51
|
Fan P, Jordan VC. Estrogen Receptor and the Unfolded Protein Response: Double-Edged Swords in Therapy for Estrogen Receptor-Positive Breast Cancer. Target Oncol 2022; 17:111-124. [PMID: 35290592 PMCID: PMC9007905 DOI: 10.1007/s11523-022-00870-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 01/07/2023]
Abstract
Estrogen receptor α (ERα) is a target for the treatment of ER-positive breast cancer patients. Paradoxically, it is also the initial site for estrogen (E2) to induce apoptosis in endocrine-resistant breast cancer. How ERα exhibits distinct functions, in different contexts, is the focus of numerous investigations. Compelling evidence demonstrated that unfolded protein response (UPR) is closely correlated with ER-positive breast cancer. Treatment with antiestrogens initially induces mild UPR through ERα with activation of three sensors of UPR-PRK-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6)-in the endoplasmic reticulum. Subsequently, these sensors interact with stress-associated transcription factors such as c-MYC, nuclear factor-κB (NF-κB), and hypoxia-inducible factor 1α (HIF1α), leading to acquired endocrine resistance. Paradoxically, E2 further activates sustained secondary UPR via ERα to induce apoptosis in endocrine-resistant breast cancer. Specifically, PERK plays a key role in inducing apoptosis, whereas IRE1α and ATF6 are involved in endoplasmic reticulum stress-associated degradation after E2 treatment. Furthermore, persistent activation of PERK deteriorates stress responses in mitochondria and triggers of NF-κB/tumor necrosis factor α (TNFα) axis, ultimately determining cell fate to apoptosis. The discovery of E2-induced apoptosis has clinical relevance for treatment of endocrine-resistant breast cancer. All of these findings demonstrate that ERα and associated UPR are double-edged swords in therapy for ER-positive breast cancer, depending on the duration and intensity of UPR stress. Herein, we address the mechanistic progress on how UPR leads to endocrine resistance and commits E2 to inducing apoptosis in endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Ping Fan
- Department of Breast Medical Oncology, Unit 1354, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas, TX 77030, USA
| | - V Craig Jordan
- Department of Breast Medical Oncology, Unit 1354, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas, TX 77030, USA.
| |
Collapse
|
52
|
Ou D, Wu Y, Zhang J, Liu J, Liu Z, Shao M, Guo X, Cui S. miR-340-5p affects oral squamous cell carcinoma (OSCC) cells proliferation and invasion by targeting endoplasmic reticulum stress proteins. Eur J Pharmacol 2022; 920:174820. [DOI: 10.1016/j.ejphar.2022.174820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
|
53
|
Bárez-López S, Konopacka A, Cross SJ, Greenwood M, Skarveli M, Murphy D, Greenwood MP. Transcriptional and Post-Transcriptional Regulation of Oxytocin and Vasopressin Gene Expression by CREB3L1 and CAPRIN2. Neuroendocrinology 2022; 112:1058-1077. [PMID: 35051932 DOI: 10.1159/000522088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/06/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Water homoeostasis is achieved by secretion of the peptide hormones arginine vasopressin (AVP) and oxytocin (OXT) that are synthesized by separate populations of magnocellular neurones (MCNs) in the supraoptic and paraventricular (PVN) nuclei of the hypothalamus. To further understand the molecular mechanisms that facilitate biosynthesis of AVP and OXT by MCNs, we have explored the spatiotemporal dynamic, both mRNA and protein expression, of two genes identified by our group as being important components of the osmotic defence response: Caprin2 and Creb3l1. METHODS By RNA in situ hybridization and immunohistochemistry, we have characterized the expression of Caprin2 and Creb3l1 in MCNs in the basal state, in response to dehydration, and during rehydration in the rat. RESULTS We found that Caprin2 and Creb3l1 are expressed in AVP and OXT MCNs and in response to dehydration expression increases in both MCN populations. Protein levels mirror the increase in transcript levels for both CREB3L1 and CAPRIN2. In view of increased CREB3L1 and CAPRIN2 expression in OXT neurones by dehydration, we explored OXT-specific functions for these genes. By luciferase assays, we demonstrate that CREB3L1 may be a transcription factor regulating Oxt gene expression. By RNA immunoprecipitation assays and Northern blot analysis of Oxt mRNA poly(A) tails, we have found that CAPRIN2 binds to Oxt mRNA and regulates its poly(A) tail length. Moreover, in response to dehydration, Caprin2 mRNA is subjected to nuclear retention, possibly to regulate Caprin2 mRNA availability in the cytoplasm. CONCLUSION The exploration of the spatiotemporal dynamics of Creb3l1- and Caprin2-encoded mRNAs and proteins has provided novel insights beyond the AVP-ergic system, revealing novel OXT-ergic system roles of these genes in the osmotic defence response.
Collapse
Affiliation(s)
- Soledad Bárez-López
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
| | - Agnieszka Konopacka
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
| | - Stephen J Cross
- Wolfson Bioimaging Facility, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Mingkwan Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
| | - Marina Skarveli
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
| | - Michael P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
| |
Collapse
|
54
|
Mistarz A, Graczyk M, Winkler M, Singh PK, Cortes E, Miliotto A, Liu S, Long M, Yan L, Stablewski A, O'Loughlin K, Minderman H, Odunsi K, Rokita H, McGray AJR, Zsiros E, Kozbor D. Induction of cell death in ovarian cancer cells by doxorubicin and oncolytic vaccinia virus is associated with CREB3L1 activation. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:38-50. [PMID: 34632049 PMCID: PMC8479291 DOI: 10.1016/j.omto.2021.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/24/2021] [Indexed: 12/12/2022]
Abstract
We have demonstrated that oncolytic vaccinia virus synergizes with doxorubicin (DOX) in inducing immunogenic cell death in platinum-resistant ovarian cancer cells and increases survival in syngeneic and xenograft tumor models. However, the mechanisms underlying the virus- and doxorubicin-mediated cancer cell death remain unknown. In this study, we investigated the effect of the oncolytic virus and doxorubicin used alone or in combination on activation of the cytoplasmic transcription factor CREB3L1 (cyclic AMP [cAMP] response element-binding protein 3-like 1) in ovarian cancer cell lines and clinical specimens. We demonstrated that doxorubicin-mediated cell death in ovarian cancer cell lines was associated with nuclear translocation of CREB3L1 and that the effect was augmented by infection with oncolytic vaccinia virus or treatment with recombinant interferon (IFN)-β used as a viral surrogate. This combination treatment was also effective in mediating nuclear translocation of CREB3L1 in cancer cells isolated from ovarian tumor biopsies at different stages of disease progression. The measurement of CREB3L1 expression in clinical specimens of ovarian cancer revealed lack of correlation with the stage of disease progression, suggesting that understanding the mechanisms of nuclear accumulation of CREB3L1 after doxorubicin treatment alone or in combination with oncolytic virotherapy may lead to the development of more effective treatment strategies against ovarian cancer.
Collapse
Affiliation(s)
- Anna Mistarz
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Matthew Graczyk
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Marta Winkler
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Prashant K Singh
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Eduardo Cortes
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Anthony Miliotto
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mark Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Aimee Stablewski
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kieran O'Loughlin
- Department of Flow and Image Cytometry, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hans Minderman
- Department of Flow and Image Cytometry, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hanna Rokita
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - A J Robert McGray
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Danuta Kozbor
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
55
|
Yu X, Mao R, Feng W, Zhao Y, Qin J, Yang Y, Wang A, Shi Z. WISP3 suppresses ESCC progression by inhibiting the IGF-2-IGF1R-AKT signaling cascade. Exp Cell Res 2021; 409:112871. [PMID: 34672999 DOI: 10.1016/j.yexcr.2021.112871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/06/2021] [Accepted: 10/07/2021] [Indexed: 11/19/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a major health problem worldwide, especially in the Chinese population. However, the intrinsic molecular mechanisms of ESCC progression are largely unclear, thus there is an unmet need to identify essential genes governing this disease. Here, we discovered WISP3, an important member of the CCN family, is markedly downregulated in ESCC tissues compared to the normal esophageal epithelium. Downregulation of WISP3 in cancer tissue correlates with worse overall survival of ESCC patients. Using ESCC cell lines as models, we found that forced expression of WISP3 not only suppressed proliferation and migration of cancer cells in vitro, but also inhibited ESCC tumor growth and metastasis in vivo. On the contrary, WISP3 depletion strongly promoted the tumorigenicity of ESCC cells. Mechanistically, we found that WISP3 negates the activity of AKT via inhibiting the IGF-2-IGF1R signaling cascade, which mediates the tumor-suppressive function of WISP3 in esophageal cancers. Together, we identified a novel factor driving the development of ESCC, and revealed a potential therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Xiaofu Yu
- Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Ruoying Mao
- The First Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Wei Feng
- Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yazhen Zhao
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Jing Qin
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yunshan Yang
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Ansheng Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, 233004, China
| | - Zhong Shi
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
56
|
Lu S, Yang LX, Cao ZJ, Zhao JS, You J, Feng YX. Transcriptional Control of Metastasis by Integrated Stress Response Signaling. Front Oncol 2021; 11:770843. [PMID: 34746012 PMCID: PMC8570279 DOI: 10.3389/fonc.2021.770843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/21/2021] [Indexed: 12/02/2022] Open
Abstract
As a central cellular program to sense and transduce stress signals, the integrated stress response (ISR) pathway has been implicated in cancer initiation and progression. Depending on the genetic mutation landscape, cellular context, and differentiation states, there are emerging pieces of evidence showing that blockage of the ISR can selectively and effectively shift the balance of cancer cells toward apoptosis, rendering the ISR a promising target in cancer therapy. Going beyond its pro-survival functions, the ISR can also influence metastasis, especially via proteostasis-independent mechanisms. In particular, ISR can modulate metastasis via transcriptional reprogramming, in the help of essential transcription factors. In this review, we summarized the current understandings of ISR in cancer metastasis from the perspective of transcriptional regulation.
Collapse
Affiliation(s)
- Si Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Li-Xian Yang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Zi-Jian Cao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Jiang-Sha Zhao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Jia You
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yu-Xiong Feng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
57
|
Fan P, Jordan VC. PERK, Beyond an Unfolded Protein Response Sensor in Estrogen-Induced Apoptosis in Endocrine-Resistant Breast Cancer. Mol Cancer Res 2021; 20:193-201. [PMID: 34728551 DOI: 10.1158/1541-7786.mcr-21-0702] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
The discovery of 17β-estradiol (E2)-induced apoptosis has clinical relevance. Mechanistically, E2 over activates nuclear estrogen receptor α that results in stress responses. The unfolded protein response (UPR) is initiated by E2 in the endoplasmic reticulum after hours of treatment in endocrine-resistant breast cancer cells, thereby activating three UPR sensors-PRK-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6) with different functions. Specifically, PERK plays a critical role in induction of apoptosis whereas IRE1α and ATF6 are involved in the endoplasmic reticulum stress-associated degradation (ERAD) of PI3K/Akt/mTOR pathways. In addition to attenuating protein translation, PERK increases the DNA-binding activity of NF-κB and subsequent TNFα expression. In addition, PERK communicates with the mitochondria to regulate oxidative stress at mitochondria-associated endoplasmic reticulum membranes (MAM). Furthermore, PERK is a component enriched in MAMs that interacts with multifunctional MAM-tethering proteins and integrally modulates the exchange of metabolites such as lipids, reactive oxygen species (ROS), and Ca2+ at contact sites. MAMs are also critical sites for the initiation of autophagy to remove defective organelles and misfolded proteins through specific regulatory proteins. Thus, PERK conveys signals from nucleus to these membrane-structured organelles that form an interconnected network to regulate E2-induced apoptosis. Herein, we address the mechanistic progress on how PERK acts as a multifunctional molecule to commit E2 to inducing apoptosis in endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Ping Fan
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - V Craig Jordan
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
58
|
Low Doses of Silver Nanoparticles Selectively Induce Lipid Peroxidation and Proteotoxic Stress in Mesenchymal Subtypes of Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13164217. [PMID: 34439373 PMCID: PMC8393662 DOI: 10.3390/cancers13164217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
Molecular profiling of tumors shows that triple-negative breast cancer (TNBC) can be stratified into mesenchymal (claudin-low breast cancer; CLBC) and epithelial subtypes (basal-like breast cancer; BLBC). Subtypes differ in underlying genetics and in response to therapeutics. Several reports indicate that therapeutic strategies that induce lipid peroxidation or proteotoxicity may be particularly effective for various cancers with a mesenchymal phenotype such as CLBC, for which no specific treatment regimens exist and outcomes are poor. We hypothesized that silver nanoparticles (AgNPs) can induce proteotoxic stress and cause lipid peroxidation to a greater extent in CLBC than in BLBC. We found that AgNPs were lethal to CLBCs at doses that had little effect on BLBCs and were non-toxic to normal breast epithelial cells. Analysis of mRNA profiles indicated that sensitivity to AgNPs correlated with expression of multiple CLBC-associated genes. There was no correlation between sensitivity to AgNPs and sensitivity to silver cations, uptake of AgNPs, or proliferation rate, indicating that there are other molecular factors driving sensitivity to AgNPs. Mechanistically, we found that the differences in sensitivity of CLBC and BLBC cells to AgNPs were driven by peroxidation of lipids, protein oxidation and aggregation, and subsequent proteotoxic stress and apoptotic signaling, which were induced in AgNP-treated CLBC cells, but not in BLBC cells. This study shows AgNPs are a specific treatment for CLBC and indicates that stratification of TNBC subtypes may lead to improved outcomes for other therapeutics with similar mechanisms of action.
Collapse
|
59
|
Luo H, Xia X, Kim GD, Liu Y, Xue Z, Zhang L, Shu Y, Yang T, Chen Y, Zhang S, Chen H, Zhang W, Li R, Tang H, Dong B, Fu X, Cheng W, Zhang W, Yang L, Peng Y, Dai L, Hu H, Jiang Y, Gong C, Hu Y, Zhu J, Li Z, Caulin C, Wei T, Park J, Xu H. Characterizing dedifferentiation of thyroid cancer by integrated analysis. SCIENCE ADVANCES 2021; 7:7/31/eabf3657. [PMID: 34321197 PMCID: PMC8318367 DOI: 10.1126/sciadv.abf3657] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/10/2021] [Indexed: 02/05/2023]
Abstract
Understanding of dedifferentiation, an indicator of poo prognosis for patients with thyroid cancer, has been hampered by imprecise and incomplete characterization of its heterogeneity and its attributes. Using single-cell RNA sequencing, we explored the landscape of thyroid cancer at single-cell resolution with 46,205 cells and delineated its dedifferentiation process and suppressive immune microenvironment. The developmental trajectory indicated that anaplastic thyroid cancer (ATC) cells were derived from a small subset of papillary thyroid cancer (PTC) cells. Moreover, a potential functional role of CREB3L1 on ATC development was revealed by integrated analyses of copy number alteration and transcriptional regulatory network. Multiple genes in differentiation-related pathways (e.g., EMT) were involved as the downstream targets of CREB3L1, increased expression of which can thus predict higher relapse risk of PTC. Collectively, our study provided insights into the heterogeneity and molecular evolution of thyroid cancer and highlighted the potential driver role of CREB3L1 in its dedifferentiation process.
Collapse
Affiliation(s)
- Han Luo
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuyang Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Gyeong Dae Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yang Liu
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhinan Xue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Lingyun Zhang
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China.,Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian Yang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Shouyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Haining Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weihan Zhang
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruicen Li
- Health Promotion Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huairong Tang
- Health Promotion Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Birong Dong
- National Clinical Research Center for Geriatrics, Chengdu, Sichuan, China
| | - Xianghui Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Wei Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Yong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Hongbo Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Yong Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Yiguo Hu
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Jingqiang Zhu
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhihui Li
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Carlos Caulin
- Department of Otolaryngology-Head & Neck Surgery and University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Tao Wei
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China. .,Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
60
|
Huang R, Li G, Wang K, Wang Z, Zeng F, Hu H, Jiang T. Comprehensive Analysis of the Clinical and Biological Significances of Endoplasmic Reticulum Stress in Diffuse Gliomas. Front Cell Dev Biol 2021; 9:619396. [PMID: 34307339 PMCID: PMC8301220 DOI: 10.3389/fcell.2021.619396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Background As a critical organelle for protein and lipid synthesis, the dysfunction of endoplasmic reticulum has a significant impact on multiple biological processes of cells. Thus, in this study, we constructed an ER stress-related risk signature to investigate the functional roles of ER stress in gliomas. Methods A total of 626 samples from TCGA RNA-seq dataset (training cohort) and 310 samples from CGGA RNA-seq dataset (validation cohort) were enrolled in this study. Clinical information and genomic profiles were also obtained. The ER stress signature was developed by the LASSO regression model. The prognostic value of the risk signature was evaluated by Cox regression, Kaplan-Meier and ROC Curve analyses. Bioinformatics analysis and experiment in vitro were performed to explore the biological implication of this signature. Results We found that the ER stress-related signature was tightly associated with major clinicopathological features and genomic alterations of gliomas. Kaplan-Meier curve and Cox regression analysis indicated that ER stress activation was an independent prognostic factor for patients with glioma. Besides, we also constructed an individualized prognosis prediction model through Nomogram and ROC Curve analysis. Bioinformatics analysis suggested that ER stress activation also promoted the malignant progression of glioma and participated in the regulation of tumor immune microenvironment, especially the infiltration of macrophages in M2 phase. These results were further validated in IHC analysis and cell biology experiments. Conclusion The ER stress activation had a high prognostic value and could serve as a promising target for developing individualized treatment of glioma.
Collapse
Affiliation(s)
- Ruoyu Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Kuanyu Wang
- Chinese Glioma Cooperative Group (CGCG), Beijing, China.,Department of Gamma Knife Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhiliang Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| |
Collapse
|
61
|
Wang P, Han L, Yu M, Cao Z, Li X, Shao Y, Zhu G. The Prognostic Value of PERK in Cancer and Its Relationship With Immune Cell Infiltration. Front Mol Biosci 2021; 8:648752. [PMID: 33937330 PMCID: PMC8085429 DOI: 10.3389/fmolb.2021.648752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/22/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is a type I transmembrane protein that functions as an endoplasmic reticulum (ER) stress sensor to regulate global protein synthesis. Recent research studies suggest that PERK, as an important receptor protein of unfolded protein response, is involved in the pathogenesis of many cancers. This study aimed to investigate PERK expression and its relationship with prognosis in pan-cancer and attempted to explore the relevant mechanism of PERK involved in the regulation of cancer pathogenesis. Methods: The Oncomine and TIMER databases were used to analyze the expression of PERK between pan-cancer samples and normal samples. Survival analysis was performed using the PrognoScan, Kaplan–Meier (K-M) plotter, and UALCAN databases. Gene set enrichment analysis (GSEA) was used to perform the functional enrichment analysis of the PERK gene in breast invasive carcinoma (BRCA), head and neck squamous cell carcinoma (HNSC), and thyroid carcinoma (THCA). The TIMER database was used to investigate the correlation between PERK expression and tumor-infiltrating immune cells and analyze the relationship of PERK with marker genes of immune cells which were downloaded from the CellMarker database in BRCA, HNSC, and THCA. Results: PERK was differentially expressed in various cancers, such as breast cancer, liver cancer, lung cancer, gastric carcinoma, lymphoma, thyroid cancer, leukemia, and head and neck squamous cell carcinomas. The high expression of PERK was associated with a poor prognosis in KIRP, LGG, BRCA, and THCA and with a favorable prognosis in HNSC. The results of GSEA indicated that PERK was mainly enriched in immune-related signaling pathways in BRCA, HNSC, and THCA. Moreover, PERK expression was significant positively correlated with infiltrating levels of macrophages and dendritic cells and was strongly associated with a variety of immune markers, especially macrophage mannose receptor 1 (MRC1, also called CD206) and T-helper cells (Th). Conclusion: The high expression of PERK could promote the infiltration of multiple immune cells in the tumor microenvironment and could deteriorate the outcomes of patients with breast and thyroid cancers, suggesting that PERK as well as tumor-infiltrating immune cells could be taken as potential biomarkers of prognosis.
Collapse
Affiliation(s)
- Peng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Liying Han
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Moxin Yu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Zhengyu Cao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Xiaoning Li
- Department of Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Yunxia Shao
- Department of Nephrology, Wuhu Hospital Affiliated to East China Normal University, Wuhu, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| |
Collapse
|
62
|
Reverse Engineering of Ewing Sarcoma Regulatory Network Uncovers PAX7 and RUNX3 as Master Regulators Associated with Good Prognosis. Cancers (Basel) 2021; 13:cancers13081860. [PMID: 33924679 PMCID: PMC8070584 DOI: 10.3390/cancers13081860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 04/01/2021] [Indexed: 12/24/2022] Open
Abstract
Ewing Sarcoma (ES) is a rare malignant tumor occurring most frequently in adolescents and young adults. The ES hallmark is a chromosomal translocation between the chromosomes 11 and 22 that results in an aberrant transcription factor (TF) through the fusion of genes from the FET and ETS families, commonly EWSR1 and FLI1. The regulatory mechanisms behind the ES transcriptional alterations remain poorly understood. Here, we reconstruct the ES regulatory network using public available transcriptional data. Seven TFs were identified as potential MRs and clustered into two groups: one composed by PAX7 and RUNX3, and another composed by ARNT2, CREB3L1, GLI3, MEF2C, and PBX3. The MRs within each cluster act as reciprocal agonists regarding the regulation of shared genes, regulon activity, and implications in clinical outcome, while the clusters counteract each other. The regulons of all the seven MRs were differentially methylated. PAX7 and RUNX3 regulon activity were associated with good prognosis while ARNT2, CREB3L1, GLI3, and PBX3 were associated with bad prognosis. PAX7 and RUNX3 appear as highly expressed in ES biopsies and ES cell lines. This work contributes to the understanding of the ES regulome, identifying candidate MRs, analyzing their methilome and pointing to potential prognostic factors.
Collapse
|
63
|
Amodio G, Pagliara V, Moltedo O, Remondelli P. Structural and Functional Significance of the Endoplasmic Reticulum Unfolded Protein Response Transducers and Chaperones at the Mitochondria-ER Contacts: A Cancer Perspective. Front Cell Dev Biol 2021; 9:641194. [PMID: 33842465 PMCID: PMC8033034 DOI: 10.3389/fcell.2021.641194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/22/2021] [Indexed: 01/15/2023] Open
Abstract
In the last decades, the endoplasmic reticulum (ER) has emerged as a key coordinator of cellular homeostasis, thanks to its physical interconnection to almost all intracellular organelles. In particular, an intense and mutual crosstalk between the ER and mitochondria occurs at the mitochondria–ER contacts (MERCs). MERCs ensure a fine-tuned regulation of fundamental cellular processes, involving cell fate decision, mitochondria dynamics, metabolism, and proteostasis, which plays a pivotal role in the tumorigenesis and therapeutic response of cancer cells. Intriguingly, recent studies have shown that different components of the unfolded protein response (UPR) machinery, including PERK, IRE1α, and ER chaperones, localize at MERCs. These proteins appear to exhibit multifaceted roles that expand beyond protein folding and UPR transduction and are often related to the control of calcium fluxes to the mitochondria, thus acquiring relevance to cell survival and death. In this review, we highlight the novel functions played by PERK, IRE1α, and ER chaperones at MERCs focusing on their impact on tumor development.
Collapse
Affiliation(s)
- Giuseppina Amodio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Valentina Pagliara
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Paolo Remondelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| |
Collapse
|
64
|
Hypoxia-Driven Effects in Cancer: Characterization, Mechanisms, and Therapeutic Implications. Cells 2021; 10:cells10030678. [PMID: 33808542 PMCID: PMC8003323 DOI: 10.3390/cells10030678] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia, a common feature of solid tumors, greatly hinders the efficacy of conventional cancer treatments such as chemo-, radio-, and immunotherapy. The depletion of oxygen in proliferating and advanced tumors causes an array of genetic, transcriptional, and metabolic adaptations that promote survival, metastasis, and a clinically malignant phenotype. At the nexus of these interconnected pathways are hypoxia-inducible factors (HIFs) which orchestrate transcriptional responses under hypoxia. The following review summarizes current literature regarding effects of hypoxia on DNA repair, metastasis, epithelial-to-mesenchymal transition, the cancer stem cell phenotype, and therapy resistance. We also discuss mechanisms and pathways, such as HIF signaling, mitochondrial dynamics, exosomes, and the unfolded protein response, that contribute to hypoxia-induced phenotypic changes. Finally, novel therapeutics that target the hypoxic tumor microenvironment or interfere with hypoxia-induced pathways are reviewed.
Collapse
|
65
|
Wang CL, Tang Y, Li M, Xiao M, Li QS, Yang L, Li X, Yin L, Wang YL. Analysis of Mono-ADP-Ribosylation Levels in Human Colorectal Cancer. Cancer Manag Res 2021; 13:2401-2409. [PMID: 33737837 PMCID: PMC7965690 DOI: 10.2147/cmar.s303064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/25/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Colorectal cancer remains a major public health problem with high morbidity and mortality rates. In the search for the mechanisms of colorectal cancer occurrence and development, increasing attention has been focused on epigenetics. The overall level of Mono-ADP-ribosylation, an epigenetic, has not been investigated now. The aim of our study was to analysis of the overall level of mono-ADP-ribosylation in colorectal cancer. METHODS Immunohistochemistry was used to investigate the level of mono-ADP-ribosylation in colorectal cancer and normal colorectal adjacent tissue from 64 CRC patients. The data of patient demographic, clinical and pathological characteristics were acquired and analyzed. RESULTS Mono-ADP-ribosylation was present in both colorectal adenocarcinoma and normal colorectal tissue. The overall level of mono-ADP-ribosylation in colorectal cancer was significantly higher than that in normal colorectal adjacent tissue. In the nucleus, the majority of samples in the high-level group were colorectal adenocarcinoma (55/64), but the opposite was true for normal colorectal tissues (7/32). In particular, increases in the level of mono-ADP-ribosylation in the cytoplasm of colorectal cancer cells was associated with a greater invasion depth of the tumor. CONCLUSION The increased level of mono-ADP-ribosylation in colorectal cancer enhances tumor invasion, which suggests that mono-ADP-ribosylation is involved in the development of colorectal cancer and may become a new direction to solve the problem of colorectal cancer.
Collapse
Affiliation(s)
- Chuan-Ling Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yi Tang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Ming Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Ming Xiao
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Qing-Shu Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Lian Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Xian Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Ling Yin
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Ya-Lan Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
66
|
Unraveling the Molecular Nexus between GPCRs, ERS, and EMT. Mediators Inflamm 2021; 2021:6655417. [PMID: 33746610 PMCID: PMC7943314 DOI: 10.1155/2021/6655417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent a large family of transmembrane proteins that transduce an external stimulus into a variety of cellular responses. They play a critical role in various pathological conditions in humans, including cancer, by regulating a number of key processes involved in tumor formation and progression. The epithelial-mesenchymal transition (EMT) is a fundamental process in promoting cancer cell invasion and tumor dissemination leading to metastasis, an often intractable state of the disease. Uncontrolled proliferation and persistent metabolism of cancer cells also induce oxidative stress, hypoxia, and depletion of growth factors and nutrients. These disturbances lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER) and induce a cellular condition called ER stress (ERS) which is counteracted by activation of the unfolded protein response (UPR). Many GPCRs modulate ERS and UPR signaling via ERS sensors, IRE1α, PERK, and ATF6, to support cancer cell survival and inhibit cell death. By regulating downstream signaling pathways such as NF-κB, MAPK/ERK, PI3K/AKT, TGF-β, and Wnt/β-catenin, GPCRs also upregulate mesenchymal transcription factors including Snail, ZEB, and Twist superfamilies which regulate cell polarity, cytoskeleton remodeling, migration, and invasion. Likewise, ERS-induced UPR upregulates gene transcription and expression of proteins related to EMT enhancing tumor aggressiveness. Though GPCRs are attractive therapeutic targets in cancer biology, much less is known about their roles in regulating ERS and EMT. Here, we will discuss the interplay in GPCR-ERS linked to the EMT process of cancer cells, with a particular focus on oncogenes and molecular signaling pathways.
Collapse
|
67
|
Esposito M, Ganesan S, Kang Y. Emerging strategies for treating metastasis. NATURE CANCER 2021; 2:258-270. [PMID: 33899000 PMCID: PMC8064405 DOI: 10.1038/s43018-021-00181-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/05/2021] [Indexed: 02/07/2023]
Abstract
The systemic spread of tumor cells is the ultimate cause of the majority of deaths from cancer, yet few successful therapeutic strategies have emerged to specifically target metastasis. Here we discuss recent advances in our understanding of tumor-intrinsic pathways driving metastatic colonization and therapeutic resistance, as well as immune activating strategies to target metastatic disease. We focus on therapeutically exploitable mechanisms, promising strategies in preclinical and clinical development, and emerging areas with potential to become innovative treatments.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
68
|
Fan W, Shi R, Guan M, Chen P, Wu H, Su W, Wang Y, Li P. The Effects of Naringenin on miRNA-mRNA Profiles in HepaRG Cells. Int J Mol Sci 2021; 22:ijms22052292. [PMID: 33669020 PMCID: PMC7956767 DOI: 10.3390/ijms22052292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/12/2022] Open
Abstract
Naringenin, a natural flavonoid widely found in citrus fruits, has been reported to possess anti-oxidant, anti-inflammatory, and hepatoprotective properties as a natural dietary supplement. However, the regulatory mechanism of naringenin in human liver remains unclear. In the present study, messenger RNA sequencing (mRNA-seq), microRNA sequencing (miRNA-seq), and real-time qPCR were used to distinguish the expression differences between control and naringenin-treated HepaRG cells. We obtained 1037 differentially expressed mRNAs and 234 miRNAs. According to the target prediction and integration analysis in silico, we found 20 potential miRNA-mRNA pairs involved in liver metabolism. This study is the first to provide a perspective of miRNA–mRNA interactions in the regulation of naringenin via an integrated analysis of mRNA-seq and miRNA-seq in HepaRG cells, which further characterizes the nutraceutical value of naringenin as a food additive.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peibo Li
- Correspondence: ; Tel.: +86-20-8411-2398; Fax: +86-20-8411-2398
| |
Collapse
|
69
|
Díaz P, Sandoval-Bórquez A, Bravo-Sagua R, Quest AFG, Lavandero S. Perspectives on Organelle Interaction, Protein Dysregulation, and Cancer Disease. Front Cell Dev Biol 2021; 9:613336. [PMID: 33718356 PMCID: PMC7946981 DOI: 10.3389/fcell.2021.613336] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
In recent decades, compelling evidence has emerged showing that organelles are not static structures but rather form a highly dynamic cellular network and exchange information through membrane contact sites. Although high-throughput techniques facilitate identification of novel contact sites (e.g., organelle-organelle and organelle-vesicle interactions), little is known about their impact on cellular physiology. Moreover, even less is known about how the dysregulation of these structures impacts on cellular function and therefore, disease. Particularly, cancer cells display altered signaling pathways involving several cell organelles; however, the relevance of interorganelle communication in oncogenesis and/or cancer progression remains largely unknown. This review will focus on organelle contacts relevant to cancer pathogenesis. We will highlight specific proteins and protein families residing in these organelle-interfaces that are known to be involved in cancer-related processes. First, we will review the relevance of endoplasmic reticulum (ER)-mitochondria interactions. This section will focus on mitochondria-associated membranes (MAMs) and particularly the tethering proteins at the ER-mitochondria interphase, as well as their role in cancer disease progression. Subsequently, the role of Ca2+ at the ER-mitochondria interphase in cancer disease progression will be discussed. Members of the Bcl-2 protein family, key regulators of cell death, also modulate Ca2+ transport pathways at the ER-mitochondria interphase. Furthermore, we will review the role of ER-mitochondria communication in the regulation of proteostasis, focusing on the ER stress sensor PERK (PRKR-like ER kinase), which exerts dual roles in cancer. Second, we will review the relevance of ER and mitochondria interactions with other organelles. This section will focus on peroxisome and lysosome organelle interactions and their impact on cancer disease progression. In this context, the peroxisome biogenesis factor (PEX) gene family has been linked to cancer. Moreover, the autophagy-lysosome system is emerging as a driving force in the progression of numerous human cancers. Thus, we will summarize our current understanding of the role of each of these organelles and their communication, highlighting how alterations in organelle interfaces participate in cancer development and progression. A better understanding of specific organelle communication sites and their relevant proteins may help to identify potential pharmacological targets for novel therapies in cancer control.
Collapse
Affiliation(s)
- Paula Díaz
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Alejandra Sandoval-Bórquez
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile.,Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile.,Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile.,Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
70
|
Morishita S, Yasuda H, Yamawaki S, Kawaji H, Itoh M, Edahiro Y, Imai M, Kogo Y, Tsuneda S, Ohsaka A, Hayashizaki Y, Ito M, Araki M, Komatsu N. CREB3L1 overexpression as a potential diagnostic marker of Philadelphia chromosome-negative myeloproliferative neoplasms. Cancer Sci 2021; 112:884-892. [PMID: 33280191 PMCID: PMC7893984 DOI: 10.1111/cas.14763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022] Open
Abstract
Discrimination of Philadelphia-negative myeloproliferative neoplasms (Ph-MPNs) from reactive hypercytosis and myelofibrosis requires a constellation of testing including driver mutation analysis and bone marrow biopsies. We searched for a biomarker that can more easily distinguish Ph-MPNs from reactive hypercytosis and myelofibrosis by using RNA-seq analysis utilizing platelet-rich plasma (PRP)-derived RNAs from patients with essential thrombocythemia (ET) and reactive thrombocytosis, and CREB3L1 was found to have an extremely high impact in discriminating the two disorders. To validate and further explore the result, expression levels of CREB3L1 in PRP were quantified by reverse-transcription quantitative PCR and compared among patients with ET, other Ph-MPNs, chronic myeloid leukemia (CML), and reactive hypercytosis and myelofibrosis. A CREB3L1 expression cutoff value determined based on PRP of 18 healthy volunteers accurately discriminated 150 driver mutation-positive Ph-MPNs from other entities (71 reactive hypercytosis and myelofibrosis, 6 CML, and 18 healthy volunteers) and showed both sensitivity and specificity of 1.0000. Importantly, CREB3L1 expression levels were significantly higher in ET compared with reactive thrombocytosis (P < .0001), and polycythemia vera compared with reactive erythrocytosis (P < .0001). Pathology-affirmed triple-negative ET (TN-ET) patients were divided into a high- and low-CREB3L1-expression group, and some patients in the low-expression group achieved a spontaneous remission during the clinical course. In conclusion, CREB3L1 analysis has the potential to single-handedly discriminate driver mutation-positive Ph-MPNs from reactive hypercytosis and myelofibrosis, and also may identify a subgroup within TN-ET showing distinct clinical features including spontaneous remission.
Collapse
Affiliation(s)
- Soji Morishita
- Department of Transfusion Medicine and Stem Cell RegulationJuntendo University Graduate School of MedicineTokyoJapan
| | - Hajime Yasuda
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Saya Yamawaki
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
| | - Hideya Kawaji
- RIKEN Preventive Medicine and Diagnosis Innovation ProgramYokohamaJapan
| | - Masayoshi Itoh
- RIKEN Preventive Medicine and Diagnosis Innovation ProgramYokohamaJapan
| | - Yoko Edahiro
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Misa Imai
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Yasushi Kogo
- RIKEN Preventive Medicine and Diagnosis Innovation ProgramYokohamaJapan
| | - Satoshi Tsuneda
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
| | - Akimichi Ohsaka
- Department of Transfusion Medicine and Stem Cell RegulationJuntendo University Graduate School of MedicineTokyoJapan
| | | | - Masafumi Ito
- Department of PathologyJapanese Red Cross Nagoya First HospitalNagoyaJapan
| | - Marito Araki
- Department of Transfusion Medicine and Stem Cell RegulationJuntendo University Graduate School of MedicineTokyoJapan
| | - Norio Komatsu
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan
| |
Collapse
|
71
|
Huang J, Pan H, Wang J, Wang T, Huo X, Ma Y, Lu Z, Sun B, Jiang H. Unfolded protein response in colorectal cancer. Cell Biosci 2021; 11:26. [PMID: 33514437 PMCID: PMC7844992 DOI: 10.1186/s13578-021-00538-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a gastrointestinal malignancy originating from either the colon or the rectum. A growing number of researches prove that the unfolded protein response (UPR) is closely related to the occurrence and progression of colorectal cancer. The UPR has three canonical endoplasmic reticulum (ER) transmembrane protein sensors: inositol requiring kinase 1 (IRE1), pancreatic ER eIF2α kinase (PERK), and activating transcription factor 6 (ATF6). Each of the three pathways is closely associated with CRC development. The three pathways are relatively independent as well as interrelated. Under ER stress, the activated UPR boosts the protein folding capacity to maximize cell adaptation and survival, whereas sustained or excessive ER triggers cell apoptosis conversely. The UPR involves different stages of CRC pathogenesis, promotes or hinders the progression of CRC, and will pave the way for novel therapeutic and diagnostic approaches. Meanwhile, the correlation between different signal branches in UPR and the switch between the adaptation and apoptosis pathways still need to be further investigated in the future.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Huayang Pan
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Jinge Wang
- The Second Affiliated Hospital & College of Nursing, Harbin Medical University, Harbin, People's Republic of China
| | - Tong Wang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Xiaoyan Huo
- Pediatrics Department of The First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Yong Ma
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Zhaoyang Lu
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Bei Sun
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Hongchi Jiang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China.
| |
Collapse
|
72
|
Gil-Hernández A, Arroyo-Campuzano M, Simoni-Nieves A, Zazueta C, Gomez-Quiroz LE, Silva-Palacios A. Relevance of Membrane Contact Sites in Cancer Progression. Front Cell Dev Biol 2021; 8:622215. [PMID: 33511135 PMCID: PMC7835521 DOI: 10.3389/fcell.2020.622215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 01/01/2023] Open
Abstract
Membrane contact sites (MCS) are typically defined as areas of proximity between heterologous or homologous membranes characterized by specific proteins. The study of MCS is considered as an emergent field that shows how crucial organelle interactions are in cell physiology. MCS regulate a myriad of physiological processes such as apoptosis, calcium, and lipid signaling, just to name a few. The membranal interactions between the endoplasmic reticulum (ER)–mitochondria, the ER–plasma membrane, and the vesicular traffic have received special attention in recent years, particularly in cancer research, in which it has been proposed that MCS regulate tumor metabolism and fate, contributing to their progression. However, as the therapeutic or diagnostic potential of MCS has not been fully revisited, in this review, we provide recent information on MCS relevance on calcium and lipid signaling in cancer cells and on its role in tumor progression. We also describe some proteins associated with MCS, like CERT, STIM1, VDAC, and Orai, that impact on cancer progression and that could be a possible diagnostic marker. Overall, these information might contribute to the understanding of the complex biology of cancer cells.
Collapse
Affiliation(s)
- Aurora Gil-Hernández
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Miguel Arroyo-Campuzano
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Arturo Simoni-Nieves
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Luis Enrique Gomez-Quiroz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Alejandro Silva-Palacios
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
73
|
Zhao T, Du J, Zeng H. Interplay between endoplasmic reticulum stress and non-coding RNAs in cancer. J Hematol Oncol 2020; 13:163. [PMID: 33267910 PMCID: PMC7709275 DOI: 10.1186/s13045-020-01002-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
To survive, cancer cells are subjected to various internal and external adverse factors, including genetic mutations, hypoxia, nutritional deficiencies, and drug toxicity. All of these factors result in the accumulation of unfolded proteins in the endoplasmic reticulum, which leads to a condition termed endoplasmic reticulum stress (ER stress) and triggers the unfolded protein response (UPR). UPR downstream components strictly control transcription and translation reprogramming to ensure selective gene expression, including that of non-coding RNA (ncRNAs), to adapt to adverse environments. NcRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play important roles in regulating target gene expression and protein translation, and their aberrant expression is related to tumor development. Dysregulation of ncRNAs is involved in the regulation of various cellular characteristics of cancer cells, including growth, apoptosis, metastasis, angiogenesis, drug sensitivity, and tumor stem cell properties. Notably, ncRNAs and ER stress can regulate each other and collaborate to determine the fate of tumor cells. Therefore, investigating the interaction between ER stress and ncRNAs is crucial for developing effective cancer treatment and prevention strategies. In this review, we summarize the ER stress-triggered UPR signaling pathways involved in carcinogenesis followed by the mutual regulation of ER stress and ncRNAs in cancer, which provide further insights into the understanding of tumorigenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Juan Du
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
74
|
Yamamoto A, Morioki H, Nakae T, Miyake Y, Harada T, Noda S, Mitsuoka S, Matsumoto K, Tomimatsu M, Kanemoto S, Tanaka S, Maeda M, Conway SJ, Imaizumi K, Fujio Y, Obana M. Transcription factor old astrocyte specifically induced substance is a novel regulator of kidney fibrosis. FASEB J 2020; 35:e21158. [PMID: 33150680 PMCID: PMC7821213 DOI: 10.1096/fj.202001820r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/07/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022]
Abstract
Prevention of kidney fibrosis is an essential requisite for effective therapy in preventing chronic kidney disease (CKD). Here, we identify Old astrocyte specifically induced substance (OASIS)/cAMP responsive element‐binding protein 3‐like 1 (CREB3l1), a CREB/ATF family transcription factor, as a candidate profibrotic gene that drives the final common pathological step along the fibrotic pathway in CKD. Although microarray data from diseased patient kidneys and fibrotic mouse model kidneys both exhibit OASIS/Creb3l1 upregulation, the pathophysiological roles of OASIS in CKD remains unknown. Immunohistochemistry revealed that OASIS protein was overexpressed in human fibrotic kidney compared with normal kidney. Moreover, OASIS was upregulated in murine fibrotic kidneys, following unilateral ureteral obstruction (UUO), resulting in an increase in the number of OASIS‐expressing pathological myofibroblasts. In vitro assays revealed exogenous TGF‐β1 increased OASIS expression coincident with fibroblast‐to‐myofibroblast transition and OASIS contributed to TGF‐β1–mediated myofibroblast migration and increased proliferation. Significantly, in vivo kidney fibrosis induced via UUO or ischemia/reperfusion injury was ameliorated by systemic genetic knockout of OASIS, accompanied by reduced myofibroblast proliferation. Microarrays revealed that the transmembrane glycoprotein Bone marrow stromal antigen 2 (Bst2) expression was reduced in OASIS knockout myofibroblasts. Interestingly, a systemic anti‐Bst2 blocking antibody approach attenuated kidney fibrosis in normal mice but not in OASIS knockout mice after UUO, signifying Bst2 functions downstream of OASIS. Finally, myofibroblast‐restricted OASIS conditional knockouts resulted in resistance to kidney fibrosis. Taken together, OASIS in myofibroblasts promotes kidney fibrosis, at least in part, via increased Bst2 expression. Thus, we have identified and demonstrated that OASIS signaling is a novel regulator of kidney fibrosis.
Collapse
Affiliation(s)
- Ayaha Yamamoto
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Hitomi Morioki
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Takafumi Nakae
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Yoshiaki Miyake
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Takeo Harada
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Shunsuke Noda
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Sayuri Mitsuoka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Kotaro Matsumoto
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masashi Tomimatsu
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Soshi Kanemoto
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Shota Tanaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Makiko Maeda
- Laboratory of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Simon J Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Laboratory of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.,Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
75
|
Zhao G, Kang J, Xu G, Wei J, Wang X, Jing X, Zhang L, Yang A, Wang K, Wang J, Wang L, Hou J, Liu Q, Jiao K, Gao B. Tunicamycin promotes metastasis through upregulating endoplasmic reticulum stress induced GRP78 expression in thyroid carcinoma. Cell Biosci 2020; 10:115. [PMID: 33014334 PMCID: PMC7528585 DOI: 10.1186/s13578-020-00478-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
Background Thyroid cancer (TC) is the most common type of endocrine malignancy and its incidence is increasing over years. Conventional surgery, radiotherapy and chemotherapy are difficult to improve the significant effects of it due to aggression and metastasis of poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC), and these are regarded as the most malignant types of TC. Glucose-regulated protein (GRP78) is the key molecule of tumor growth, apoptosis and metastasis. However, the underlying mechanisms of GRP78 in TC still require discussion. This study aimed to explore the role of GRP78 and its potential mechanism in TC. Results GRP78 expression was increased in TC tissues when compared with adjacent normal tissues. Besides, down-regulation of GRP78 significantly inhibited the metastatic and proliferative ability of ATC cells in in vitro studies. In addition, tunicamycin-induced ER stress up-regulated the expression of GRP78, PERK and XBP1 as well as reversed the metastatic ability of GRP78 in ATC cells. Bioinformatics and statistical analysis of gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for RNA-sequencing data with regard to si-GRP78 and si-control showed that GRP78 might regulate the ability of metastasis through extracellular matrix (ECM) remodeling in ATC cells, as well as the expression of ECM components such as COL1A1 and MMP13, which were highly relevant to ATC cells. The analysis of GEPIA database confirmed that high genomic amplification of MMP13 and COL1A1 in TC tissues showed correlation with TNM stage. Further western blotting analysis showed that MMP13 might be the target of GRP78 in ATC cells and ER stress could activate the expression of MMP13 that is suppressed by GRP78 depletion. Conclusions GRP78 acts as an important regulator of metastasis under ER stress. In addition, the function of GRP78 might be mediated by ECM remodeling in ATC cells, implicating it as a therapeutic target in TC.
Collapse
Affiliation(s)
- Guohong Zhao
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038 Shanxi China
| | - Jianqin Kang
- Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038 Shanxi China
| | - Guanghui Xu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi China
| | - Jing Wei
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038 Shanxi China
| | - Xiaoguang Wang
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038 Shanxi China
| | - Xiaorui Jing
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038 Shanxi China
| | - Lan Zhang
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038 Shanxi China
| | - Aili Yang
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038 Shanxi China
| | - Kai Wang
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038 Shanxi China
| | - Jue Wang
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038 Shanxi China
| | - Li Wang
- Department of Ultrasound Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038 Shanxi China
| | - Junfeng Hou
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038 Shanxi China
| | - Qingquan Liu
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038 Shanxi China
| | - Kai Jiao
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038 Shanxi China
| | - Bin Gao
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038 Shanxi China
| |
Collapse
|
76
|
Zhao H, Ling J, Huang Y, Chang A, Zhuo X. The expression and clinical significance of an Epithelial-Mesenchymal Transition inducer, SNAI1, in head and neck carcinoma. J Oral Pathol Med 2020; 50:145-154. [PMID: 32945534 DOI: 10.1111/jop.13111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/11/2020] [Accepted: 09/06/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND SNAI1 is an epithelial-mesenchymal transition (EMT) inducer, which has been indicated to play a role in the progression of cancers. We aimed to evaluate the expression and prognostic roles of SNAI1 in head and neck carcinoma (HNC). METHODS The study involved two major phases. In the in silico phase, the SNAI1 expression and its association with clinical features as well as its prognostic values were assessed; then, the target genes of SNAI1 were predicted and the relationship between SNAI1 expression and immune cell infiltration was evaluated. In the validation phase, a cohort of a tissue microarray (47 cases) and a cohort of HNC patients (68 cases) were enrolled. SNAI1 was detected by using an immunochemistry assay. RESULTS The in silico analysis showed that overexpression of SNAI1 in HNC tissues may be correlated with metastatic lymph node numbers and may predict poor outcomes. Six genes, including CREB3L1, MITF, KLF9, RARA, KLF7, and ETV1, were predicted to be the target genes of SNAI1. The expression of SNAI1 was negatively correlated with tumor purity of HNC, while it was positively correlated with the infiltration of diverse immune cells, such as B cells and macrophages. In the validation phase, the relationships of SNAI1 expression with lymph node metastasis and poor prognosis were verified. CONCLUSION Overexpression of SNAI1 might promote lymph node metastasis through complex molecular mechanisms and act as a prognostic indicator in HNC. SNAI1 expression may have a correlation with immune cell infiltrates. Future studies are needed to address these points.
Collapse
Affiliation(s)
- Houyu Zhao
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Junjun Ling
- Department of Oncology, Chongqing hospital of traditional Chinese Medicine, Chongqing, China
| | - Yi Huang
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Aoshuang Chang
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xianlu Zhuo
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
77
|
Kranz P, Sänger C, Wolf A, Baumann J, Metzen E, Baumann M, Göpelt K, Brockmeier U. Tumor cells rely on the thiol oxidoreductase PDI for PERK signaling in order to survive ER stress. Sci Rep 2020; 10:15299. [PMID: 32943707 PMCID: PMC7499200 DOI: 10.1038/s41598-020-72259-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
Upon ER stress cells activate the unfolded protein response through PERK, IRE1 and ATF6. Remarkable effort has been made to delineate the downstream signaling of these three ER stress sensors after activation, but upstream regulation at the ER luminal site still remains mostly undefined. Here we report that the thiol oxidoreductase PDI is mandatory for activation of the PERK pathway in HEK293T as well as in human pancreatic, lung and colon cancer cells. Under ER stress, depletion of PDI selectively abrogated eIF2α phosphorylation, induction of ATF4, CHOP and even BiP. Furthermore, we could demonstrate that PDI prevented degradation of activated PERK by the 26S proteasome and therefore contributes to maintained PERK signaling. As a result of decreased PERK activity, PDI depleted cells showed an increased vulnerability to ER stress induced by chemicals or ionizing radiation in 2D as well as in 3D culture models. We conclude that PDI is an obligatory regulator of the PERK pathway with future therapy implications.
Collapse
Affiliation(s)
- Philip Kranz
- Institut für Physiologie, Universität Duisburg-Essen, Duisburg, Germany
| | | | - Alexandra Wolf
- Institut für Physiologie, Universität Duisburg-Essen, Duisburg, Germany
| | - Jennifer Baumann
- Institut für Physiologie, Universität Duisburg-Essen, Duisburg, Germany
| | - Eric Metzen
- Institut für Physiologie, Universität Duisburg-Essen, Duisburg, Germany
| | - Melanie Baumann
- Institut für Physiologie, Universität Duisburg-Essen, Duisburg, Germany
| | - Kirsten Göpelt
- Institut für Physiologie, Universität Duisburg-Essen, Duisburg, Germany
| | - Ulf Brockmeier
- Institut für Physiologie, Universität Duisburg-Essen, Duisburg, Germany. .,Department of Neurology, University Hospital Essen, University Duisburg-Essen, Duisburg, Germany.
| |
Collapse
|
78
|
Vasudevan D, Neuman SD, Yang A, Lough L, Brown B, Bashirullah A, Cardozo T, Ryoo HD. Translational induction of ATF4 during integrated stress response requires noncanonical initiation factors eIF2D and DENR. Nat Commun 2020; 11:4677. [PMID: 32938929 PMCID: PMC7495428 DOI: 10.1038/s41467-020-18453-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 08/17/2020] [Indexed: 01/25/2023] Open
Abstract
The Integrated Stress Response (ISR) helps metazoan cells adapt to cellular stress by limiting the availability of initiator methionyl-tRNA for translation. Such limiting conditions paradoxically stimulate the translation of ATF4 mRNA through a regulatory 5' leader sequence with multiple upstream Open Reading Frames (uORFs), thereby activating stress-responsive gene expression. Here, we report the identification of two critical regulators of such ATF4 induction, the noncanonical initiation factors eIF2D and DENR. Loss of eIF2D and DENR in Drosophila results in increased vulnerability to amino acid deprivation, susceptibility to retinal degeneration caused by endoplasmic reticulum (ER) stress, and developmental defects similar to ATF4 mutants. eIF2D requires its RNA-binding motif for regulation of 5' leader-mediated ATF4 translation. Consistently, eIF2D and DENR deficient human cells show impaired ATF4 protein induction in response to ER stress. Altogether, our findings indicate that eIF2D and DENR are critical mediators of ATF4 translational induction and stress responses in vivo.
Collapse
Affiliation(s)
- Deepika Vasudevan
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Sarah D Neuman
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Amy Yang
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Lea Lough
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Brian Brown
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Arash Bashirullah
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
79
|
Raiter A, Lipovetsky J, Hyman L, Mugami S, Ben-Zur T, Yerushalmi R. Chemotherapy Controls Metastasis Through Stimulatory Effects on GRP78 and Its Transcription Factor CREB3L1. Front Oncol 2020; 10:1500. [PMID: 33042795 PMCID: PMC7518037 DOI: 10.3389/fonc.2020.01500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/13/2020] [Indexed: 02/05/2023] Open
Abstract
To achieve a cure for metastatic breast cancer, further understanding of molecular drivers of the metastatic cascade is essential. Currently, chemotherapy regimens include doxorubicin and paclitaxel which act in part by inducing the unfolded protein response (UPR). The master regulator of the UPR, glucose regulated protein 78 (GRP78), localizes on the surface of tumor cells and is associated with metastatic disease. Cyclic AMP responsive element binding protein 3-like 1 (CREB3L1), a member of the UPR, is a breast cancer metastasis suppressor that acts on cyclic AMP to promote the expression of target genes including GRP78. The aim of the present study was to evaluate the effects of chemotherapy on CREB3L1 and cell-surface GRP78 expression and its association with the development of breast cancer metastasis. For this purpose, we use breast cancer cells migration in vitro assays and an in vivo metastatic mouse model. The results showed that chemotherapy activated CREB3L1 and enhanced cell-surface GRP78 expression specifically in triple-negative breast cancer cells (TNBC), reducing their migration and metastatic potential. CREB3L1 knockout (KO) in the triple negative MDAMB231 cell line using CRISPR/Cas9 technology led to inhibition of GRP78 expression and abrogation of the CREB3L1 metastatic suppression function. Inoculation of CREB3L1-KO MDAMB231 cells into a mouse metastatic model induced a massive metastatic profile which chemotherapy failed to prevent. These findings elucidate a potential pathway to the development of a novel treatment strategy for metastatic TNBC based on modulating CREB3L1 and cell-surface GRP78 expression by chemotherapy and GRP78-targeted drugs.
Collapse
Affiliation(s)
- Annat Raiter
- Felsenstein Medical Research Center, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Lucila Hyman
- Department of Pathology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Shany Mugami
- Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Tali Ben-Zur
- Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Rinat Yerushalmi
- Felsenstein Medical Research Center, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Davidoff Cancer Center, Rabin Medical Center, Petach Tikva, Israel
| |
Collapse
|
80
|
Pan Z, Li L, Qian Y, Ge X, Hu X, Zhang Y, Ge M, Huang P. The differences of regulatory networks between papillary and anaplastic thyroid carcinoma: an integrative transcriptomics study. Cancer Biol Ther 2020; 21:853-862. [PMID: 32887540 DOI: 10.1080/15384047.2020.1803009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Unlike papillary thyroid cancer (PTC), anaplastic thyroid carcinoma (ATC) is extremely aggressive and rapidly lethal without effective therapies. However, the differences of master regulators and regulatory networks between PTC and ATC remain unclear. Methods: Three representative datasets comprising 32 ATC, 69 PTC, and 78 normal thyroid tissue samples were combined to form a large dataset. Differentially expressed genes (DEGs) were identified and enriched by limma package and gene set enrichment analysis, respectively. Subsequently, protein-protein interaction network and transcription factors (TFs) regulatory network were constructed to identify gene modules and master regulators. Further, master regulators were validated by RT-PCR and western blot. Finally, Kaplan-Meier plotter was applied to evaluate their prognostic values. Results: A total of 560 DEGs were identified as ATC-specific malignant signature. The regulatory network analysis showed that nine master regulators were significantly correlated with three gene modules and potentially regulated the expression of DEGs in three gene modules, respectively. Furthermore, CREB3L1, FOSL2, E2F1 and CAT were significantly associated with overall survival of thyroid cancer patients. FOXM1, FOSL2, MYBL2, AVEN and E2F1 were unfavorable factors of recurrence-free survival (RFS), while CAT was a favorable factor of RFS. RT-PCR and western blot confirmed that six TFs were obviously up-regulated in ATC tissues/cell line as compared with PTC and normal thyroid tissues/cell lines, respectively. In addition, 19 ATC-specific kinases were identified to illustrate the potential post-translational modification. Conclusions: Our findings provide a comprehensive insight into malignant mechanism of ATC, which may indicate their value in the future investigation of ATC.
Collapse
Affiliation(s)
- Zongfu Pan
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou, China
| | - Lu Li
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou, China
| | - Yangyang Qian
- Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital , Hangzhou, China
| | - Xinyang Ge
- Student Council Blood Drive Committee, Heartland Christian School , Columbiana, OH, USA
| | - Xiaoping Hu
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou, China
| | - Yiwen Zhang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou, China
| | - Minghua Ge
- Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital , Hangzhou, China
| | - Ping Huang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou, China
| |
Collapse
|
81
|
Qi JL, He JR, Liu CB, Jin SM, Gao RY, Yang X, Bai HM, Ma YB. Pulmonary Staphylococcus aureus infection regulates breast cancer cell metastasis via neutrophil extracellular traps (NETs) formation. MedComm (Beijing) 2020; 1:188-201. [PMID: 34766117 PMCID: PMC8491238 DOI: 10.1002/mco2.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
The formation of neutrophil extracellular traps (NETs) was recently identified as one of the most important processes for the maintenance of host tissue homeostasis in bacterial infection. Meanwhile, pneumonia infection has a poor effect on cancer patients receiving immunotherapy. Whether pneumonia‐mediated NETs increase lung metastasis remains unclear. In this study, we identified a critical role for multidrug‐resistant Staphylococcus aureus infection‐induced NETs in the regulation of cancer cell metastasis. Notably, S. aureus triggered autophagy‐dependent NETs formation in vitro and in vivo and increased cancer cell metastasis. Targeting autophagy effectively regulated NETs formation, which contributed to the control of cancer metastasis in vivo. Moreover, the degradation of NETs by DNase I significantly suppresses metastasis in lung. Our work offers novel insight into the mechanisms of metastasis induced by bacterial pneumonia and provides a potential therapeutic strategy for pneumonia‐related metastasis.
Collapse
Affiliation(s)
- Jia-Long Qi
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medical Biology Kunming China
| | - Jin-Rong He
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medical Biology Kunming China.,School of Basic Medical School Kunming Medical University Kunming China
| | - Cun-Bao Liu
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medical Biology Kunming China
| | - Shu-Mei Jin
- Department of Pharmacology Laboratory Yunnan Institute of Materia Medica NO24, LENGSHUITANG, BIJI ROAD, XISHAN QU Kunming 650000 China
| | - Rui-Yu Gao
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medical Biology Kunming China
| | - Xu Yang
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medical Biology Kunming China
| | - Hong-Mei Bai
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medical Biology Kunming China
| | - Yan-Bing Ma
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medical Biology Kunming China
| |
Collapse
|
82
|
Huaman J, Ogunwobi OO. Circulating Tumor Cell Migration Requires Fibronectin Acting through Integrin B1 or SLUG. Cells 2020; 9:cells9071594. [PMID: 32630254 PMCID: PMC7408126 DOI: 10.3390/cells9071594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 01/16/2023] Open
Abstract
Fibronectin (FN1) is an extracellular matrix protein gaining increasing attention for its multifaceted roles in cancer progression. Using our recently established circulating tumor cell (CTC) lines, we had demonstrated increased FN1 expression and enhanced migration in CTC lines, in comparison to primary tumor cell lines. Whether increased FN1 expression is directly required for CTC migration, and the specific role of FN1’s regulation of integrin B1 (ITGB1) and SLUG (SNAI2) in CTC migration remains unclear. Here, for the first time, we report that the knockdown of FN1, ITGB1, or SLUG expression in CTCs leads to a significant decrease in CTC migration. Knocking down two or all three of these proteins simultaneously did not further inhibit migration. We observed a corresponding increase in CTC migration when recombinant FN1 was added to CTCs. This effect was significantly impeded by prior knockdown of ITGB1 or SLUG. Using knock down experiments and western blotting analysis, we confirmed FN1’s regulation of ITGB1 and SLUG to occur via two separate, independent pathways. Consequently, we can conclude that FN1-dependent enhanced migration of CTCs requires downstream signaling through either ITGB1 or SLUG and that FN1 regulation of ITGB1 and SLUG may have important implications for cancer progression and metastasis.
Collapse
Affiliation(s)
- Jeannette Huaman
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA;
- Department of Biology, The Graduate Center of The City University of New York, New York, NY 10016, USA
| | - Olorunseun O. Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA;
- Department of Biology, The Graduate Center of The City University of New York, New York, NY 10016, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
83
|
Bissonnette C, Shilo K, Liebner D, Rogers A, Pollock RE, Iwenofu OH. An EWSR1-CREB3L1 Fusion Gene in Extraskeletal Undifferentiated Round Cell Sarcoma Expands the Spectrum of Genetic Landscape in the "Ewing-Like" Undifferentiated Round Cell Sarcomas. Int J Surg Pathol 2020; 29:109-116. [PMID: 32506986 DOI: 10.1177/1066896920929081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The molecular findings in Ewing sarcoma have greatly expanded in recent years. Furthermore, this is particularly true for the subset termed "Ewing-like" undifferentiated round cell sarcomas in which new translocations have been reported since the fourth edition of the WHO Classification of Tumours of Soft Tissue and Bone. Amid this expanding genetic landscape, we report a case of extraskeletal undifferentiated round cell "Ewing-like" sarcoma in a 27-year-old female. The patient presented with a large lung mass accompanied on staging imaging by deposits suspicious for metastatic disease in the humerus, calvarium, and lymph nodes of the neck and chest. Biopsy of the lung mass revealed a densely packed monotonous proliferation of round, uniform neoplastic cells with scant cytoplasm. By immunohistochemistry, the tumor cells were diffusely positive for CD99, synaptophysin, TLE1, EMA, and MUC4 and negative for FLI1, PAX7, AE1/3, S100, SOX10, WT1, p63, desmin, and HMB45. Fluorescence in situ hybridization demonstrated rearrangement of the EWSR1 gene. Next-generation sequencing based assay revealed an EWSR1-CREB3L1 fusion. Taken together, the histomorphologic and molecular findings were considered consistent with an undifferentiated round cell sarcoma with an EWSR1-CREB3L1 fusion. Although described in entities such as sclerosing epithelioid fibrosarcoma, low-grade fibromyxoid sarcoma, and small cell osteosarcoma, this has not been previously described in undifferentiated round cell ("Ewing-like") sarcoma. This finding adds to the growing list of undifferentiated round cell sarcomas with Ewing-like morphologic phenotype-associated fusion genes and may contribute to further defining and characterizing the different subset of tumors in the Ewing family of tumors.
Collapse
Affiliation(s)
- Caroline Bissonnette
- Division of Oral and Maxillofacial Pathology and Radiology, The Ohio State University College of Dentistry, Columbus, OH, USA
| | - Konstantin Shilo
- Department of Pathology & Laboratory Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - David Liebner
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH, United States.,Division of Computational Biology and Bioinformatics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Alan Rogers
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Raphael E Pollock
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - O Hans Iwenofu
- Department of Pathology & Laboratory Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
84
|
Peretti D, Kim S, Tufi R, Lev S. Lipid Transfer Proteins and Membrane Contact Sites in Human Cancer. Front Cell Dev Biol 2020; 7:371. [PMID: 32039198 PMCID: PMC6989408 DOI: 10.3389/fcell.2019.00371] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/16/2019] [Indexed: 11/29/2022] Open
Abstract
Lipid-transfer proteins (LTPs) were initially discovered as cytosolic factors that facilitate lipid transport between membrane bilayers in vitro. Since then, many LTPs have been isolated from bacteria, plants, yeast, and mammals, and extensively studied in cell-free systems and intact cells. A major advance in the LTP field was associated with the discovery of intracellular membrane contact sites (MCSs), small cytosolic gaps between the endoplasmic reticulum (ER) and other cellular membranes, which accelerate lipid transfer by LTPs. As LTPs modulate the distribution of lipids within cellular membranes, and many lipid species function as second messengers in key signaling pathways that control cell survival, proliferation, and migration, LTPs have been implicated in cancer-associated signal transduction cascades. Increasing evidence suggests that LTPs play an important role in cancer progression and metastasis. This review describes how different LTPs as well as MCSs can contribute to cell transformation and malignant phenotype, and discusses how “aberrant” MCSs are associated with tumorigenesis in human.
Collapse
Affiliation(s)
- Diego Peretti
- UK Dementia Research Institute, Clinical Neurosciences Department, University of Cambridge, Cambridge, United Kingdom
| | - SoHui Kim
- Nakseongdae R&D Center, GPCR Therapeutics, Inc., Seoul, South Korea
| | - Roberta Tufi
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Sima Lev
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
85
|
Jin Y, Saatcioglu F. Targeting the Unfolded Protein Response in Hormone-Regulated Cancers. Trends Cancer 2020; 6:160-171. [PMID: 32061305 DOI: 10.1016/j.trecan.2019.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
Cancer cells exploit many of the cellular adaptive responses to support their survival needs. One of these is the unfolded protein response (UPR), a highly conserved signaling pathway that is mounted in response to endoplasmic reticulum (ER) stress. Recent work showed that steroid hormones, in particular estrogens and androgens, regulate the canonical UPR pathways in breast cancer (BCa) and prostate cancer (PCa). In addition, UPR has pleiotropic effects in advanced disease and development of therapy resistance. These findings implicate the UPR pathway as a novel target in hormonally regulated cancers in the clinic. Here, we review the potential therapeutic value of recently developed small molecule inhibitors of UPR in hormone regulated cancers.
Collapse
Affiliation(s)
- Yang Jin
- Department of Biosciences, University of Oslo, Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
86
|
Danese A, Marchi S, Vitto VAM, Modesti L, Leo S, Wieckowski MR, Giorgi C, Pinton P. Cancer-Related Increases and Decreases in Calcium Signaling at the Endoplasmic Reticulum-Mitochondria Interface (MAMs). Rev Physiol Biochem Pharmacol 2020; 185:153-193. [PMID: 32789789 DOI: 10.1007/112_2020_43] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER)-mitochondria regions are specialized subdomains called also mitochondria-associated membranes (MAMs). MAMs allow regulation of lipid synthesis and represent hubs for ion and metabolite signaling. As these two organelles can module both the amplitude and the spatiotemporal patterns of calcium (Ca2+) signals, this particular interaction controls several Ca2+-dependent pathways well known for their contribution to tumorigenesis, such as metabolism, survival, sensitivity to cell death, and metastasis. Mitochondria-mediated apoptosis arises from mitochondrial Ca2+ overload, permeabilization of the mitochondrial outer membrane, and the release of mitochondrial apoptotic factors into the cytosol. Decreases in Ca2+ signaling at the ER-mitochondria interface are being studied in depth as failure of apoptotic-dependent cell death is one of the predominant characteristics of cancer cells. However, some recent papers that linked MAMs Ca2+ crosstalk-related upregulation to tumor onset and progression have aroused the interest of the scientific community.In this review, we will describe how different MAMs-localized proteins modulate the effectiveness of Ca2+-dependent apoptotic stimuli by causing both increases and decreases in the ER-mitochondria interplay and, specifically, by modulating Ca2+ signaling.
Collapse
Affiliation(s)
- Alberto Danese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Veronica Angela Maria Vitto
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Lorenzo Modesti
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sara Leo
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
87
|
Pizzinga M, Harvey RF, Garland GD, Mordue R, Dezi V, Ramakrishna M, Sfakianos A, Monti M, Mulroney TE, Poyry T, Willis AE. The cell stress response: extreme times call for post‐transcriptional measures. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1578. [DOI: 10.1002/wrna.1578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | - Ryan Mordue
- MRC Toxicology Unit University of Cambridge Leicester UK
| | - Veronica Dezi
- MRC Toxicology Unit University of Cambridge Leicester UK
| | | | | | - Mie Monti
- MRC Toxicology Unit University of Cambridge Leicester UK
| | | | - Tuija Poyry
- MRC Toxicology Unit University of Cambridge Leicester UK
| | - Anne E. Willis
- MRC Toxicology Unit University of Cambridge Leicester UK
| |
Collapse
|
88
|
Hao Y, Xiao Y, Zhang Z, Zhao H, Zhou W, Guo X, Lu A, Li X. Transition of the abnormal Savda syndrome to the hepatic carcinoma shifted unfolded protein response to autophagy was partly reversed by Savda Munziq in a rat model. Biomed Pharmacother 2019; 121:109643. [PMID: 31810133 DOI: 10.1016/j.biopha.2019.109643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES In Uighur medicine, abnormal Savda Munziq (AMSq) is an adjuvant therapy for cancer patients with abnormal Savda syndrome (ASS) who exhibit the highest degree of pathogenicity and malignancy. The aim of the study was to understand the role(s) of AMSq in cancer patients with ASS. METHODS A total of 125 rats were divided into groups: control (NC) (n = 15), ASS (n = 25), ASS with hepatic carcinoma (ASSHC) (n = 25) as well as ASSHC treated with low dose (ASSHC-L, n = 20), medium dose (ASSHC-M, n = 20) and high dose (ASSHC-H, n = 20) AMSq. Changes in the unfolded protein response (UPR) and autophagy were analyzed by RT profiler PCR array kits, which covered 84 UPR and 84 autophagy related genes. Protein expression analyses of LC3B, ATG8, GRP78 and CHOP were carried out using western blotting. RESULTS CHOP and GRP78 expression was enhanced in ASS and ASSHC compared to NC rats and further increased AMSq dose-dependently, indicating an UPR triggering effect of AMSq. The ratios of ATG8/LCB3II-LCB3I protein were reduced in ASSHC rats, an effect which was partly reversed by AMSq. Compared to NC rats in the ASS group, 24 UPR genes were significantly upregulated and 3 downregulated, whereas only 5 autophagy genes were significantly upregulated and 5 downregulated. Compared to NC rats in the ASSHC group, 15 UPR genes were significantly upregulated and 10 downregulated, whereas 16 autophagy genes were significantly upregulated and 8 downregulated. The RT profiler data indicated a shift from UPR in the ASS to the autophagy response in ASSHC rats. ASMq effects on ASSHC rats comprised significant downregulation of 10 autophagy and 2 UPR genes. CONCLUSION The transformation into hepatic cancer cells included a shift from endoplasmic reticulum stress-related UPR to autophagy gene activation, an effect which could be partly reversed by ASMq.
Collapse
Affiliation(s)
- Yi Hao
- Department of Ultrasound, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China
| | - Yue Xiao
- Shenzhen Key Laboratory of Viral Oncology, Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China
| | - Zhihong Zhang
- Shenzhen Key Laboratory of Viral Oncology, Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China
| | - Hongli Zhao
- Shenzhen Key Laboratory of Viral Oncology, Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China
| | - Wenyan Zhou
- Shenzhen Key Laboratory of Viral Oncology, Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China
| | - Xia Guo
- Shenzhen Key Laboratory of Viral Oncology, Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China.
| | - Anwei Lu
- Department of Gynecology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China.
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China.
| |
Collapse
|
89
|
Dual role of Endoplasmic Reticulum Stress-Mediated Unfolded Protein Response Signaling Pathway in Carcinogenesis. Int J Mol Sci 2019; 20:ijms20184354. [PMID: 31491919 PMCID: PMC6770252 DOI: 10.3390/ijms20184354] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer constitutes a grave problem nowadays in view of the fact that it has become one of the main causes of death worldwide. Poor clinical prognosis is presumably due to cancer cells metabolism as tumor microenvironment is affected by oxidative stress. This event triggers adequate cellular response and thereby creates appropriate conditions for further cancer progression. Endoplasmic reticulum (ER) stress occurs when the balance between an ability of the ER to fold and transfer proteins and the degradation of the misfolded ones become distorted. Since ER is an organelle relatively sensitive to oxidative damage, aforementioned conditions swiftly cause the activation of the unfolded protein response (UPR) signaling pathway. The output of the UPR, depending on numerous factors, may vary and switch between the pro-survival and the pro-apoptotic branch, and hence it displays opposing effects in deciding the fate of the cancer cell. The role of UPR-related proteins in tumorigenesis, such as binding the immunoglobulin protein (BiP) and inositol-requiring enzyme-1α (IRE1α), activating transcription factor 6 (ATF6) or the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), has already been specifically described so far. Nevertheless, due to the paradoxical outcomes of the UPR activation as well as gaps in current knowledge, it still needs to be further investigated. Herein we would like to elicit the actual link between neoplastic diseases and the UPR signaling pathway, considering its major branches and discussing its potential use in the development of a novel, anti-cancer, targeted therapy.
Collapse
|
90
|
Yang H, Liang SQ, Xu D, Yang Z, Marti TM, Gao Y, Kocher GJ, Zhao H, Schmid RA, Peng RW. HSP90/AXL/eIF4E-regulated unfolded protein response as an acquired vulnerability in drug-resistant KRAS-mutant lung cancer. Oncogenesis 2019; 8:45. [PMID: 31431614 PMCID: PMC6702198 DOI: 10.1038/s41389-019-0158-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/10/2019] [Indexed: 01/05/2023] Open
Abstract
Drug resistance and tumor heterogeneity are formidable challenges in cancer medicine, which is particularly relevant for KRAS-mutant cancers, the epitome of malignant tumors recalcitrant to targeted therapy efforts and first-line chemotherapy. In this study, we delineate that KRAS-mutant lung cancer cells resistant to pemetrexed (MTA) and anti-MEK drug trametinib acquire an exquisite dependency on endoplasmic reticulum (ER) stress signaling, rendering resistant cancer cells selectively susceptible to blockage of HSP90, the receptor tyrosine kinase AXL, the eukaryotic translation initiation factor 4E (eIF4E), and the unfolded protein response (UPR). Mechanistically, acquisition of drug resistance enables KRAS-mutant lung cancer cells to bypass canonical KRAS effectors but entail hyperactive AXL/eIF4E, increased protein turnover in the ER, and adaptive activation of an ER stress-relief UPR survival pathway whose integrity is maintained by HSP90. Notably, the unique dependency and sensitivity induced by drug resistance are applicable to KRAS-mutant lung cancer cells undergoing de novo intratumor heterogeneity. In line with these findings, HSP90 inhibitors synergistically enhance antitumor effects of MTA and trametinib, validating a rational combination strategy to treat KRAS-mutant lung cancer. Collectively, these results uncover collateral vulnerabilities co-occurring with drug resistance and tumor heterogeneity, informing novel therapeutic avenues for KRAS-mutant lung cancer.
Collapse
Affiliation(s)
- Haitang Yang
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Shun-Qing Liang
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Duo Xu
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Zhang Yang
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Thomas M Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Yanyun Gao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Gregor J Kocher
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Heng Zhao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Ralph A Schmid
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland. .,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland. .,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
91
|
Sampieri L, Di Giusto P, Alvarez C. CREB3 Transcription Factors: ER-Golgi Stress Transducers as Hubs for Cellular Homeostasis. Front Cell Dev Biol 2019; 7:123. [PMID: 31334233 PMCID: PMC6616197 DOI: 10.3389/fcell.2019.00123] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
CREB3 family of transcription factors are ER localized proteins that belong to the bZIP family. They are transported from the ER to the Golgi, cleaved by S1P and S2P proteases and the released N-terminal domains act as transcription factors. CREB3 family members regulate the expression of a large variety of genes and according to their tissue-specific expression profiles they play, among others, roles in acute phase response, lipid metabolism, development, survival, differentiation, organelle autoregulation, and protein secretion. They have been implicated in the ER and Golgi stress responses as regulators of the cell secretory capacity and cell specific cargos. In this review we provide an overview of the diverse functions of each member of the family (CREB3, CREB3L1, CREB3L2, CREB3L3, CREB3L4) with special focus on their role in the central nervous system.
Collapse
Affiliation(s)
- Luciana Sampieri
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo Di Giusto
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cecilia Alvarez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
92
|
Unfolded Protein Response (UPR) in Survival, Dormancy, Immunosuppression, Metastasis, and Treatments of Cancer Cells. Int J Mol Sci 2019; 20:ijms20102518. [PMID: 31121863 PMCID: PMC6566956 DOI: 10.3390/ijms20102518] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) has diverse functions, and especially misfolded protein modification is in the focus of this review paper. With a highly regulatory mechanism, called unfolded protein response (UPR), it protects cells from the accumulation of misfolded proteins. Nevertheless, not only does UPR modify improper proteins, but it also degrades proteins that are unable to recover. Three pathways of UPR, namely PERK, IRE-1, and ATF6, have a significant role in regulating stress-induced physiological responses in cells. The dysregulated UPR may be involved in diseases, such as atherosclerosis, heart diseases, amyotrophic lateral sclerosis (ALS), and cancer. Here, we discuss the relation between UPR and cancer, considering several aspects including survival, dormancy, immunosuppression, angiogenesis, and metastasis of cancer cells. Although several moderate adversities can subject cancer cells to a hostile environment, UPR can ensure their survival. Excessive unfavorable conditions, such as overloading with misfolded proteins and nutrient deprivation, tend to trigger cancer cell death signaling. Regarding dormancy and immunosuppression, cancer cells can survive chemotherapies and acquire drug resistance through dormancy and immunosuppression. Cancer cells can also regulate the downstream of UPR to modulate angiogenesis and promote metastasis. In the end, regulating UPR through different molecular mechanisms may provide promising anticancer treatment options by suppressing cancer proliferation and progression.
Collapse
|
93
|
Darini C, Ghaddar N, Chabot C, Assaker G, Sabri S, Wang S, Krishnamoorthy J, Buchanan M, Aguilar-Mahecha A, Abdulkarim B, Deschenes J, Torres J, Ursini-Siegel J, Basik M, Koromilas AE. An integrated stress response via PKR suppresses HER2+ cancers and improves trastuzumab therapy. Nat Commun 2019; 10:2139. [PMID: 31086176 PMCID: PMC6513990 DOI: 10.1038/s41467-019-10138-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
Trastuzumab is integral to HER2+ cancer treatment, but its therapeutic index is narrowed by the development of resistance. Phosphorylation of the translation initiation factor eIF2α (eIF2α-P) is the nodal point of the integrated stress response, which promotes survival or death in a context-dependent manner. Here, we show an anti-tumor function of the protein kinase PKR and its substrate eIF2α in a mouse HER2+ breast cancer model. The anti-tumor function depends on the transcription factor ATF4, which upregulates the CDK inhibitor P21CIP1 and activates JNK1/2. The PKR/eIF2α-P arm is induced by Trastuzumab in sensitive but not resistant HER2+ breast tumors. Also, eIF2α-P stimulation by the phosphatase inhibitor SAL003 substantially increases Trastuzumab potency in resistant HER2+ breast and gastric tumors. Increased eIF2α-P prognosticates a better response of HER2+ metastatic breast cancer patients to Trastuzumab therapy. Hence, the PKR/eIF2α-P arm antagonizes HER2 tumorigenesis whereas its pharmacological stimulation improves the efficacy of Trastuzumab therapy. The HER2 monoclonal antibody, Trastuzumab, is the current standard treatment for HER2+ cancers but resistance to therapy occurs. Here, the authors show that activation of the PKR/eIF2α-P pathway exhibits anti-tumor effects in HER2+ cancer and is required for the response to Trastuzumab.
Collapse
Affiliation(s)
- Cedric Darini
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Nour Ghaddar
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada.,Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Catherine Chabot
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Gloria Assaker
- Department of Pathology, Faculty of Medicine, McGill University, Montreal, QC, H3A 2B4, Canada.,Research Institute of McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Siham Sabri
- Department of Pathology, Faculty of Medicine, McGill University, Montreal, QC, H3A 2B4, Canada.,Research Institute of McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Shuo Wang
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Jothilatha Krishnamoorthy
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Marguerite Buchanan
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Adriana Aguilar-Mahecha
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Bassam Abdulkarim
- Research Institute of McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.,Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, H4A 3T2, Canada
| | - Jean Deschenes
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Jose Torres
- Department of Pathology, Faculty of Medicine, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Josie Ursini-Siegel
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada.,Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, H4A 3T2, Canada
| | - Mark Basik
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada.,Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, H4A 3T2, Canada
| | - Antonis E Koromilas
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada. .,Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, H4A 3T2, Canada.
| |
Collapse
|
94
|
UPR: An Upstream Signal to EMT Induction in Cancer. J Clin Med 2019; 8:jcm8050624. [PMID: 31071975 PMCID: PMC6572589 DOI: 10.3390/jcm8050624] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is the organelle where newly synthesized proteins enter the secretory pathway. Different physiological and pathological conditions may perturb the secretory capacity of cells and lead to the accumulation of misfolded and unfolded proteins. To relieve the produced stress, cells evoke an adaptive signalling network, the unfolded protein response (UPR), aimed at recovering protein homeostasis. Tumour cells must confront intrinsic and extrinsic pressures during cancer progression that produce a proteostasis imbalance and ER stress. To overcome this situation, tumour cells activate the UPR as a pro-survival mechanism. UPR activation has been documented in most types of human tumours and accumulating evidence supports a crucial role for UPR in the establishment, progression, metastasis and chemoresistance of tumours as well as its involvement in the acquisition of other hallmarks of cancer. In this review, we will analyse the role of UPR in cancer development highlighting the ability of tumours to exploit UPR signalling to promote epithelial-mesenchymal transition (EMT).
Collapse
|
95
|
Emerging Roles of the Endoplasmic Reticulum Associated Unfolded Protein Response in Cancer Cell Migration and Invasion. Cancers (Basel) 2019; 11:cancers11050631. [PMID: 31064137 PMCID: PMC6562633 DOI: 10.3390/cancers11050631] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/21/2022] Open
Abstract
Endoplasmic reticulum (ER) proteostasis is often altered in tumor cells due to intrinsic (oncogene expression, aneuploidy) and extrinsic (environmental) challenges. ER stress triggers the activation of an adaptive response named the Unfolded Protein Response (UPR), leading to protein translation repression, and to the improvement of ER protein folding and clearance capacity. The UPR is emerging as a key player in malignant transformation and tumor growth, impacting on most hallmarks of cancer. As such, the UPR can influence cancer cells’ migration and invasion properties. In this review, we overview the involvement of the UPR in cancer progression. We discuss its cross-talks with the cell migration and invasion machinery. Specific aspects will be covered including extracellular matrix (ECM) remodeling, modification of cell adhesion, chemo-attraction, epithelial-mesenchymal transition (EMT), modulation of signaling pathways associated with cell mobility, and cytoskeleton remodeling. The therapeutic potential of targeting the UPR to treat cancer will also be considered with specific emphasis in the impact on metastasis and tissue invasion.
Collapse
|
96
|
Integrated Bioinformatics Analysis of Master Regulators in Anaplastic Thyroid Carcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9734576. [PMID: 31183379 PMCID: PMC6512074 DOI: 10.1155/2019/9734576] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/07/2019] [Accepted: 04/16/2019] [Indexed: 12/24/2022]
Abstract
Anaplastic thyroid carcinoma (ATC) is one of the most aggressive and rapidly lethal tumors. However, limited advances have been made to prolong the survival and to reduce the mortality over the last decades. Therefore, identifying the master regulators underlying ATC progression is desperately needed. In our present study, three datasets including GSE33630, GSE29265, and GSE65144 were retrieved from Gene Expression Omnibus with a total of 32 ATC samples and 78 normal thyroid tissues. A total of 1804 consistently changed differentially expressed genes (DEGs) were identified from three datasets. KEGG pathways enrichment suggested that upregulated DEGs were mainly enriched in ECM-receptor interaction, cell cycle, PI3K-Akt signaling pathway, focal adhesion, and p53 signaling pathway. Furthermore, key gene modules in PPI network were identified by Cytoscape plugin MCODE and they were mainly associated with DNA replication, cell cycle process, collagen fibril organization, and regulation of leukocyte migration. Additionally, TOP2A, CDK1, CCNB1, VEGFA, BIRC5, MAPK1, CCNA2, MAD2L1, CDC20, and BUB1 were identified as hub genes of the PPI network. Interestingly, module analysis showed that 8 out of 10 hub genes participated in Module 1 network and more than 70% genes of Module 2 consisted of collagen family members. Notably, transcription factors (TFs) regulatory network analysis indicated that E2F7, FOXM1, and NFYB were master regulators of Module 1, while CREB3L1 was the master regulator of Module 2. Experimental validation showed that CREB3L1, E2F7, and FOXM1 were significantly upregulated in ATC tissue and cell line when compared with normal thyroid group. In conclusion, the TFs regulatory network provided a more detail molecular mechanism underlying ATC occurrence and progression. TFs including E2F7, FOXM1, CREB3L1, and NFYB were likely to be master regulators of ATC progression, suggesting their potential role as molecular therapeutic targets in ATC treatment.
Collapse
|
97
|
Activation of the PERK-ATF4 pathway promotes chemo-resistance in colon cancer cells. Sci Rep 2019; 9:3210. [PMID: 30824833 PMCID: PMC6397152 DOI: 10.1038/s41598-019-39547-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 01/17/2019] [Indexed: 12/16/2022] Open
Abstract
Colon cancer is a major health problem worldwide. While chemotherapy remains a main approach for treating late-stage colon cancer patients, most, if not all, of them will develop drug resistance and die of uncontrollable disease progression eventually. Therefore, identification of mechanism of drug resistance and development of overcoming strategy hold great significance in management of colon cancer. In this study, we discovered that activation of the PERK branch of the unfolded protein response (UPR) pathways is required for colon cancer cells to survive treatment of 5-Fluorouracil (5-FU), one of the first-line chemotherapeutics for late-stage colon cancer patients. Genetic and pharmacological inhibition of PERK or its downstream factors greatly sensitize colon cancer cells to 5-FU. Most importantly, in vivo use of PERK inhibitor synergizes with 5-FU in suppressing the growth of colon cancer cells in mouse models. In summary, our findings established a promising way to overcome resistance to chemotherapy in colon cancer.
Collapse
|
98
|
Sisinni L, Pietrafesa M, Lepore S, Maddalena F, Condelli V, Esposito F, Landriscina M. Endoplasmic Reticulum Stress and Unfolded Protein Response in Breast Cancer: The Balance between Apoptosis and Autophagy and Its Role in Drug Resistance. Int J Mol Sci 2019; 20:ijms20040857. [PMID: 30781465 PMCID: PMC6412864 DOI: 10.3390/ijms20040857] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
The unfolded protein response (UPR) is a stress response activated by the accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum (ER) and its uncontrolled activation is mechanistically responsible for several human pathologies, including metabolic, neurodegenerative, and inflammatory diseases, and cancer. Indeed, ER stress and the downstream UPR activation lead to changes in the levels and activities of key regulators of cell survival and autophagy and this is physiologically finalized to restore metabolic homeostasis with the integration of pro-death or/and pro-survival signals. By contrast, the chronic activation of UPR in cancer cells is widely considered a mechanism of tumor progression. In this review, we focus on the relationship between ER stress, apoptosis, and autophagy in human breast cancer and the interplay between the activation of UPR and resistance to anticancer therapies with the aim to disclose novel therapeutic scenarios. The hypothesis that autophagy and UPR may provide novel molecular targets in human malignancies is discussed.
Collapse
Affiliation(s)
- Lorenza Sisinni
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Silvia Lepore
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, 80131 Naples, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy.
| |
Collapse
|
99
|
García-Jiménez C, Goding CR. Starvation and Pseudo-Starvation as Drivers of Cancer Metastasis through Translation Reprogramming. Cell Metab 2019; 29:254-267. [PMID: 30581118 PMCID: PMC6365217 DOI: 10.1016/j.cmet.2018.11.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Considerable progress has been made in identifying microenvironmental signals that effect the reversible phenotypic transitions underpinning the early steps in the metastatic cascade. However, although the general principles underlying metastatic dissemination have been broadly outlined, a common theme that unifies many of the triggers of invasive behavior in tumors has yet to emerge. Here we discuss how many diverse signals that induce invasion converge on the reprogramming of protein translation via phosphorylation of eIF2α, a hallmark of the starvation response. These include starvation as a consequence of nutrient or oxygen limitation, or pseudo-starvation imposed by cell-extrinsic microenvironmental signals or by cell-intrinsic events, including oncogene activation. Since in response to resource limitation single-cell organisms undergo phenotypic transitions remarkably similar to those observed within tumors, we propose that a starvation/pseudo-starvation model to explain cancer progression provides an integrated and evolutionarily conserved conceptual framework to understand the progression of this complex disease.
Collapse
Affiliation(s)
- Custodia García-Jiménez
- Area de Fisiología, Facultad de CC de la Salud, Universidad Rey Juan Carlos, Avenida Atenas s/n, Alcorcón, Madrid 28922, Spain
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Old Road Campus, Headington, Oxford OX3 7DQ, UK.
| |
Collapse
|
100
|
Selective Editing of Herpes Simplex Virus 1 Enables Interferon Induction and Viral Replication That Destroy Malignant Cells. J Virol 2019; 93:JVI.01761-18. [PMID: 30404809 DOI: 10.1128/jvi.01761-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/28/2018] [Indexed: 12/17/2022] Open
Abstract
Oncolytic herpes simplex virus 1 (HSV-1), devoid of the γ134.5 gene, exerts antitumor activities. However, the oncolytic effects differ, ranging from pronounced to little responses. Although viral and host factors are involved, much remains to be deciphered. Here we report that engineered HSV-1 ΔN146, bearing amino acids 147 to 263 of γ134.5, replicates competently in and lyses malignant cells refractory to the γ134.5 null mutant. Upon infection, ΔN146 precludes phosphorylation of translation initiation factor eIF2α (α subunit of eukaryotic initiation factor 2), ensuring viral protein synthesis. On the other hand, ΔN146 activates interferon (IFN) regulatory factor 3 (IRF3) and IFN expression, known to prime immunity against virus and tumor. Nevertheless, ΔN146 exhibits sustained replication even exposed to exogenous IFN-α. In a 4T1 tumor model, ΔN146 markedly reduces tumor growth and metastasis formation. This coincides with viral replication or T cell infiltration in primary tumors. ΔN146 is undetectable in normal tissues in vivo Targeted HSV-1 editing results in a unique antineoplastic agent that enables inflammation without major interference of viral growth within tumor cells.IMPORTANCE Oncolytic herpes simplex virus 1 is a promising agent for cancer immunotherapy. Due to a complex virus-host interaction, less is clear about what viral signature(s) constitutes a potent oncolytic backbone. Through molecular or genetic dissection, we showed that selective editing of the γ134.5 gene enables viral replication in malignant cells, activation of transcription factor IRF3, and subsequent induction of type I IFN. This translates into profoundly reduced primary tumor growth and metastasis burden in an aggressive breast carcinoma model in vivo Our work reveals a distinct oncolytic platform that is amendable for further development.
Collapse
|