51
|
Zhao H, Li Y, Shi H, Niu M, Li D, Zhang Z, Feng Q, Zhang Y, Wang L. Prodrug nanoparticles potentiate tumor chemo-immunometabolic therapy by disturbing oxidative stress. J Control Release 2022; 352:909-919. [PMID: 36370878 DOI: 10.1016/j.jconrel.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2022]
Abstract
Constant oxidative stress and lactate accumulation are two main causes of tumor immunosuppression, their concurrent reduction plays a dominant role in effective antitumor immunity, but remains challenging. Herein, reactive oxygen species (ROS) responsive prodrug nanoparticles (designed as DHCRJ) are constructed for metabolic amplified chemo-immunotherapy against triple-negative breast cancer (TNBC) by modulating oxidative state and hyperglycolysis. Specifically, DHCRJ is prepared by the self-assembly of DOX prodrug-tethered ROS consuming bond-bridged copolymers with the loading of bromodomain-containing protein 4 inhibitor (BRD4i) JQ1. Interestingly, the nanoparticle polymer network could reduce ROS to relieve tumor hypoxia and realize the dense-to-loose structure inversion arising from ROS-triggered network collapse, which favors JQ1 release and hyaluronidase (Hyal)-activatable DOX prodrugs generation. More importantly, disruption of oxidative stress decreases glucose uptake and assists JQ1 to down-regulate oncogene c-Myc driven tumor glycolysis for blocking the source of lactate and reshaping immunosuppressive tumor microenvironment (ITME). Meanwhile, benefiting from the synergistic effect of DOX prodrugs and JQ1, DHCRJ is able to facilitate tumor immunogenicity and potentiate systemic immune responses through antigen processing and presentation pathway. In this manner, DHCRJ significantly suppresses tumor growth and metastasis with prolonged survival. Collectively, this study represents a proof of concept antioxidant-enhanced chemo-immunometabolic therapy strategy using ROS-reducing nanoparticles for efficient synergistic therapeutic modality of TNBC.
Collapse
Affiliation(s)
- Hongjuan Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Yatong Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Haiyu Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mengya Niu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Dan Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Qianhua Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China.
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China.
| |
Collapse
|
52
|
Lei L, Huang D, Gao H, He B, Cao J, Peppas NA. Hydrogel-guided strategies to stimulate an effective immune response for vaccine-based cancer immunotherapy. SCIENCE ADVANCES 2022; 8:eadc8738. [PMID: 36427310 PMCID: PMC9699680 DOI: 10.1126/sciadv.adc8738] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/07/2022] [Indexed: 05/25/2023]
Abstract
Cancer vaccines have attracted widespread interest in tumor therapy because of the potential to induce an effective antitumor immune response. However, many challenges including weak immunogenicity, off-target effects, and immunosuppressive microenvironments have prevented their broad clinical translation. To overcome these difficulties, effective delivery systems have been designed for cancer vaccines. As carriers in cancer vaccine delivery systems, hydrogels have gained substantial attention because they can encapsulate a variety of antigens/immunomodulators and protect them from degradation. This enables hydrogels to simultaneously reverse immunosuppression and stimulate the immune response. Meanwhile, the controlled release properties of hydrogels allow for precise temporal and spatial release of loads in situ to further enhance the immune response of cancer vaccines. Therefore, this review summarizes the classification of cancer vaccines, highlights the strategies of hydrogel-based cancer vaccines, and provides some insights into the future development of hydrogel-based cancer vaccines.
Collapse
Affiliation(s)
- Lei Lei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Dennis Huang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Jun Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Nicholas A. Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
- Departments of Pediatrics, Surgery, and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
53
|
Gao X, Huang H, Pan C, Mei Z, Yin S, Zhou L, Zheng S. Disulfiram/Copper Induces Immunogenic Cell Death and Enhances CD47 Blockade in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14194715. [PMID: 36230638 PMCID: PMC9564202 DOI: 10.3390/cancers14194715] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Some chemotherapeutic agents have been found to enhance antitumor immunity by inducing immunogenic cell death (ICD). The combination of disulfiram (DSF) and copper (Cu) has demonstrated anti-tumor effects in a range of malignancies including hepatocellular carcinoma (HCC). However, the potential of DSF/Cu as an ICD inducer and whether it can enhance the efficacy of the immune checkpoint blockade in HCC remains unknown. Here, we showed that DSF/Cu-treated HCC cells exhibited characteristics of ICD in vitro, such as calreticulin (CRT) exposure, ATP secretion, and high mobility group box 1 (HMGB1) release. DSF/Cu-treated HCC cells elicited significant immune memory in a vaccination assay. DSF/Cu treatment promoted dendritic cell activation and maturation. The combination of DSF/Cu and CD47 blockade further facilitated DC maturation and subsequently enhanced CD8+ T cell cytotoxicity. Mechanically, DSF/Cu promoted the nuclear accumulation and aggregation of nuclear protein localization protein 4 (NPL4) to inhibit the ubiquitin-proteasome system; thus, inducing endoplasmic reticulum (ER) stress. The inhibition of NPL4 induced ICD-associated damage-associated molecular patterns. Collectively, our findings demonstrated that DSF/Cu-induced ICD-mediated immune activation in HCC enhanced the efficacy of CD47 blockade.
Collapse
Affiliation(s)
- Xingxing Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Hechen Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Caixu Pan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Zhibin Mei
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Shengyong Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
- Correspondence: (L.Z.); (S.Z.); Tel.: +86-571-87236626 (L.Z.); +86-571-87236570 (S.Z.)
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
- Correspondence: (L.Z.); (S.Z.); Tel.: +86-571-87236626 (L.Z.); +86-571-87236570 (S.Z.)
| |
Collapse
|
54
|
Live Biotherapeutic Lactococcus lactis GEN3013 Enhances Antitumor Efficacy of Cancer Treatment via Modulation of Cancer Progression and Immune System. Cancers (Basel) 2022; 14:cancers14174083. [PMID: 36077619 PMCID: PMC9455052 DOI: 10.3390/cancers14174083] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Recent studies, which have revealed the strong relationship between gut microbiota and tumor progression, have driven the clinical application of microbiome-based treatments to increase the efficacy of anticancer therapies. In particular, the genome-editing Lactococcus lactis, which activates the host immune system by expressing immune-boosting cytokines or metabolites, is a candidate for microbiome treatment. While Lactococcus lactis has so far been studied in terms of its recombinant forms, we investigated the anticancer effects of the strain-specific Lactococcus lactis GEN3013 itself. In vitro cytotoxicity tests showed that L. lactis GEN3013 inhibited the cell growth of various human and murine cancer cell lines. Consistent with the in vitro results, L. lactis GEN3013 showed antitumor effects and enhanced the therapeutic efficacy of both chemotherapy and immunotherapy in syngeneic mice. In addition, the host immune system was activated both locally and systemically by the combinatorial treatment of L. lactis GEN3013 with chemotherapy and immunotherapy. For these reasons, we suggest that L. lactis GEN3013 could be utilized as a novel biotherapeutic agent for cancer treatment. Abstract The gut microbiota is responsible for differential anticancer drug efficacies by modulating the host immune system and the tumor microenvironment. Interestingly, this differential effect is highly strain-specific. For example, certain strains can directly suppress tumor growth and enhance antitumor immunity; however, others do not have such an effect or even promote tumor growth. Identifying effective strains that possess antitumor effects is key for developing live biotherapeutic anticancer products. Here, we found that Lactococcus lactis GEN3013 inhibits tumor growth by regulating tumor angiogenesis and directly inducing cancer cell death. Moreover, L. lactis GEN3013 enhanced the therapeutic effects of oxaliplatin and the PD-1 blockade. Comprehensive immune profiling showed that L. lactis GEN3013 augmented cytotoxic immune cell populations, such as CD4+ T cells, CD8+ effector T cells, and NK cells in the tumor microenvironment. Our results indicate that L. lactis GEN3013 is a promising candidate for potentiating cancer treatment in combination with current standard therapy.
Collapse
|
55
|
Jinesh GG, Brohl AS. Classical epithelial-mesenchymal transition (EMT) and alternative cell death process-driven blebbishield metastatic-witch (BMW) pathways to cancer metastasis. Signal Transduct Target Ther 2022; 7:296. [PMID: 35999218 PMCID: PMC9399134 DOI: 10.1038/s41392-022-01132-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a pivotal event that accelerates the prognosis of cancer patients towards mortality. Therapies that aim to induce cell death in metastatic cells require a more detailed understanding of the metastasis for better mitigation. Towards this goal, we discuss the details of two distinct but overlapping pathways of metastasis: a classical reversible epithelial-to-mesenchymal transition (hybrid-EMT)-driven transport pathway and an alternative cell death process-driven blebbishield metastatic-witch (BMW) transport pathway involving reversible cell death process. The knowledge about the EMT and BMW pathways is important for the therapy of metastatic cancers as these pathways confer drug resistance coupled to immune evasion/suppression. We initially discuss the EMT pathway and compare it with the BMW pathway in the contexts of coordinated oncogenic, metabolic, immunologic, and cell biological events that drive metastasis. In particular, we discuss how the cell death environment involving apoptosis, ferroptosis, necroptosis, and NETosis in BMW or EMT pathways recruits immune cells, fuses with it, migrates, permeabilizes vasculature, and settles at distant sites to establish metastasis. Finally, we discuss the therapeutic targets that are common to both EMT and BMW pathways.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| | - Andrew S Brohl
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| |
Collapse
|
56
|
Wiernicki B, Maschalidi S, Pinney J, Adjemian S, Vanden Berghe T, Ravichandran KS, Vandenabeele P. Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat Commun 2022; 13:3676. [PMID: 35760796 PMCID: PMC9237053 DOI: 10.1038/s41467-022-31218-2] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/06/2022] [Indexed: 01/01/2023] Open
Abstract
Immunogenic cell death significantly contributes to the success of anti-cancer therapies, but immunogenicity of different cell death modalities widely varies. Ferroptosis, a form of cell death that is characterized by iron accumulation and lipid peroxidation, has not yet been fully evaluated from this perspective. Here we present an inducible model of ferroptosis, distinguishing three phases in the process-'initial' associated with lipid peroxidation, 'intermediate' correlated with ATP release and 'terminal' recognized by HMGB1 release and loss of plasma membrane integrity-that serves as tool to study immune cell responses to ferroptotic cancer cells. Co-culturing ferroptotic cancer cells with dendritic cells (DC), reveals that 'initial' ferroptotic cells decrease maturation of DC, are poorly engulfed, and dampen antigen cross-presentation. DC loaded with ferroptotic, in contrast to necroptotic, cancer cells fail to protect against tumor growth. Adding ferroptotic cancer cells to immunogenic apoptotic cells dramatically reduces their prophylactic vaccination potential. Our study thus shows that ferroptosis negatively impacts antigen presenting cells and hence the adaptive immune response, which might hinder therapeutic applications of ferroptosis induction.
Collapse
Affiliation(s)
- Bartosz Wiernicki
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Sophia Maschalidi
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Jonathan Pinney
- Pathophysiology lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sandy Adjemian
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Pathophysiology lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kodi S Ravichandran
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
- Methusalem program, Ghent University, Ghent, Belgium.
| |
Collapse
|
57
|
Cheah YH, Liu CY, Yip BS, Wu CL, Peng KL, Cheng JW. Strategy to Enhance Anticancer Activity and Induced Immunogenic Cell Death of Antimicrobial Peptides by Using Non-Nature Amino Acid Substitutions. Biomedicines 2022; 10:biomedicines10051097. [PMID: 35625834 PMCID: PMC9138567 DOI: 10.3390/biomedicines10051097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
There is an urgent and imminent need to develop new agents to fight against cancer. In addition to the antimicrobial and anti-inflammatory activities, many antimicrobial peptides can bind to and lyse cancer cells. P-113, a 12-amino acid clinically active histatin-rich peptide, was found to possess anti-Candida activities but showed poor anticancer activity. Herein, anticancer activities and induced immunogenic cancer cell death of phenylalanine-(Phe-P-113), β-naphthylalanine-(Nal-P-113), β-diphenylalanine-(Dip-P-113), and β-(4,4′-biphenyl)alanine-(Bip-P-113) substituted P-113 were studied. Among these peptides, Nal-P-113 demonstrated the best anticancer activity and caused cancer cells to release potent danger-associated molecular patterns (DAMPs), such as reactive oxygen species (ROS), cytochrome c, ATP, and high-mobility group box 1 (HMGB1). These results could help in developing antimicrobial peptides with better anticancer activity and induced immunogenic cell death in therapeutic applications.
Collapse
Affiliation(s)
- Yu-Huan Cheah
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
| | - Chun-Yu Liu
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
| | - Bak-Sau Yip
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300, Taiwan
| | - Chih-Lung Wu
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
| | - Kuang-Li Peng
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
| | - Jya-Wei Cheng
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
- Correspondence: ; Tel.: +886-3-5742763; Fax: +886-3-5715934
| |
Collapse
|
58
|
A Novel Necroptosis-Related miRNA Signature for Predicting the Prognosis of Breast Cancer Metastasis. DISEASE MARKERS 2022; 2022:3391878. [PMID: 35371342 PMCID: PMC8975690 DOI: 10.1155/2022/3391878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Objective Necroptosis was recently identified as a form of programmed cell death that plays an essential role in breast cancer metastasis. MicroRNAs (miRNAs) have long been recognized to affect cell death and tumor growth. In this study, we aimed to screen for necroptosis-associated miRNAs that predict breast cancer metastasis. Method This study used The Cancer Genome Atlas (TCGA) public database to obtain miRNA expression data and associated clinical data from breast cancer patients and then retrieved miRNA data related to necrosis and apoptosis. Next, using Cox regression model analysis (univariate or multivariate) as well as a comparison analysis (differential analysis), a prognostic multi-miRNA molecular marker was established. Finally, prognosis-related miRNAs were utilized to identify target genes, and the functions of the target genes were analyzed for enrichment to investigate the probable mechanisms of the miRNAs. Results Ten miRNAs were screened through differential analysis to build models: hsa-miR-148a-3p, hsa-miR-223-3p, hsa-miR-331-3p, has-miR-181a-5p, hsa-miR-181b-5p, hsa-miR-181c-5p, hsa-miR-181d-5p, hsa-miR-200a-5p, hsa-miR-141-3p, and hsa-miR-425-5p. The multivariate Cox regression model was an independent prognostic factor (univariate Cox regression results: HR = 3.2642, 95%CI = 1.5773 − 6.7554, P = 0.0014; multivariate Cox regression results: HR = 3.1578, 95%CI = 1.5083 − 6, P = 0.0023). The survival curve of the risk score also revealed that patients with a high risk score had a poor prognosis (P = 2e − 04). The receiver operating characteristic (ROC) curve showed that the model has a certain prediction ability. Batch survival analysis of the miRNAs in the model was conducted and showed that hsa-miR-331-3p (P = 0.0182) was strongly associated with prognosis. Twenty-three predicted target genes were obtained, and Gene Ontology (GO) enrichment analysis showed that these target genes were strongly enriched in transcriptional initiation and cell membrane trafficking. Conclusion Our research identified a novel miRNA marker for predicting breast cancer patient prognosis and lays the groundwork for future research on necroptosis-related genes.
Collapse
|
59
|
Lin X, Liu H, Zhao H, Xia S, Li Y, Wang C, Huang Q, Wanggou S, Li X. Immune Infiltration Associated MAN2B1 Is a Novel Prognostic Biomarker for Glioma. Front Oncol 2022; 12:842973. [PMID: 35186771 PMCID: PMC8847305 DOI: 10.3389/fonc.2022.842973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Mannosidase Alpha Class 2B Member 1 (MAN2B1) gene encodes lysosomal alpha-d-mannosidase involved in the ordered degradation of N-linked glycoproteins. Alteration in MAN2B1 has been proved to be accountable for several diseases. However, the relationship between MAN2B1 and glioma malignancy remains unclear. In this study, RNA-seq data from The Cancer Genome Atlas and the Chinese Glioma Genome Atlas datasets were analyzed to explore the correlation between MAN2B1 and clinicopathological features, prognosis, and somatic mutations in gliomas. We found that MAN2B1 was elevated in glioma and was correlated with malignant clinical and molecular features. Upregulated expression of MAN2B1 is prognostic for poor outcomes in glioma patients. Different frequencies of somatic mutations were found in gliomas between high and low MAN2B1 expression. Real-time quantitative polymerase chain reaction, western blot, and immunohistochemistry staining from glioma patient samples and cell lines were used to validate bioinformatic findings. Functional enrichment analysis showed that MAN2B1 was involved in immune and inflammation processes. Moreover, MAN2B1 expression was strongly correlated with M2 macrophages and weakly correlated with M1 macrophages. Further analysis confirmed that MAN2B1 was closely associated with the markers of M2 macrophages and tumor-associated macrophages. Taken together, MAN2B1 is a potential prognostic biomarker in glioma and associates with immune infiltration.
Collapse
Affiliation(s)
- Xuelei Lin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of BrainTumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of BrainTumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyu Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of BrainTumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Shunjin Xia
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of BrainTumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Yueshuo Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chaoqian Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of BrainTumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of BrainTumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of BrainTumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of BrainTumor Research, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
60
|
Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nat Immunol 2022; 23:487-500. [PMID: 35145297 DOI: 10.1038/s41590-022-01132-2] [Citation(s) in RCA: 656] [Impact Index Per Article: 218.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
Abstract
Dying mammalian cells emit numerous signals that interact with the host to dictate the immunological correlates of cellular stress and death. In the absence of reactive antigenic determinants (which is generally the case for healthy cells), such signals may drive inflammation but cannot engage adaptive immunity. Conversely, when cells exhibit sufficient antigenicity, as in the case of infected or malignant cells, their death can culminate with adaptive immune responses that are executed by cytotoxic T lymphocytes and elicit immunological memory. Suggesting a key role for immunogenic cell death (ICD) in immunosurveillance, both pathogens and cancer cells evolved strategies to prevent the recognition of cell death as immunogenic. Intriguingly, normal cells succumbing to conditions that promote the formation of post-translational neoantigens (for example, oxidative stress) can also drive at least some degree of antigen-specific immunity, pointing to a novel implication of ICD in the etiology of non-infectious, non-malignant disorders linked to autoreactivity.
Collapse
Affiliation(s)
- Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Université Paris Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France.,INSERM U1015, Villejuif, France.,Equipe labellisée par la Ligue contre le cancer, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) BIOTHERIS, Villejuif, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA. .,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
61
|
Zhou L, Niu Z, Wang Y, Zheng Y, Zhu Y, Wang C, Gao X, Gao L, Zhang W, Zhang K, Melino G, Huang H, Wang X, Sun Q. Senescence as a dictator of patient outcomes and therapeutic efficacies in human gastric cancer. Cell Death Dis 2022; 8:13. [PMID: 35013121 PMCID: PMC8748965 DOI: 10.1038/s41420-021-00769-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022]
Abstract
Senescence is believed to be a pivotal player in the onset and progression of tumors as well as cancer therapy. However, the guiding roles of senescence in clinical outcomes and therapy selection for patients with cancer remain obscure, largely due to the absence of a feasible senescence signature. Here, by integrative analysis of single cell and bulk transcriptome data from multiple datasets of gastric cancer patients, we uncovered senescence as a veiled tumor feature characterized by senescence gene signature enriched, unexpectedly, in the noncancerous cells, and further identified two distinct senescence-associated subtypes based on the unsupervised clustering. Patients with the senescence subtype had higher tumor mutation loads and better prognosis as compared with the aggressive subtype. By the machine learning, we constructed a scoring system termed as senescore based on six signature genes: ADH1B, IL1A, SERPINE1, SPARC, EZH2, and TNFAIP2. Higher senescore demonstrated robustly predictive capability for longer overall and recurrence-free survival in 2290 gastric cancer samples, which was independently validated by the multiplex staining analysis of gastric cancer samples on the tissue microarray. Remarkably, the senescore signature served as a reliable predictor of chemotherapeutic and immunotherapeutic efficacies, with high-senescore patients benefited from immunotherapy, while low-senescore patients were responsive to chemotherapy. Collectively, we report senescence as a heretofore unrecognized hallmark of gastric cancer that impacts patient outcomes and therapeutic efficacy.
Collapse
Affiliation(s)
- Lulin Zhou
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China.,Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Sciences, 20 Dongda Street, Beijing, 100071, China
| | - Zubiao Niu
- Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Sciences, 20 Dongda Street, Beijing, 100071, China
| | - Yuqi Wang
- Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Sciences, 20 Dongda Street, Beijing, 100071, China
| | - You Zheng
- Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Sciences, 20 Dongda Street, Beijing, 100071, China
| | - Yichao Zhu
- Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Sciences, 20 Dongda Street, Beijing, 100071, China
| | - Chenxi Wang
- Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Sciences, 20 Dongda Street, Beijing, 100071, China
| | - Xiaoyan Gao
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing, 100038, China
| | - Lihua Gao
- Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Sciences, 20 Dongda Street, Beijing, 100071, China
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy.,DZNE German Center for Neurodegenerative Diseases, 53127, Bonn, Germany
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing, 100038, China.
| | - Xiaoning Wang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China. .,Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China. .,School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Qiang Sun
- Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Sciences, 20 Dongda Street, Beijing, 100071, China.
| |
Collapse
|
62
|
Demuynck R, Efimova I, Naessens F, Krysko DV. Immunogenic ferroptosis and where to find it? J Immunother Cancer 2021; 9:jitc-2021-003430. [PMID: 34903554 PMCID: PMC8671998 DOI: 10.1136/jitc-2021-003430] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis is a recently discovered form of regulated cell death that is morphologically, genetically, and biochemically distinct from apoptosis and necroptosis, and its potential use in anticancer therapy is emerging. The strong immunogenicity of (early) ferroptotic cancer cells broadens the current concept of immunogenic cell death and opens up new possibilities for cancer treatment. In particular, induction of immunogenic ferroptosis could be beneficial for patients with cancers resistant to apoptosis and necroptosis. However, ferroptotic cancer cells may be a rich source of oxidized lipids, which contribute to decreased phagocytosis and antigen cross-presentation by dendritic cells and thus may favor tumor evasion. This could explain the non-immunogenicity of late ferroptotic cells. Besides the presence of lactate in the tumor microenvironment, acidification and hypoxia are essential factors promoting ferroptosis resistance and affecting its immunogenicity. Here, we critically discuss the crucial mediators controlling the immunogenicity of ferroptosis that modulate the induction of antitumor immunity. We emphasize that it will be necessary to also identify the tolerogenic (ie, immunosuppressive) nature of ferroptosis, which can lead to tumor evasion.
Collapse
Affiliation(s)
- Robin Demuynck
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Iuliia Efimova
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Faye Naessens
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium .,Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pathophysiology, I M Sechenov First Moscow State Medical University, Moskva, Russian Federation.,Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Niznij Novgorod, Russian Federation
| |
Collapse
|
63
|
Liu B, Liu Z, Wang Y, Lian X, Han Z, Cheng X, Zhu Y, Liu R, Zhao Y, Gao Y. Overexpression of GINS4 is associated with poor prognosis and survival in glioma patients. Mol Med 2021; 27:117. [PMID: 34556022 PMCID: PMC8461916 DOI: 10.1186/s10020-021-00378-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/11/2021] [Indexed: 12/21/2022] Open
Abstract
Background GINS4, an indispensable component of the GINS complex, is vital for a variety of cancer. However, no known empirical research has focused on exploring relationships between GINS4 and glioma. Thus, this study aims to understand and explain the role of GINS4 in glioma. Method First, we used the data in the CGGA, TCGA, GEO, GEPIA, and HPA databases to explore the expression level of GINS4 in glioma, the correlation between GINS4 expression and the clinical features of glioma, its impact on the survival of glioma patients, and verified the analysis results through RT-qPCR, IHC, and meta-analysis. Subsequently, GSEA enrichment analysis is used to find the potential molecular mechanism of GINS4 to promote the malignant process of glioma and the anti-glioma drugs that may target GINS4 screened by CMap analysis. Moreover, we further explored the influence of the GINS4 expression on the immune microenvironment of glioma patients through the TIMER database. Results Our results suggested that GINS4 was elevated in glioma, and the overexpression of GINS4 was connected with a vast number of clinical features. The next, GINS4 as an independent prognostic factor, which can result in an unfavorable prognosis of glioma. Once more, GINS4 may be participating in the oncogenesis of glioma through JAK-STAT signaling pathways, etc. 6-thioguanine, Doxazosin, and Emetine had potential value in the clinical application of drugs targeting GINS4. Finally, the expression exhibited a close relationship with some immune cells, especially Dendritic cells. Conclusion GINS4 is an independent prognostic factor that led to a poor prognosis of glioma. The present study revealed the probable underlying molecular mechanisms of GINS4 in glioma and provided a potential target for improving the prognosis of glioma. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00378-0.
Collapse
Affiliation(s)
- Binfeng Liu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan, 450003, Zhengzhou, China
| | - Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, 450003, Zhengzhou, China
| | - Yanbiao Wang
- Department of Orthopedics, First Affiliated Hospital of Xinxiang Medical College, Xinjiang, China
| | - Xiaoyu Lian
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan, 450003, Zhengzhou, China
| | - Zhibin Han
- Department of Neurosurgery of the First Affiliate Hospital of Harbin Medical University, Harbin, China
| | - Xingbo Cheng
- Department of Neurosurgery of the First Affiliate Hospital of Harbin Medical University, Harbin, China
| | - Yongjie Zhu
- Department of Surgery of Spine and Spinal Cord, Henan University People's Hospital, Henan Provincial People's Hospital, Henan, 450003, Zhengzhou, China
| | - Runze Liu
- Department of Surgery of Spine and Spinal Cord, Henan University People's Hospital, Henan Provincial People's Hospital, Henan, 450003, Zhengzhou, China
| | - Yaoye Zhao
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan, 450003, Zhengzhou, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, 450003, Zhengzhou, China.
| |
Collapse
|
64
|
Zhu M, Yang M, Zhang J, Yin Y, Fan X, Zhang Y, Qin S, Zhang H, Yu F. Immunogenic Cell Death Induction by Ionizing Radiation. Front Immunol 2021; 12:705361. [PMID: 34489957 PMCID: PMC8417736 DOI: 10.3389/fimmu.2021.705361] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Immunogenic cell death (ICD) is a form of regulated cell death (RCD) induced by various stresses and produces antitumor immunity via damage-associated molecular patterns (DAMPs) release or exposure, mainly including high mobility group box 1 (HMGB1), calreticulin (CRT), adenosine triphosphate (ATP), and heat shock proteins (HSPs). Emerging evidence has suggested that ionizing radiation (IR) can induce ICD, and the dose, type, and fractionation of irradiation influence the induction of ICD. At present, IR-induced ICD is mainly verified in vitro in mice and there is few clinical evidence about it. To boost the induction of ICD by IR, some strategies have shown synergy with IR to enhance antitumor immune response, such as hyperthermia, nanoparticles, and chemotherapy. In this review, we focus on the molecular mechanisms of ICD, ICD-promoting factors associated with irradiation, the clinical evidence of ICD, and immunogenic forms of cell death. Finally, we summarize various methods of improving ICD induced by IR.
Collapse
Affiliation(s)
- Mengqin Zhu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Yuzhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Shanshan Qin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
65
|
Park HH, Kim HR, Park SY, Hwang SM, Hong SM, Park S, Kang HC, Morgan MJ, Cha JH, Lee D, Roe JS, Kim YS. RIPK3 activation induces TRIM28 derepression in cancer cells and enhances the anti-tumor microenvironment. Mol Cancer 2021; 20:107. [PMID: 34419074 PMCID: PMC8379748 DOI: 10.1186/s12943-021-01399-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022] Open
Abstract
Background Necroptosis is emerging as a new target for cancer immunotherapy as it is now recognized as a form of cell death that increases tumor immunogenicity, which would be especially helpful in treating immune-desert tumors. De novo synthesis of inflammatory proteins during necroptosis appears especially important in facilitating increased anti-tumor immune responses. While late-stage transcription mediated by NF-κB during cell death is believed to play a role in this process, it is otherwise unclear what cell signaling events initiate this transactivation of inflammatory genes. Methods We employed tandem-affinity purification linked to mass spectrometry (TAP-MS), in combination with the analysis of RNA-sequencing (RNA-Seq) datasets to identify the Tripartite Motif Protein 28 (TRIM28) as a candidate co-repressor. Comprehensive biochemical and molecular biology techniques were used to characterize the role of TRIM28 in RIPK3 activation-induced transcriptional and immunomodulatory events. The cell composition estimation module was used to evaluate the correlation between RIPK3/TRIM28 levels and CD8+ T cells or dendritic cells (DC) in all TCGA tumors. Results We identified TRIM28 as a co-repressor that regulates transcriptional activity during necroptosis. Activated RIPK3 phosphorylates TRIM28 on serine 473, inhibiting its chromatin binding activity, thereby contributing to the transactivation of NF-κB and other transcription factors, such as SOX9. This leads to elevated cytokine expression, which then potentiates immunoregulatory processes, such as DC maturation. The expression of RIPK3 has a significant positive association with the tumor-infiltrating immune cells populations in various tumor type, thereby activating anti-cancer responses. Conclusion Our data suggest that RIPK3 activation-dependent derepression of TRIM28 in cancer cells leads to increased immunostimulatory cytokine production in the tumor microenvironment, which then contributes to robust cytotoxic anti-tumor immunity. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01399-3.
Collapse
Affiliation(s)
- Han-Hee Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon, 16499, South Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Sang-Yeong Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon, 16499, South Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea
| | - Sung-Min Hwang
- Department of Biochemistry, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Sun Mi Hong
- Department of Biochemistry, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Sangwook Park
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Ho Chul Kang
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Michael J Morgan
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK, 74464, USA
| | - Jong-Ho Cha
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, 22212, South Korea.,Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon, 22212, South Korea
| | - Dakeun Lee
- Department of Pathology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea.
| | - You-Sun Kim
- Department of Biochemistry, Ajou University School of Medicine, Suwon, 16499, South Korea. .,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea.
| |
Collapse
|
66
|
Yamazaki T, Wennerberg E, Hensler M, Buqué A, Kraynak J, Fucikova J, Zhou XK, Sveinbjørnsson B, Rekdal Ø, Demaria S, Galluzzi L. LTX-315-enabled, radiotherapy-boosted immunotherapeutic control of breast cancer by NK cells. Oncoimmunology 2021; 10:1962592. [PMID: 34408925 PMCID: PMC8366543 DOI: 10.1080/2162402x.2021.1962592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
LTX-315 is a nonameric oncolytic peptide in early clinical development for the treatment of solid malignancies. Preclinical and clinical evidence indicates that the anticancer properties of LTX-315 originate not only from its ability to selectively kill cancer cells, but also from its capacity to promote tumor-targeting immune responses. Here, we investigated the therapeutic activity and immunological correlates of intratumoral LTX-315 administration in three syngeneic mouse models of breast carcinoma, with a focus on the identification of possible combinatorial partners. We found that breast cancer control by LTX-315 is accompanied by a reconfiguration of the immunological tumor microenvironment that supports the activation of anticancer immunity and can be boosted by radiation therapy. Mechanistically, depletion of natural killer (NK) cells compromised the capacity of LTX-315 to limit local and systemic disease progression in a mouse model of triple-negative breast cancer, and to extend the survival of mice bearing hormone-accelerated, carcinogen-driven endogenous mammary carcinomas. Altogether, our data suggest that LTX-315 controls breast cancer progression by engaging NK cell-dependent immunity.
Collapse
Affiliation(s)
- Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Erik Wennerberg
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Jeffrey Kraynak
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,2nd Faculty of Medicine and University Hospital Motol, Department of Immunology, Charles University, Prague, Czech Republic
| | - Xi Kathy Zhou
- Department of Population Health Sciences, Weill Cornell Medical College, New York, NY, USA
| | - Baldur Sveinbjørnsson
- Lytix Biopharma, Oslo, Norway.,Department of Medical Biology, University of Tromsø, Tromsø, Norway.,Childhood Cancer Research Unit, Department of Women and Children Health, Karolinska Institute, Stockholm, Sweden
| | - Øystein Rekdal
- Lytix Biopharma, Oslo, Norway.,Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| |
Collapse
|
67
|
Parigger T, Gassner FJ, Scherhäufl C, Bakar AA, Höpner JP, Hödlmoser A, Steiner M, Catakovic K, Geisberger R, Greil R, Zaborsky N. Evidence for Non-Cancer-Specific T Cell Exhaustion in the Tcl1 Mouse Model for Chronic Lymphocytic Leukemia. Int J Mol Sci 2021; 22:6648. [PMID: 34206229 PMCID: PMC8268419 DOI: 10.3390/ijms22136648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
The reinvigoration of anti-cancer immunity by immune checkpoint therapies has greatly improved cancer treatment. In chronic lymphocytic leukemia (CLL), patients as well as in the Tcl1 mouse model for CLL, PD1-expressing, exhausted T cells significantly expand alongside CLL development; nevertheless, PD1 inhibition has no clinical benefit. Hence, exhausted T cells are either not activatable by simple PD1 blocking in CLL and/or only an insufficient number of exhausted T cells are CLL-specific. In this study, we examined the latter hypothesis by exploiting the Tcl1 transgenic CLL mouse model in combination with TCR transgene expression specific for a non-cancer antigen. Following CLL tumor development, increased PD1 levels were detected on non-CLL specific T cells that seem dependent on the presence of (tumor-) antigen-specific T cells. Transcriptome analysis confirmed a similar exhaustion phenotype of non-CLL specific and endogenous PD1pos T cells. Our results indicate that in the CLL mouse model, a substantial fraction of non-CLL specific T cells becomes exhausted during disease progression in a bystander effect. These findings have important implications for the general efficacy assessment of immune checkpoint therapies in CLL.
Collapse
Affiliation(s)
- Thomas Parigger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
- Department of Biosciences, Paris-Lodron-University Salzburg, 5020 Salzburg, Austria
| | - Franz Josef Gassner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
| | - Christian Scherhäufl
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
- Department of Biosciences, Paris-Lodron-University Salzburg, 5020 Salzburg, Austria
| | - Aryunni Abu Bakar
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
- Department of Biosciences, Paris-Lodron-University Salzburg, 5020 Salzburg, Austria
| | - Jan Philip Höpner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
- Department of Biosciences, Paris-Lodron-University Salzburg, 5020 Salzburg, Austria
| | - Alexandra Hödlmoser
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
| | - Markus Steiner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
| | - Kemal Catakovic
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
| |
Collapse
|
68
|
Yan C, Saleh N, Yang J, Nebhan CA, Vilgelm AE, Reddy EP, Roland JT, Johnson DB, Chen SC, Shattuck-Brandt RL, Ayers GD, Richmond A. Novel induction of CD40 expression by tumor cells with RAS/RAF/PI3K pathway inhibition augments response to checkpoint blockade. Mol Cancer 2021; 20:85. [PMID: 34092233 PMCID: PMC8182921 DOI: 10.1186/s12943-021-01366-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND While immune checkpoint blockade (ICB) is the current first-line treatment for metastatic melanoma, it is effective for ~ 52% of patients and has dangerous side effects. The objective here was to identify the feasibility and mechanism of RAS/RAF/PI3K pathway inhibition in melanoma to sensitize tumors to ICB therapy. METHODS Rigosertib (RGS) is a non-ATP-competitive small molecule RAS mimetic. RGS monotherapy or in combination therapy with ICB were investigated using immunocompetent mouse models of BRAFwt and BRAFmut melanoma and analyzed in reference to patient data. RESULTS RGS treatment (300 mg/kg) was well tolerated in mice and resulted in ~ 50% inhibition of tumor growth as monotherapy and ~ 70% inhibition in combination with αPD1 + αCTLA4. RGS-induced tumor growth inhibition depends on CD40 upregulation in melanoma cells followed by immunogenic cell death, leading to enriched dendritic cells and activated T cells in the tumor microenvironment. The RGS-initiated tumor suppression was partially reversed by either knockdown of CD40 expression in melanoma cells or depletion of CD8+ cytotoxic T cells. Treatment with either dabrafenib and trametinib or with RGS, increased CD40+SOX10+ melanoma cells in the tumors of melanoma patients and patient-derived xenografts. High CD40 expression level correlates with beneficial T-cell responses and better survival in a TCGA dataset from melanoma patients. Expression of CD40 by melanoma cells is associated with therapeutic response to RAF/MEK inhibition and ICB. CONCLUSIONS Our data support the therapeutic use of RGS + αPD1 + αCTLA4 in RAS/RAF/PI3K pathway-activated melanomas and point to the need for clinical trials of RGS + ICB for melanoma patients who do not respond to ICB alone. TRIAL REGISTRATION NCT01205815 (Sept 17, 2010).
Collapse
Affiliation(s)
- Chi Yan
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 432 PRB, 2220 Pierce Ave, Nashville, TN, 37232, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nabil Saleh
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 432 PRB, 2220 Pierce Ave, Nashville, TN, 37232, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jinming Yang
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 432 PRB, 2220 Pierce Ave, Nashville, TN, 37232, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Caroline A Nebhan
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 432 PRB, 2220 Pierce Ave, Nashville, TN, 37232, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna E Vilgelm
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - E Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph T Roland
- Departments of Surgery and Pediatrics and the Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Douglas B Johnson
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sheau-Chiann Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca L Shattuck-Brandt
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 432 PRB, 2220 Pierce Ave, Nashville, TN, 37232, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gregory D Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ann Richmond
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 432 PRB, 2220 Pierce Ave, Nashville, TN, 37232, USA. .,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
69
|
Hernández ÁP, Juanes-Velasco P, Landeira-Viñuela A, Bareke H, Montalvillo E, Góngora R, Fuentes M. Restoring the Immunity in the Tumor Microenvironment: Insights into Immunogenic Cell Death in Onco-Therapies. Cancers (Basel) 2021; 13:2821. [PMID: 34198850 PMCID: PMC8201010 DOI: 10.3390/cancers13112821] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Immunogenic cell death (ICD) elicited by cancer therapy reshapes the tumor immune microenvironment. A long-term adaptative immune response can be initiated by modulating cell death by therapeutic approaches. Here, the major hallmarks of ICD, endoplasmic reticulum (ER) stress, and damage-associated molecular patterns (DAMPs) are correlated with ICD inducers used in clinical practice to enhance antitumoral activity by suppressing tumor immune evasion. Approaches to monitoring the ICD triggered by antitumoral therapeutics in the tumor microenvironment (TME) and novel perspective in this immune system strategy are also reviewed to give an overview of the relevance of ICD in cancer treatment.
Collapse
Affiliation(s)
- Ángela-Patricia Hernández
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Pablo Juanes-Velasco
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Alicia Landeira-Viñuela
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Halin Bareke
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Institute of Health Sciences, Marmara University, 34722 Istanbul, Turkey
| | - Enrique Montalvillo
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Rafael Góngora
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
70
|
Huang Y, Yi T, Liu Y, Yan M, Peng X, Lv Y. The landscape of tumors-infiltrate immune cells in papillary thyroid carcinoma and its prognostic value. PeerJ 2021; 9:e11494. [PMID: 34055497 PMCID: PMC8142931 DOI: 10.7717/peerj.11494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/29/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction Thyroid cancer is a very common malignant tumor in the endocrine system, while the incidence of papillary thyroid carcinoma (PTC) throughout the world also shows a trend of increase year by year. In this study, we constructed two models: ICIscore and Riskscore. Combined with these two models, we can make more accurate and reasonable inferences about the prognosis of PTC patients. Methods We selected 481 PTC samples from TCGA and 147 PTC samples from GEO (49 samples in GSE33630, 65 samples in GSE35570 and 33 samples in GSE60542). We performed consistent clustering for them and divided them into three subgroups and screened differentially expressed genes from these three subgroups. Then we divided the differential genes into three subtypes. We also distinguished the up-regulated and down-regulated genes and calculated ICIscore for each PTC sample. ICIscore consists of two parts: (1) the PCAu was calculated from up-regulated genes. (2) the PCAd was calculated from down-regulated genes. The PCAu and PCAd of each sample were the first principal component of the relevant gene. What’s more, we divided the patients into two groups and constructed mRNA prognostic signatures. Additionally we also verified the independent prognostic value of the signature. Results Though ICIscore, we were able to observe the relationship between immune infiltration and prognosis. The result suggests that the activation of the immune system may have both positive and negative consequences. Though Riskscore, we could make more accurate predictions about the prognosis of patients with PTC. Meanwhile, we also generated and validated the ICIscore group and Riskscore group respectively. Conclusion All the research results show that by combining the two models constructed, ICIscore and Riskscore, we can make a more accurate and reasonable inference about the prognosis of patients with clinical PTC patients. This suggests that we can provide more effective and reasonable treatment plan for clinical PTC patients.
Collapse
Affiliation(s)
- Yanyi Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Nanchang University, The Second Clinical Medicine College, Nanchang, Jiangxi, China
| | - Tao Yi
- Department of Otolaryngology, People's Hospital of Yichun, Yichun, Jiangxi, China
| | - Yushu Liu
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Nanchang University, The Second Clinical Medicine College, Nanchang, Jiangxi, China
| | - Mengyun Yan
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Nanchang University, The First Clinical Medicine College, Nanchang, Jiangxi, China
| | - Xinli Peng
- Department of Otolaryngology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yunxia Lv
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
71
|
Galluzzi L, Garg AD. Immunology of Cell Death in Cancer Immunotherapy. Cells 2021; 10:cells10051208. [PMID: 34063358 PMCID: PMC8156735 DOI: 10.3390/cells10051208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022] Open
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY 10065, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA
- Université de Paris, 75006 Paris, France
- Correspondence: (L.G.); (A.D.G.)
| | - Abhishek D. Garg
- Cell Stress & Immunity (CSI) Lab, Department for Cellular & Molecular Medicine (CMM), KU Leuven, 3000 Leuven, Belgium
- Correspondence: (L.G.); (A.D.G.)
| |
Collapse
|
72
|
Amelio I, Melino G, Levine AJ. Bispecific antibodies come to the aid of cancer immunotherapy. Mol Oncol 2021; 15:1759-1763. [PMID: 33942515 PMCID: PMC8253090 DOI: 10.1002/1878-0261.12977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Three collaborative studies published by the groups of Vogelstein, Gabelli, and Zhou report the development of specially designed bispecific antibodies that may help in overcoming the limitations of current immunotherapies. The bispecific antibodies have been designed to couple cells harboring HLA-presented tumor-specific antigens from Tp53 mutant or Ras mutant with CD4 and CD8 T cells, thus facilitating immune-mediated clearance of the cancer cells.
Collapse
Affiliation(s)
- Ivano Amelio
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy.,School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Arnold J Levine
- Institute for Advanced Study, Simons Center for Systems Biology, Princeton, NJ, USA
| |
Collapse
|