51
|
Ganesh RB, Maerkl SJ. Biochemistry of Aminoacyl tRNA Synthetase and tRNAs and Their Engineering for Cell-Free and Synthetic Cell Applications. Front Bioeng Biotechnol 2022; 10:918659. [PMID: 35845409 PMCID: PMC9283866 DOI: 10.3389/fbioe.2022.918659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-free biology is increasingly utilized for engineering biological systems, incorporating novel functionality, and circumventing many of the complications associated with cells. The central dogma describes the information flow in biology consisting of transcription and translation steps to decode genetic information. Aminoacyl tRNA synthetases (AARSs) and tRNAs are key components involved in translation and thus protein synthesis. This review provides information on AARSs and tRNA biochemistry, their role in the translation process, summarizes progress in cell-free engineering of tRNAs and AARSs, and discusses prospects and challenges lying ahead in cell-free engineering.
Collapse
|
52
|
Fu X, Huang Y, Shen Y. Improving the Efficiency and Orthogonality of Genetic Code Expansion. BIODESIGN RESEARCH 2022; 2022:9896125. [PMID: 37850140 PMCID: PMC10521639 DOI: 10.34133/2022/9896125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/20/2022] [Indexed: 10/19/2023] Open
Abstract
The site-specific incorporation of the noncanonical amino acid (ncAA) into proteins via genetic code expansion (GCE) has enabled the development of new and powerful ways to learn, regulate, and evolve biological functions in vivo. However, cellular biosynthesis of ncAA-containing proteins with high efficiency and fidelity is a formidable challenge. In this review, we summarize up-to-date progress towards improving the efficiency and orthogonality of GCE and enhancing intracellular compatibility of introduced translation machinery in the living cells by creation and optimization of orthogonal translation components, constructing genomically recoded organism (GRO), utilization of unnatural base pairs (UBP) and quadruplet codons (four-base codons), and spatial separation of orthogonal translation.
Collapse
Affiliation(s)
- Xian Fu
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120China
| | - Yijian Huang
- BGI-Shenzhen, Shenzhen 518083, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
53
|
GAN R, Cabezas MD, Pan M, Zhang H, Hu G, Clark LG, Jewett MC, Nicol R. High-Throughput Regulatory Part Prototyping and Analysis by Cell-Free Protein Synthesis and Droplet Microfluidics. ACS Synth Biol 2022; 11:2108-2120. [PMID: 35549070 DOI: 10.1021/acssynbio.2c00050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Engineering regulatory parts for improved performance in genetic programs has played a pivotal role in the development of the synthetic biology cell programming toolbox. Here, we report the development of a novel high-throughput platform for regulatory part prototyping and analysis that leverages the advantages of engineered DNA libraries, cell-free protein synthesis (CFPS), high-throughput emulsion droplet microfluidics, standard flow sorting adapted to screen droplet reactions, and next-generation sequencing (NGS). With this integrated platform, we screened the activity of millions of genetic parts within hours, followed by NGS retrieval of the improved designs. This in vitro platform is particularly valuable for engineering regulatory parts of nonmodel organisms, where in vivo high-throughput screening methods are not readily available. The platform can be extended to multipart screening of complete genetic programs to optimize yield and stability.
Collapse
Affiliation(s)
- Rui GAN
- Broad Institute of MIT and Harvard, Cambridge, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Maria D. Cabezas
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3120, United States
| | - Ming Pan
- Broad Institute of MIT and Harvard, Cambridge, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Huaibin Zhang
- Broad Institute of MIT and Harvard, Cambridge, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Gang Hu
- Broad Institute of MIT and Harvard, Cambridge, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Lauren G. Clark
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3120, United States
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3120, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3120, United States
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3120, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3120, United States
| | - Robert Nicol
- Broad Institute of MIT and Harvard, Cambridge, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
54
|
Zubi YS, Seki K, Li Y, Hunt AC, Liu B, Roux B, Jewett MC, Lewis JC. Metal-responsive regulation of enzyme catalysis using genetically encoded chemical switches. Nat Commun 2022; 13:1864. [PMID: 35387988 PMCID: PMC8987029 DOI: 10.1038/s41467-022-29239-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
Dynamic control over protein function is a central challenge in synthetic biology. To address this challenge, we describe the development of an integrated computational and experimental workflow to incorporate a metal-responsive chemical switch into proteins. Pairs of bipyridinylalanine (BpyAla) residues are genetically encoded into two structurally distinct enzymes, a serine protease and firefly luciferase, so that metal coordination biases the conformations of these enzymes, leading to reversible control of activity. Computational analysis and molecular dynamics simulations are used to rationally guide BpyAla placement, significantly reducing experimental workload, and cell-free protein synthesis coupled with high-throughput experimentation enable rapid prototyping of variants. Ultimately, this strategy yields enzymes with a robust 20-fold dynamic range in response to divalent metal salts over 24 on/off switches, demonstrating the potential of this approach. We envision that this strategy of genetically encoding chemical switches into enzymes will complement other protein engineering and synthetic biology efforts, enabling new opportunities for applications where precise regulation of protein function is critical.
Collapse
Affiliation(s)
- Yasmine S Zubi
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Kosuke Seki
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Ying Li
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Andrew C Hunt
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Bingqing Liu
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
55
|
Perez JG, Carlson ED, Weisser O, Kofman C, Seki K, Des Soye BJ, Karim AS, Jewett MC. Improving genomically recoded Escherichia coli to produce proteins containing non-canonical amino acids. Biotechnol J 2022; 17:e2100330. [PMID: 34894206 DOI: 10.1002/biot.202100330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
A genomically recoded Escherichia coli strain that lacks all amber codons and release factor 1 (C321.∆A) enables efficient genetic encoding of chemically diverse non-canonical amino acids (ncAAs) into proteins. While C321.∆A has opened new opportunities in chemical and synthetic biology, this strain has not been optimized for protein production, limiting its utility in widespread industrial and academic applications. To address this limitation, the construction of a series of genomically recoded organisms that are optimized for cellular protein production is described. It is demonstrated that the functional deactivation of nucleases (e.g., rne, endA) and proteases (e.g., lon) increases production of wild-type superfolder green fluorescent protein (sfGFP) and sfGFP containing two ncAAs up to ≈5-fold. Additionally, a genomic IPTG-inducible T7 RNA polymerase (T7RNAP) cassette into these strains is introduced. Using an optimized platform, the ability to introduce two identical N6 -(propargyloxycarbonyl)-L -Lysine residues site specifically into sfGFP with a 17-fold improvement in production relative to the parent strain is demonstrated. The authors envision that their library of organisms will provide the community with multiple options for increased expression of proteins with new and diverse chemistries.
Collapse
Affiliation(s)
- Jessica G Perez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Erik D Carlson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Oliver Weisser
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Camila Kofman
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Kosuke Seki
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Benjamin J Des Soye
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
56
|
Sato W, Zajkowski T, Moser F, Adamala KP. Synthetic cells in biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1761. [PMID: 34725945 PMCID: PMC8918002 DOI: 10.1002/wnan.1761] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Synthetic cells are engineered vesicles that can mimic one or more salient features of life. These features include directed localization, sense-and-respond behavior, gene expression, metabolism, and high stability. In nanomedicine, many of these features are desirable capabilities of drug delivery vehicles but are difficult to engineer. In this focus article, we discuss where synthetic cells offer unique advantages over nanoparticle and living cell therapies. We review progress in the engineering of the above life-like behaviors and how they are deployed in nanomedicine. Finally, we assess key challenges synthetic cells face before being deployed as drugs and suggest ways to overcome these challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Wakana Sato
- 1 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN US
| | - Tomasz Zajkowski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
- USRA at NASA Ames Research Center, Mountain View, CA 94035
- Blue Marble Space Institute of Science, 600 1st Avenue, Seattle WA 98104
| | - Felix Moser
- Synlife, Inc., One Kendall Square Suite B4401, Cambridge, MA 20139
| | - Katarzyna P. Adamala
- 1 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN US
| |
Collapse
|
57
|
Hou J, Chen X, Jiang N, Wang Y, Cui Y, Ma L, Lin Y, Lu Y. Toward efficient multiple-site incorporation of unnatural amino acids using cell-free translation system. Synth Syst Biotechnol 2022; 7:522-532. [PMID: 35024479 PMCID: PMC8718814 DOI: 10.1016/j.synbio.2021.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 11/15/2022] Open
Abstract
Amber suppression has been widely used to incorporate unnatural amino acids (UNAAs) with unique structures or functional side-chain groups into specific sites of the target protein, which expands the scope of protein-coding chemistry. However, this traditional strategy does not allow multiple-site incorporation of different UNAAs into a single protein, which limits the development of unnatural proteins. To address this challenge, the suppression method using multiple termination codons (TAG, TAA or TGA) was proposed, and cell-free unnatural protein synthesis (CFUPS) system was employed. By the analysis of incorporating 3 different UNAAs (p-propargyloxy-l-phenylalanine, p-azyl-phenylalanine and L-4-Iodophenylalanine) and mass spectrometry, the simultaneous usage of the codons TAG and TAA were suggested for better multiple-site UNAA incorporation. The CFUPS conditions were further optimized for better UNAA incorporation efficiency, including the orthogonal translation system (OTS) components, magnesium ions, and the redox environment. This study established a CFUPS approach based on multiple termination codon suppression to achieve efficient and precise incorporation of different types of UNAAs, thereby synthesizing unnatural proteins with novel physicochemical functions.
Collapse
Affiliation(s)
- Jiaqi Hou
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xinjie Chen
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Nan Jiang
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanan Wang
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yi Cui
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Lianju Ma
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
58
|
Romantseva EF, Tack DS, Alperovich N, Ross D, Strychalski EA. Best Practices for DNA Template Preparation Toward Improved Reproducibility in Cell-Free Protein Production. Methods Mol Biol 2022; 2433:3-50. [PMID: 34985735 DOI: 10.1007/978-1-0716-1998-8_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Performance variability is a common challenge in cell-free protein production and hinders a wider adoption of these systems for both research and biomanufacturing. While the inherent stochasticity and complexity of biology likely contributes to variability, other systematic factors may also play a role, including the source and preparation of the cell extract, the composition of the supplemental reaction buffer, the facility at which experiments are conducted, and the human operator (Cole et al. ACS Synth Biol 8:2080-2091, 2019). Variability in protein production could also arise from differences in the DNA template-specifically the amount of functional DNA added to a cell-free reaction and the quality of the DNA preparation in terms of contaminants and strand breakage. Here, we present protocols and suggest best practices optimized for DNA template preparation and quantitation for cell-free systems toward reducing variability in cell-free protein production.
Collapse
Affiliation(s)
| | - Drew S Tack
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Nina Alperovich
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - David Ross
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | |
Collapse
|
59
|
Xu H, Liu WQ, Li J. A Streptomyces-Based Cell-Free Protein Synthesis System for High-Level Protein Expression. Methods Mol Biol 2022; 2433:89-103. [PMID: 34985739 DOI: 10.1007/978-1-0716-1998-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the rapid development of cell-free biotechnology, more and more cell-free protein synthesis (CFPS) systems have been established and optimized for protein expression in vitro. Here, we aim to improve the productivity of a newly developed Streptomyces-based CFPS system. Protein translation in CFPS systems depends on the entire endogenous translation system from cell lysates. However, lysates might lack such translation-related elements, limiting the efficiency of protein translation and therefore the productivity of CFPS systems. To address this limitation, we sought to add protein translation related factors to CFPS reactions. By doing this, the protein yield of EGFP was significantly improved up to approximately 400 μg/mL. In this chapter, we mainly describe the preparation of Streptomyces cell extracts, expression and purification of nine translation related factors, and optimization of the Streptomyces-based CFPS system for enhanced protein expression.
Collapse
Affiliation(s)
- Huiling Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
60
|
Streamlining cell-free protein synthesis biosensors for use in human fluids: In situ RNase inhibitor production during extract preparation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
61
|
Gurzeler LA, Ziegelmüller J, Mühlemann O, Karousis ED. Production of human translation-competent lysates using dual centrifugation. RNA Biol 2022; 19:78-88. [PMID: 34965175 PMCID: PMC8815625 DOI: 10.1080/15476286.2021.2014695] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Protein synthesis is a central process in gene expression and the development of efficient in vitro translation systems has been the focus of scientific efforts for decades. The production of translation-competent lysates originating from human cells or tissues remains challenging, mainly due to the variability of cell lysis conditions. Here we present a robust and fast method based on dual centrifugation that allows for detergent-free cell lysis under controlled mechanical forces. We optimized the lysate preparation to yield cytoplasm-enriched extracts from human cells that efficiently translate mRNAs in a cap-dependent as well as in an IRES-mediated way. Reduction of the phosphorylation state of eIF2α using recombinant GADD34 and 2-aminopurine considerably boosts the protein output, reinforcing the potential of this method to produce recombinant proteins from human lysates.
Collapse
Affiliation(s)
- Lukas-Adrian Gurzeler
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jana Ziegelmüller
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Evangelos D. Karousis
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
62
|
Banks AM, Whitfield CJ, Brown SR, Fulton DA, Goodchild SA, Grant C, Love J, Lendrem DW, Fieldsend JE, Howard TP. Key reaction components affect the kinetics and performance robustness of cell-free protein synthesis reactions. Comput Struct Biotechnol J 2021; 20:218-229. [PMID: 35024094 PMCID: PMC8718664 DOI: 10.1016/j.csbj.2021.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Cell-free protein synthesis (CFPS) reactions have grown in popularity with particular interest in applications such as gene construct prototyping, biosensor technologies and the production of proteins with novel chemistry. Work has frequently focussed on optimising CFPS protocols for improving protein yield, reducing cost, or developing streamlined production protocols. Here we describe a statistical Design of Experiments analysis of 20 components of a popular CFPS reaction buffer. We simultaneously identify factors and factor interactions that impact on protein yield, rate of reaction, lag time and reaction longevity. This systematic experimental approach enables the creation of a statistical model capturing multiple behaviours of CFPS reactions in response to components and their interactions. We show that a novel reaction buffer outperforms the reference reaction by 400% and importantly reduces failures in CFPS across batches of cell lysates, strains of E. coli, and in the synthesis of different proteins. Detailed and quantitative understanding of how reaction components affect kinetic responses and robustness is imperative for future deployment of cell-free technologies.
Collapse
Key Words
- 3-PGA, 3-phosphoglyceric acid
- ATP, adenosine triphosphate
- Automation
- CFE, cell-free extract
- CFPS, cell-free protein synthesis
- CTP, cytidine triphosphate
- Cell-free protein synthesis (CFPS)
- CoA, coenzyme A
- DSD, Definitive Screening Design
- DTT, dithiothreitol
- Design of Experiments (DoE)
- DoE, Design of Experiments
- FEU, fluorescein equivalent units
- G-6-P, glucose-6-phosphate
- GTP, guanosine triphosphate
- HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- K-glutamate, potassium glutamate
- LB, lysogeny broth
- Mg, magnesium glutamate
- NAD, nicotinamide adenine dinucleotide
- NTP, nucleoside triphosphate
- OFAT, one-factor-at-a-time
- PEG-8000, polyethylene glycol 8000
- PEP, phosphoenolpyruvate
- RFU, relative fluorescence units
- RSM, Response Surface Model
- Robustness
- Statistical engineering
- UTP, uridine triphosphate
- X-gal, 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside
- cAMP, cyclic adenosine monophosphate
- eGFP, enhanced green fluorescent protein
- tRNA, transfer ribonucleic acid
Collapse
Affiliation(s)
- Alice M. Banks
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Colette J. Whitfield
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | | | - David A. Fulton
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Sarah A. Goodchild
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom
| | | | - John Love
- Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Dennis W. Lendrem
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | | | - Thomas P. Howard
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
63
|
Tang H, Zhang P, Luo X. Recent Technologies for Genetic Code Expansion and their Implications on Synthetic Biology Applications. J Mol Biol 2021; 434:167382. [PMID: 34863778 DOI: 10.1016/j.jmb.2021.167382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
Genetic code expansion (GCE) enables the site-specific incorporation of non-canonical amino acids as novel building blocks for the investigation and manipulation of proteins. The advancement of genetic code expansion has been benefited from the development of synthetic biology, while genetic code expansion also helps to create more synthetic biology tools. In this review, we summarize recent advances in genetic code expansion brought by synthetic biology progresses, including engineering of the translation machinery, genome-wide codon reassignment, and the biosynthesis of non-canonical amino acids. We highlight the emerging application of this technology in construction of new synthetic biology parts, circuits, chassis, and products.
Collapse
Affiliation(s)
- Hongting Tang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pan Zhang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
64
|
|
65
|
Dudley QM, Cai YM, Kallam K, Debreyne H, Carrasco Lopez JA, Patron NJ. Biofoundry-assisted expression and characterization of plant proteins. Synth Biol (Oxf) 2021; 6:ysab029. [PMID: 34693026 PMCID: PMC8529701 DOI: 10.1093/synbio/ysab029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 12/29/2022] Open
Abstract
Many goals in synthetic biology, including the elucidation and refactoring of biosynthetic pathways and the engineering of regulatory circuits and networks, require knowledge of protein function. In plants, the prevalence of large gene families means it can be particularly challenging to link specific functions to individual proteins. However, protein characterization has remained a technical bottleneck, often requiring significant effort to optimize expression and purification protocols. To leverage the ability of biofoundries to accelerate design-built-test-learn cycles, we present a workflow for automated DNA assembly and cell-free expression of plant proteins that accelerates optimization and enables rapid screening of enzyme activity. First, we developed a phytobrick-compatible Golden Gate DNA assembly toolbox containing plasmid acceptors for cell-free expression using Escherichia coli or wheat germ lysates as well as a set of N- and C-terminal tag parts for detection, purification and improved expression/folding. We next optimized automated assembly of miniaturized cell-free reactions using an acoustic liquid handling platform and then compared tag configurations to identify those that increase expression. We additionally developed a luciferase-based system for rapid quantification that requires a minimal 11-amino acid tag and demonstrate facile removal of tags following synthesis. Finally, we show that several functional assays can be performed with cell-free protein synthesis reactions without the need for protein purification. Together, the combination of automated assembly of DNA parts and cell-free expression reactions should significantly increase the throughput of experiments to test and understand plant protein function and enable the direct reuse of DNA parts in downstream plant engineering workflows.
Collapse
Affiliation(s)
- Quentin M Dudley
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk UK
| | - Yao-Min Cai
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk UK
| | - Kalyani Kallam
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk UK
| | - Hubert Debreyne
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk UK
| | | | - Nicola J Patron
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk UK
| |
Collapse
|
66
|
An integrated in vivo/in vitro framework to enhance cell-free biosynthesis with metabolically rewired yeast extracts. Nat Commun 2021; 12:5139. [PMID: 34446711 PMCID: PMC8390474 DOI: 10.1038/s41467-021-25233-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-free systems using crude cell extracts present appealing opportunities for designing biosynthetic pathways and enabling sustainable chemical synthesis. However, the lack of tools to effectively manipulate the underlying host metabolism in vitro limits the potential of these systems. Here, we create an integrated framework to address this gap that leverages cell extracts from host strains genetically rewired by multiplexed CRISPR-dCas9 modulation and other metabolic engineering techniques. As a model, we explore conversion of glucose to 2,3-butanediol in extracts from flux-enhanced Saccharomyces cerevisiae strains. We show that cellular flux rewiring in several strains of S. cerevisiae combined with systematic optimization of the cell-free reaction environment significantly increases 2,3-butanediol titers and volumetric productivities, reaching productivities greater than 0.9 g/L-h. We then show the generalizability of the framework by improving cell-free itaconic acid and glycerol biosynthesis. Our coupled in vivo/in vitro metabolic engineering approach opens opportunities for synthetic biology prototyping efforts and cell-free biomanufacturing.
Collapse
|
67
|
Artificial cells for the treatment of liver diseases. Acta Biomater 2021; 130:98-114. [PMID: 34126265 DOI: 10.1016/j.actbio.2021.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
Liver diseases have become an increasing health burden and account for over 2 million deaths every year globally. Standard therapies including liver transplant and cell therapy offer a promising treatment for liver diseases, but they also suffer limitations such as adverse immune reactions and lack of long-term efficacy. Artificial cells that mimic certain functions of a living cell have emerged as a new strategy to overcome some of the challenges that liver cell therapy faces at present. Artificial cells have demonstrated advantages in long-term storage, targeting capability, and tuneable features. This article provides an overview of the recent progress in developing artificial cells and their potential applications in liver disease treatment. First, the design of artificial cells and their biomimicking functions are summarized. Then, systems that mimic cell surface properties are introduced with two concepts highlighted: cell membrane-coated artificial cells and synthetic lipid-based artificial cells. Next, cell microencapsulation strategy is summarized and discussed. Finally, challenges and future perspectives of artificial cells are outlined. STATEMENT OF SIGNIFICANCE: Liver diseases have become an increasing health burden. Standard therapies including liver transplant and cell therapy offer a promising treatment for liver diseases, but they have limitations such as adverse immune reactions and lack of long-term efficacy. Artificial cells that mimic certain functions of a living cell have emerged as a new strategy to overcome some of the challenges that liver cell therapy faces at present. This article provides an overview of the recent progress in developing artificial cells and their potential applications in liver disease treatment, including the design of artificial cells and their biomimicking functions, two systems that mimic cell surface properties (cell membrane-coated artificial cells and synthetic lipid-based artificial cells), and cell microencapsulation strategy. We also outline the challenges and future perspectives of artificial cells.
Collapse
|
68
|
Yang C, Liu Y, Liu WQ, Wu C, Li J. Designing Modular Cell-free Systems for Tunable Biotransformation of l-phenylalanine to Aromatic Compounds. Front Bioeng Biotechnol 2021; 9:730663. [PMID: 34395411 PMCID: PMC8355704 DOI: 10.3389/fbioe.2021.730663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Cell-free systems have been used to synthesize chemicals by reconstitution of in vitro expressed enzymes. However, coexpression of multiple enzymes to reconstitute long enzymatic pathways is often problematic due to resource limitation/competition (e.g., energy) in the one-pot cell-free reactions. To address this limitation, here we aim to design a modular, cell-free platform to construct long biosynthetic pathways for tunable synthesis of value-added aromatic compounds, using (S)-1-phenyl-1,2-ethanediol ((S)-PED) and 2-phenylethanol (2-PE) as models. Initially, all enzymes involved in the biosynthetic pathways were individually expressed by an E. coli-based cell-free protein synthesis (CFPS) system and their catalytic activities were confirmed. Then, three sets of enzymes were coexpressed in three cell-free modules and each with the ability to complete a partial pathway. Finally, the full biosynthetic pathways were reconstituted by mixing two related modules to synthesize (S)-PED and 2-PE, respectively. After optimization, the final conversion rates for (S)-PED and 2-PE reached 100 and 82.5%, respectively, based on the starting substrate of l-phenylalanine. We anticipate that the modular cell-free approach will make a possible efficient and high-yielding biosynthesis of value-added chemicals.
Collapse
Affiliation(s)
- Chen Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yushi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Changzhu Wu
- Danish Institute for Advanced Study (DIAS) and Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
69
|
Through the looking glass: milestones on the road towards mirroring life. Trends Biochem Sci 2021; 46:931-943. [PMID: 34294544 DOI: 10.1016/j.tibs.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/05/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022]
Abstract
Naturally occurring DNA, RNA, and proteins predominantly exist in only one enantiomeric form (homochirality). Advances in biotechnology and chemical synthesis allow the production of the respective alternate enantiomeric form, enabling access to mirror-image versions of these natural biopolymers. Exploiting the unique properties of such mirror molecules has already led to many applications, such as biostable and nonimmunogenic therapeutics or sensors. However, a 'roadblock' for unlocking the mirror world is the lack of biological systems capable of synthesizing critical building blocks including mirror oligonucleotides and oligopeptides to reducing cost and improve purity. Here, we provide an overview of the current progress, applications, and challenges of the molecular mirror world by identifying milestones towards mirroring life.
Collapse
|
70
|
Jenkins IC, Milligan JJ, Chilkoti A. Genetically Encoded Elastin-Like Polypeptides for Drug Delivery. Adv Healthc Mater 2021; 10:e2100209. [PMID: 34080796 DOI: 10.1002/adhm.202100209] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/14/2021] [Indexed: 12/19/2022]
Abstract
Elastin-like polypeptides (ELPs) are thermally responsive biopolymers that consist of a repeated amino acid motif derived from human tropoelastin. These peptides exhibit temperature-dependent phase behavior that can be harnessed to produce stimuli-responsive biomaterials, such as nanoparticles or injectable drug delivery depots. As ELPs are genetically encoded, the properties of ELP-based biomaterials can be controlled with a precision that is unattainable with synthetic polymers. Unique ELP architectures, such as spherical or rod-like micelles or injectable coacervates, can be designed by manipulating the ELP amino acid sequence and length. ELPs can be loaded with drugs to create controlled, intelligent drug delivery systems. ELPs are biodegradable, nonimmunogenic, and tolerant of therapeutic additives. These qualities make ELPs exquisitely well-suited to address current challenges in drug delivery and have spurred the development of ELP-based therapeutics to treat diseases-such as cancer and diabetes-and to promote wound healing. This review focuses on the use of ELPs in drug delivery systems.
Collapse
Affiliation(s)
- Irene C. Jenkins
- Department of Biomedical Engineering Duke University Durham NC 277018 USA
| | - Joshua J. Milligan
- Department of Biomedical Engineering Duke University Durham NC 277018 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering Duke University Durham NC 277018 USA
| |
Collapse
|
71
|
Choi YN, Shin YR, Park JM, Lee JW. Cell-Free Transcription-Coupled CRISPR/Cas12a Assay for Prototyping Cyanobacterial Promoters. ACS Synth Biol 2021; 10:1300-1307. [PMID: 34015913 DOI: 10.1021/acssynbio.1c00148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyanobacteria are promising microbial hosts for the production of diverse biofuels and biochemicals. However, compared to other model microbial hosts such as Escherichia coli and yeast, it takes a long time to genetically modify cyanobacteria. One way to efficiently engineer cyanobacteria while minimizing genetic engineering would be to develop a fast, high-throughput prototyping tool for cyanobacteria. In this study, we developed a CRISPR/Cas12a-based assay coupled with cyanobacteria cell-free systems to rapidly prototype promoter characteristics. Using this newly developed assay, we demonstrated cyanobacteria cell-free transcription for the first time and confirmed a positive correlation between the in vitro and in vivo transcription performance. Furthermore, we generated a synthetic promoter library and evaluated the characteristics of promoter subregions by using the assay. Varied promoter strength derived from random mutations were rapidly and effectively measured in a high-throughput way. We believe that this study offers an easily applicable and rapid prototyping platform to characterize promoters for cyanobacterial engineering.
Collapse
Affiliation(s)
- Yun-Nam Choi
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Ye Rim Shin
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Jong Moon Park
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Integrated Technology, Yonsei University (POSTECH-Yonsei Open Campus), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673, Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Integrated Technology, Yonsei University (POSTECH-Yonsei Open Campus), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673, Korea
| |
Collapse
|
72
|
Meyer C, Nakamura Y, Rasor BJ, Karim AS, Jewett MC, Tan C. Analysis of the Innovation Trend in Cell-Free Synthetic Biology. Life (Basel) 2021; 11:551. [PMID: 34208358 PMCID: PMC8231175 DOI: 10.3390/life11060551] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 01/21/2023] Open
Abstract
Cell-free synthetic biology is a maturing field that aims to assemble biomolecular reactions outside cells for compelling applications in drug discovery, metabolic engineering, biomanufacturing, diagnostics, and education. Cell-free systems have several key features. They circumvent mechanisms that have evolved to facilitate species survival, bypass limitations on molecular transport across the cell wall, enable high-yielding and rapid synthesis of proteins without creating recombinant cells, and provide high tolerance towards toxic substrates or products. Here, we analyze ~750 published patents and ~2000 peer-reviewed manuscripts in the field of cell-free systems. Three hallmarks emerged. First, we found that both patent filings and manuscript publications per year are significantly increasing (five-fold and 1.5-fold over the last decade, respectively). Second, we observed that the innovation landscape has changed. Patent applications were dominated by Japan in the early 2000s before shifting to China and the USA in recent years. Finally, we discovered an increasing prevalence of biotechnology companies using cell-free systems. Our analysis has broad implications on the future development of cell-free synthetic biology for commercial and industrial applications.
Collapse
Affiliation(s)
- Conary Meyer
- Department of Biomedical Engineering, University of California, Davis, CA 95618, USA; (C.M.); (Y.N.)
| | - Yusuke Nakamura
- Department of Biomedical Engineering, University of California, Davis, CA 95618, USA; (C.M.); (Y.N.)
| | - Blake J. Rasor
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; (B.J.R.); (A.S.K.); (M.C.J.)
| | - Ashty S. Karim
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; (B.J.R.); (A.S.K.); (M.C.J.)
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; (B.J.R.); (A.S.K.); (M.C.J.)
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California, Davis, CA 95618, USA; (C.M.); (Y.N.)
| |
Collapse
|
73
|
Kofman C, Lee J, Jewett MC. Engineering molecular translation systems. Cell Syst 2021; 12:593-607. [PMID: 34139167 DOI: 10.1016/j.cels.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/19/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022]
Abstract
Molecular translation systems provide a genetically encoded framework for protein synthesis, which is essential for all life. Engineering these systems to incorporate non-canonical amino acids (ncAAs) into peptides and proteins has opened many exciting opportunities in chemical and synthetic biology. Here, we review recent advances that are transforming our ability to engineer molecular translation systems. In cell-based systems, new processes to synthesize recoded genomes, tether ribosomal subunits, and engineer orthogonality with high-throughput workflows have emerged. In cell-free systems, adoption of flexizyme technology and cell-free ribosome synthesis and evolution platforms are expanding the limits of chemistry at the ribosome's RNA-based active site. Looking forward, innovations will deepen understanding of molecular translation and provide a path to polymers with previously unimaginable structures and functions.
Collapse
Affiliation(s)
- Camila Kofman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Joongoo Lee
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Interdisplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA; Simpson Querrey Institute, Northwestern University, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
74
|
Hershewe JM, Warfel KF, Iyer SM, Peruzzi JA, Sullivan CJ, Roth EW, DeLisa MP, Kamat NP, Jewett MC. Improving cell-free glycoprotein synthesis by characterizing and enriching native membrane vesicles. Nat Commun 2021; 12:2363. [PMID: 33888690 PMCID: PMC8062659 DOI: 10.1038/s41467-021-22329-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/08/2021] [Indexed: 02/02/2023] Open
Abstract
Cell-free gene expression (CFE) systems from crude cellular extracts have attracted much attention for biomanufacturing and synthetic biology. However, activating membrane-dependent functionality of cell-derived vesicles in bacterial CFE systems has been limited. Here, we address this limitation by characterizing native membrane vesicles in Escherichia coli-based CFE extracts and describing methods to enrich vesicles with heterologous, membrane-bound machinery. As a model, we focus on bacterial glycoengineering. We first use multiple, orthogonal techniques to characterize vesicles and show how extract processing methods can be used to increase concentrations of membrane vesicles in CFE systems. Then, we show that extracts enriched in vesicle number also display enhanced concentrations of heterologous membrane protein cargo. Finally, we apply our methods to enrich membrane-bound oligosaccharyltransferases and lipid-linked oligosaccharides for improving cell-free N-linked and O-linked glycoprotein synthesis. We anticipate that these methods will facilitate on-demand glycoprotein production and enable new CFE systems with membrane-associated activities.
Collapse
Affiliation(s)
- Jasmine M Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
| | - Shaelyn M Iyer
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
| | - Justin A Peruzzi
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
| | - Claretta J Sullivan
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization and Experimentation (NUANCE) Center, Tech Institute A/B Wing A173, Evanston, IL, 60208, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Biomedical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Neha P Kamat
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Technological Institute E310, Evanston, IL, 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
75
|
Fogeron ML, Lecoq L, Cole L, Harbers M, Böckmann A. Easy Synthesis of Complex Biomolecular Assemblies: Wheat Germ Cell-Free Protein Expression in Structural Biology. Front Mol Biosci 2021; 8:639587. [PMID: 33842544 PMCID: PMC8027086 DOI: 10.3389/fmolb.2021.639587] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-free protein synthesis (CFPS) systems are gaining more importance as universal tools for basic research, applied sciences, and product development with new technologies emerging for their application. Huge progress was made in the field of synthetic biology using CFPS to develop new proteins for technical applications and therapy. Out of the available CFPS systems, wheat germ cell-free protein synthesis (WG-CFPS) merges the highest yields with the use of a eukaryotic ribosome, making it an excellent approach for the synthesis of complex eukaryotic proteins including, for example, protein complexes and membrane proteins. Separating the translation reaction from other cellular processes, CFPS offers a flexible means to adapt translation reactions to protein needs. There is a large demand for such potent, easy-to-use, rapid protein expression systems, which are optimally serving protein requirements to drive biochemical and structural biology research. We summarize here a general workflow for a wheat germ system providing examples from the literature, as well as applications used for our own studies in structural biology. With this review, we want to highlight the tremendous potential of the rapidly evolving and highly versatile CFPS systems, making them more widely used as common tools to recombinantly prepare particularly challenging recombinant eukaryotic proteins.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Laura Cole
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Matthias Harbers
- CellFree Sciences, Yokohama, Japan
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| |
Collapse
|
76
|
Liu Y, Davis RG, Thomas PM, Kelleher NL, Jewett MC. In vitro-Constructed Ribosomes Enable Multi-site Incorporation of Noncanonical Amino Acids into Proteins. Biochemistry 2021; 60:161-169. [PMID: 33426883 DOI: 10.1021/acs.biochem.0c00829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Efforts to expand the scope of ribosome-mediated polymerization to incorporate noncanonical amino acids (ncAAs) into peptides and proteins hold promise for creating new classes of enzymes, therapeutics, and materials. Recently, the integrated synthesis, assembly, and translation (iSAT) system was established to construct functional ribosomes in cell-free systems. However, the iSAT system has not been shown to be compatible with genetic code expansion. Here, to address this gap, we develop an iSAT platform capable of manufacturing pure proteins with site-specifically incorporated ncAAs. We first establish an iSAT platform based on extracts from genomically recoded Escherichia coli lacking release factor 1 (RF-1). This permits complete reassignment of the amber codon translation function. Next, we optimize orthogonal translation system components to demonstrate the benefits of genomic RF-1 deletion on incorporation of ncAAs into proteins. Using our optimized platform, we demonstrate high-level, multi-site incorporation of p-acetyl-phenylalanine (pAcF) and p-azido-phenylalanine into superfolder green fluorescent protein (sfGFP). Mass spectrometry analysis confirms the high accuracy of incorporation for pAcF at one, two, and five amber sites in sfGFP. The iSAT system updated for ncAA incorporation sets the stage for investigating ribosomal mutations to better understand the fundamental basis of protein synthesis, manufacturing proteins with new properties, and engineering ribosomes for novel polymerization chemistries.
Collapse
|
77
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 488] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
78
|
Lee J, Schwarz KJ, Yu H, Krüger A, Anslyn EV, Ellington AD, Moore JS, Jewett MC. Ribosome-mediated incorporation of fluorescent amino acids into peptides in vitro. Chem Commun (Camb) 2021; 57:2661-2664. [DOI: 10.1039/d0cc07740b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We expand the substrate scope of ribosome-mediated incorporation to α-amino acids with a variety of fluorescent groups on the sidechain.
Collapse
Affiliation(s)
- Joongoo Lee
- Department of Chemical and Biological Engineering and Center for Synthetic Biology
- Northwestern University
- Evanston
- USA
| | - Kevin J. Schwarz
- Department of Chemistry
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Hao Yu
- Departments of Chemical and Biomolecular Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Antje Krüger
- Department of Chemical and Biological Engineering and Center for Synthetic Biology
- Northwestern University
- Evanston
- USA
| | - Eric V. Anslyn
- Department of Chemistry and Biochemistry
- University of Texas at Austin
- Austin
- USA
| | - Andrew D. Ellington
- Department of Chemistry and Biochemistry
- Institute for Cellular and Molecular Biology
- University of Texas at Austin
- Austin
- USA
| | - Jeffrey S. Moore
- Department of Chemistry
- University of Illinois at Urbana-Champaign
- Urbana
- USA
- Beckman Institute for Advanced Science and Technology
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology
- Northwestern University
- Evanston
- USA
| |
Collapse
|
79
|
Hershewe JM, Wiseman WD, Kath JE, Buck CC, Gupta MK, Dennis PB, Naik RR, Jewett MC. Characterizing and Controlling Nanoscale Self-Assembly of Suckerin-12. ACS Synth Biol 2020; 9:3388-3399. [PMID: 33201684 DOI: 10.1021/acssynbio.0c00442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural proteins such as "suckerins" present promising avenues for fabricating functional materials. Suckerins are a family of naturally occurring block copolymer-type proteins that comprise the sucker ring teeth of cephalopods and are known to self-assemble into supramolecular networks of nanoconfined β-sheets. Here, we report the characterization and controllable, nanoscale self-assembly of suckerin-12 (S12). We characterize the impacts of salt, pH, and protein concentration on S12 solubility, secondary structure, and self-assembly. In doing so, we identify conditions for fabricating ∼100 nm nanoassemblies (NAs) with narrow size distributions. Finally, by installing a noncanonical amino acid (ncAA) into S12, we demonstrate the assembly of NAs that are covalently conjugated with a hydrophobic fluorophore and the ability to change self-assembly and β-sheet content by PEGylation. This work presents new insights into the biochemistry of suckerin-12 and demonstrates how ncAAs can be used to expedite and fine-tune the design of protein materials.
Collapse
Affiliation(s)
- Jasmine M. Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208−3120, United States
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208−3120, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208−3120, United States
| | - William D. Wiseman
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208−3120, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208−3120, United States
- Master of Biotechnology Program, Technological Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208−3120, United States
| | - James E. Kath
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208−3120, United States
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208−3120, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208−3120, United States
| | - Chelsea C. Buck
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
- Chemical and Materials Engineering Department, University of Dayton, 300 College Park Avenue, Dayton, Ohio 45469, United States
| | - Maneesh K. Gupta
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Patrick B. Dennis
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Rajesh R. Naik
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208−3120, United States
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208−3120, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208−3120, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 North Saint Clair Street, Suite 1200, Chicago, Illinois 60611−3068, United States
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Suite 11-131, Chicago, Illinois 60611−2875, United States
| |
Collapse
|
80
|
Cole SD, Miklos AE, Chiao AC, Sun ZZ, Lux MW. Methodologies for preparation of prokaryotic extracts for cell-free expression systems. Synth Syst Biotechnol 2020; 5:252-267. [PMID: 32775710 PMCID: PMC7398980 DOI: 10.1016/j.synbio.2020.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Cell-free systems that mimic essential cell functions, such as gene expression, have dramatically expanded in recent years, both in terms of applications and widespread adoption. Here we provide a review of cell-extract methods, with a specific focus on prokaryotic systems. Firstly, we describe the diversity of Escherichia coli genetic strains available and their corresponding utility. We then trace the history of cell-extract methodology over the past 20 years, showing key improvements that lower the entry level for new researchers. Next, we survey the rise of new prokaryotic cell-free systems, with associated methods, and the opportunities provided. Finally, we use this historical perspective to comment on the role of methodology improvements and highlight where further improvements may be possible.
Collapse
Affiliation(s)
- Stephanie D. Cole
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Aleksandr E. Miklos
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Abel C. Chiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synvitrobio Inc., San Francisco, CA, USA
| | - Zachary Z. Sun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synvitrobio Inc., San Francisco, CA, USA
| | - Matthew W. Lux
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| |
Collapse
|
81
|
Yang J, Lu Y. Physical stimuli-responsive cell-free protein synthesis. Synth Syst Biotechnol 2020; 5:363-368. [PMID: 33294650 PMCID: PMC7695910 DOI: 10.1016/j.synbio.2020.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/18/2022] Open
Abstract
Cell-free protein synthesis has been developed as a critical platform in synthetic biology. Unlike the cell-based synthesis system, cell-free system activates transcriptional and translational mechanisms in vitro, and can control protein synthesis by artificially adding components or chemicals. However, the control method puts forward higher requirements in terms of accurate and non-toxic control, which cannot be achieved by chemical substances. For cell-free system, physical signal is a kind of ideal spatiotemporal control approach to replace chemical substances, realizing high accuracy with little side effect. Here we review the methods of using physical signals to control gene expression in cell-free systems, including studies based on light, temperature, electric field, and magnetic force. The transfer of these switches into cell-free system further expands the flexibility and controllability of the system, thus further expanding the application capability of cell-free systems. Finally, existing problems such as signal source and signal transmission are discussed, and future applications in pharmaceutical production, delivery and industrial production are further looked into.
Collapse
Affiliation(s)
- Junzhu Yang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
82
|
Galindo Casas M, Stargardt P, Mairhofer J, Wiltschi B. Decoupling Protein Production from Cell Growth Enhances the Site-Specific Incorporation of Noncanonical Amino Acids in E. coli. ACS Synth Biol 2020; 9:3052-3066. [PMID: 33150786 DOI: 10.1021/acssynbio.0c00298] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The site-specific incorporation of noncanonical amino acids (ncAAs) into proteins by amber stop codon suppression has become a routine method in academic laboratories. This approach requires an amber suppressor tRNACUA to read the amber codon and an aminoacyl-tRNA synthetase to charge the tRNACUA with the ncAA. However, a major drawback is the low yield of the mutant protein in comparison to the wild type. This effect primarily results from the competition of release factor 1 with the charged suppressor tRNACUA for the amber codon at the A-site of the ribosome. A number of laboratories have attempted to improve the incorporation efficiency of ncAAs with moderate results. We aimed at increasing the efficiency to produce high yields of ncAA-functionalized proteins in a scalable setting for industrial application. To do this, we inserted an ncAA into the enhanced green fluorescent protein and an antibody mimetic molecule using an industrial E. coli strain, which produces recombinant proteins independent of cell growth. The controlled decoupling of recombinant protein production from cell growth considerably increased the incorporation of the ncAA, producing substantially higher protein yields versus the reference E. coli strain BL21(DE3). The target proteins were expressed at high levels, and the ncAA was efficiently incorporated with excellent fidelity while the protein function was preserved.
Collapse
Affiliation(s)
- Meritxell Galindo Casas
- acib − Austrian Center of Industrial Biotechnology, 8010 Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, 8010 Graz, Austria
| | | | | | - Birgit Wiltschi
- acib − Austrian Center of Industrial Biotechnology, 8010 Graz, Austria
| |
Collapse
|
83
|
Engineered biosynthetic pathways and biocatalytic cascades for sustainable synthesis. Curr Opin Chem Biol 2020; 58:146-154. [PMID: 33152607 DOI: 10.1016/j.cbpa.2020.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
Nature exploits biosynthetic cascades to construct numerous molecules from a limited set of starting materials. A deeper understanding of biosynthesis and extraordinary developments in gene technology has allowed the manipulation of natural pathways and construction of artificial cascades for the preparation of a range of molecules, which would be challenging to access using traditional synthetic chemical approaches. Alongside these metabolic engineering strategies, there has been continued interest in developing in vivo and in vitro biocatalytic cascades. Advancements in both metabolic engineering and biocatalysis are complementary, and this article aims to highlight some of the most exciting developments in these two areas with a particular focus on exploring those that have the potential to advance both pathway engineering and more traditional biocatalytic cascade development.
Collapse
|
84
|
Hershewe J, Kightlinger W, Jewett MC. Cell-free systems for accelerating glycoprotein expression and biomanufacturing. J Ind Microbiol Biotechnol 2020; 47:977-991. [PMID: 33090335 PMCID: PMC7578589 DOI: 10.1007/s10295-020-02321-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022]
Abstract
Protein glycosylation, the enzymatic modification of amino acid sidechains with sugar moieties, plays critical roles in cellular function, human health, and biotechnology. However, studying and producing defined glycoproteins remains challenging. Cell-free glycoprotein synthesis systems, in which protein synthesis and glycosylation are performed in crude cell extracts, offer new approaches to address these challenges. Here, we review versatile, state-of-the-art systems for biomanufacturing glycoproteins in prokaryotic and eukaryotic cell-free systems with natural and synthetic N-linked glycosylation pathways. We discuss existing challenges and future opportunities in the use of cell-free systems for the design, manufacture, and study of glycoprotein biomedicines.
Collapse
Affiliation(s)
- Jasmine Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA.,Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208-3120, USA.,Center for Synthetic Biology, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA.,Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208-3120, USA.,Center for Synthetic Biology, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA. .,Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208-3120, USA. .,Center for Synthetic Biology, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 North Saint Clair Street, Suite 1200, Chicago, IL, 60611-3068, USA. .,Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Suite 11-131, Chicago, IL, 60611-2875, USA.
| |
Collapse
|
85
|
Levine MZ, So B, Mullin AC, Fanter R, Dillard K, Watts KR, La Frano MR, Oza JP. Activation of Energy Metabolism through Growth Media Reformulation Enables a 24-Hour Workflow for Cell-Free Expression. ACS Synth Biol 2020; 9:2765-2774. [PMID: 32835484 DOI: 10.1021/acssynbio.0c00283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell-free protein synthesis (CFPS) platforms have undergone numerous workflow improvements to enable diverse applications in research, biomanufacturing, and education. The Escherichia coli cell extract-based platform has been broadly adopted due to its affordability and versatility. The upstream processing of cells to generate crude cell lysate remains time-intensive and technically nuanced, representing one of the largest sources of cost associated with the biotechnology. To overcome these limitations, we have improved the processes by developing a long-lasting autoinduction media formulation for CFPS that obviates human intervention between inoculation and harvest. The cell-free autoinduction (CFAI) media supports the production of robust cell extracts from high cell density cultures nearing the stationary phase of growth. As a result, the total mass of cells and the resulting extract volume obtained increases by 400% while maintaining robust reaction yields of reporter protein, sfGFP (>1 mg/mL). Notably, the CFAI workflow allows users to go from cells on a streak plate to completing CFPS reactions within 24 h. The CFAI workflow uniquely enabled us to elucidate the metabolic limits in CFPS associated with cells grown to stationary phase in the traditional 2× YTPG media. Metabolomics analysis demonstrates that CFAI-based extracts overcome these limits due to improved energy metabolism and redox balance. The advances reported here shed new light on the metabolism associated with highly active CFPS reactions and inform future efforts to tune the metabolism in CFPS systems. Additionally, we anticipate that the improvements in the time and cost-efficiency of CFPS will increase the simplicity and reproducibility, reducing the barriers for new researchers interested in implementing CFPS.
Collapse
Affiliation(s)
- Max Z. Levine
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Center for Application in Biotechnology, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Byungcheol So
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Center for Application in Biotechnology, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Alissa C. Mullin
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Center for Application in Biotechnology, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Rob Fanter
- College of Agriculture, Food and Environmental Sciences, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Kayla Dillard
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Katharine R. Watts
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Center for Application in Biotechnology, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Michael R. La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Center for Health Research, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Javin P. Oza
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Center for Application in Biotechnology, California Polytechnic State University, San Luis Obispo, California 93407, United States
| |
Collapse
|
86
|
Liu Z, Zhou W, Qi C, Kong T. Interface Engineering in Multiphase Systems toward Synthetic Cells and Organelles: From Soft Matter Fundamentals to Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002932. [PMID: 32954548 DOI: 10.1002/adma.202002932] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Synthetic cells have a major role in gaining insight into the complex biological processes of living cells; they also give rise to a range of emerging applications from gene delivery to enzymatic nanoreactors. Living cells rely on compartmentalization to orchestrate reaction networks for specialized and coordinated functions. Principally, the compartmentalization has been an essential engineering theme in constructing cell-mimicking systems. Here, efforts to engineer liquid-liquid interfaces of multiphase systems into membrane-bounded and membraneless compartments, which include lipid vesicles, polymer vesicles, colloidosomes, hybrids, and coacervate droplets, are summarized. Examples are provided of how these compartments are designed to imitate biological behaviors or machinery, including molecule trafficking, growth, fusion, energy conversion, intercellular communication, and adaptivity. Subsequently, the state-of-art applications of these cell-inspired synthetic compartments are discussed. Apart from being simplified and cell models for bridging the gap between nonliving matter and cellular life, synthetic compartments also are utilized as intracellular delivery vehicles for nuclei acids and nanoreactors for biochemical synthesis. Finally, key challenges and future directions for achieving the full potential of synthetic cells are highlighted.
Collapse
Affiliation(s)
- Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Wen Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Cheng Qi
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
87
|
Cui Z, Johnston WA, Alexandrov K. Cell-Free Approach for Non-canonical Amino Acids Incorporation Into Polypeptides. Front Bioeng Biotechnol 2020; 8:1031. [PMID: 33117774 PMCID: PMC7550873 DOI: 10.3389/fbioe.2020.01031] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Synthetic biology holds promise to revolutionize the life sciences and biomedicine via expansion of macromolecular diversity outside the natural chemical space. Use of non-canonical amino acids (ncAAs) via codon reassignment has found diverse applications in protein structure and interaction analysis, introduction of post-translational modifications, production of constrained peptides, antibody-drug conjugates, and novel enzymes. However, simultaneously encoding multiple ncAAs in vivo requires complex engineering and is sometimes restricted by the cell's poor uptake of ncAAs. In contrast the open nature of cell-free protein synthesis systems offers much greater freedom for manipulation and repurposing of the biosynthetic machinery by controlling the level and identity of translational components and reagents, and allows simultaneous incorporation of multiple ncAAs with non-canonical side chains and even backbones (N-methyl, D-, β-amino acids, α-hydroxy acids etc.). This review focuses on the two most used Escherichia coli-based cell-free protein synthesis systems; cell extract- and PURE-based systems. The former is a biological mixture with >500 proteins, while the latter consists of 38 individually purified biomolecules. We delineate compositions of these two systems and discuss their respective advantages and applications. Also, we dissect the translational components required for ncAA incorporation and compile lists of ncAAs that can be incorporated into polypeptides via different acylation approaches. We highlight the recent progress in using unnatural nucleobase pairs to increase the repertoire of orthogonal codons, as well as using tRNA-specific ribozymes for in situ acylation. We summarize advances in engineering of translational machinery such as tRNAs, aminoacyl-tRNA synthetases, elongation factors, and ribosomes to achieve efficient incorporation of structurally challenging ncAAs. We note that, many engineered components of biosynthetic machinery are developed for the use in vivo but are equally applicable to the in vitro systems. These are included in the review to provide a comprehensive overview for ncAA incorporation and offer new insights for the future development in cell-free systems. Finally, we highlight the exciting progress in the genomic engineering, resulting in E. coli strains free of amber and some redundant sense codons. These strains can be used for preparation of cell extracts offering multiple reassignment options.
Collapse
Affiliation(s)
- Zhenling Cui
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wayne A Johnston
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kirill Alexandrov
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
88
|
Tan L, Zheng Z, Xu Y, Kong W, Dai Z, Qin X, Liu T, Tang H. Efficient Selection Scheme for Incorporating Noncanonical Amino Acids Into Proteins in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2020; 8:569191. [PMID: 33042970 PMCID: PMC7523088 DOI: 10.3389/fbioe.2020.569191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/27/2020] [Indexed: 12/02/2022] Open
Abstract
With the advances in the field of expanded genetic code, the application of non-canonical amino acid (ncAA) is considered an effective strategy for protein engineering. However, cumbersome and complicated selection schemes limit the extensive application of this technology in Saccharomyces cerevisiae. To address this issue, a simplified selection scheme with confident results was developed and tested in this study. Based on a mutation library derived from Escherichia coli tyrosyl-tRNA synthetase (EcTyrRS), a logic gate in synthetic biology was used to optimize screening procedures. We found that an "and" gate was more suitable than an "or" gate for isolating aminoacyl-tRNA synthetase from S. cerevisiae. The successful incorporation of O-methyltyrosine (OMeY) proved the utility and efficiency of this new selection scheme. After a round of positive selection, several new OMeY-tRNA synthetase (OMeYRS) mutants were screened, and their incorporation efficiency was improved. Furthermore, we characterized the insertion of several tyrosine analogs into Herceptine Fab and discovered that OMeYRS and its mutants were polyspecific. One of these mutants showed an optimal performance to incorporate different ncAAs into recombinant proteins in S. cerevisiae; this mutant was cloned and transfected into mammalian cells, and the results proved its functionality in HEK293 cells. This study could expand the application of ncAA in S. cerevisiae to construct efficient yeast cell factories for producing natural and synthetic products.
Collapse
Affiliation(s)
- Linzhi Tan
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhaohui Zheng
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen, China
| | - Yuanwei Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Weikaixin Kong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhen Dai
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xuewen Qin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hongting Tang
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
89
|
Cell-free styrene biosynthesis at high titers. Metab Eng 2020; 61:89-95. [DOI: 10.1016/j.ymben.2020.05.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 11/18/2022]
|
90
|
Zhu B, Gan R, Cabezas MD, Kojima T, Nicol R, Jewett MC, Nakano H. Increasing cell-free gene expression yields from linear templates in Escherichia coli and Vibrio natriegens extracts by using DNA-binding proteins. Biotechnol Bioeng 2020; 117:3849-3857. [PMID: 32816360 DOI: 10.1002/bit.27538] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
In crude extract-based cell-free protein synthesis (CFPS), DNA templates are transcribed and translated into functional proteins. Although linear expression templates (LETs) are less laborious and expensive to generate, plasmid templates are often desired over polymerase chain reaction-generated LETs due to increased stability and protection against exonucleases present in the extract of the reaction. Here we demonstrate that addition of a double stranded DNA-binding protein to the CFPS reaction, termed single-chain Cro protein (scCro), achieves terminal protection of LETs. This CroP-LET (scCro-based protection of LET) method effectively increases superfolder green fluorescent protein (sfGFP) expression levels from LETs in Escherichia coli CFPS reactions by sixfold. Our yields are comparable to other strategies that provide chemical and enzymatic DNA stabilization in E. coli CFPS. Notably, we also report that the CroP-LET method successfully enhanced yields in CFPS platforms derived from nonmodel organisms. Our results show that CroP-LET increased sfGFP yields by 18-fold in the Vibrio natriegens CFPS platform. With the fast-expanding applications of CFPS platforms, this method provides a practical and generalizable solution to protect linear expression DNA templates.
Collapse
Affiliation(s)
- Bo Zhu
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Rui Gan
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Maria D Cabezas
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Takaaki Kojima
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Robert Nicol
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois.,Simpson Querrey Institute, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois
| | - Hideo Nakano
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
91
|
Liu W, Wu C, Jewett MC, Li J. Cell‐free protein synthesis enables one‐pot cascade biotransformation in an aqueous‐organic biphasic system. Biotechnol Bioeng 2020; 117:4001-4008. [DOI: 10.1002/bit.27541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Wan‐Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University Shanghai China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, Danish Institute for Advanced Study (DIAS) University of Southern Denmark Odense Denmark
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Center for Synthetic Biology Northwestern University Evanston Illinois
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University Shanghai China
| |
Collapse
|
92
|
Abstract
Cell-free systems, as part of the synthetic biology field, have become a critical platform in biological studies. However, there is a lack of research into developing a switch for a dynamical control of the transcriptional and translational process. The optogenetic tool has been widely proven as an ideal control switch for protein synthesis due to its nontoxicity and excellent time-space conversion. Hence, in this study, a blue light-regulated two-component system named YF1/FixJ was incorporated into an Escherichia coli-based cell-free system to control protein synthesis. The corresponding cell-free system successfully achieved a 5-fold dynamic protein expression by blue light repression and 3-fold dynamic expression by blue light activation. With the aim of expanding the applications of cell-free synthetic biology, the cell-free blue light-sensing system was used to perform imaging, light-controlled antibody synthesis, and light-triggered artificial cell assembly. This study can provide a guide for further research into the field of cell-free optical sensing. Moreover, it will also promote the development of cell-free synthetic biology and optogenetics through applying the cell-free optical sensing system to synthetic biology education, biopharmaceutical research, and artificial cell construction.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Junzhu Yang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Eunhee Cho
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
93
|
Martínez-Rodríguez S, Torres JM, Sánchez P, Ortega E. Overview on Multienzymatic Cascades for the Production of Non-canonical α-Amino Acids. Front Bioeng Biotechnol 2020; 8:887. [PMID: 32850740 PMCID: PMC7431475 DOI: 10.3389/fbioe.2020.00887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The 22 genetically encoded amino acids (AAs) present in proteins (the 20 standard AAs together with selenocysteine and pyrrolysine), are commonly referred as proteinogenic AAs in the literature due to their appearance in ribosome-synthetized polypeptides. Beyond the borders of this key set of compounds, the rest of AAs are generally named imprecisely as non-proteinogenic AAs, even when they can also appear in polypeptide chains as a result of post-transductional machinery. Besides their importance as metabolites in life, many of D-α- and L-α-"non-canonical" amino acids (NcAAs) are of interest in the biotechnological and biomedical fields. They have found numerous applications in the discovery of new medicines and antibiotics, drug synthesis, cosmetic, and nutritional compounds, or in the improvement of protein and peptide pharmaceuticals. In addition to the numerous studies dealing with the asymmetric synthesis of NcAAs, many different enzymatic pathways have been reported in the literature allowing for the biosynthesis of NcAAs. Due to the huge heterogeneity of this group of molecules, this review is devoted to provide an overview on different established multienzymatic cascades for the production of non-canonical D-α- and L-α-AAs, supplying neophyte and experienced professionals in this field with different illustrative examples in the literature. Whereas the discovery of new or newly designed enzymes is of great interest, dusting off previous enzymatic methodologies by a "back and to the future" strategy might accelerate the implementation of new or improved multienzymatic cascades.
Collapse
|
94
|
Jaroentomeechai T, Taw MN, Li M, Aquino A, Agashe N, Chung S, Jewett MC, DeLisa MP. Cell-Free Synthetic Glycobiology: Designing and Engineering Glycomolecules Outside of Living Cells. Front Chem 2020; 8:645. [PMID: 32850660 PMCID: PMC7403607 DOI: 10.3389/fchem.2020.00645] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glycans and glycosylated biomolecules are directly involved in almost every biological process as well as the etiology of most major diseases. Hence, glycoscience knowledge is essential to efforts aimed at addressing fundamental challenges in understanding and improving human health, protecting the environment and enhancing energy security, and developing renewable and sustainable resources that can serve as the source of next-generation materials. While much progress has been made, there remains an urgent need for new tools that can overexpress structurally uniform glycans and glycoconjugates in the quantities needed for characterization and that can be used to mechanistically dissect the enzymatic reactions and multi-enzyme assembly lines that promote their construction. To address this technology gap, cell-free synthetic glycobiology has emerged as a simplified and highly modular framework to investigate, prototype, and engineer pathways for glycan biosynthesis and biomolecule glycosylation outside the confines of living cells. From nucleotide sugars to complex glycoproteins, we summarize here recent efforts that harness the power of cell-free approaches to design, build, test, and utilize glyco-enzyme reaction networks that produce desired glycomolecules in a predictable and controllable manner. We also highlight novel cell-free methods for shedding light on poorly understood aspects of diverse glycosylation processes and engineering these processes toward desired outcomes. Taken together, cell-free synthetic glycobiology represents a promising set of tools and techniques for accelerating basic glycoscience research (e.g., deciphering the "glycan code") and its application (e.g., biomanufacturing high-value glycomolecules on demand).
Collapse
Affiliation(s)
- Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - May N. Taw
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Mingji Li
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Alicia Aquino
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Ninad Agashe
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Sean Chung
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, United States
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Center for Synthetic Biology, Northwestern University, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
| | - Matthew P. DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
95
|
Wu Y, Wang Z, Qiao X, Li J, Shu X, Qi H. Emerging Methods for Efficient and Extensive Incorporation of Non-canonical Amino Acids Using Cell-Free Systems. Front Bioeng Biotechnol 2020; 8:863. [PMID: 32793583 PMCID: PMC7387428 DOI: 10.3389/fbioe.2020.00863] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cell-free protein synthesis (CFPS) has emerged as a novel protein expression platform. Especially the incorporation of non-canonical amino acids (ncAAs) has led to the development of numerous flexible methods for efficient and extensive expression of artificial proteins. Approaches were developed to eliminate the endogenous competition for ncAAs and engineer translation factors, which significantly enhanced the incorporation efficiency. Furthermore, in vitro aminoacylation methods can be conveniently combined with cell-free systems, extensively expanding the available ncAAs with novel and unique moieties. In this review, we summarize the recent progresses on the efficient and extensive incorporation of ncAAs by different strategies based on the elimination of competition by endogenous factors, translation factors engineering and extensive incorporation of novel ncAAs coupled with in vitro aminoacylation methods in CFPS. We also aim to offer new ideas to researchers working on ncAA incorporation techniques in CFPS and applications in various emerging fields.
Collapse
Affiliation(s)
- Yang Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Zhaoguan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Xin Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Jiaojiao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Xiangrong Shu
- Department of Pharmacy, Tianjin Huanhu Hospital, Tianjin, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
96
|
Kightlinger W, Warfel KF, DeLisa MP, Jewett MC. Synthetic Glycobiology: Parts, Systems, and Applications. ACS Synth Biol 2020; 9:1534-1562. [PMID: 32526139 PMCID: PMC7372563 DOI: 10.1021/acssynbio.0c00210] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Protein glycosylation, the attachment of sugars to amino acid side chains, can endow proteins with a wide variety of properties of great interest to the engineering biology community. However, natural glycosylation systems are limited in the diversity of glycoproteins they can synthesize, the scale at which they can be harnessed for biotechnology, and the homogeneity of glycoprotein structures they can produce. Here we provide an overview of the emerging field of synthetic glycobiology, the application of synthetic biology tools and design principles to better understand and engineer glycosylation. Specifically, we focus on how the biosynthetic and analytical tools of synthetic biology have been used to redesign glycosylation systems to obtain defined glycosylation structures on proteins for diverse applications in medicine, materials, and diagnostics. We review the key biological parts available to synthetic biologists interested in engineering glycoproteins to solve compelling problems in glycoscience, describe recent efforts to construct synthetic glycoprotein synthesis systems, and outline exemplary applications as well as new opportunities in this emerging space.
Collapse
Affiliation(s)
- Weston Kightlinger
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Matthew P. DeLisa
- Department
of Microbiology, Cornell University, 123 Wing Drive, Ithaca, New York 14853, United States
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, New York 14853, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| |
Collapse
|
97
|
Kuru E, Määttälä RM, Noguera K, Stork DA, Narasimhan K, Rittichier J, Wiegand D, Church GM. Release Factor Inhibiting Antimicrobial Peptides Improve Nonstandard Amino Acid Incorporation in Wild-type Bacterial Cells. ACS Chem Biol 2020; 15:1852-1861. [PMID: 32603088 DOI: 10.1021/acschembio.0c00055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report a tunable chemical genetics approach for enhancing genetic code expansion in different wild-type bacterial strains that employ apidaecin-like, antimicrobial peptides observed to temporarily sequester and thereby inhibit Release Factor 1 (RF1). In a concentration-dependent matter, these peptides granted a conditional lambda phage resistance to a recoded Escherichia coli strain with nonessential RF1 activity and promoted multisite nonstandard amino acid (nsAA) incorporation at in-frame amber stop codons in vivo and in vitro. When exogenously added, the peptides stimulated specific nsAA incorporation in a variety of sensitive, wild-type (RF1+) strains, including Agrobacterium tumefaciens, a species in which nsAA incorporation has not been previously reported. Improvement in nsAA incorporation was typically 2-15-fold in E. coli BL21, MG1655, and DH10B strains and A. tumefaciens with the >20-fold improvement observed in probiotic E. coli Nissle 1917. In-cell expression of these peptides promoted multisite nsAA incorporation in transcripts with up to 6 amber codons, with a >35-fold increase in BL21 showing moderate toxicity. Leveraging this RF1 sensitivity allowed multiplexed partial recoding of MG1655 and DH10B that rapidly resulted in resistant strains that showed an additional approximately twofold boost to nsAA incorporation independent of the peptide. Finally, in-cell expression of an apidaecin-like peptide library allowed the discovery of new peptide variants with reduced toxicity that still improved multisite nsAA incorporation >25-fold. In parallel to genetic reprogramming efforts, these new approaches can facilitate genetic code expansion technologies in a variety of wild-type bacterial strains.
Collapse
Affiliation(s)
- Erkin Kuru
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Rosa-Maria Määttälä
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
- School of Arts and Sciences, MCPHS University, Boston, Massachusetts 02115, United States
| | - Karen Noguera
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Devon A. Stork
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kamesh Narasimhan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jonathan Rittichier
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Daniel Wiegand
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| |
Collapse
|
98
|
Contreras-Llano LE, Meyer C, Liu Y, Sarker M, Lim S, Longo ML, Tan C. Holistic engineering of cell-free systems through proteome-reprogramming synthetic circuits. Nat Commun 2020; 11:3138. [PMID: 32561745 PMCID: PMC7305103 DOI: 10.1038/s41467-020-16900-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/27/2020] [Indexed: 11/09/2022] Open
Abstract
Synthetic biology has focused on engineering genetic modules that operate orthogonally from the host cells. A synthetic biological module, however, can be designed to reprogram the host proteome, which in turn enhances the function of the synthetic module. Here, we apply this holistic synthetic biology concept to the engineering of cell-free systems by exploiting the crosstalk between metabolic networks in cells, leading to a protein environment more favorable for protein synthesis. Specifically, we show that local modules expressing translation machinery can reprogram the bacterial proteome, changing the expression levels of more than 700 proteins. The resultant feedback generates a cell-free system that can synthesize fluorescent reporters, protein nanocages, and the gene-editing nuclease Cas9, with up to 5-fold higher expression level than classical cell-free systems. Our work demonstrates a holistic approach that integrates synthetic and systems biology concepts to achieve outcomes not possible by only local, orthogonal circuits.
Collapse
Affiliation(s)
- Luis E Contreras-Llano
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA
| | - Conary Meyer
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA
| | - Yao Liu
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA
| | - Mridul Sarker
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, Singapore, 637457, Singapore
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, Singapore, 637457, Singapore
| | - Marjorie L Longo
- Department of Chemical Engineering, University of California, Davis, Davis, CA, 95616, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
99
|
Zhang L, Liu WQ, Li J. Establishing a Eukaryotic Pichia pastoris Cell-Free Protein Synthesis System. Front Bioeng Biotechnol 2020; 8:536. [PMID: 32626695 PMCID: PMC7314905 DOI: 10.3389/fbioe.2020.00536] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, cell-free protein synthesis (CFPS) systems have been used to synthesize proteins, prototype genetic elements, manufacture chemicals, and diagnose diseases. These exciting, novel applications lead to a new wave of interest in the development of new CFPS systems that are derived from prokaryotic and eukaryotic organisms. The eukaryotic Pichia pastoris is emerging as a robust chassis host for recombinant protein production. To expand the current CFPS repertoire, we report here the development and optimization of a eukaryotic CFPS system, which is derived from a protease-deficient strain P. pastoris SMD1163. By developing a simple crude extract preparation protocol and optimizing CFPS reaction conditions, we were able to achieve superfolder green fluorescent protein (sfGFP) yields of 50.16 ± 7.49 μg/ml in 5 h batch reactions. Our newly developed P. pastoris CFPS system fits to the range of the productivity achieved by other eukaryotic CFPS platforms, normally ranging from several to tens of micrograms protein per milliliter in batch mode reactions. Looking forward, we believe that our P. pastoris CFPS system will not only expand the CFPS toolbox for synthetic biology applications, but also provide a novel platform for cost-effective, high-yielding production of complex proteins that need post-translational modification and functionalization.
Collapse
Affiliation(s)
| | | | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
100
|
Development of a clostridia-based cell-free system for prototyping genetic parts and metabolic pathways. Metab Eng 2020; 62:95-105. [PMID: 32540392 DOI: 10.1016/j.ymben.2020.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/15/2020] [Accepted: 06/07/2020] [Indexed: 02/04/2023]
Abstract
Gas fermentation by autotrophic bacteria, such as clostridia, offers a sustainable path to numerous bioproducts from a range of local, highly abundant, waste and low-cost feedstocks, such as industrial flue gases or syngas generated from biomass or municipal waste. Unfortunately, designing and engineering clostridia remains laborious and slow. The ability to prototype individual genetic part function, gene expression patterns, and biosynthetic pathway performance in vitro before implementing designs in cells could help address these bottlenecks by speeding up design. Unfortunately, a high-yielding cell-free gene expression (CFE) system from clostridia has yet to be developed. Here, we report the development and optimization of a high-yielding (236 ± 24 μg/mL) batch CFE platform from the industrially relevant anaerobe, Clostridium autoethanogenum. A key feature of the platform is that both circular and linear DNA templates can be applied directly to the CFE reaction to program protein synthesis. We demonstrate the ability to prototype gene expression, and quantitatively map aerobic cell-free metabolism in lysates from this system. We anticipate that the C. autoethanogenum CFE platform will not only expand the protein synthesis toolkit for synthetic biology, but also serve as a platform in expediting the screening and prototyping of gene regulatory elements in non-model, industrially relevant microbes.
Collapse
|