)RNAs are small, evolutionarily conserved and endogenous noncoding RNA molecules between 19 and 24 nucleotides in length. The potential roles of miRNAs in the carcinogenesis and progression of non-small cell lung cancer (NSCLC) have been studied previously. In the present study, it was revealed that miRNA-216b (miR-216b) expression was lower in NSCLC tissue and cell lines compared with that in adjacent healthy lung tissue samples and the normal bronchial epithelial 16HBE cell line, respectively. The ectopic expression of miR-216b inhibited the proliferation and invasion of NSCLC cells in vitro. SRY-Box 9 (SOX9) was identified as a direct target of miR-216b in NSCLC. In addition, SOX9 small interfering RNA was able to mimic the effects of miR-216b overexpression on cell proliferation and invasion in NSCLC. Therefore, the data reported in the present study demonstrate that miR-216b is an important tumor suppressor in NSCLC. These data may contribute to the understanding of the molecular mechanism underlying the carcinogenesis and progression of NSCLC, and provide novel therapies for patients with NSCLC.
Collapse
Affiliation(s)
- Sida Liu
- Department of Thoracic Surgery, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Han Dong
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hui Dai
- Department of Tumor and Blood Disease, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Danwei Liu
- Department of Infections, People's Hospital of Jilin Province, Changchun, Jilin 130021, P.R. China
| | - Zhihao Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
73
|
Roberts JT, Patterson DG, King VM, Amin SV, Polska CJ, Houserova D, Crucello A, Barnhill EC, Miller MM, Sherman TD, Borchert GM. ADAR Mediated RNA Editing Modulates MicroRNA Targeting in Human Breast Cancer. Processes (Basel) 2018; 6. [PMID: 30197877 PMCID: PMC6128407 DOI: 10.3390/pr6050042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA editing by RNA specific adenosine deaminase acting on RNA (ADAR) is increasingly being found to alter microRNA (miRNA) regulation. Editing of miRNA transcripts can affect their processing, as well as which messenger RNAs (mRNAs) they target. Further, editing of target mRNAs can also affect their complementarity to miRNAs. Notably, ADAR editing is often increased in malignancy with the effect of these RNA changes being largely unclear. In addition, numerous reports have now identified an array of miRNAs that directly contribute to various malignancies although the majority of their targets remain largely undefined. Here we propose that modulating the targets of miRNAs via mRNA editing is a frequent occurrence in cancer and an underappreciated participant in pathology. In order to more accurately characterize the relationship between these two regulatory processes, this study examined RNA editing events within mRNA sequences of two breast cancer cell lines (MCF-7 and MDA-MB-231) and determined whether or not these edits could modulate miRNA associations. Computational analyses of RNA-Seq data from these two cell lines identified over 50,000 recurrent editing sites within human mRNAs, and many of these were located in 3’ untranslated regions (UTRs). When these locations were screened against the list of currently-annotated miRNAs we discovered that editing caused a subset (~9%) to have significant alterations to mRNA complementarity. One miRNA in particular, miR-140–3p, is known to be misexpressed in many breast cancers, and we found that mRNA editing allowed this miRNA to directly target the apoptosis inducing gene DFFA in MCF-7, but not in MDA-MB-231 cells. As these two cell lines are known to have distinct characteristics in terms of morphology, invasiveness and physiological responses, we hypothesized that the differential RNA editing of DFFA in these two cell lines could contribute to their phenotypic differences. Indeed, we confirmed through western blotting that inhibiting miR-140–3p increases expression of the DFFA protein product in MCF-7, but not MDA-MB-231, and further that inhibition of miR-140–3p also increases cellular growth in MCF-7, but not MDA-MB-231. Broadly, these results suggest that the creation of miRNA targets may be an underappreciated function of ADAR and may help further elucidate the role of RNA editing in tumor pathogenicity.
Collapse
Affiliation(s)
- Justin T Roberts
- Department of Biology, University of South Alabama, Mobile, AL 36688-0002, USA
| | - Dillon G Patterson
- Department of Biology, University of South Alabama, Mobile, AL 36688-0002, USA
| | - Valeria M King
- Department of Biology, University of South Alabama, Mobile, AL 36688-0002, USA
| | - Shivam V Amin
- Department of Biology, University of South Alabama, Mobile, AL 36688-0002, USA
| | - Caroline J Polska
- Department of Biology, University of South Alabama, Mobile, AL 36688-0002, USA
| | - Dominika Houserova
- Department of Pharmacology, USA College of Medicine, Mobile, AL 36688-0002, USA;
| | - Aline Crucello
- Department of Biology, University of South Alabama, Mobile, AL 36688-0002, USA
| | - Emmaline C Barnhill
- Department of Biology, University of South Alabama, Mobile, AL 36688-0002, USA
| | - Molly M Miller
- Department of Biology, University of South Alabama, Mobile, AL 36688-0002, USA
| | - Timothy D Sherman
- Department of Biology, University of South Alabama, Mobile, AL 36688-0002, USA
| | - Glen M Borchert
- Department of Biology, University of South Alabama, Mobile, AL 36688-0002, USA
- Department of Pharmacology, USA College of Medicine, Mobile, AL 36688-0002, USA;
| |
Collapse
|
74
|
Regulating Cdc42 and Its Signaling Pathways in Cancer: Small Molecules and MicroRNA as New Treatment Candidates. Molecules 2018; 23:molecules23040787. [PMID: 29596304 PMCID: PMC6017947 DOI: 10.3390/molecules23040787] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/19/2018] [Accepted: 03/24/2018] [Indexed: 12/13/2022] Open
Abstract
Despite great improvements in the diagnosis and treatment of neoplasms, metastatic disease is still the leading cause of death in cancer patients, with mortality rates still rising. Given this background, new ways to treat cancer will be important for development of improved cancer control strategies. Cdc42 is a member of the Rho GTPase family and plays an important role in cell-to-cell adhesion, formation of cytoskeletal structures, and cell cycle regulation. It thus influences cellular proliferation, transformation, and homeostasis, as well as the cellular migration and invasion processes underlying tumor formation. Cdc42 acts as a collection point for signal transduction and regulates multiple signaling pathways. Moreover, recent studies show that in most human cancers Cdc42 is abnormally expressed and promoting neoplastic growth and metastasis. Regarding possible new treatments for cancer, miRNA and small molecules targeting Cdc42 and related pathways have been recently found to be effective on cancer. In this review, we analyze the newly recognized regulation mechanisms for Cdc42 and Cdc42-related signal pathways, and particularly new treatments using small molecules and miRNAs to inhibit the abnormal overexpression of Cdc42 that may slow down the metastasis process, improve cancer therapy and lead to novel strategies for development of antineoplastic drugs.
Collapse
|
75
|
Cuyàs E, Corominas-Faja B, Martín MMS, Martin-Castillo B, Lupu R, Brunet J, Bosch-Barrera J, Menendez JA. BRCA1 haploinsufficiency cell-autonomously activates RANKL expression and generates denosumab-responsive breast cancer-initiating cells. Oncotarget 2018; 8:35019-35032. [PMID: 28388533 PMCID: PMC5471031 DOI: 10.18632/oncotarget.16558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Denosumab, a monoclonal antibody to the receptor activator of nuclear factor-κB ligand (RANKL), might be a novel preventative therapy for BRCA1-mutation carriers at high risk of developing breast cancer. Beyond its well-recognized bone-targeted activity impeding osteoclastogenesis, denosumab has been proposed to interfere with the cross-talk between RANKL-producing sensor cells and cancer-initiating RANK+ responder cells that reside within premalignant tissues of BRCA1-mutation carriers. We herein tested the alternative but not mutually exclusive hypothesis that BRCA1 deficiency might cell-autonomously activate RANKL expression to generate cellular states with cancer stem cell (CSC)-like properties. Using isogenic pairs of normal-like human breast epithelial cells in which the inactivation of a single BRCA1 allele results in genomic instability, we assessed the impact of BRCA1 haploinsufficiency on the expression status of RANK and RANKL. RANK expression remained unaltered but RANKL was dramatically up-regulated in BRCA1mut/+ haploinsufficient cells relative to isogenic BRCA1+/+ parental cells. Neutralizing RANKL with denosumab significantly abrogated the ability of BRCA1 haploinsufficient cells to survive and proliferate as floating microtumors or "mammospheres" under non-adherent/non-differentiating conditions, an accepted surrogate of the relative proportion and survival of CSCs. Intriguingly, CSC-like states driven by epithelial-to-mesenchymal transition or HER2 overexpression traits responded to some extent to denosumab. We propose that breast epithelium-specific mono-allelic inactivation of BRCA1 might suffice to cell-autonomously generate RANKL-addicted, denosumab-responsive CSC-like states. The convergent addiction to a hyperactive RANKL/RANK axis of CSC-like states from genetically diverse breast cancer subtypes might inaugurate a new era of cancer prevention and treatment based on denosumab as a CSC-targeted agent.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Bruna Corominas-Faja
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - María Muñoz-San Martín
- Neuroimmunology and Multiple Sclerosis Unit, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Begoña Martin-Castillo
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain.,Unit of Clinical Research, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | - Ruth Lupu
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Rochester, MN, USA.,Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Joan Brunet
- Deparment of Medical Oncology, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| | - Joaquim Bosch-Barrera
- Deparment of Medical Oncology, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
76
|
Natural Products for the Management and Prevention of Breast Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8324696. [PMID: 29681985 PMCID: PMC5846366 DOI: 10.1155/2018/8324696] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/18/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022]
Abstract
Among all types of cancer, breast cancer is one of the most challenging diseases, which is responsible for a large number of cancer related deaths. Hormonal therapy, surgery, chemotherapy, and radiotherapy have been used as treatment of breast cancer, for a very long time. Due to severe side effects and multidrug resistance, these treatment approaches become increasingly ineffective. However, adoption of complementary treatment approach can be a big solution for this situation, as it is evident that compounds derived from natural source have a great deal of anticancer activity. Natural compounds can fight against aggressiveness of breast cancer, inhibit cancerous cell proliferation, and modulate cancer related pathways. A large number of research works are now focusing on the natural and dietary compounds and trying to find out new and more effective treatment strategies for the breast cancer patients. In this review, we discussed some significant natural chemical compounds with their mechanisms of actions, which can be very effective against the breast cancer and can be more potent by their proper modifications and further clinical research. Future research focusing on the natural anti-breast-cancer agents can open a new horizon in breast cancer treatment, which will play a great role in enhancing the survival rate of breast cancer patients.
Collapse
|
77
|
Heydari N, Nikbakhsh N, Sadeghi F, Farnoush N, Khafri S, Bastami M, Parsian H. Overexpression of serum MicroRNA-140-3p in premenopausal women with newly diagnosed breast cancer. Gene 2018; 655:25-29. [PMID: 29474861 DOI: 10.1016/j.gene.2018.02.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/16/2018] [Accepted: 02/12/2018] [Indexed: 12/21/2022]
Abstract
AIMS The purpose of the present study was to evaluate microRNA-140-3p expression level in breast cancer patients in comparison to healthy controls. PATIENTS & METHODS Serum microRNA-140-3p level was quantified by realtime quantitative reverse transcription PCR in 40 women with breast cancer and 40 healthy subjects. RESULTS Serum microRNA-140-3p level in patients compared to healthy subjects was significantly up-regulated (P = 0.01). MicroRNA-140-3p had a good diagnostic accuracy for discrimination of the two groups (AUC = 0.667; sensitivity = 70%; specificity = 50%). Serum microRNA-140-3p level was overexpressed in premenopausal patients who were ≤48 years old. ROC curve showed a similar pattern again (AUC = 0.690; sensitivity = 73%; specificity = 50%). CONCLUSIONS microRNA-140-3p has the potential for detection of breast cancer, especially in premenopausal and in ≤48 years old women.
Collapse
Affiliation(s)
- Nadia Heydari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Novin Nikbakhsh
- Cancer Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Farzin Sadeghi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Nazila Farnoush
- Department of Surgery, Babol University of Medical Sciences, Babol, Iran
| | - Soraya Khafri
- Department of Epidemiology, Babol University of Medical Sciences, Babol, Iran
| | - Milad Bastami
- Department of Medical Genetics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
78
|
Duru N, Gernapudi R, Lo PK, Yao Y, Wolfson B, Zhang Y, Zhou Q. Characterization of the CD49f+/CD44+/CD24- single-cell derived stem cell population in basal-like DCIS cells. Oncotarget 2018; 7:47511-47525. [PMID: 27374087 PMCID: PMC5216957 DOI: 10.18632/oncotarget.10203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022] Open
Abstract
The molecular mechanisms responsible for the Ductal Carcinoma in Situ (DCIS)-Invasive Ductal Carcinoma (IDC) transition have yet to be elucidated. Due to the lack of molecularly targeted therapies, basal-like DCIS has a high risk of recurrence and progression to invasive and metastatic cancers. In this study, by applying a novel single-cell clonogenic approach with the CD49f+/CD44+/CD24- surface markers, we characterized the aggressive clones that have enhanced self-renewal, migratory and invasive capacities derived from a human DCIS model cell line MCF10DCIS. The aggressive clones had elevated ALDH1 activity, lower global DNA methylation and increased expression of stem cell related genes, especially concurrent activation of SOX2/OCT4. In addition, we showed that the aggressive clones have increased expression of lincRNA-RoR and miR-10b compared to non-aggressive clones, which enhance their self-renewal and invasive abilities. Finally, we confirmed our in vitro results in vivo, demonstrating that aggressive clones were capable of forming tumors in nude mice, whereas non-aggressive clones were not. Our data suggest that lincRNA-RoR and miR10b could be used to distinguish aggressive clones from non-aggressive clones within the heterogeneous CD49f+/CD44+/CD24- DCIS population. Our findings also provide the foundation to develop new chemoprevention agents for DCIS-IDC transition.
Collapse
Affiliation(s)
- Nadire Duru
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ramkishore Gernapudi
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Pang-Kuo Lo
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yuan Yao
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Benjamin Wolfson
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yongshu Zhang
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Qun Zhou
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
79
|
Romagnolo DF, Daniels KD, Grunwald JT, Ramos SA, Propper CR, Selmin OI. Epigenetics of breast cancer: Modifying role of environmental and bioactive food compounds. Mol Nutr Food Res 2017; 60:1310-29. [PMID: 27144894 DOI: 10.1002/mnfr.201501063] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 12/12/2022]
Abstract
SCOPE Reduced expression of tumor suppressor genes (TSG) increases the susceptibility to breast cancer. However, only a small percentage of breast tumors is related to family history and mutational inactivation of TSG. Epigenetics refers to non-mutational events that alter gene expression. Endocrine disruptors found in foods and drinking water may disrupt epigenetically hormonal regulation and increase breast cancer risk. This review centers on the working hypothesis that agonists of the aromatic hydrocarbon receptor (AHR), bisphenol A (BPA), and arsenic compounds, induce in TSG epigenetic signatures that mirror those often seen in sporadic breast tumors. Conversely, it is hypothesized that bioactive food components that target epigenetic mechanisms protect against sporadic breast cancer induced by these disruptors. METHODS AND RESULTS This review highlights (i) overlaps between epigenetic signatures placed in TSG by AHR-ligands, BPA, and arsenic with epigenetic alterations associated with sporadic breast tumorigenesis; and (ii) potential opportunities for the prevention of sporadic breast cancer with food components that target the epigenetic machinery. CONCLUSIONS Characterizing the overlap between epigenetic signatures elicited in TSG by endocrine disruptors with those observed in sporadic breast tumors may afford new strategies for breast cancer prevention with specific bioactive food components or diet.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Kevin D Daniels
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jonathan T Grunwald
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Stephan A Ramos
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Ornella I Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
80
|
Kapinova A, Stefanicka P, Kubatka P, Zubor P, Uramova S, Kello M, Mojzis J, Blahutova D, Qaradakhi T, Zulli A, Caprnda M, Danko J, Lasabova Z, Busselberg D, Kruzliak P. Are plant-based functional foods better choice against cancer than single phytochemicals? A critical review of current breast cancer research. Biomed Pharmacother 2017; 96:1465-1477. [PMID: 29198744 DOI: 10.1016/j.biopha.2017.11.134] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most common malignancy in women worldwide. Over 90% of all breast cancer cases are of different 'sporadic' cell types, thus placing emphasis on the need for breast cancer prevention and new effective treatment strategies. In recent years, pre-clinical research provides growing evidence regarding the beneficial action of bioactive plant-derived substances - phytochemicals, on multiple cancer-related biological pathways. The important natural source of various phytochemicals with anti-oncogenic properties are plant-based functional foods. It is hypothesized that a significant anti-tumour activity of plant-based functional foods are the result of a combination of various phytochemicals rather than an isolated agent. The mixture of phytochemicals with various biological activities present in whole foods could have additive or synergistic effects against carcinogenesis. Clinically, it is very important to compare the effect of the isolated phytochemicals against the mixture of phytochemicals present in specific plant-based functional foods. Therefore, the purpose of this review article is to compare anticancer activities of isolated phytochemicals and plant-based functional foods for the prevention and therapy of breast carcinoma. Our conclusion supports the hypothesis that a mixture of wide range of phytochemicals with a plethora of biological activities present in whole plant-derived foods could have additive or synergistic effects against breast cancer. Although, the lack of parallel comparative studies between whole natural foods versus isolated plant compounds limits our conclusion, future pre-clinical and clinical studies evaluating this issue is required.
Collapse
Affiliation(s)
- Andrea Kapinova
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University, Martin, Slovakia
| | - Patrik Stefanicka
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Peter Kubatka
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University, Martin, Slovakia; Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University, Martin, Slovakia.
| | - Pavol Zubor
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin Comenius University, Slovakia
| | - Sona Uramova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin Comenius University, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Dana Blahutova
- Department of Biology and Ecology, Faculty of Education, Catholic University in Ruzomberok, Ruzomberok, Slovakia
| | - Tawar Qaradakhi
- The Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Werribee Campus, Victoria, Australia
| | - Anthony Zulli
- The Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Werribee Campus, Victoria, Australia
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Jan Danko
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin Comenius University, Slovakia
| | - Zora Lasabova
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University, Martin, Slovakia
| | - Dietrich Busselberg
- Weill Cornell Medicine in Qatar, Qatar Foundation-Education City, Doha, Qatar
| | - Peter Kruzliak
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| |
Collapse
|
81
|
Wang H, An X, Yu H, Zhang S, Tang B, Zhang X, Li Z. MiR-29b/TET1/ZEB2 signaling axis regulates metastatic properties and epithelial-mesenchymal transition in breast cancer cells. Oncotarget 2017; 8:102119-102133. [PMID: 29254230 PMCID: PMC5731940 DOI: 10.18632/oncotarget.22183] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/27/2017] [Indexed: 12/21/2022] Open
Abstract
MiR-29b has been reported to be both a suppressor and a promoter in breast cancer (BC) cells proliferation and metastasis. Significant efforts have been made to explain the seemingly contradictory effects of miR-29b on BC, but no answer has yet been clearly verified. In this study, we overexpressed and knocked down miR-29b in BC cell lines, modulated expression of its downstream target gene TET1 and downregulated a downstream target gene of TET1, ZEB2, to explore the regulatory mechanism of miR-29b in BC cell proliferation, migration and epithelial-mesenchymal transition (EMT). Our results showed lower expression of miR-29b in BC samples and cell lines. Functional assays showed that miR-29b overexpression resulted in a higher cell proliferation, greater colony formation, higher migration rate and EMT. A dual luciferase assay identified TET1 as a direct target of miR-29b. As the promoting effects of miR-29b in the proliferation and metastasis of MDA-MB-231 and MCF-7, knockdown of TET1 also led to increased proliferation, colony formation, invasion and EMT. Further, we found that TET1 bound to the promoter of ZEB2, and siTET1 enhanced ZEB2 expression. Disruption of ZEB2 expression inhibited BC cells proliferation, colony formation and invasion. Our results establish the miR-29b/TET1/ZEB2 pathway in BC cell proliferation, migration and provide a theoretical basis for further research on the molecular mechanisms and new clinical treatments for BC.
Collapse
Affiliation(s)
- Hua Wang
- The First Bethune Hospital, Jilin University, Changchun, Jilin 130021, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xinglan An
- The First Bethune Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Hao Yu
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Sheng Zhang
- The First Bethune Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Bo Tang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xueming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Ziyi Li
- The First Bethune Hospital, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
82
|
Kawaguchi T, Yan L, Qi Q, Peng X, Gabriel EM, Young J, Liu S, Takabe K. Overexpression of suppressive microRNAs, miR-30a and miR-200c are associated with improved survival of breast cancer patients. Sci Rep 2017; 7:15945. [PMID: 29162923 PMCID: PMC5698306 DOI: 10.1038/s41598-017-16112-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022] Open
Abstract
Some microRNAs (miRNAs) are known to suppress breast cancer. However, whether the expressions of these tumor suppressive miRNAs translate to patient survival were not investigated in large cohort. Nine miRNAs (miR-30a, miR-30c, miR-31, miR-126, miR-140, miR-146b, miR-200c, miR-206, and miR-335) known to be tumor suppressive miRNAs in breast cancer were investigated in Genomic Data Common data portal miRNA-Seq dataset and The Cancer Genome Atlas (TCGA) (n = 1052). Of the 9 miRNAs, miR-30a, miR-30c, miR-126, miR-140, miR-206, and miR-335 were found to have significantly lower expression in breast cancer tissues compared to paired normal breast tissue. High expression of miR-30a or miR-200c was associated with significantly better overall survival (OS). Gene Set Enrichment Analysis (GSEA) demonstrated that low expression levels of miR-30a had the tendency to associate with gene enrichment of EMT, while miR-200c did not, in TCGA cohort, and our findings support the need of validation using large cohort to use miRNA as prognostic biomarker for patients with breast cancer.
Collapse
Affiliation(s)
- Tsutomu Kawaguchi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Qianya Qi
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Xuan Peng
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Emmanuel M Gabriel
- Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Jessica Young
- Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Song Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA. .,Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
83
|
The long non-coding RNA MALAT1 interacted with miR-218 modulates choriocarcinoma growth by targeting Fbxw8. Biomed Pharmacother 2017; 97:543-550. [PMID: 29096355 DOI: 10.1016/j.biopha.2017.10.083] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 02/09/2023] Open
Abstract
Among the first found cancer-related long non-coding RNAs (lncRNAs), MALAT1 is one that involves in the development and progression of some tumors. MALAT1 can be aberrantly expressed in hepatocellular carcinoma, cervical, breast, ovarian cancers, as well as colorectal cancer. The paper aims to make certain the function of MALAT1 in human choriocarcinoma cell lines by investigating the detailed effects and molecular mechanisms. Being specifically upregulated in choriocarcinoma cell lines, the under-researched lncRNA-MALAT1 promoted choriocarcinoma cell growth by targeting miR-218. After MALAT1 knockdown, proliferation of human choriocarcinoma cell in vitro was dramatically hindered, and the tumor size in vivo was reduced. What is more, miR-218-mediated Fbxw8 regulation was required for MALAT1-induced choriocarcinoma cell proliferation. Taken together, MALAT1 might promote choriocarcinoma tumor growth through miR-218-mediated Fbxw8 regulation. According to our data, MALAT1 might be an oncogenic lncRNA that promoted choriocarcinoma proliferation and could be therapeutically targeted in human choriocarcinoma.
Collapse
|
84
|
Epigenetic modifications of gene expression by lifestyle and environment. Arch Pharm Res 2017; 40:1219-1237. [PMID: 29043603 DOI: 10.1007/s12272-017-0973-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022]
Abstract
Epigenetics oftenly described as the heritable changes in gene expression independent of changes in DNA sequence. Various environmental factors such as nutrition-dietary components, lifestyle, exercise, physical activity, toxins, and other contributing factors remodel the genome either in a constructive or detrimental way. Since epigenetic changes are reversible and nutrition is one of the many epigenetic regulators that modify gene expression without changing the DNA sequence, dietary nutrients and bioactive food components contribute to epigenetic phenomena either by directly suppressing DNA methylation or histone catalyzing enzymes or by changing the availability of substrates required for enzymatic reactions. Diets that contain catechol-dominant polyphenols are reported to suppress enzyme activity and activate epigenetically silenced genes. Furthermore, several dietary nutrients play a crucial role in one-carbon metabolism including folate, cobalamin, riboflavin, pyridoxine, and methionine by directly affecting S-adenosyl-L-methionine. Soy polyphenols block DNA methyltransferases and histone deacetylases to reverse aberrant CpG island methylation. Organosulfur rich compounds such as the sulforaphane found in broccoli appear to normalize DNA methylation and activate miR-140 expression, which represses SOX9 and ALDH1 and decreases tumor growth. The purpose of this short communication is to overview the epigenetic regulatory mechanisms of diet and other environmental factors. We discuss the epigenetic contributions of dietary components with a particular focus on nutritional polyphenols and flavonoids as epigenetic mediators that modify epigenetic tags and control gene expression. These mechanisms provide new insights to better understand the influence of dietary nutrients on epigenetic modifications and gene expression.
Collapse
|
85
|
Bhardwaj A, Singh H, Rajapakshe K, Tachibana K, Ganesan N, Pan Y, Gunaratne PH, Coarfa C, Bedrosian I. Regulation of miRNA-29c and its downstream pathways in preneoplastic progression of triple-negative breast cancer. Oncotarget 2017; 8:19645-19660. [PMID: 28160548 PMCID: PMC5386711 DOI: 10.18632/oncotarget.14902] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/04/2017] [Indexed: 12/21/2022] Open
Abstract
Little is understood about the early molecular drivers of triple-negative breast cancer (TNBC), making the identification of women at risk and development of targeted therapy for prevention significant challenges. By sequencing a TNBC cell line-based breast cancer progression model we have found that miRNA-29c is progressively lost during TNBC tumorigenesis. In support of the tumor suppressive role of miRNA 29c, we found that low levels predict poor overall patient survival and, conversely, that ectopic expression of miRNA-29c in preneoplastic cell models inhibits growth. miRNA-29c exerts its growth inhibitory effects through direct binding and regulation of TGFB-induced factor homeobox 2 (TGIF2), CAMP-responsive element binding protein 5 (CREB5), and V-Akt murine thymoma viral oncogene homolog 3 (AKT3). miRNA-29c regulation of these gene targets seems to be functionally relevant, as TGIF2, CREB5, and AKT3 were able to rescue the inhibition of cell proliferation and colony formation caused by ectopic expression of miRNA-29c in preneoplastic cells. AKT3 is an oncogene of known relevance in breast cancer, and as a proof of principle we show that inhibition of phosphoinositide 3-kinase (PI3K) activity, a protein upstream of AKT3, suppressed proliferation in TNBC preneoplastic cells. We explored additional opportunities for prevention of TNBC by studying the regulation of miRNA-29c and identified DNA methylation to have a role in the inhibition of miRNA-29c during TNBC tumorigenesis. Consistent with these observations, we found 5 aza-cytadine to relieve the suppression of miRNA-29c. Together, these results demonstrate that miRNA-29c loss plays a key role in the early development of TNBC.
Collapse
Affiliation(s)
- Anjana Bhardwaj
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Harpreet Singh
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Kazunoshin Tachibana
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nivetha Ganesan
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yinghong Pan
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Isabelle Bedrosian
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
86
|
Yoshida A, Kitajima S, Li F, Cheng C, Takegami Y, Kohno S, Wan YS, Hayashi N, Muranaka H, Nishimoto Y, Nagatani N, Nishiuchi T, Thai TC, Suzuki S, Nakao S, Tanaka T, Hirose O, Barbie DA, Takahashi C. MicroRNA-140 mediates RB tumor suppressor function to control stem cell-like activity through interleukin-6. Oncotarget 2017; 8:13872-13885. [PMID: 28099924 PMCID: PMC5355146 DOI: 10.18632/oncotarget.14681] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022] Open
Abstract
We established an in vitro cell culture system to determine novel activities of the retinoblastoma (Rb) protein during tumor progression. Rb depletion in p53-null mouse-derived soft tissue sarcoma cells induced a spherogenic phenotype. Cells retrieved from Rb-depleted spheres exhibited slower proliferation and less efficient BrdU incorporation, however, much higher spherogenic activity and aggressive behavior. We discovered six miRNAs, including mmu-miR-18a, -25, -29b, -140, -337, and -1839, whose expression levels correlated tightly with the Rb status and spherogenic activity. Among these, mmu-miR-140 appeared to be positively controlled by Rb and to antagonize the effect of Rb depletion on spherogenesis and tumorigenesis. Furthermore, among genes potentially targeted by mmu-miR-140, Il-6 was upregulated by Rb depletion and downregulated by mmu-mir-140 overexpression. Altogether, we demonstrate the possibility that mmu-mir-140 mediates the Rb function to downregulate Il-6 by targeting its 3′-untranslated region. Finally, we detected the same relationship among RB, hsa-miR-140 and IL-6 in a human breast cancer cell line MCF-7. Because IL-6 is a critical modulator of malignant features of cancer cells and the RB pathway is impaired in the majority of cancers, hsa-miR-140 might be a promising therapeutic tool that disrupts linkage between tumor suppressor inactivation and pro-inflammatory cytokine response.
Collapse
Affiliation(s)
- Akiyo Yoshida
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Deperment of Cellular Transplantation Biology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Shunsuke Kitajima
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02215, USA
| | - Fengkai Li
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Chaoyang Cheng
- DNAFORM Precision Gene Technologies, Yokohama, Kanagawa, 230-0046, Japan
| | - Yujiro Takegami
- DNAFORM Precision Gene Technologies, Yokohama, Kanagawa, 230-0046, Japan
| | - Susumu Kohno
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuan Song Wan
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Naoyuki Hayashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Department of Health and Nutrition, Faculty of Human Health Science, Kanazawa Gakuin University, Kanazawa, Ishikawa, 920-1302, Japan
| | - Hayato Muranaka
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuuki Nishimoto
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Naoko Nagatani
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan
| | - Tran C Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02215, USA
| | - Sawako Suzuki
- Deperment of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-8670 Japan
| | - Shinji Nakao
- Deperment of Cellular Transplantation Biology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Tomoaki Tanaka
- Deperment of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-8670 Japan
| | - Osamu Hirose
- Division of Electrical Engineering and Computer Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02215, USA
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
87
|
Lindoso RS, Collino F, Vieyra A. Extracellular vesicles as regulators of tumor fate: crosstalk among cancer stem cells, tumor cells and mesenchymal stem cells. Stem Cell Investig 2017; 4:75. [PMID: 29057247 DOI: 10.21037/sci.2017.08.08] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/27/2017] [Indexed: 12/16/2022]
Abstract
The tumor microenvironment comprises a heterogeneous population of tumorigenic and non-tumorigenic cells. Cancer stem cells (CSCs) and mesenchymal stem cells (MSCs) are components of this microenvironment and have been described as key regulators of different aspects of tumor physiology. They act differently on the tumor: CSCs are described as tumor initiators and are associated with tumor growth, drug resistance and metastasis; MSCs can integrate the tumor microenvironment after recruitment and interact with cancer cells to promote tumor modifications. Extracellular vesicles (EVs) have emerged as an important mechanism of cell communication under the physiological and pathological conditions. In cancer, secretion of EVs seems to be one of the main mechanisms by which stem cells interact with other tumor and non-tumor cells. The transfer of bioactive molecules (lipids, proteins and RNAs) compartmentalized into EVs triggers different responses in the target cells, regulating several processes in the tumor as angiogenesis, tumor invasiveness and immune escape. This review focuses on the role of CSCs and MSCs in modulating the tumor microenvironment through secretion of EVs, addressing different aspects of the multidirectional interactions among stem cells, tumor and tumor-associated cells.
Collapse
Affiliation(s)
- Rafael Soares Lindoso
- Carlos Chagas Institute of Biophysics, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging-CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Federica Collino
- Carlos Chagas Institute of Biophysics, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging-CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Institute of Biophysics, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging-CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.,Graduate Program of Translational Biomedicine, Grande Rio University, 25071-202 Duque de Caxias, Brazil
| |
Collapse
|
88
|
Current Approaches to Diagnosis and Treatment of Ductal Carcinoma In Situ and Future Directions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:33-80. [PMID: 29096897 DOI: 10.1016/bs.pmbts.2017.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The presentation and treatment of ductal carcinoma in situ (DCIS) has changed substantially over the years. While previously an incidental pathologic finding in more advanced, palpable tumors, the institution of screening mammography has repositioned this disease entity as one largely diagnosed as a non-palpable lesion, often prior to any invasive disease. As DCIS is a precursor to invasive carcinoma, evolution in the approach to treatment has followed in the footsteps of that for invasive disease, including breast conservation therapy, adjuvant radiation, and use of antihormonal therapy. Survival outcomes for DCIS are very high and more recent literature has investigated tailoring therapeutic approaches to avoid overtreatment. Two important areas of ongoing clinical debate concerning overtreatment include use of preoperative MRI and the role of adjuvant radiation. The heterogeneity of the disease makes it difficult to differentiate lesions that would benefit from more aggressive treatment from those in which overtreatment could be avoided. Clinical characteristics, such as histologic appearance, age at diagnosis, and margin status at tumor excision have been established as moderate predictors of disease recurrence, but none has provided strong enough evidence as to guide consensus decisions on adjuvant therapy. Continuing research seeks to define the genetic and molecular characteristics that can predict disease course and serve as the potential targets for novel therapeutic agents. While several markers have shown promise in differentiating tumor aggressiveness, there is still much to be discovered about the precise mechanisms of disease progression and how this can be applied clinically to optimize treatment.
Collapse
|
89
|
Gianfredi V, Nucci D, Vannini S, Villarini M, Moretti M. In vitro Biological Effects of Sulforaphane (SFN), Epigallocatechin-3-gallate (EGCG), and Curcumin on Breast Cancer Cells: A Systematic Review of the Literature. Nutr Cancer 2017; 69:969-978. [PMID: 28872903 DOI: 10.1080/01635581.2017.1359322] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Much of the recent research in neoplasia has been focusing on the epigenetics of cancer cells, particularly as regards the search for potential molecular biomarkers that could be used for early diagnosis, effective treatment, and prognosis of several types of cancer. Carcinogenesis often starts with mutations in oncogenes and tumor suppressor genes, and it leads to anomalies in cellular processes as vital as cell cycle regulation and apoptosis. Because malignant changes arise as a result of genetic as well as epigenetic mechanisms, one possible means of intervention involves reprogramming gene expression, so as to-at least in part-revert the molecular alterations. DNA methylation and demethylation, acetylation and deacetylation of histones, and microRNAs are a few examples of the epigenetic mechanisms responsible for tumor development and progression. Many biologically active compounds present in food-including sulforaphane, curcumin, and epigallocatechin-have been found to modulate those processes. We here systematically review information on the effects of such bioactive dietary compounds on human breast cancer cell lines, and explore the mechanisms underlying those effects with a view to their potential therapeutic application.
Collapse
Affiliation(s)
- Vincenza Gianfredi
- a Graduate School of Specialization in Hygiene and Preventive Medicine, Department of Experimental Medicine , University of Perugia , Piazzale Gambuli, Perugia , Italy
| | - Daniele Nucci
- b Digestive Endoscopy Unit , Veneto Institute of Oncology IOV-I.R.C.C.S , Padua , Italy
| | - Samuele Vannini
- c Department of Pharmaceutical Sciences, Unit of Public Health , University of Perugia , Perugia , Italy
| | - Milena Villarini
- c Department of Pharmaceutical Sciences, Unit of Public Health , University of Perugia , Perugia , Italy
| | - Massimo Moretti
- c Department of Pharmaceutical Sciences, Unit of Public Health , University of Perugia , Perugia , Italy
| |
Collapse
|
90
|
Fan X, Chen W, Fu Z, Zeng L, Yin Y, Yuan H. MicroRNAs, a subpopulation of regulators, are involved in breast cancer progression through regulating breast cancer stem cells. Oncol Lett 2017; 14:5069-5076. [PMID: 29142594 DOI: 10.3892/ol.2017.6867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 05/18/2017] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs; also known as tumor-initiating cells) are essential effectors of tumor progression due to their self-renewal capacity, differentiation potential, tumorigenic ability and resistance to chemotherapy, all of which contribute to cancer relapse, metastasis and a poor prognosis. Breast cancer stem cells (BCSCs) have been identified to be involved in the processes of BC initiation, growth and recurrence. MicroRNAs (miRNAs) are a class of non-coding small RNAs of 19-23 nucleotides in length that regulate gene expression at the post-transcriptional level through various mechanisms, and serve critical roles in cancer progression. miRNAs have been demonstrated to elicit effects on BCSCs characteristics via the targeting of oncogenes or tumor suppressor genes. The present study focused on the effect of miRNAs on BCSC, including BCSC formation, self-renewal and differentiation, by which miRNAs may inhibit BCSC invasion and metastasis, modulate clonogenicity and tumorigenicity of BCSCs as well as regulate chemotherapy resistance to BC. Through an improved understanding of the association between BCSCs and miRNAs, a novel and safer therapeutic target for BC may be identified.
Collapse
Affiliation(s)
- Xuemei Fan
- Nanjing Maternity and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Wei Chen
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Ziyi Fu
- Nanjing Maternity and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Lihua Zeng
- Nanjing Maternity and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Yongmei Yin
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hongyan Yuan
- Nanjing Maternity and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
91
|
Sayeed MA, Bracci M, Lucarini G, Lazzarini R, Di Primio R, Santarelli L. Regulation of microRNA using promising dietary phytochemicals: Possible preventive and treatment option of malignant mesothelioma. Biomed Pharmacother 2017; 94:1197-1224. [PMID: 28841784 DOI: 10.1016/j.biopha.2017.07.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022] Open
Abstract
Malignant mesothelioma (MM) is a very aggressive, lethal cancer, and its incidence is increasing worldwide. Development of multi-drug resistance, therapy related side-effects, and disease recurrence after therapy are the major problems for the successful treatment of MM. Emerging evidence indicates that dietary phytochemicals can exert anti-cancer activities by regulating microRNA expression. Until now, only one dietary phytochemical (ursolic acid) has been reported to have MM microRNA regulatory ability. A large number of dietary phytochemicals still remain to be tested. In this paper, we have introduced some dietary phytochemicals (curcumin, epigallocatechin gallate, quercetin, genistein, pterostilbene, resveratrol, capsaicin, ellagic acid, benzyl isothiocyanate, phenethyl isothiocyanate, sulforaphane, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid) which have shown microRNA regulatory activities in various cancers and could regulate MM microRNAs. In addition to microRNA regulatory activities, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, phenethyl isothiocyanate, and sulforaphane have anti-mesothelioma potentials, and pterostilbene, capsaicin, ellagic acid, benzyl isothiocyanate, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid have potentials to inhibit cancer by regulating the expression of various genes which are also known to be aberrant in MM.
Collapse
Affiliation(s)
- Md Abu Sayeed
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy.
| | - Massimo Bracci
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Guendalina Lucarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Raffaella Lazzarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Roberto Di Primio
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| |
Collapse
|
92
|
Fang Z, Yin S, Sun R, Zhang S, Fu M, Wu Y, Zhang T, Khaliq J, Li Y. miR-140-5p suppresses the proliferation, migration and invasion of gastric cancer by regulating YES1. Mol Cancer 2017; 16:139. [PMID: 28818100 PMCID: PMC5561618 DOI: 10.1186/s12943-017-0708-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 08/07/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aberrant expression of microRNA-140-5p (miR-140-5p) has been described in gastric cancer (GC). However, the role of miR-140-5p in GC remains unclear. In this study, the prognostic relevance of miR-140-5p in GC was investigated and YES1 was identified as a novel target of miR-140-5p in regulating tumor progression. METHODS miR-140-5p level was determined in 20 paired frozen specimens through quantitative real-time PCR, and analyzed in tissue microarrays through in situ hybridization. The target of miR-140-5p was verified through a dual luciferase reporter assay, and the effects of miR-140-5p on phenotypic changes in GC cells were investigated in vitro and in vivo. RESULTS Compared with that in adjacent normal tissues, miR-140-5p expression decreased in cancerous tissues. The downregulated miR-140-5p in 144 patients with GC was significantly correlated with the reduced overall survival of these patients. miR-140-5p could inhibit GC cell proliferation, migration and invasion by directly targeting 3'-untranlated region of YES1. miR-140-5p could also remarkably reduce the tumor size in GC xenograft mice. CONCLUSIONS miR-140-5p serves as a potential prognostic factor in patients with GC, and miR-140-5p mediated YES1 inhibition is a novel mechanism behind the suppressive effects of miR-140-5p in GC.
Collapse
Affiliation(s)
- Zheng Fang
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China
| | - Shuai Yin
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of University of Munich, Marchioninistr.15, 5H-02-428, 81377, Munich, Germany
| | - Ruochuan Sun
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China
| | - Shangxin Zhang
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China
| | - Min Fu
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China
| | - Youliang Wu
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China
| | - Tao Zhang
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China
| | - Junaid Khaliq
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China
| | - Yongxiang Li
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China.
| |
Collapse
|
93
|
Otsuka K, Yamamoto Y, Matsuoka R, Ochiya T. Maintaining good miRNAs in the body keeps the doctor away?: Perspectives on the relationship between food-derived natural products and microRNAs in relation to exosomes/extracellular vesicles. Mol Nutr Food Res 2017; 62. [PMID: 28594130 DOI: 10.1002/mnfr.201700080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/21/2022]
Abstract
During the last decade, it has been uncovered that microRNAs (miRNAs), a class of small non-coding RNAs, are related to many diseases including cancers. With an increase in reports describing the dysregulation of miRNAs in various tumor types, it has become abundantly clear that miRNAs play significant roles in the formation and progression of cancers. Intriguingly, miRNAs are present in body fluids because they are packed in exosomes/extracellular vesicles and released from all types of cells. The miRNAs in the fluids are measured in a relatively simple way and the profile of miRNAs is likely to be an indicator of health condition. In recent years, various studies have demonstrated that some naturally occurring compounds can control tumor-suppressive and oncogenic miRNAs in a positive manner, suggesting that food-derived compounds could maintain the expression levels of miRNAs and help maintain good health. Therefore, our daily food and compounds in food are of great interest. In addition, exogenous diet-derived miRNAs have been indicated to function in the regulation of target mammalian transcripts in the body. These findings highlight the possibility of diet for good health through the regulation of miRNAs, and we also discuss the perspective of food application and health promotion.
Collapse
Affiliation(s)
- Kurataka Otsuka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.,R&D Division, Kewpie Corporation Sengawa Kewport, Tokyo, Japan
| | - Yusuke Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| |
Collapse
|
94
|
Kitajima S, Takahashi C. Intersection of retinoblastoma tumor suppressor function, stem cells, metabolism, and inflammation. Cancer Sci 2017; 108:1726-1731. [PMID: 28865172 PMCID: PMC5581511 DOI: 10.1111/cas.13312] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/27/2022] Open
Abstract
The Retinoblastoma (RB) tumor suppressor regulates G1/S transition during cell cycle progression by modulating the activity of E2F transcription factors. The RB pathway plays a central role in the suppression of most cancers, and RB mutation was initially discovered by virtue of its role in tumor initiation. However, as cancer genome sequencing has evolved to profile more advanced and treatment‐resistant cancers, it has become increasingly clear that, in the majority of cancers, somatic RB inactivation occurs during tumor progression. Furthermore, despite the presence of deregulation of cell cycle control due to an INK4A deletion, additional CCND amplification and/or other mutations in the RB pathway, mutation or deletion of the RB gene is often observed during cancer progression. Of note, RB inactivation during cancer progression not only facilitates G1/S transition but also enhances some characteristics of malignancy, including altered drug sensitivity and a return to the undifferentiated state. Recently, we reported that RB inactivation enhances pro‐inflammatory signaling through stimulation of the interleukin‐6/STAT3 pathway, which directly promotes various malignant features of cancer cells. In this review, we highlight the consequences of RB inactivation during cancer progression, and discuss the biological and pathological significance of the interaction between RB and pro‐inflammatory signaling.
Collapse
Affiliation(s)
- Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
95
|
Yao C, Huang S, Wu J, Yin L, Jiang X, Chen C, Wu W, Xu J, He X. MicroRNA-140 inhibits tumor progression in nasopharyngeal carcinoma by targeting CXCR4. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:7750-7759. [PMID: 31966622 PMCID: PMC6965283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/16/2017] [Indexed: 06/10/2023]
Abstract
Recent evidence has indicated that miRNAs play important roles in carcinogenesis. The identification of dysregulated miRNAs and the target genes they regulate might enhance our understanding of the molecular mechanisms of nasopharyngeal carcinoma (NPC). microRNA-140 (miR-140) has been found to be down-regulated in cancer. However its role in nasopharyngeal carcinoma remains unclear. CXCR4 was predicted to be the target gene of miR-140. The current research was designed to delineate the mechanism of miR-140 in regulating NPC via targeting CXCR4. In this study, miR-140 was underexpressed in NPC tissues and cell lines compared with their normal controls and the biological function and direct target genes of miR-140 in NPC cells were investigated. Importantly, we demonstrate that the over expression of miR-140 significantly inhibits NPC cell proliferation and induces apoptosis. Additionally, CXCR4 was predicted the target gene of miR-140 and the luciferase reporter assay revealed that miR-140 was directly bound to the 3'-UTR of CXCR4. Furthermore, CXCR4 was inversely correlated with the expression of miR-140 in NPC cells. Taken together, our results suggest miR-140 suppresses tumor proliferation and induces apoptosis by inhibiting CXCR4, which might provide a new insight into the molecular mechanisms that regulate the development and progression of NPC, and it provides novel therapeutic targets for NPC.
Collapse
Affiliation(s)
- Chengyun Yao
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjing 210009, China
| | - Shengfu Huang
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjing 210009, China
| | - Jianfeng Wu
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjing 210009, China
| | - Li Yin
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjing 210009, China
| | - Xuesong Jiang
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjing 210009, China
| | - Cheng Chen
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjing 210009, China
| | - Wenlan Wu
- Head and Neck Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjing 210009, China
| | - Jianhua Xu
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjing 210009, China
| | - Xia He
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjing 210009, China
| |
Collapse
|
96
|
Tang Y, He R, An J, Deng P, Huang L, Yang W. lncRNA XIST interacts with miR-140 to modulate lung cancer growth by targeting iASPP. Oncol Rep 2017; 38:941-948. [DOI: 10.3892/or.2017.5751] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/28/2016] [Indexed: 11/06/2022] Open
|
97
|
Anauate AC, Leal MF, Wisnieski F, Santos LC, Gigek CO, Chen ES, Geraldis JC, Calcagno DQ, Assumpção PP, Demachki S, Arasaki CH, Lourenço LG, Artigiani R, Burbano RR, Smith MAC. Identification of suitable reference genes for miRNA expression normalization in gastric cancer. Gene 2017; 621:59-68. [PMID: 28411081 DOI: 10.1016/j.gene.2017.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Ana Carolina Anauate
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil; Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, São Paulo, Brazil; Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Leonardo Caires Santos
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carolina Oliveira Gigek
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil; Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Elizabeth Suchi Chen
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jaqueline Cruz Geraldis
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Paulo Pimentel Assumpção
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Samia Demachki
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Carlos Haruo Arasaki
- Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Laércio Gomes Lourenço
- Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo Artigiani
- Departamento de Patologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rommel Rodríguez Burbano
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil; Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil; Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém, Brazil
| | - Marília Arruda Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
98
|
Huang X, Xiao R, Pan S, Yang X, Yuan W, Tu Z, Xu M, Zhu Y, Yin Q, Wu Y, Hu W, Shao L, Xiong J, Zhang Q. Uncovering the roles of long non-coding RNAs in cancer stem cells. J Hematol Oncol 2017; 10:62. [PMID: 28245841 PMCID: PMC5331729 DOI: 10.1186/s13045-017-0428-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/23/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer has been a major public health problem that has threatened human life worldwide throughout history. The main causes that contribute to the poor prognosis of cancer are metastasis and recurrence. Cancer stem cells are a group of tumor cells that possess self-renewal and differentiation ability, which is a vital cause of cancer metastasis and recurrence. Long non-coding RNAs refer to a class of RNAs that are longer than 200 nt and have no potential to code proteins, some of which can be specifically expressed in different tissues and different tumors. Long non-coding RNAs have great biological significance in the occurrence and progression of cancers. However, how long non-coding RNAs interact with cancer stem cells and then affect cancer metastasis and recurrence is not yet clear. Therefore, this review aims to summarize recent studies that focus on how long non-coding RNAs impact tumor occurrence and progression by affecting cancer stem cell self-renewal and differentiation in liver cancer, prostate cancer, breast cancer, and glioma.
Collapse
Affiliation(s)
- Xiaoxing Huang
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Ruijing Xiao
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Shan Pan
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Xiangyong Yang
- Hubei University of Technology Engineering and Technology College, Wuhan, 430000, China
| | - Wen Yuan
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Zhenbo Tu
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Ming Xu
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Yufan Zhu
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Qian Yin
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Yingjie Wu
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Weidong Hu
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jie Xiong
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
99
|
A High-Fat Diet Promotes Mammary Gland Myofibroblast Differentiation through MicroRNA 140 Downregulation. Mol Cell Biol 2017; 37:MCB.00461-16. [PMID: 27895151 DOI: 10.1128/mcb.00461-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/19/2016] [Indexed: 12/19/2022] Open
Abstract
Human breast adipose tissue is a heterogeneous cell population consisting of mature white adipocytes, multipotent mesenchymal stem cells, committed progenitor cells, fibroblasts, endothelial cells, and immune cells. Dependent on external stimulation, adipose-derived stem cells differentiate along diverse lineages into adipocytes, chondrocytes, osteoblasts, fibroblasts, and myofibroblasts. It is currently not fully understood how a high-fat diet reprograms adipose-derived stem cells into myofibroblasts. In our study, we used mouse models of a regular diet and of high-fat-diet-induced obesity to investigate the role of dietary fat on myofibroblast differentiation in the mammary stromal microenvironment. We found that a high-fat diet promotes myofibroblast differentiation by decreasing microRNA 140 (miR-140) expression in mammary adipose tissue through a novel negative-feedback loop. Increased transforming growth factor β1 (TGF-β1) in mammary adipose tissue in obese mice activates SMAD3 signaling, causing phospho-SMAD3 to bind to the miR-140 locus and inhibit miR-140 transcription. This prevents miR-140 from targeting SMAD3 for degradation, resulting in amplified TGF-β1/SMAD3 signaling and miR-140 downregulation-dependent myofibroblast differentiation. Using tissue and coculture models, we found that myofibroblasts and the fibrotic microenvironment created by myofibroblasts impact the stemness and proliferation of normal ductal epithelial cells and early-stage breast cancer invasion and stemness.
Collapse
|
100
|
Sayeed MA, Bracci M, Lazzarini R, Tomasetti M, Amati M, Lucarini G, Di Primio R, Santarelli L. Use of potential dietary phytochemicals to target miRNA: Promising option for breast cancer prevention and treatment? J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|