51
|
Abstract
Hepatocellular carcinoma (HCC) is the most frequent subtype of primary liver cancer and one of the leading causes of cancer-related death worldwide. However, the molecular mechanisms underlying HCC pathogenesis have not been fully understood. Emerging evidences have recently suggested the crucial role of long noncoding RNAs (lncRNAs) in the tumorigenesis and progression of HCC. Various HCC-related lncRNAs have been shown to possess aberrant expression and participate in cancerous phenotypes (e.g. persistent proliferation, evading apoptosis, accelerated vessel formation and gain of invasive capability) through their binding with DNA, RNA or proteins, or encoding small peptides. Thus, a deeper understanding of lncRNA dysregulation would provide new insights into HCC pathogenesis and novel tools for the early diagnosis and treatment of HCC. In this review, we summarize the dysregulation of lncRNAs expression in HCC and their tumor suppressive or oncogenic roles during HCC tumorigenesis. Moreover, we discuss the diagnostic and therapeutic potentials of lncRNAs in HCC.
Collapse
|
52
|
Liu W, Gan C, Wang W, Liao L, Li C, Xu L, Li E. Identification of lncRNA-associated differential subnetworks in oesophageal squamous cell carcinoma by differential co-expression analysis. J Cell Mol Med 2020; 24:4804-4818. [PMID: 32164040 PMCID: PMC7176870 DOI: 10.1111/jcmm.15159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Differential expression analysis has led to the identification of important biomarkers in oesophageal squamous cell carcinoma (ESCC). Despite enormous contributions, it has not harnessed the full potential of gene expression data, such as interactions among genes. Differential co-expression analysis has emerged as an effective tool that complements differential expression analysis to provide better insight of dysregulated mechanisms and indicate key driver genes. Here, we analysed the differential co-expression of lncRNAs and protein-coding genes (PCGs) between normal oesophageal tissue and ESCC tissues, and constructed a lncRNA-PCG differential co-expression network (DCN). DCN was characterized as a scale-free, small-world network with modular organization. Focusing on lncRNAs, a total of 107 differential lncRNA-PCG subnetworks were identified from the DCN by integrating both differential expression and differential co-expression. These differential subnetworks provide a valuable source for revealing lncRNA functions and the associated dysfunctional regulatory networks in ESCC. Their consistent discrimination suggests that they may have important roles in ESCC and could serve as robust subnetwork biomarkers. In addition, two tumour suppressor genes (AL121899.1 and ELMO2), identified in the core modules, were validated by functional experiments. The proposed method can be easily used to investigate differential subnetworks of other molecules in other cancers.
Collapse
Affiliation(s)
- Wei Liu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical CollegeShantouChina
- Department of Biochemistry and Molecular BiologyShantou University Medical CollegeShantouChina
- Department of MathematicsHeilongjiang Institute of TechnologyHarbinChina
| | - Cai‐Yan Gan
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical CollegeShantouChina
- Department of Biochemistry and Molecular BiologyShantou University Medical CollegeShantouChina
| | - Wei Wang
- Department of MathematicsHeilongjiang Institute of TechnologyHarbinChina
| | - Lian‐Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical CollegeShantouChina
- Institute of Oncologic PathologyShantou University Medical CollegeShantouChina
| | - Chun‐Quan Li
- Department of Medical InformaticsHarbin Medical University‐DaqingDaqingChina
| | - Li‐Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical CollegeShantouChina
- Institute of Oncologic PathologyShantou University Medical CollegeShantouChina
| | - En‐Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical CollegeShantouChina
- Department of Biochemistry and Molecular BiologyShantou University Medical CollegeShantouChina
| |
Collapse
|
53
|
Wang W, Shi Q, Wang S, Zhang H, Xu S. Ammonia regulates chicken tracheal cell necroptosis via the LncRNA-107053293/MiR-148a-3p/FAF1 axis. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121626. [PMID: 31791863 DOI: 10.1016/j.jhazmat.2019.121626] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Ammonia (NH3) is a known harmful gas that causes injury to the respiratory system. Ammonia also exists in haze, forming secondary organic aerosols. However, the specific damage caused by NH3 in chicken trachea has not been determined. The regulatory mechanism of ceRNA and its multiple roles have been proposed in many pathomechanisms; therefore, we investigated the functional role of ceRNA in chicken trachea after NH3 inhalation. Broiler chicken trachea exposed to NH3 was selected as the research object. The pathological ultrastructure was observed by transmission electron microscopy. Transcriptome analyses were applied and referenced, and lncRNA-107053293 and miR-148a-3p and FAF1 were selected. A dual-luciferase reporter assay verified the target relationship. Real-time quantitative PCR (RT-PCR) and western blotting were performed to examine the expression levels of necroptosis genes, such as RIPK1, RIPK3, MLKL, caspase 8, and FADD. Our results indicated that lncRNA-107053293 regulated necroptosis by acting as a competing endogenous RNA of miR-148a-3p. FAF1, as a gene target of miR-148a-3p, also affects necroptosis.
Collapse
Affiliation(s)
- Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qunxiang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
54
|
Zhang Y, Wu D, Wang D. Long non-coding RNA ARAP1-AS1 promotes tumorigenesis and metastasis through facilitating proto-oncogene c-Myc translation via dissociating PSF/PTB dimer in cervical cancer. Cancer Med 2020; 9:1855-1866. [PMID: 31953923 PMCID: PMC7050100 DOI: 10.1002/cam4.2860] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 12/27/2022] Open
Abstract
Long non-coding RNA (lncRNA) is emerging as a pivotal regulator in tumorigenesis and aggressive progression. Here, we focused on an oncogenic lncRNA, ARAP1 antisense RNA 1 (ARAP1-AS1), which was notably upregulated in cervical cancer (CC) tissues, cell lines and serum. High ARAP1-AS1 expression was closely associated with larger tumor size, advanced FIGO stage as well as lymph node metastasis. Importantly, it was identified as an effective diagnostic and prognostic biomarker for CC. In vitro and in vivo assays showed that knockdown of ARAP1-AS1 inhibited, while overexpression of ARAP1-AS1 promoted CC cell growth and dissemination. Stepwise mechanistic dissection unveiled that ARAP1-AS1 could directly interact with PSF to release PTB, resulting in accelerating the internal ribosome entry site (IRES)-driven translation of proto-oncogene c-Myc, thereby facilitating CC development and progression. Moreover, c-Myc was able to transcriptionally activate ARAP1-AS1 by directly binding to the E-box motif located on ARAP1-AS1 promoter. Taken together, our findings clearly reveal the crucial role of ARAP1-AS1 in CC tumorigenesis and metastasis via regulation of c-Myc translation, targeting ARAP1-AS1 and its related regulatory loop implicates the therapeutic possibility for CC patients.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Gynaecology and ObstetricsShengjing Hospital of China Medical UniversityShenyangChina
| | - Dan Wu
- Department of Gynaecology and ObstetricsShengjing Hospital of China Medical UniversityShenyangChina
| | - Dian Wang
- Department of Gynaecology and ObstetricsShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
55
|
Liang CY, Li ZY, Gan TQ, Fang YY, Gan BL, Chen WJ, Dang YW, Shi K, Feng ZB, Chen G. Downregulation of hsa-microRNA-204-5p and identification of its potential regulatory network in non-small cell lung cancer: RT-qPCR, bioinformatic- and meta-analyses. Respir Res 2020; 21:60. [PMID: 32102656 PMCID: PMC7045575 DOI: 10.1186/s12931-020-1274-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Background Pulmonary malignant neoplasms have a high worldwide morbidity and mortality, so the study of these malignancies using microRNAs (miRNAs) has attracted great interest and enthusiasm. The aim of this study was to determine the clinical effect of hsa-microRNA-204-5p (miR-204-5p) and its underlying molecular mechanisms in non-small cell lung cancer (NSCLC). Methods Expression of miR-204-5p was investigated by real-time quantitative PCR (RT-qPCR). After data mining from public online repositories, several integrative assessment methods, including receiver operating characteristic (ROC) curves, hazard ratios (HR) with 95% confidence intervals (95% CI), and comprehensive meta-analyses, were conducted to explore the expression and clinical utility of miR-204-5p. The potential objects regulated and controlled by miR-204-5p in the course of NSCLC were identified by estimated target prediction and analysis. The regulatory network of miR-204-5p, with its target genes and transcription factors (TFs), was structured from database evidence and literature references. Results The expression of miR-204-5p was downregulated in NSCLC, and the downtrend was related to gender, histological type, vascular invasion, tumor size, clinicopathologic grade and lymph node metastasis (P<0.05). MiR-204-5p was useful in prognosis, but was deemed unsuitable at present as an auxiliary diagnostic or prognostic risk factor for NSCLC due to the lack of statistical significance in meta-analyses and absence of large-scale investigations. Gene enrichment and annotation analyses identified miR-204-5p candidate targets that took part in various genetic activities and biological functions. The predicted TFs, like MAX, MYC, and RUNX1, interfered in regulatory networks involving miR-204-5p and its predicted hub genes, though a modulatory loop or axis of the miRNA-TF-gene that was out of range with shortage in database prediction, experimental proof and literature confirmation. Conclusions The frequently observed decrease in miR-204-5p was helpful for NSCLC diagnosis. The estimated target genes and TFs contributed to the anti-oncogene effects of miR-204-5p.
Collapse
Affiliation(s)
- Chang-Yu Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zu-Yun Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ting-Qing Gan
- Department of Medical Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ye-Ying Fang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Bin-Liang Gan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wen-Jie Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ke Shi
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
56
|
Ou C, Sun Z, He X, Li X, Fan S, Zheng X, Peng Q, Li G, Li X, Ma J. Targeting YAP1/LINC00152/FSCN1 Signaling Axis Prevents the Progression of Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901380. [PMID: 32042551 PMCID: PMC7001651 DOI: 10.1002/advs.201901380] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/13/2019] [Indexed: 05/24/2023]
Abstract
As a transcription coactivator, Yes-associated protein 1 (YAP1)'s role in tumorigenesis is well established. However, the mechanism of YAP1-regulating long noncoding RNAs (lncRNA) in tumors is still largely unknown. Here, a YAP1 target gene, long intergenic noncoding RNA 00152 (LINC00152), which is highly expressed in colorectal cancer (CRC), is identified. The oncogenic functions of LINC00152 in CRC are demonstrated by a panel of in vitro and in vivo experiments. Further studies reveal the potential downstream mechanisms of LINC00152, which can act as a competing endogenous RNA sponging with miR-632 and miR-185-3p to regulate Fascin actin-bundling protein 1 (FSCN1) expression and thus promote the malignant proliferation and metastasis in CRC cells. Targeting the YAP1/LINC00152/FSCN1 axis inhibits the progression of CRC. This finding provides a new regulatory model of the "YAP1-lncRNA" in CRC, which gives rise to a new perspective, "YAP1/LINC00152/miR-632-miR-185-3p/FSCN1," to explore the cancer-promoting mechanism of YAP1 involved in CRC.
Collapse
Affiliation(s)
- Chunlin Ou
- Xiangya HospitalDepartment of PathologyCancer Research InstituteCentral South UniversityChangshaHunan410008China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationCentral South UniversityChangsha410078China
- NHC Key Laboratory of CarcinogenesisCentral South UniversityChangsha410078China
- Hunan Key Laboratory of Nonresolving Inflammation and CancerDepartment of GastroenterologyThe Third Xiangya HospitalCentral South UniversityChangsha410013China
| | - Zhenqiang Sun
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationCentral South UniversityChangsha410078China
- Department of Anorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Xiaoyun He
- Xiangya HospitalDepartment of PathologyCancer Research InstituteCentral South UniversityChangshaHunan410008China
| | - Xiaoling Li
- Xiangya HospitalDepartment of PathologyCancer Research InstituteCentral South UniversityChangshaHunan410008China
| | - Songqing Fan
- Department of PathologyThe Second Xiangya HospitalCentral South UniversityChangsha410011China
| | - Xiang Zheng
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationCentral South UniversityChangsha410078China
| | - Qiu Peng
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationCentral South UniversityChangsha410078China
| | - Guiyuan Li
- Xiangya HospitalDepartment of PathologyCancer Research InstituteCentral South UniversityChangshaHunan410008China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationCentral South UniversityChangsha410078China
- NHC Key Laboratory of CarcinogenesisCentral South UniversityChangsha410078China
| | - Xiayu Li
- Xiangya HospitalDepartment of PathologyCancer Research InstituteCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Nonresolving Inflammation and CancerDepartment of GastroenterologyThe Third Xiangya HospitalCentral South UniversityChangsha410013China
| | - Jian Ma
- Xiangya HospitalDepartment of PathologyCancer Research InstituteCentral South UniversityChangshaHunan410008China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationCentral South UniversityChangsha410078China
- NHC Key Laboratory of CarcinogenesisCentral South UniversityChangsha410078China
- Hunan Key Laboratory of Nonresolving Inflammation and CancerDepartment of GastroenterologyThe Third Xiangya HospitalCentral South UniversityChangsha410013China
| |
Collapse
|
57
|
Feng Z, Chen R, Huang N, Luo C. Long non-coding RNA ASMTL-AS1 inhibits tumor growth and glycolysis by regulating the miR-93-3p/miR-660/FOXO1 axis in papillary thyroid carcinoma. Life Sci 2020; 244:117298. [PMID: 31953163 DOI: 10.1016/j.lfs.2020.117298] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/03/2020] [Accepted: 01/10/2020] [Indexed: 02/08/2023]
Abstract
Long non-coding RNA (lncRNA) is emerging as an essential player in cancer progression. However, its biological function and clinical implication in papillary thyroid carcinoma (PTC) remain poorly understood. In the current study, we found that a novel lncRNA, ASMTL antisense RNA 1 (ASMTL-AS1), was significantly downregulated in PTC. And its downregulation was positively linked to larger tumor size, advanced clinical stage and unfavorable outcome. Overexpression of ASMTL-AS1 evidently inhibited PTC cell proliferation and glycolysis, while knockdown of ASMTL-AS1 resulted in the opposite effect. Regarding the mechanism, ASMTL-AS1 was capable of sponging miR-93-3p and miR-660 to elevate FOXO1 expression, leading to repressing glycolysis and tumorigenesis. In turn, FOXO1 could also increase ASMTL-AS1 expression via directly binding to ASMTL-AS1 promoter, which formed a positive feedback regulation loop. Importantly, the regulatory axis of ASMTL-AS1/miR-93-3p/miR-660/FOXO1 was also identified in vivo. Collectively, our data clearly indicate that ASMTL-AS1 functions as a novel tumor suppressor in PTC through regulation of miR-93-3p/miR-660/FOXO1 pathway. Targeting ASMTL-AS1 and its downstream pathway may be an effective therapeutic approach for patients with PTC.
Collapse
Affiliation(s)
- Zhiyi Feng
- Department of General Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Rong Chen
- Department of General Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Nanqi Huang
- Department of General Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Chaoyuan Luo
- Department of General Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China.
| |
Collapse
|
58
|
Li X, Chen M, Shi Q, Zhang H, Xu S. Hydrogen sulfide exposure induces apoptosis and necroptosis through lncRNA3037/miR-15a/BCL2-A20 signaling in broiler trachea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134296. [PMID: 31683218 DOI: 10.1016/j.scitotenv.2019.134296] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Hydrogen sulfide (H2S) is an air pollutant, has toxic effects on respiratory tract. However, the underlying mechanisms of H2S induced respiratory toxicity and the roles of long non-coding RNAs (lncRNA) and microRNA (miRNA) in this process remain poorly understood. To clear this, we investigated the change of tracheal tissue ultrastructure and the expression profiles of lncRNAs and miRNAs of chicken trachea exposed to H2S for 42 days. Results showed that H2S exposure triggered apoptosis, necroptosis, and differential expression of 16 lncRNAs and 18 miRNAs in broiler tracheas. The results of LMH cells stimulated by NaHS in vitro also showed the occurrence of apoptosis and necroptosis. LncRNA3037 is down-regulated and miR-15a is up-regulated in tracheal tissue and LMH cells under H2S exposure. Bioinformatics analysis and dual luciferase reporter system showed lncRNA3037 bound directly to miR-15a and negatively regulates each other. A20 and BCL2 are the target genes of miR-15a and negatively regulated by it. Overexpression of miR-15a caused apoptosis and necroptosis and its inhibition partially reversed apoptosis and necroptosis of LMH cells caused by NaHS stimulation and lncRNA3037 knockdown. Taken together, we concluded that H2S exposure mediates apoptosis and necroptosis through lncRNA3037/miR-15/A20-BCL2. These results provide new insights for unveiling the biological effects of H2S in vivo and in vitro.
Collapse
Affiliation(s)
- Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Menghao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qunxiang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
59
|
Gao Y, Liu J, Mao X, He Z, Zhu T, Wang Z, Li X, Yin J, Zhang W, Zhou H, Liu Z. LncRNA FOXD1-AS1 acts as a potential oncogenic biomarker in glioma. CNS Neurosci Ther 2020; 26:66-75. [PMID: 31102349 PMCID: PMC6930828 DOI: 10.1111/cns.13152] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 12/14/2022] Open
Abstract
AIMS Altered activities of long noncoding RNAs (lncRNAs) have been associated with cancer development, and lncRNA FOXD1-AS1 (FOXD1-AS1) is the antisense transcript of the gene encoding for FOXD1, known for its role as an oncogene in several tumor types including glioma. However, the role of FOXD1-AS1 in the differentiation and progression of glioma is not well known. METHODS Expression profile chip and qPCR were used to screen and identify FOXD1-AS1. Glioma cells were transfected with siRNA or eukaryotic expression vector to observe FOXD1-AS1 function in vitro and in vivo. Dual luciferase reporter gene analysis, Western blot, and ChIRP-MS were used to detect microRNAs and protein that combine with FOXD1-AS1. RESULTS FOXD1-AS1 was upregulated and directly correlated with the glioma grade, and it was localized in both the nucleus and the cytoplasm of the glioma cell. FOXD1-AS1 silencing caused tumor suppressive effects via inhibiting cell proliferation, migration, and apoptosis, while FOXD1-AS1 overexpression resulted in opposite effects. Additionally, in vivo experiments showed that FOXD1-AS1 knockdown reduced tumor volume and weight. More importantly, mechanical studies revealed that FOXD1-AS1 targeted both miR339-5p and miR342-3p (miR339/342). Furthermore, protein eukaryotic translation initiation factor 5 subunit A (eIF5a) resulted a direct target of FOXD1-AS1. CONCLUSIONS These data indicated that FOXD1-AS1, a miR339/342 target, affected biological processes via protein eIF5a; thus, it might be considered as a new therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Yuan‐Feng Gao
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
- Department of PharmacyThe First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Jun‐Yan Liu
- Department of OrthopaedicsThe First Affiliated Hospital of the University of South ChinaHengyangChina
| | - Xiao‐Yuan Mao
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Zheng‐Wen He
- Department of Neurosurgery, The Affiliated Cancer Hospital of XiangYa School of MedicineCentral South UniversityChangshaChina
| | - Tao Zhu
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Zhi‐Bin Wang
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Ji‐Ye Yin
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Hong‐Hao Zhou
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Zhao‐Qian Liu
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| |
Collapse
|
60
|
Dai L, Niu J, Feng Y. Knockdown of long non-coding RNA LINC00176 suppresses ovarian cancer progression by BCL3-mediated down-regulation of ceruloplasmin. J Cell Mol Med 2020; 24:202-213. [PMID: 31668012 PMCID: PMC6933345 DOI: 10.1111/jcmm.14701] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/09/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is a common malignancy among women with some clinically approved diagnostic coding gene biomarkers. However, long non-coding RNAs (lncRNAs) have been indicated to play an important role in controlling tumorigenesis of ovarian cancer. Hereby, the aim of the study was to uncover the function of lncRNA LINC00176 in the development and progression of ovarian cancer by regulating ceruloplasmin (CP). Bioinformatics prediction in combination with RT-qPCR analysis for the expression pattern of LINC00176 revealed that LINC00176 was highly expressed in ovarian cancer tissues as well as in ovarian cancer cell lines, respectively. LINC00176 was predominantly localized in the nucleus. Delivery of si-LINC00176, oe-LINC00176, si-BCL3 and si-CP plasmids was conducted to explore the effects of LINC00176 on ovarian cancer. Promoted proliferation, migration and invasion along with reduced apoptosis were observed in cells treated with oe-LINC00176, while si-BCL3 and si-CP were able to block the promoting effects. Investigations with regard to the correlation between LINC00176 and promoter region of CP turned out to be positive via B-cell CLL/lymphoma 3 (BCL3) by means of dual-luciferase reporter gene assay, ChIP and RIP assays. Furthermore, oncogenic properties of the LINC00176/BCL3/CP axis were also demonstrated by tumour formation in vivo generated upon injecting cells in nude mice. Our results demonstrate that restored LINC00176 initiates tumorigenesis in ovarian cancer by increasing CP expression via recruiting BCL3, the mechanism of which represented a potential and promising therapeutic target for the disease.
Collapse
Affiliation(s)
- Lan Dai
- Department of Gynaecology and ObstetricsChinese Medicine Hospital in Linyi CityLinyiChina
| | - Jixiang Niu
- Department of General SurgeryChinese Medicine Hospital in Linyi CityLinyiChina
| | - Yanli Feng
- Department of Gynaecology and ObstetricsChinese Medicine Hospital in Linyi CityLinyiChina
| |
Collapse
|
61
|
Wang T, Du M, Zhang W, Bai H, Yin L, Chen W, He X, Chen Q. MicroRNA-432 Suppresses Invasion and Migration via E2F3 in Nasopharyngeal Carcinoma. Onco Targets Ther 2019; 12:11271-11280. [PMID: 31908492 PMCID: PMC6927591 DOI: 10.2147/ott.s233435] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
Background E2F transcription factor 3 (E2F3) is oncogenic and dysregulated in various malignancies. Complex networks involving microRNAs (miRNAs) and E2F3 regulate tumorigenesis and progression. However, the potential roles of E2F3 and its target miRNAs in nasopharyngeal carcinoma (NPC) are rarely reported. Methods E2F3 expression was detected in human NPC tissues and cell lines through quantitative real-time PCR. NPC cell proliferation, migration, and invasion were evaluated in vitro by colony forming, cell counting kit-8, wound healing, and Transwell invasion assays. Publicly available database software was used to explore the target miRNAs of E2F3. Dual-luciferase reporter assay was performed to identify the direct relationship. The function of miRNAs in vivo was investigated by using a tumor xenograft model. Results E2F3 was upregulated in NPC cell lines and tissues, and its exotic expression promoted NPC cell invasion and migration. E2F3 was identified as a target of miR-432, which restrained NPC cell invasion and migration in vitro and in vivo. Further experiments revealed that miR-432 repressed the invasion and migration potential of NPC cells by modulating E2F3 expression. Conclusion miRNA-432 suppressed the malignant biological behavior of NPC cells by targeting E2F3. This study provided further insights into NPC prognosis and treatment.
Collapse
Affiliation(s)
- Tingting Wang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People's Republic of China
| | - Mingyu Du
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People's Republic of China
| | - Wenjun Zhang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People's Republic of China
| | - Hui Bai
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Li Yin
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People's Republic of China
| | - Wei Chen
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People's Republic of China
| | - Xia He
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People's Republic of China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
62
|
Myc/Max dependent intronic long antisense noncoding RNA, EVA1A-AS, suppresses the expression of Myc/Max dependent anti-proliferating gene EVA1A in a U2 dependent manner. Sci Rep 2019; 9:17319. [PMID: 31754186 PMCID: PMC6872820 DOI: 10.1038/s41598-019-53944-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/22/2019] [Indexed: 01/26/2023] Open
Abstract
The Myc gene has been implicated in the pathogenesis of most types of human cancerous tumors. Myc/Max activates large numbers of pro-tumor genes; however it also induces anti-proliferation genes. When anti-proliferation genes are activated by Myc, cancer cells can only survive if they are downregulated. Hepatocellular carcinoma (HCC) specific intronic long noncoding antisense (lnc-AS) RNA, the EVA1A-AS gene, is located within the second intron (I2) of the EVA1A gene (EVA-1 homolog A) that encodes an anti-proliferation factor. Indeed, EVA1A, but not EVA1A-AS, is expressed in normal liver. Depletion of EVA1A-AS suppressed cell proliferation of HepG2 cells by upregulation of EVA1A. Overexpression of EVA1A caused cell death at the G2/M phase via microtubule catastrophe. Furthermore, suppressed EVA1A expression levels are negatively correlated with differentiation grade in 365 primary HCCs, while EVA1A-AS expression levels are positively correlated with patient survival. Notably, both EVA1A and EVA1A-AS were activated by the Myc/Max complex. Eva1A-AS is transcribed in the opposite direction near the 3′splice site of EVA1A I2. The second intron did not splice out in a U2 dependent manner and EVA1A mRNA is not exported. Thus, the Myc/Max dependent anti-proliferating gene, EVA1A, is controlled by Myc/Max dependent anti-sense noncoding RNA for HCC survival.
Collapse
|
63
|
Gong D, Feng PC, Ke XF, Kuang HL, Pan LL, Ye Q, Wu JB. Silencing Long Non-coding RNA LINC01224 Inhibits Hepatocellular Carcinoma Progression via MicroRNA-330-5p-Induced Inhibition of CHEK1. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:482-497. [PMID: 31902747 PMCID: PMC6948252 DOI: 10.1016/j.omtn.2019.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) accounts for approximately 85%–90% of primary liver cancers. Based on in silico analysis, differentially expressed long non-coding RNA (lncRNA) LINC01224 in HCC, the downstream microRNA (miRNA) miR-330-5p, and its target gene checkpoint kinase 1 (CHEK1) were selected as research subjects. Herein, this study was designed to evaluate their interaction effects on the malignant phenotypes of HCC cells. LINC01224 and CHEK1 were upregulated and miR-330-5p was downregulated in HCC cells. miR-330-5p shared negative correlations with LINC01224 and CHEK1, and LINC01224 shared a positive correlation with CHEK1. Notably, LINC01224 could specifically bind to miR-330-5p, and CHEK1 was identified as a target gene of miR-330-5p. When LINC01224 was silenced or miR-330-5p was elevated, the sphere and colony formation abilities and proliferative, migrative, and invasive potentials of HCC cells were diminished, while cell cycle arrest and apoptosis were enhanced. Moreover, LINC01224 induced HCC progression in vitro and accelerated tumor formation in nude mice by increasing CHEK1 expression. The key findings of the present study demonstrated that silencing LINC01224 could downregulate the expression of CHEK1 by competitively binding to miR-330-5p, thus inhibiting HCC progression. This result highlights the LINC01224/miR-330-5p/CHEK1 axis as a novel molecular mechanism involved in the pathology of HCC.
Collapse
Affiliation(s)
- Dan Gong
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Peng-Cheng Feng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Xing-Fei Ke
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Hui-Lan Kuang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Li-Li Pan
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Qiang Ye
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Jian-Bing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China.
| |
Collapse
|
64
|
Li D, Zhang J, Li J. Role of miRNA sponges in hepatocellular carcinoma. Clin Chim Acta 2019; 500:10-19. [PMID: 31604064 DOI: 10.1016/j.cca.2019.09.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide. HCC patients are commonly diagnosed at an advanced stage, for which highly effective therapies are limited. Hence, there is a growing need to discover promising biomarkers for HCC diagnosis, and in this context, microRNAs (miRNAs) hold great promise. MiRNAs function as gene expression regulators by directly binding messenger RNAs (mRNAs) and subsequently causing suppression of mRNA translation or degradation of target mRNAs. Two major types of noncoding RNAs act as competing endogenous sponges: circular RNAs and long non-coding RNAs.They can competitively bind to miRNA through miRNA response elements (MREs), thereby reducing the number of miRNAs binding mRNAs and regulating the expression of downstream target genes of miRNAs at the posttranscriptional level. The relationship between single miRNA sponge and HCC has been explored. However, comprehensive reviews on the sponge's function in HCC are lacking. In this review, we describe the methods to find endogenous sponges and construct exogenous sponges, and briefly compare endogenous and exogenous sponges. We also summarize the current progress on the functional role of miRNA sponges in HCC pathogenesis and present their potential value as diagnostic biomarkers and therapeutic targets. In-depth investigations on the function and mechanism of miRNA sponges in HCC will enrich our knowledge of HCC pathogenesis and contribute to the development of effective diagnostic biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Dandan Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Jiawei Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China.
| |
Collapse
|
65
|
Lim XN, Shan C, Marzinek JK, Dong H, Ng TS, Ooi JSG, Fibriansah G, Wang J, Verma CS, Bond PJ, Shi PY, Lok SM. Molecular basis of dengue virus serotype 2 morphological switch from 29°C to 37°C. PLoS Pathog 2019; 15:e1007996. [PMID: 31536610 PMCID: PMC6752767 DOI: 10.1371/journal.ppat.1007996] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/22/2019] [Indexed: 01/02/2023] Open
Abstract
The ability of DENV2 to display different morphologies (hence different antigenic properties) complicates vaccine and therapeutics development. Previous studies showed most strains of laboratory adapted DENV2 particles changed from smooth to “bumpy” surfaced morphology when the temperature is switched from 29°C at 37°C. Here we identified five envelope (E) protein residues different between two alternative passage history DENV2 NGC strains exhibiting smooth or bumpy surface morphologies. Several mutations performed on the smooth DENV2 infectious clone destabilized the surface, as observed by cryoEM. Molecular dynamics simulations demonstrated how chemically subtle substitution at various positions destabilized dimeric interactions between E proteins. In contrast, three out of four DENV2 clinical isolates showed a smooth surface morphology at 37°C, and only at high fever temperature (40°C) did they become “bumpy”. These results imply vaccines should contain particles representing both morphologies. For prophylactic and therapeutic treatments, this study also informs on which types of antibodies should be used at different stages of an infection, i.e., those that bind to monomeric E proteins on the bumpy surface or across multiple E proteins on the smooth surfaced virus. DENV2 particles have been shown to change their morphologies (compact smooth to loose bumpy surfaced) when temperature is switched from 28°C to 37°C. We used two DENV2 viruses both belonging to the same strain designation but with a different passage history—one of which exhibited the smooth surfaced morphology while the other was bumpy surfaced, observed by cryoEM. We mutated residues in the E protein of the DENV2 infectious clone that has the smooth surfaced morphology to determine if any could result in a bumpy morphology. Results showed several different mutations could lead to this change. Using molecular dynamics simulations, we showed how these mutations likely destabilize the E protein dimeric interactions. We investigated whether the bumpy morphology also occurs in DENV2 clinical isolates, and showed that these viruses can exhibit both morphologies, indicating that vaccine and therapeutics development should target both virus forms.
Collapse
Affiliation(s)
- Xin-Ni Lim
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Chao Shan
- Novartis Institute for Tropical Diseases, Singapore, Singapore
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jan K. Marzinek
- Bioinformatics Institute, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hongping Dong
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| | - Thiam Seng Ng
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Justin S. G. Ooi
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Guntur Fibriansah
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Jiaqi Wang
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Chandra S. Verma
- Bioinformatics Institute, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Peter J. Bond
- Bioinformatics Institute, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (PJB); (PS); (SL)
| | - Pei-Yong Shi
- Novartis Institute for Tropical Diseases, Singapore, Singapore
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Texas, United States of America
- * E-mail: (PJB); (PS); (SL)
| | - Shee-mei Lok
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (PJB); (PS); (SL)
| |
Collapse
|
66
|
Gao J, Yin X, Yu X, Dai C, Zhou F. Long noncoding LINC01551 promotes hepatocellular carcinoma cell proliferation, migration, and invasion by acting as a competing endogenous RNA of microRNA-122-5p to regulate ADAM10 expression. J Cell Biochem 2019; 120:16393-16407. [PMID: 31270840 DOI: 10.1002/jcb.28549] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/24/2019] [Indexed: 01/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is a severe disease with high mortality in the world. It has been shown that long noncoding RNA (lncRNA) might play a role in HCC. The aim of the present study was to identify the role of long intergenic noncoding RNA 01551 (LINC01551) in the HCC development and explore the underlying mechanism of LINC01551/miR-122-5p/ADAM10 axis. The differentially expressed lncRNAs associated with HCC were screened out by a microarray analysis. The expression of LINC01551, miR-122-5p, and ADAM10 was determined in HCC tissues and cells. The potential miRNA (miR-122-5p) regulated by LINC01551 was explored, and the target relationship between miR-122-5p and ADAM10 was confirmed. To evaluate the effect of LINC01551 and miR-122-5p on proliferation, migration, invasion, and apoptosis of HCC, different plasmids were delivered into MHCC97-H cells. High expression of LINC01551 and ADAM10 yet low-expression of miR-122-5p were revealed in HCC tissues and cells. Overexpression of miR-122-5p could downregulate ADAM10. Biological prediction websites and fluorescence in situ hybridization assay verified that LINC01551 was mainly expressed in the cytoplasm. Silencing LINC01551 reduced HCC cell viability, proliferation, migration, invasion, and cell cycle entry yet induce cell apoptosis. Upregulation of LINC01551 increased its ability of competitively binding to miR-122-5p, thus reducing miR-122-5p and upregulating ADAM10 expression, as well as promoting the proliferative, migrative, and invasive ability. Taken together the results, it is highly possible that LINC01551 functions as an competing endogenous RNA (ceRNA) to regulate the miRNA target ADAM10 by sponging miR-122-5p and therefore promotes the development of HCC, highlighting a promising competitive new target for the HCC treatment.
Collapse
Affiliation(s)
- Jun Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiangbao Yin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xin Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Dai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fan Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
67
|
Zhang L, Wang Y, Sun J, Ma H, Guo C. LINC00205 promotes proliferation, migration and invasion of HCC cells by targeting miR-122-5p. Pathol Res Pract 2019; 215:152515. [PMID: 31272761 DOI: 10.1016/j.prp.2019.152515] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/03/2019] [Accepted: 06/25/2019] [Indexed: 01/26/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been identified as crucial regulators in the tumorigenesis and progression of hepatocellular carcinoma (HCC). Recently, long intergenic non-protein coding RNA 205 (LINC00205) has been identified as a prognostic biomarker in HCC. However, the biological role of LINC0205 and its potential molecular mechanism are poorly investigated. Here, we found that the expression of LINC00205 was dramatically up-regulated in HCC tissues compared to adjacent nontumor tissues. Furthermore, the level of LINC00205 in both Hep3B and Huh7 cells was prominently higher than that in normal hepatic cell line LO2. Notably, the high expression of LINC00205 was strongly correlated with tumor size ≥5 cm, venous infiltration and advanced tumor stages. Functionally, LINC00205 knockdown obviously repressed the proliferation, migration and invasion of Hep3B and Huh7 cells in vitro. An inverse correlation between LINC00205 and miR-122-5p was detected in HCC tissues. Interestingly, LINC00205 knockdown increased the level of miR-122-5p in both Hep3B and Huh7 cells. Mechanistically, luciferase reporter assay demonstrated LINC00205 acted as a competing endogenous RNA (ceRNA) by directly interacting with miR-122-5p. More importantly, miR-122-5p overexpression significantly restrained the proliferation, migration and invasion of HCC cells. Collectively, our study provides solid evidence to support the oncogenic role of LINC00205 in HCC, which may be benefit for the improvement of HCC therapy.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Yun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Jingjing Sun
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Hongye Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Cheng Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| |
Collapse
|
68
|
Langer LF, Ward JM, Archer TK. Tumor suppressor SMARCB1 suppresses super-enhancers to govern hESC lineage determination. eLife 2019; 8:45672. [PMID: 31033435 PMCID: PMC6538374 DOI: 10.7554/elife.45672] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
The SWI/SNF complex is a critical regulator of pluripotency in human embryonic stem cells (hESCs), and individual subunits have varied and specific roles during development and in diseases. The core subunit SMARCB1 is required for early embryonic survival, and mutations can give rise to atypical teratoid/rhabdoid tumors (AT/RTs) in the pediatric central nervous system. We report that in contrast to other studied systems, SMARCB1 represses bivalent genes in hESCs and antagonizes chromatin accessibility at super-enhancers. Moreover, and consistent with its established role as a CNS tumor suppressor, we find that SMARCB1 is essential for neural induction but dispensable for mesodermal or endodermal differentiation. Mechanistically, we demonstrate that SMARCB1 is essential for hESC super-enhancer silencing in neural differentiation conditions. This genomic assessment of hESC chromatin regulation by SMARCB1 reveals a novel positive regulatory function at super-enhancers and a unique lineage-specific role in regulating hESC differentiation. Our bodies contain trillions of cells that play a wide variety of roles. Despite looking and behaving very differently to one another, all of these ‘mature’ cells somehow descend from a single fertilized egg that contains just one set of genes. This process is partially controlled by how ‘accessible’ genetic material is to the cell machinery that switches genes on or off. For example, in immature brain cells, genes required for memory are accessible, but genes needed to produce bone are not. The developing embryo needs to control gene accessibility carefully to ensure that the right genes become available at the right time, and that crucial genes are not incorrectly ‘hidden’. In humans, the protein SMARCB1 plays an important role in this process: if damaged or deleted, development will be severely disrupted, sometimes causing brain cancer early in life. However, it remains unclear how exactly SMARCB1 regulates the accessibility of its ‘target’ genes. Now, Langer et al. set out to answer this question, and also to determine which parts of the body need SMARCB1 to develop properly. Human stem cells can develop into multiple mature cell types if given the right signals. Langer et al. found reducing levels of SMARCB1 prevented stem cells from maturing into brain cells, but not other kinds of cells. This suggests that SMARCB1 has a specific role in brain development, which is consistent with its devastating effect on brain health when damaged. A detailed analysis of genetic activity and DNA accessibility showed that SMARCB1 was doing this by switching off specific regions of DNA, called stem cell super-enhancers. These regions normally enhance the activity of genes that maintain stem cells in their immature state: when certain super-enhancers are turned off by SMARCB1, this allows stem cells to progress towards a brain cell fate. These results help us understand why damage to SMARCB1 during development causes brain cancer more often than other kinds of cancer. In the future, they could also help explain how certain types of cancer form, which would be the first step towards knowing how to treat them.
Collapse
Affiliation(s)
- Lee F Langer
- Laboratory of Epigenetics and Stem Cell Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, United States.,Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, United States
| | - James M Ward
- Laboratory of Epigenetics and Stem Cell Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, United States.,Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, United States
| | - Trevor K Archer
- Laboratory of Epigenetics and Stem Cell Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, United States
| |
Collapse
|
69
|
Wu W, Yu T, Wu Y, Tian W, Zhang J, Wang Y. The miR155HG/miR-185/ANXA2 loop contributes to glioblastoma growth and progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:133. [PMID: 30898167 PMCID: PMC6427903 DOI: 10.1186/s13046-019-1132-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/08/2019] [Indexed: 12/14/2022]
Abstract
Background Glioblastoma multiforme (GBM) is the most common and aggressive form of astrocytoma among adult brain tumors. Multiple studies have shown that long non-coding RNAs (lncRNAs) play important roles in acting as molecular sponge for competing with microRNAs (miRNAs) to regulate downstream molecules in tumor progression. We previously reported that miR155 host gene (miR155HG), an lncRNA, and its derivative miR-155 promote epithelial-to-mesenchymal transition in glioma. However, the other biological functions and mechanisms of miR155HG sponging miRNAs have been unknown. Considering ANXA2 has been generally accepted as oncogene overexpressed in a vast of cancers correlated with tumorigenesis, which might be the target molecule of miR155HG sponging miRNA via bioinformatics analysis. We designed this study to explore the interaction of miR155HG and ANXA2 to reveal the malignancy of them in GBM development. Methods The expression of miR155HG was analyzed in three independent databases and clinical GBM specimens. Bioinformatics analysis was performed to assess the potential tumor-related functions of miR155HG. The interaction of miR155HG and miR-185 and the inhibition of ANXA2 by miR-185 were analyzed by luciferase reporter experiments, and biological effects in GBM were explored by colony formation assays, EDU cell proliferation assays, flow cytometric analysis and intracranial GBM mouse model. Changes in protein expression were analyzed using western blot. We examined the regulatory mechanism of ANXA2 on miR155HG in GBM by gene expression profiling analysis, double immunofluorescence staining, chromatin immunoprecipitation and luciferase reporter assays. Results We found that miR155HG was upregulated in GBM tissues and cell lines. Bioinformatic analyses of three GBM databases showed that miR155HG expression levels were closely associated with genes involved in cell proliferation and apoptosis. Knocking down miR155HG suppressed GBM cell proliferation in vitro, induced a G1/S-phase cell cycle arrest, and increased apoptosis. We also found that miR155HG functions as a competing endogenous RNA for miR-185. Moreover, miR-185 directly targets and inhibits ANXA2, which exhibits oncogenic functions in GBM. We also found that ANXA2 promoted miR155HG expression via STAT3 phosphorylation. Conclusion Our results demonstrated that overexpressed miR155HG in GBM can sponge miR-185 to promote ANXA2 expression, and ANXA2 stimulates miR155HG level through phosphorylated STAT3 binding to the miR155HG promoter. We establish the miR155HG/miR185/ANXA2 loop as a mechanism that underlies the biological functions of miR155HG and ANXA2 in GBM and further suggest this loop may serve as a therapeutic target and/or prognostic biomarker for GBM. Electronic supplementary material The online version of this article (10.1186/s13046-019-1132-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weining Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Department of Neurosurgery, Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tianfu Yu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Youzhi Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Department of Neurosurgery, Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Tian
- Department of Neurosurgery, Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yingyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
70
|
Swier LJYM, Dzikiewicz‐Krawczyk A, Winkle M, van den Berg A, Kluiver J. Intricate crosstalk between MYC and non-coding RNAs regulates hallmarks of cancer. Mol Oncol 2019; 13:26-45. [PMID: 30451365 PMCID: PMC6322196 DOI: 10.1002/1878-0261.12409] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 01/17/2023] Open
Abstract
Myelocytomatosis viral oncogene homolog (MYC) plays an important role in the regulation of many cellular processes, and its expression is tightly regulated at the level of transcription, translation, protein stability, and activity. Despite this tight regulation, MYC is overexpressed in many cancers and contributes to multiple hallmarks of cancer. In recent years, it has become clear that noncoding RNAs add a crucial additional layer to the regulation of MYC and its downstream effects. So far, twenty-five microRNAs and eighteen long noncoding RNAs that regulate MYC have been identified. Thirty-three miRNAs and nineteen lncRNAs are downstream effectors of MYC that contribute to the broad oncogenic role of MYC, including its effects on diverse hallmarks of cancer. In this review, we give an overview of this extensive, multilayered noncoding RNA network that exists around MYC. Current data clearly show explicit roles of crosstalk between MYC and ncRNAs to allow tumorigenesis.
Collapse
Affiliation(s)
- Lotteke J. Y. M. Swier
- Department of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center GroningenThe Netherlands
| | | | - Melanie Winkle
- Department of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center GroningenThe Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center GroningenThe Netherlands
| | - Joost Kluiver
- Department of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center GroningenThe Netherlands
| |
Collapse
|
71
|
Zhu Y, Dong S, Zhu Y, Zhao Y, Xu Y. Identification of cancer prognosis-associated lncRNAs based on the miRNA-TF co-regulatory motifs and dosage sensitivity. Mol Omics 2019; 15:361-373. [DOI: 10.1039/c9mo00089e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
By integrating dosage sensitivity and motif regulation data, we established a framework and identified a total of 33 cancer prognosis-associated lncRNAs.
Collapse
Affiliation(s)
- Yinling Zhu
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin 150081
- China
| | - Siyao Dong
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin 150081
- China
| | - Yanjiao Zhu
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin 150081
- China
| | - Yichuan Zhao
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin 150081
- China
| | - Yan Xu
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin 150081
- China
| |
Collapse
|
72
|
Variant of SNP rs1317082 at CCSlnc362 (RP11-362K14.5) creates a binding site for miR-4658 and diminishes the susceptibility to CRC. Cell Death Dis 2018; 9:1177. [PMID: 30518759 PMCID: PMC6281592 DOI: 10.1038/s41419-018-1222-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
Abstract
Genome-wide association studies (GWAS) have identified several loci harboring variants that affected the risk of colorectal cancer; however, the specific mechanisms by which germline variation influenced the tumorigenesis of colorectal cancer (CRC) remains unrevealed. We found the T>C variant of rs1317082, locating at the exon 1 of lncRNA RP11-362K14.5 (CCSlnc362), was predicted to be a protective locus for cancer. However, the specific role of CCSlnc362 and the interaction between CCSlnc362 and rs1317082 variation in colorectal cancer and its mechanisms remain unclear. Here we explored the expression and function of CCSlnc362 in CRC cells and tissues. We found lncRNA CCSlnc362 expression was significantly increased in CRC samples. Follow-up functional experiments elucidated that downregulation of CCSlnc362 inhibited cell proliferation, arrested cell cycle, and promoted apoptosis in CRC cells. The T>C variant of rs1317082 at CCSlnc362 exon 1 created a binding site for miR-4658 to reduce the expression of CCSlnc362 and thus decreased the susceptibility to CRC. Our findings have provided supporting evidence for the protective role of rs1317082 variation and the potential oncogenic role of lncRNA CCSlnc362 in CRC. The data shed new light on the relationship between germline variation, miRNAs, and lncRNAs and opened a new avenue for targeted therapy in CRC.
Collapse
|
73
|
Jia Y, Wang F, Guo Q, Li M, Wang L, Zhang Z, Jiang S, Jin H, Chen A, Tan S, Zhang F, Shao J, Zheng S. Curcumol induces RIPK1/RIPK3 complex-dependent necroptosis via JNK1/2-ROS signaling in hepatic stellate cells. Redox Biol 2018; 19:375-387. [PMID: 30237126 PMCID: PMC6142373 DOI: 10.1016/j.redox.2018.09.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023] Open
Abstract
It is generally recognized that hepatic fibrogenesis is an end result of increased extracellular matrix (ECM) production from the activation and proliferation of hepatic stellate cells (HSCs). An in-depth understanding of the mechanisms of HSC necroptosis might provide a new therapeutic strategy for prevention and treatment of hepatic fibrosis. In this study, we attempted to investigate the effect of curcumol on necroptosis in HSCs, and further to explore the molecular mechanisms. We found that curcumol ameliorated the carbon tetrachloride (CCl4)-induced mice liver fibrosis and suppressed HSC proliferation and activation, which was associated with regulating HSC necroptosis through increasing the phosphorylation of receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3). Moreover, curcumol promoted the migration of RIPK1 and RIPK3 into necrosome in HSCs. RIPK3 depletion impaired the anti-fibrotic effect of curcumol. Importantly, we showed that curcumol-induced RIPK3 up-regulation significantly increased mitochondrial reactive oxygen species (ROS) production and mitochondrial depolarization. ROS scavenger, N-acetyl-L-cysteine (NAC) impaired RIPK3-mediated necroptosis. In addition, our study also identified that the activation of c-Jun N-terminal kinase1/2 (JNK1/2) was regulated by RIPK3, which mediated curcumol-induced ROS production. Down-regulation of RIPK3 expression, using siRIPK3, markedly abrogated JNK1/2 expression. The use of specific JNK1/2 inhibitor (SP600125) resulted in the suppression of curcumol-induced ROS production and mitochondrial depolarization, which in turn, contributed to the inhibition of curcumol-triggered necroptosis. In summary, our study results reveal the molecular mechanism of curcumol-induced HSC necroptosis, and suggest a potential clinical use of curcumol-targeted RIPK1/RIPK3 complex-dependent necroptosis via JNK1/2-ROS signaling for the treatment of hepatic fibrosis. Curcumol exerted anti-hepatic fibrogenesis effects in CCl4-treated mice. Curcumol inhibited the activation of hepatic stellate cell in vitro. Curcumol promoted the generation of RIPK1/RIPK3-complex to induce hepatic stellate cell necroptosis. Curcumol modulated RIPK3/JNK/ROS signaling axis.
Collapse
Affiliation(s)
- Yan Jia
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feixia Wang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qin Guo
- Dermatology of Jiangsu Province Hospital of TCM, China
| | - Mengmeng Li
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ling Wang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zili Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuoyi Jiang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, MO 63104, USA
| | - Shanzhong Tan
- Department of Hepatology, Integrated Traditional Chinese and Western Medicine, Nanjing Second Hospital, China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
74
|
Lv SY, Shan TD, Pan XT, Tian ZB, Liu XS, Liu FG, Sun XG, Xue HG, Li XH, Han Y, Sun LJ, Chen L, Zhang LY. The lncRNA ZEB1-AS1 sponges miR-181a-5p to promote colorectal cancer cell proliferation by regulating Wnt/β-catenin signaling. Cell Cycle 2018; 17:1245-1254. [PMID: 29886791 DOI: 10.1080/15384101.2018.1471317] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are important regulators of the biological functions and underlying molecular mechanisms of colorectal cancer (CRC). However, the role of the lncRNA ZEB1-AS1 in CRC is not thoroughly understood. In this study, we found that ZEB1-AS1 was markedly upregulated in CRC. ZEB1-AS1 knockdown significantly suppressed CRC cell proliferation and induced apoptosis, whereas enhanced expression of ZEB1-AS1 had the opposite effect. Bioinformatics analysis identified miR-181a-5p as a candidate target of ZEB1-AS1. Moreover, we found an inverse correlation between ZEB1-AS1 and miR-181a-5p expression in CRC tissue. Inhibition of miR-181a-5p significantly upregulated ZEB1-AS1, whereas overexpression of miR-181a-5p had the opposite effect, suggesting that ZEB1-AS1 is negatively regulated by miR-181a-5p. Using luciferase reporter and RIP assays, we found that miR-181a-5p directly targets ZEB1-AS1. Importantly, ZEB1-AS1 may act as an endogenous 'sponge' to regulate miRNA targets by competing for miR-181a-5p binding. In summary, our findings provide the evidence supporting the role of ZEB1-AS1 as an oncogene in CRC. Our study also demonstrates that miR-181a-5p targets not only protein-coding genes but also the lncRNA ZEB1-AS1.
Collapse
Affiliation(s)
- Shao-Yan Lv
- a Department of Emergency Intensive Care Unit , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Ti-Dong Shan
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Xin-Ting Pan
- a Department of Emergency Intensive Care Unit , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Zi-Bin Tian
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Xi-Shuang Liu
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Fu-Guo Liu
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Xue-Guo Sun
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Hui-Guang Xue
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Xin-Hua Li
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Yue Han
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Li-Juan Sun
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Li Chen
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Ling-Yun Zhang
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| |
Collapse
|
75
|
Xu H, Wen Q. Downregulation of miR‑135a predicts poor prognosis in acute myeloid leukemia and regulates leukemia progression via modulating HOXA10 expression. Mol Med Rep 2018; 18:1134-1140. [PMID: 29845297 DOI: 10.3892/mmr.2018.9066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/18/2018] [Indexed: 11/06/2022] Open
Abstract
MicroRNA‑135a (miR‑135a) has been shown to exert important roles in various human cancer types, such as glioblastoma, thyroid carcinoma and renal carcinoma. However, the function of miR‑135a in acute myeloid leukemia (AML) remains largely unknown. In the present study, it was demonstrated that miR‑135a expression was significantly downregulated in AML cells compared with normal control cells. Furthermore, the downregulation of miR‑135a in patients with AML predicted poor prognosis. Through functional experiments, overexpression of miR‑135a was demonstrated to significantly inhibit the proliferation and cell cycle of AML cells, while it promoted cellular apoptosis. miR‑135a directly targeted HOXA10 in AML cells. miR‑135a overexpression significantly suppressed the mRNA and protein levels of HOXA10 in AML cells. Moreover, there was an inverse association between miR‑135a expression and HOXA10 level in AML samples. Additionally, by ectopic expression of HOXA10, restoration of HOXA10 significantly abolished the effects of miR‑135a overexpression on AML cell proliferation, cell cycle and apoptosis. In conclusion, the present study demonstrated that miR‑135a serves as a tumor suppressor in AML by targeting HOXA10, and miR‑135a may be a promising prognostic biomarker for AML patients.
Collapse
Affiliation(s)
- Hongwei Xu
- Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Quan Wen
- General Internal Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
76
|
Visalli M, Bartolotta M, Polito F, Oteri R, Barbera A, Arrigo R, Di Giorgio RM, Navarra G, Aguennouz M. miRNA expression profiling regulates necroptotic cell death in hepatocellular carcinoma. Int J Oncol 2018; 53:771-780. [PMID: 29845207 DOI: 10.3892/ijo.2018.4410] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/10/2018] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive types of cancer and is among the leading causes of cancer-related mortality worldwide. Although the dysregulation of microRNAs (miRNAs or miRs) has often been reported in HCC, the precise molecular mechanisms by which miRNAs modulate the process of tumorigenesis and the behavior of cancer cells are not yet clearly understood. In this study, we identified a novel three‑miRNA signature, including miR‑371-5p, miR‑373 and miR‑543, that appears to orchestrate programmed cell necrosis in HCC by directly targeting the caspase‑8 gene (Casp‑8). Our results demonstrated that miR‑371-5p, miR‑373 and miR‑543 were overexpressed in HCC tissues compared with paired adjacent normal tissues. The upregulation of these miRNAs specifically and markedly downregulated the expression of Casp‑8, as well as significantly enhanced the Z-VAD/TNF‑α-induced necroptosis of HCC cells. By contrast, the selective knockdown of miRNA expression led to a significant increase in Casp‑8 levels and a marked reduction in programmed cell necrosis. Intriguingly, the sustained overexpression of Casp‑8 reversed the pro‑necroptotic effects exerted by miRNA mimics. Finally, a strong inverse association between the level of miR‑223 and the expression levels of nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing-3 inflammasome was observed in our HCC specimens. On the whole, the present study revealed a molecular link between the three‑miRNA signature, comprising miR‑371-5p, miR‑373 and miR‑543, and the negative necroptotic regulator Casp‑8, and presents evidence for its employment as a novel potential diagnostic, prognostic and therapeutic target in HCC.
Collapse
Affiliation(s)
- Maria Visalli
- Functional Genomics Laboratory, UOC Neurologia MNM, Department of Clinical and Experimental Medicine, University of Messina, I-98125 Messina, Italy
| | - Marcello Bartolotta
- Oncology Surgery Unit, Department of Human Pathology DETEV, University of Messina, I-98125 Messina, Italy
| | - Francesca Polito
- Functional Genomics Laboratory, UOC Neurologia MNM, Department of Clinical and Experimental Medicine, University of Messina, I-98125 Messina, Italy
| | - Rosaria Oteri
- Functional Genomics Laboratory, UOC Neurologia MNM, Department of Clinical and Experimental Medicine, University of Messina, I-98125 Messina, Italy
| | - Adalberto Barbera
- Oncology Surgery Unit, Department of Human Pathology DETEV, University of Messina, I-98125 Messina, Italy
| | - Roberto Arrigo
- Functional Genomics Laboratory, UOC Neurologia MNM, Department of Clinical and Experimental Medicine, University of Messina, I-98125 Messina, Italy
| | - Rosa Maria Di Giorgio
- Functional Genomics Laboratory, UOC Neurologia MNM, Department of Clinical and Experimental Medicine, University of Messina, I-98125 Messina, Italy
| | - Giuseppe Navarra
- Oncology Surgery Unit, Department of Human Pathology DETEV, University of Messina, I-98125 Messina, Italy
| | - M'hammed Aguennouz
- Functional Genomics Laboratory, UOC Neurologia MNM, Department of Clinical and Experimental Medicine, University of Messina, I-98125 Messina, Italy
| |
Collapse
|
77
|
Zhang K, Zhao Z, Yu J, Chen W, Xu Q, Chen L. LncRNA FLVCR1‐AS1 acts as miR‐513c sponge to modulate cancer cell proliferation, migration, and invasion in hepatocellular carcinoma. J Cell Biochem 2018; 119:6045-6056. [PMID: 29574975 DOI: 10.1002/jcb.26802] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/23/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Kunsong Zhang
- Department of Pancreato‐BiliaryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceP.R. China
| | - Zhenxian Zhao
- Department of Pancreato‐BiliaryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceP.R. China
| | - Junfeng Yu
- Department of Pancreato‐BiliaryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceP.R. China
| | - Wei Chen
- Department of Pancreato‐BiliaryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceP.R. China
| | - Qiongcong Xu
- Department of Pancreato‐BiliaryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceP.R. China
| | - Liuhua Chen
- Department of Pancreato‐BiliaryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceP.R. China
| |
Collapse
|
78
|
Yang C, Zheng J, Xue Y, Yu H, Liu X, Ma J, Liu L, Wang P, Li Z, Cai H, Liu Y. The Effect of MCM3AP-AS1/miR-211/KLF5/AGGF1 Axis Regulating Glioblastoma Angiogenesis. Front Mol Neurosci 2018; 10:437. [PMID: 29375300 PMCID: PMC5767169 DOI: 10.3389/fnmol.2017.00437] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/18/2017] [Indexed: 01/23/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and malignant primary tumor. Angiogenesis plays a critical role in the progression of GBM. Previous studies have indicated that long non-coding RNAs (lncRNAs) are abnormally expressed in various cancers and participate in the regulation of the malignant behaviors of tumors. The present study demonstrated that lncRNA antisense 1 to Micro-chromosome maintenance protein 3-associated protein (MCM3AP-AS1) was upregulated whereas miR-211 was downregulated in glioma-associated endothelial cells (GECs). Knockdown of MCM3AP-AS1 suppressed the cell viability, migration, and tube formation of GECs and played a role in inhibiting angiogenesis of GBM in vitro. Furthermore, knockdown of MCM3AP-AS1 increased the expression of miR-211. Luciferase reporter assay implicated that miR-211 targeted KLF5 3'-UTR and consequently inhibited KLF5 expression. Besides, in this study we found that MCM3AP-AS1 knockdown decreased KLF5 and AGGF1 expression by upregulating miR-211. In addition, KLF5 was associated with the promoter region of AGGF1. Knockdown of KLF5 decreased AGGF1 expression by transcriptional repression, and also inhibited the activation of PI3K/AKT and ERK1/2 signaling pathways. Overall, this study reveals that MCM3AP-AS1/miR-211/KLF5/AGGF1 axis plays a prominent role in the regulation of GBM angiogenesis and also serves as new therapeutic target for the anti-angiogenic therapy of glioma.
Collapse
Affiliation(s)
- Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Hai Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
79
|
Long noncoding RNA lncHERG promotes cell proliferation, migration and invasion in glioblastoma. Oncotarget 2017; 8:108031-108041. [PMID: 29296221 PMCID: PMC5746123 DOI: 10.18632/oncotarget.22446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/27/2017] [Indexed: 01/05/2023] Open
Abstract
Long noncoding RNAs have recently been proven to regulate tumorgenesis in many cancers. However, their biological functions in glioblastoma remain largely unknown. Here we found an uncharacteristic lncRNA lncHERG that is highly expressed in human glioblastoma (GBM). We found that lncHERG knockdown inhibited cell proliferation, migration and invasion in glioblastoma in vitro and in vivo. Moreover, the higher expression of lncHERG in patients with glioblastoma indicated lower survival rate and poorer prognosis. Mechanistically, we found that lncHERG can serve as a sponge for miR-940 which is a tumor suppressor in cervical cancer and whose function has not been defined in glioblastoma. We showed that miR-940 was down-regulated in glioblastoma tissues compared to peritumor tissues. LncHERG knockdown impaired cell proliferation, migration and invasion while inhibition of miR-940 in the meantime reversed this trend. In conclusion, our study highlights the essential role of lncHERG in glioblastoma by acting as a competing endogenous RNA of miR-940, which may serve as a new prognostic biomarker in glioblastoma.
Collapse
|