51
|
Creaney J, Patch AM, Addala V, Sneddon SA, Nones K, Dick IM, Lee YCG, Newell F, Rouse EJ, Naeini MM, Kondrashova O, Lakis V, Nakas A, Waller D, Sharkey A, Mukhopadhyay P, Kazakoff SH, Koufariotis LT, Davidson AL, Ramarao-Milne P, Holmes O, Xu Q, Leonard C, Wood S, Grimmond SM, Bueno R, Fennell DA, Pearson JV, Robinson BW, Waddell N. Comprehensive genomic and tumour immune profiling reveals potential therapeutic targets in malignant pleural mesothelioma. Genome Med 2022; 14:58. [PMID: 35637530 PMCID: PMC9150319 DOI: 10.1186/s13073-022-01060-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/15/2022] [Indexed: 12/14/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) has a poor overall survival with few treatment options. Whole genome sequencing (WGS) combined with the immune features of MPM offers the prospect of identifying changes that could inform future clinical trials. Methods We analysed somatic mutations from 229 MPM samples, including previously published data and 58 samples that had undergone WGS within this study. This was combined with RNA-seq analysis to characterize the tumour immune environment. Results The comprehensive genome analysis identified 12 driver genes, including new candidate genes. Whole genome doubling was a frequent event that correlated with shorter survival. Mutational signature analysis revealed SBS5/40 were dominant in 93% of samples, and defects in homologous recombination repair were infrequent in our cohort. The tumour immune environment contained high M2 macrophage infiltrate linked with MMP2, MMP14, TGFB1 and CCL2 expression, representing an immune suppressive environment. The expression of TGFB1 was associated with overall survival. A small subset of samples (less than 10%) had a higher proportion of CD8 T cells and a high cytolytic score, suggesting a ‘hot’ immune environment independent of the somatic mutations. Conclusions We propose accounting for genomic and immune microenvironment status may influence therapeutic planning in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01060-8.
Collapse
|
52
|
Li Z, Liang H, Zhang S, Luo W. A practical framework RNMF for exploring the association between mutational signatures and genes using gene cumulative contribution abundance. Cancer Med 2022; 11:4053-4069. [PMID: 35575002 PMCID: PMC9636515 DOI: 10.1002/cam4.4717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Background Mutational signatures are somatic mutation patterns enriching operational mutational processes, which can provide abundant information about the mechanism of cancer. However, understanding of the pathogenic biological processes is still limited, such as the association between mutational signatures and genes. Methods We developed a simple and practical R package called RNMF (https://github.com/zhenzhang‐li/RNMF) for mutational signature analysis, including a key model of cumulative contribution abundance (CCA), which was designed to highlight the association between mutational signatures and genes and then applying it to a meta‐analysis of 1073 individuals with esophageal squamous cell carcinoma (ESCC). Results We revealed a number of known and previously undescribed SBS or ID signatures, and we found that APOBEC signatures (SBS2* and SBS13*) were closely associated with PIK3CA mutation, especially the E545k mutation. Furthermore, we found that age signature is closely related to the frequent mutation of TP53, of which R342* is highlighted due to strongly linked to age signature. In addition, the CCA matrix image data of genes in the signatures New, SBS3*, and SBS17b* were helpful for the preliminary evaluation of shortened survival outcome. These results can be extended to estimate the distribution of mutations or features, and study the potential impact of clinical factors. Conclusions In a word, RNMF can successfully achieve the correlation analysis of mutational signatures and genes, proving a strong theoretical basis for the study of mutational processes during tumor development.
Collapse
Affiliation(s)
- Zhenzhang Li
- College of Mathematics and Systems Science, Guangdong Polytechnic Normal University, Guangzhou, China.,School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Cloud and Gene AI Research Institute, Guangzhou, China
| | - Haihua Liang
- College of Mathematics and Systems Science, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Shaoan Zhang
- College of Mathematics and Systems Science, Guangdong Polytechnic Normal University, Guangzhou, China.,School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wen Luo
- College of Mathematics and Systems Science, Guangdong Polytechnic Normal University, Guangzhou, China
| |
Collapse
|
53
|
Degasperi A, Zou X, Amarante TD, Martinez-Martinez A, Koh GCC, Dias JML, Heskin L, Chmelova L, Rinaldi G, Wang VYW, Nanda AS, Bernstein A, Momen SE, Young J, Perez-Gil D, Memari Y, Badja C, Shooter S, Czarnecki J, Brown MA, Davies HR, Nik-Zainal S. Substitution mutational signatures in whole-genome-sequenced cancers in the UK population. Science 2022; 376:science.abl9283. [PMID: 35949260 PMCID: PMC7613262 DOI: 10.1126/science.abl9283] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Whole-genome sequencing (WGS) permits comprehensive cancer genome analyses, revealing mutational signatures, imprints of DNA damage and repair processes that have arisen in each patient's cancer. We performed mutational signature analyses on 12,222 WGS tumor-normal matched pairs, from patients recruited via the UK National Health Service. We contrasted our results to two independent cancer WGS datasets, the International Cancer Genome Consortium (ICGC) and Hartwig Foundation, involving 18,640 WGS cancers in total. Our analyses add 40 single and 18 double substitution signatures to the current mutational signature tally. Critically, we show for each organ, that cancers have a limited number of 'common' signatures and a long tail of 'rare' signatures. We provide a practical solution for utilizing this concept of common versus rare signatures in future analyses.
Collapse
Affiliation(s)
- Andrea Degasperi
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Xueqing Zou
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Tauanne Dias Amarante
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Andrea Martinez-Martinez
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Gene Ching Chiek Koh
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - João M. L. Dias
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Laura Heskin
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Lucia Chmelova
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Giuseppe Rinaldi
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Valerie Ya Wen Wang
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Arjun S. Nanda
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Aaron Bernstein
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Sophie E. Momen
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Jamie Young
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Daniel Perez-Gil
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Yasin Memari
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Cherif Badja
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Scott Shooter
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Jan Czarnecki
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Matthew A. Brown
- Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London, EC1M 6BQ, UK
- Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK
| | - Helen R. Davies
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| |
Collapse
|
54
|
Wang K, Zhang J, Deng M, Ju Y, Ouyang M. [METTL27 is a prognostic biomarker of colon cancer and associated with immune invasion]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:486-497. [PMID: 35527484 DOI: 10.12122/j.issn.1673-4254.2022.04.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To investigate the expression and gene function of methyltransferase-like protein 27 (METTL27) in colon cancer, its association with immune infiltration and its prognostic significance. METHODS We analyzed the expression levels of METTL27 in 33 cancers using R language and identified METTL27 as a differential gene in colon cancer. The related signaling pathways of METTL27 were analyzed by gene functional annotation and enrichment. SsGSEA algorithm was used to analyze immune infiltration, and logistic analysis was used to evaluate the correlation between METTL27 expression and clinicopathological features of the patients. Kaplan-meier analysis, univariate and multivariate Cox regression analysis were performed to construct a nomogram for evaluating the correlation between METTL27 expression and clinical prognosis. The expression level of METTL27 was further verified in colorectal cancer cell lines and 16 clinical specimens of colorectal cancer tissues using qPCR and Western blotting. RESULTS METTL27 was highly expressed in 21 cancers, and its expression was significantly higher in colon cancer than in adjacent tissues (P < 0.001). METTL27-related genes were identified by differential analysis, and functional annotation revealed that METTL27 was significantly enriched in transmembrane transport and lipid metabolism, and 5 related signaling pathways were identified by GSEA. METTL27 expression was negatively correlated with different T helper cells and central memory T cells (P < 0.001). The patients with a high METTL27 mRNA expression had a poor survival outcome. Cox regression analysis showed that METTL27 expression was an independent prognostic factor of the overall survival. The expression level of METTL27 was significantly higher in the colorectal cancer cell line than in normal cells (P < 0.05). CONCLUSION METTL27 is overexpressed in colon cancer and is associated with a poor prognosis of the patients. A high expression of METTL27 showed is associated less T cell immune infiltration, suggesting the potential of METTL27 as a prognostic marker of colon cancer.
Collapse
Affiliation(s)
- K Wang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, Foshan 528308, China
| | - J Zhang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, Foshan 528308, China
| | - M Deng
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, Foshan 528308, China
| | - Y Ju
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, Foshan 528308, China
| | - M Ouyang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, Foshan 528308, China
| |
Collapse
|
55
|
Zannoni GF, Bragantini E, Castiglione F, Fassan M, Troncone G, Inzani F, Pesci A, Santoro A, Fraggetta F. Current Prognostic and Predictive Biomarkers for Endometrial Cancer in Clinical Practice: Recommendations/Proposal from the Italian Study Group. Front Oncol 2022; 12:805613. [PMID: 35463299 PMCID: PMC9024340 DOI: 10.3389/fonc.2022.805613] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Endometrial carcinoma (EC) is the most common gynecological malignant disease in high-income countries, such as European countries and the USA. The 2020 edition of the World Health Organization (WHO) Classification of Tumors of the Female Genital Tract underlines the important clinical implications of the proposed new histomolecular classification system for ECs. In view of the substantial genetic and morphological heterogeneity in ECs, both classical pthological parameters and molecular classifiers have to be integrated in the pathology report. This review will focus on the most commonly adopted immunohistochemical and molecular biomarkers in daily clinical characterization of EC, referring to the most recent published recommendations, guidelines, and expert opinions.
Collapse
Affiliation(s)
- Gian Franco Zannoni
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Emma Bragantini
- Department of Surgical Pathology, Ospedale S. Chiara, Trento, Italy
| | - Francesca Castiglione
- Histopathology and Molecular Diagnostics, Careggi University Hospital, Florence, Italy
| | - Matteo Fassan
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Frediano Inzani
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Anna Pesci
- Department of Pathology, Sacred Heart Hospital Don Calabria Negrar, Verona, Italy
| | - Angela Santoro
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Filippo Fraggetta
- Pathology Unit, “Cannizzaro” Hospital, Catania, Italy
- Pathology Unit, “Gravina” Hospital, Caltagirone, Italy
| |
Collapse
|
56
|
Lee JW, Park YS, Choi JY, Chang WJ, Lee S, Sung JS, Kim B, Lee SB, Lee SY, Choi J, Kim YH. Genetic Characteristics Associated With Drug Resistance in Lung Cancer and Colorectal Cancer Using Whole Exome Sequencing of Cell-Free DNA. Front Oncol 2022; 12:843561. [PMID: 35402275 PMCID: PMC8987589 DOI: 10.3389/fonc.2022.843561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Circulating cell-free DNA (cfDNA) can be used to characterize tumor genomes through next-generation sequencing (NGS)-based approaches. We aim to identify novel genetic alterations associated with drug resistance in lung cancer and colorectal cancer patients who were treated with EGFR-targeted therapy and cytotoxic chemotherapy through whole exome sequencing (WES) of cfDNA. A cohort of 18 lung cancer patients was treated with EGFR TKI or cytotoxic chemotherapy, and a cohort of 37 colorectal cancer patients was treated with EGFR monoclonal antibody or cytotoxic chemotherapy alone. Serum samples were drawn before and after development of drug resistance, and the genetic mutational profile was analyzed with WES data. For 110 paired cfDNA and matched germline DNA WES samples, mean coverage of 138x (range, 52–208.4x) and 47x (range, 30.5–125.1x) was achieved, respectively. After excluding synonymous variants, mutants identified in more than two patients at the time of acquired resistance were selected. Seven genes in lung cancer and 16 genes in colorectal cancer were found, namely, APC, TP53, KRAS, SMAD4, and EGFR. In addition, the GPR155 I357S mutation in lung cancer and ADAMTS20 S1597P and TTN R7415H mutations in colorectal cancer were frequently detected at the time of acquired resistance, indicating that these mutations have an important function in acquired resistance to chemotherapy. Our data suggest that novel genetic variants associated with drug resistance can be identified using cfDNA WES. Further validation is necessary, but these candidate genes are promising therapeutic targets for overcoming drug resistance in lung cancer and colorectal cancer.
Collapse
Affiliation(s)
- Jong Won Lee
- Cancer Research Institute, Korea University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Young Soo Park
- Cancer Research Institute, Korea University College of Medicine, Seoul, South Korea
| | - Jung Yoon Choi
- Division of Hematology–Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, South Korea
| | - Won Jin Chang
- Division of Hematology–Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Soohyeon Lee
- Division of Hematology–Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Jae Sook Sung
- Cancer Research Institute, Korea University College of Medicine, Seoul, South Korea
| | - Boyeon Kim
- Cancer Research Institute, Korea University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Saet Byeol Lee
- Cancer Research Institute, Korea University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Sung Yong Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Medical Center, Korea University College of Medicine, Seoul, South Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States
| | - Yeul Hong Kim
- Cancer Research Institute, Korea University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
- Division of Hematology–Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
- *Correspondence: Yeul Hong Kim,
| |
Collapse
|
57
|
Siraj S, Masoodi T, Siraj AK, Azam S, Qadri Z, Parvathareddy SK, Bu R, Siddiqui KS, Al-Sobhi SS, AlDawish M, Al-Kuraya KS. APOBEC SBS13 Mutational Signature-A Novel Predictor of Radioactive Iodine Refractory Papillary Thyroid Carcinoma. Cancers (Basel) 2022; 14:1584. [PMID: 35326735 PMCID: PMC8946015 DOI: 10.3390/cancers14061584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Standard surgery followed by radioactive iodine (131I, RAI) therapy are not curative for 5−20% of papillary thyroid carcinoma (PTC) patients with RAI refractory disease. Early predictors indicating therapeutic response to RAI therapy in PTC are yet to be elucidated. Whole-exome sequencing was performed (at median depth 198x) on 66 RAI-refractory and 92 RAI-avid PTCs with patient-matched germline. RAI-refractory tumors were significantly associated with distinct aggressive clinicopathological features, including positive surgical margins (p = 0.016) and the presence of lymph node metastases at primary diagnosis (p = 0.012); higher nonsilent tumor mutation burden (p = 0.011); TERT promoter (TERTp) mutation (p < 0.0001); and the enrichment of the APOBEC-related single-base substitution (SBS) COSMIC mutational signatures 2 (p = 0.030) and 13 (p < 0.001). Notably, SBS13 (odds ratio [OR] 30.4, 95% confidence intervals [CI] 1.43−647.22) and TERTp mutation (OR 41.3, 95% CI 4.35−391.60) were revealed to be independent predictors of RAI refractoriness in PTC (p = 0.029 and 0.001, respectively). Although SBS13 and TERTp mutations alone highly predicted RAI refractoriness, when combined, they significantly increased the likelihood of predicting RAI refractoriness in PTC. This study highlights the APOBEC SBS13 mutational signature as a novel independent predictor of RAI refractoriness in a distinct subgroup of PTC.
Collapse
Affiliation(s)
- Sarah Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (S.S.); (T.M.); (A.K.S.); (S.A.); (Z.Q.); (S.K.P.); (R.B.)
| | - Tariq Masoodi
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (S.S.); (T.M.); (A.K.S.); (S.A.); (Z.Q.); (S.K.P.); (R.B.)
| | - Abdul K. Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (S.S.); (T.M.); (A.K.S.); (S.A.); (Z.Q.); (S.K.P.); (R.B.)
| | - Saud Azam
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (S.S.); (T.M.); (A.K.S.); (S.A.); (Z.Q.); (S.K.P.); (R.B.)
| | - Zeeshan Qadri
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (S.S.); (T.M.); (A.K.S.); (S.A.); (Z.Q.); (S.K.P.); (R.B.)
| | - Sandeep K. Parvathareddy
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (S.S.); (T.M.); (A.K.S.); (S.A.); (Z.Q.); (S.K.P.); (R.B.)
| | - Rong Bu
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (S.S.); (T.M.); (A.K.S.); (S.A.); (Z.Q.); (S.K.P.); (R.B.)
| | - Khawar S. Siddiqui
- Department of Pediatric Hematology-Oncology, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia;
| | - Saif S. Al-Sobhi
- Department of Surgery, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia;
| | - Mohammed AlDawish
- Department of Endocrinology and Diabetes, Prince Sultan Military Medical City, P.O. Box 261370, Riyadh 11342, Saudi Arabia;
| | - Khawla S. Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (S.S.); (T.M.); (A.K.S.); (S.A.); (Z.Q.); (S.K.P.); (R.B.)
| |
Collapse
|
58
|
Li J, Shu X, Xu J, Su SM, Chan UI, Mo L, Liu J, Zhang X, Adhav R, Chen Q, Wang Y, An T, Zhang X, Lyu X, Li X, Lei JH, Miao K, Sun H, Xing F, Zhang A, Deng C, Xu X. S100A9-CXCL12 activation in BRCA1-mutant breast cancer promotes an immunosuppressive microenvironment associated with resistance to immunotherapy. Nat Commun 2022; 13:1481. [PMID: 35304461 PMCID: PMC8933470 DOI: 10.1038/s41467-022-29151-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
Immune checkpoint blockade (ICB) is a powerful approach for cancer therapy although good responses are only observed in a fraction of cancer patients. Breast cancers caused by deficiency of breast cancer-associated gene 1 (BRCA1) do not have an improved response to the treatment. To investigate this, here we analyze BRCA1 mutant mammary tissues and tumors derived from both BRCA1 mutant mouse models and human xenograft models to identify intrinsic determinants governing tumor progression and ICB responses. We show that BRCA1 deficiency activates S100A9-CXCL12 signaling for cancer progression and triggers the expansion and accumulation of myeloid-derived suppressor cells (MDSCs), creating a tumor-permissive microenvironment and rendering cancers insensitive to ICB. These oncogenic actions can be effectively suppressed by the combinatory treatment of inhibitors for S100A9-CXCL12 signaling with αPD-1 antibody. This study provides a selective strategy for effective immunotherapy in patients with elevated S100A9 and/or CXCL12 protein levels.
Collapse
Affiliation(s)
- Jianjie Li
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xiaodong Shu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jun Xu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Sek Man Su
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Un In Chan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lihua Mo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jianlin Liu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xin Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ragini Adhav
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Qiang Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yuqing Wang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Tingting An
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xu Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xueying Lyu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xiaoling Li
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Josh Haipeng Lei
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Kai Miao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China.,MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Heng Sun
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China.,MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Fuqiang Xing
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Aiping Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chuxia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China. .,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China. .,MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China.
| | - Xiaoling Xu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China. .,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China. .,MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
59
|
Parsa FG, Nobili S, Karimpour M, Aghdaei HA, Nazemalhosseini-Mojarad E, Mini E. Fanconi Anemia Pathway in Colorectal Cancer: A Novel Opportunity for Diagnosis, Prognosis and Therapy. J Pers Med 2022; 12:396. [PMID: 35330396 PMCID: PMC8950345 DOI: 10.3390/jpm12030396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignancy and has the second highest mortality rate globally. Thanks to the advent of next-generation sequencing technologies, several novel candidate genes have been proposed for CRC susceptibility. Germline biallelic mutations in one or more of the 22 currently recognized Fanconi anemia (FA) genes have been associated with Fanconi anemia disease, while germline monoallelic mutations, somatic mutations, or the promoter hypermethylation of some FANC genes increases the risk of cancer development, including CRC. The FA pathway is a substantial part of the DNA damage response system that participates in the repair of DNA inter-strand crosslinks through homologous recombination (HR) and protects genome stability via replication fork stabilization, respectively. Recent studies revealed associations between FA gene/protein tumor expression levels (i.e., FANC genes) and CRC progression and drug resistance. Moreover, the FA pathway represents a potential target in the CRC treatment. In fact, FANC gene characteristics may contribute to chemosensitize tumor cells to DNA crosslinking agents such as oxaliplatin and cisplatin besides exploiting the synthetic lethal approach for selective targeting of tumor cells. Hence, this review summarizes the current knowledge on the function of the FA pathway in DNA repair and genomic integrity with a focus on the FANC genes as potential predisposition factors to CRC. We then introduce recent literature that highlights the importance of FANC genes in CRC as promising prognostic and predictive biomarkers for disease management and treatment. Finally, we represent a brief overview of the current knowledge around the FANC genes as synthetic lethal therapeutic targets for precision cancer medicine.
Collapse
Affiliation(s)
- Fatemeh Ghorbani Parsa
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19857-17413, Iran; (F.G.P.); (H.A.A.)
| | - Stefania Nobili
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Mina Karimpour
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran;
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19857-17413, Iran; (F.G.P.); (H.A.A.)
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19857-17413, Iran
| | - Enrico Mini
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
- DENOTHE Excellence Center, University of Florence, 50139 Florence, Italy
| |
Collapse
|
60
|
Silva SB, Wanderley CWS, Colli LM. Immune Checkpoint Inhibitors in Tumors Harboring Homologous Recombination Deficiency: Challenges in Attaining Efficacy. Front Immunol 2022; 13:826577. [PMID: 35211121 PMCID: PMC8860897 DOI: 10.3389/fimmu.2022.826577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/14/2022] [Indexed: 12/22/2022] Open
Abstract
Cancer cells harbor genomic instability due to accumulated DNA damage, one of the cancer hallmarks. At least five major DNA Damage Repair (DDR) pathways are recognized to repair DNA damages during different stages of the cell cycle, comprehending base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination (HR), and non-homologous end joining (NHEJ). The unprecedented benefits achieved with immunological checkpoint inhibitors (ICIs) in tumors with mismatch repair deficiency (dMMR) have prompted efforts to extend this efficacy to tumors with HR deficiency (HRD), which are greatly sensitive to chemotherapy or PARP inhibitors, and also considered highly immunogenic. However, an in-depth understanding of HRD's molecular underpinnings has pointed to essential singularities that might impact ICIs sensitivity. Here we address the main molecular aspects of HRD that underlie a differential profile of efficacy and resistance to the treatment with ICIs compared to other DDR deficiencies.
Collapse
Affiliation(s)
- Saulo Brito Silva
- Department of Medical Imaging, Hematology, and Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlos Wagner S. Wanderley
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Leandro Machado Colli
- Department of Medical Imaging, Hematology, and Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
61
|
Ros J, Saoudi N, Salvà F, Baraibar I, Alonso G, Tabernero J, Elez E. Ongoing and evolving clinical trials enhancing future colorectal cancer treatment strategies. Expert Opin Investig Drugs 2022; 31:235-247. [PMID: 35133234 DOI: 10.1080/13543784.2022.2040016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Molecular profiling has led to significantly longer survival in metastatic colorectal cancer (CRC) patients. Clinical guidelines recommend testing for KRAS/NRAS, BRAF and MSI status and over the last few years several promising new biomarkers have also been identified. Circulating tumor DNA has reshaped the prognosis of localized CRC. These genomic findings can guide treatment management to improve clinical outcomes. AREAS COVERED Preclinical and clinical data over the last decade were reviewed for known and novel biomarkers with clinical implications in refractory and metastatic CRC. In the localized stage, al clinical trials involving new approaches such as liquid biopsy or neoadjuvant immunotherapy are also discussed. Molecular alterations and targeted agents are described, and data from completed and ongoing studies with targeted therapy and immunotherapies are presented. EXPERT OPINION The implementation of liquid biopsies in the localized CRC setting has reshaped management of this disease. The expanded use of biomarkers to guide the treatment of patients with CRC has revealed a level of complexity arising from interactions between different biomarkers. Prevalence of most established targetable biomarkers is low, however the number of identified biomarkers in CRC is increasing. Thus, metastatic CRC may ultimately be considered an umbrella diagnosis encompassing numerous rare disease subtypes.
Collapse
Affiliation(s)
- Javier Ros
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Precision Medicine, Medical Oncology, Università Degli Studi Della Campania Luigi Vanvitelli, Naples, Campania, Italy
| | - Nadia Saoudi
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Francesc Salvà
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Iosune Baraibar
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Guzman Alonso
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Elena Elez
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
62
|
Brady SW, Gout AM, Zhang J. Therapeutic and prognostic insights from the analysis of cancer mutational signatures. Trends Genet 2022; 38:194-208. [PMID: 34483003 PMCID: PMC8752466 DOI: 10.1016/j.tig.2021.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
The somatic mutations in each cancer genome are caused by multiple mutational processes, each of which leaves a characteristic imprint (or 'signature'), potentially caused by specific etiologies or exposures. Deconvolution of these signatures offers a glimpse into the evolutionary history of individual tumors. Recent work has shown that mutational signatures may also yield therapeutic and prognostic insights, including the identification of cell-intrinsic signatures as biomarkers of drug response and prognosis. For example, mutational signatures indicating homologous recombination deficiency are associated with poly(ADP)-ribose polymerase (PARP) inhibitor sensitivity, whereas APOBEC-associated signatures are associated with ataxia telangiectasia and Rad3-related kinase (ATR) inhibitor sensitivity. Furthermore, therapy-induced mutational signatures implicated in cancer progression have also been uncovered, including the identification of thiopurine-induced TP53 mutations in leukemia. In this review, we explore the various ways mutational signatures can reveal new therapeutic and prognostic insights, thus extending their traditional role in identifying disease etiology.
Collapse
Affiliation(s)
- Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Alexander M Gout
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
63
|
Abstract
Triple-negative breast cancer (TNBC) encompasses a heterogeneous group of fundamentally different diseases with different histologic, genomic, and immunologic profiles, which are aggregated under this term because of their lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. Massively parallel sequencing and other omics technologies have demonstrated the level of heterogeneity in TNBCs and shed light into the pathogenesis of this therapeutically challenging entity in breast cancer. In this review, we discuss the histologic and molecular classifications of TNBC, the genomic alterations these different tumor types harbor, and the potential impact of these alterations on the pathogenesis of these tumors. We also explore the role of the tumor microenvironment in the biology of TNBCs and its potential impact on therapeutic response. Dissecting the biology and understanding the therapeutic dependencies of each TNBC subtype will be essential to delivering on the promise of precision medicine for patients with triple-negative disease.
Collapse
Affiliation(s)
- Fatemeh Derakhshan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| |
Collapse
|
64
|
Kusi M, Zand M, Lin LL, Chen M, Lopez A, Lin CL, Wang CM, Lucio ND, Kirma NB, Ruan J, Huang THM, Mitsuya K. 2-Hydroxyglutarate destabilizes chromatin regulatory landscape and lineage fidelity to promote cellular heterogeneity. Cell Rep 2022; 38:110220. [PMID: 35021081 PMCID: PMC8811753 DOI: 10.1016/j.celrep.2021.110220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
The epigenome delineates lineage-specific transcriptional programs and restricts cell plasticity to prevent non-physiological cell fate transitions. Although cell diversification fosters tumor evolution and therapy resistance, upstream mechanisms that regulate the stability and plasticity of the cancer epigenome remain elusive. Here we show that 2-hydroxyglutarate (2HG) not only suppresses DNA repair but also mediates the high-plasticity chromatin landscape. A combination of single-cell epigenomics and multi-omics approaches demonstrates that 2HG disarranges otherwise well-preserved stable nucleosome positioning and promotes cell-to-cell variability. 2HG induces loss of motif accessibility to the luminal-defining transcriptional factors FOXA1, FOXP1, and GATA3 and a shift from luminal to basal-like gene expression. Breast tumors with high 2HG exhibit enhanced heterogeneity with undifferentiated epigenomic signatures linked to adverse prognosis. Further, ascorbate-2-phosphate (A2P) eradicates heterogeneity and impairs growth of high 2HG-producing breast cancer cells. These findings suggest 2HG as a key determinant of cancer plasticity and provide a rational strategy to counteract tumor cell evolution. Kusi et al. show that the oncometabolite 2-hydroxyglutarate (2HG) initiates cell-level epigenome fluctuations in the chromatin regulatory landscape, accompanied by loss of lineage fidelity. Breast tumors with high 2HG accumulation exhibit enhanced cellular heterogeneity with undifferentiated stem-like epigenomic signatures. The findings suggest metabolic derangement as a molecular origin of breast cancer heterogeneity.
Collapse
Affiliation(s)
- Meena Kusi
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Maryam Zand
- Department of Computer Science, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Li-Ling Lin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Meizhen Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Anthony Lopez
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Chun-Lin Lin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Chiou-Miin Wang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Nicholas D Lucio
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Nameer B Kirma
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Jianhua Ruan
- Department of Computer Science, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Kohzoh Mitsuya
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
65
|
Randon G, Intini R, Cremolini C, Elez E, Overman MJ, Lee J, Manca P, Bergamo F, Pagani F, Antista M, Angerilli V, Ros Montaña FJ, Lavacchi D, Boccaccino A, Fucà G, Brich S, Cattaneo L, Fassan M, Pietrantonio F, Lonardi S. Tumour mutational burden predicts resistance to EGFR/BRAF blockade in BRAF-mutated microsatellite stable metastatic colorectal cancer. Eur J Cancer 2022; 161:90-98. [PMID: 34933155 DOI: 10.1016/j.ejca.2021.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
AIM To unveil genomic and immunohistochemical expression profiles associated with primary resistance to EGFR/BRAF targeted therapy in patients with BRAF-mutated and microsatellite stable (MSS) metastatic colorectal cancer. EXPERIMENTAL DESIGN In this multicenter case-control study on patients treated with EGFR/BRAF ± MEK blockade, we compared a primary resistance cohort (N = 20; RECISTv1.1 PD/SD, and progression-free survival [PFS] <16 weeks) versus a sensitive one (N = 19; RECISTv1.1 PR/CR, and PFS ≥16 weeks) in terms of clinical and genomic/expression data by means of comprehensive genomic profiling, tumour mutational burden (TMB), BRAF-mutant transcriptional subtypes (BM) classification and PTEN expression. RESULTS Left-sided tumours (28% of the total) were enriched in the sensitive versus resistant cohort (53% versus 10%, P = 0.010). Genomic alterations in the PIK3CA/MTOR pathway, BM1 status and PTEN loss were similarly distributed among patients with resistant and sensitive tumours. Amplification of CCND1-3 genes were found only in patients with primary resistance (20% versus 0%, P = 0.106). TMB and prevalence of intermediate TMB (TMB-I 6-20 mutations/Mb) were higher in the resistant versus sensitive cohort (median TMB: 6 [IQR, 3-7.29] versus 3 [IQR, 1.26-3.5]; P = 0.013; TMB-I/H: 60% versus 11%; P = 0.001). Patients with TMB-I had shorter PFS (3.3 versus 5.9 months; HR = 2.19, 95%CI, 1.07-4.47, P = 0.031) and overall survival (6.3 versus 10.5 months; HR = 2.22, 95%CI, 1.02-4.81, P = 0.044). CONCLUSION Despite the small sample size, the association of a relatively higher TMB with limited benefit from EGFR/BRAF blockade in patients with MSS and BRAF-mutated mCRC deserves prospective validation.
Collapse
Affiliation(s)
- Giovanni Randon
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumouri di Milano, Milano, Italy
| | - Rossana Intini
- Department of Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Elena Elez
- Vall D'Hebron University Hospital (HUVH) and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, South Korea
| | - Paolo Manca
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumouri di Milano, Milano, Italy
| | - Francesca Bergamo
- Department of Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy
| | - Filippo Pagani
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumouri di Milano, Milano, Italy
| | - Maria Antista
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumouri di Milano, Milano, Italy
| | - Valentina Angerilli
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | | | - Daniele Lavacchi
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | | | - Giovanni Fucà
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumouri di Milano, Milano, Italy
| | - Silvia Brich
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumouri di Milano, Milan, Italy
| | - Laura Cattaneo
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumouri di Milano, Milan, Italy
| | - Matteo Fassan
- Department of Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy; Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumouri di Milano, Milano, Italy.
| | - Sara Lonardi
- Department of Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy
| |
Collapse
|
66
|
van den Heuvel GRM, Kroeze LI, Ligtenberg MJL, Grünberg K, Jansen EAM, von Rhein D, de Voer RM, van den Heuvel MM. Mutational signature analysis in non-small cell lung cancer patients with a high tumor mutational burden. Respir Res 2021; 22:302. [PMID: 34819052 PMCID: PMC8611965 DOI: 10.1186/s12931-021-01871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer death worldwide. With the growing number of targeted therapies and the introduction of immuno-oncology (IO), personalized medicine has become standard of care in patients with metastatic disease. The development of predictive and prognostic biomarkers is of great importance. Mutational signatures harbor potential clinical value as predictors of therapy response in cancer. Here we set out to investigate particular mutational processes by assessing mutational signatures and associations with clinical features, tumor mutational burden (TMB) and targetable mutations. METHODS In this retrospective study, we studied tumor DNA from patients with non-small cell lung cancer (NSCLC) irrespective of stage. The samples were sequenced using a 2 megabase (Mb) gene panel. On each sample TMB was determined and defined as the total number of single nucleotide mutations per Mb (mut/Mb) including non-synonymous mutations. Mutational signature profiling was performed on tumor samples in which at least 30 somatic single base substitutions (SBS) were detected. RESULTS In total 195 samples were sequenced. Median total TMB was 10.3 mut/Mb (range 0-109.3). Mutational signatures were evaluated in 76 tumor samples (39%; median TMB 15.2 mut/Mb). SBS signature 4 (SBS4), associated with tobacco smoking, was prominently present in 25 of 76 samples (33%). SBS2 and/or SBS13, both associated with activity of the AID/APOBEC family of cytidine deaminases, were observed in 11 of 76 samples (14%). SBS4 was significantly more present in early stages (I and II) versus advanced stages (III and IV; P = .005). CONCLUSION In a large proportion of NSCLC patients tissue panel sequencing with a 2 Mb panel can be used to determine the mutational signatures. In general, mutational signature SBS4 was more often found in early versus advanced stages of NSCLC. Further studies are needed to determine the clinical utility of mutational signature analyses.
Collapse
Affiliation(s)
- Guus R M van den Heuvel
- Department of Pulmonology, Radboud University Medical Center, Postbox 9101, 6500 HB, Nijmegen, The Netherlands
| | - Leonie I Kroeze
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katrien Grünberg
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erik A M Jansen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daniel von Rhein
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Richarda M de Voer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Michel M van den Heuvel
- Department of Pulmonology, Radboud University Medical Center, Postbox 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
67
|
Ros J, Baraibar I, Martini G, Salvà F, Saoudi N, Cuadra-Urteaga JL, Dienstmann R, Tabernero J, Élez E. The Evolving Role of Consensus Molecular Subtypes: a Step Beyond Inpatient Selection for Treatment of Colorectal Cancer. Curr Treat Options Oncol 2021; 22:113. [PMID: 34741675 DOI: 10.1007/s11864-021-00913-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2021] [Indexed: 12/24/2022]
Abstract
OPINION STATEMENT The heterogenous nature of colorectal cancer (CRC) renders it a major clinical challenge. Increasing genomic understanding of CRC has improved our knowledge of this heterogeneity and the main cancer drivers, with significant improvements in clinical outcomes. Comprehensive molecular characterization has allowed clinicians a more precise range of treatment options based on biomarker selection. Furthermore, this deep molecular understanding likely extends therapeutic options to a larger number of patients. The biological associations of consensus molecular subtypes (CMS) with clinical outcomes in localized CRC have been validated in retrospective clinical trials. The prognostic role of CMS has also been confirmed in the metastatic setting, with CMS2 having the best prognosis, whereas CMS1 tumors are associated with a higher risk of progression and death after chemotherapy. Similarly, according to mesenchymal features and immunosuppressive molecules, CMS1 responds to immunotherapy, whereas CMS4 has a poorer prognosis, suggesting that a CMS1 signature could identify patients who may benefit from immune checkpoint inhibitors regardless of microsatellite instability (MSI) status. The main goal of these comprehensive analyses is to switch from "one marker-one drug" to "multi-marker drug combinations" allowing oncologists to give "the right drug to the right patient." Despite the revealing data from transcriptomic analyses, the high rate of intra-tumoral heterogeneity across the different CMS subgroups limits its incorporation as a predictive biomarker. In clinical practice, when feasible, comprehensive genomic tests should be performed to identify potentially targetable alterations, particularly in RAS/BRAF wild-type, MSI, and right-sided tumors. Furthermore, CMS has not only been associated with clinical outcomes and specific tumor and patient phenotypes but also with specific microbiome patterns. Future steps will include the integration of clinical features, genomics, transcriptomics, and microbiota to select the most accurate biomarkers to identify optimal treatments, improving individual clinical outcomes. In summary, CMS is context specific, identifies a level of heterogeneity beyond standard genomic biomarkers, and offers a means of maximizing personalized therapy.
Collapse
Affiliation(s)
- Javier Ros
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain. .,Department of Precision Medicine, Medical Oncology, Università Degli Studi Della Campania Luigi Vanvitelli, Naples, Campania, Italy.
| | - Iosune Baraibar
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Giulia Martini
- Department of Precision Medicine, Medical Oncology, Università Degli Studi Della Campania Luigi Vanvitelli, Naples, Campania, Italy
| | - Francesc Salvà
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Nadia Saoudi
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Rodrigo Dienstmann
- Oncology Data Science (ODysSey) Group, Vall D'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall D'Hebron, Vall D'Hebron Barcelona Hospital Campus (Spain), Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,IOB, Barcelona, Spain.,UVic-UCC, Vic, Spain
| | - Elena Élez
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
68
|
Georgeson P, Pope BJ, Rosty C, Clendenning M, Mahmood K, Joo JE, Walker R, Hutchinson R, Preston S, Como J, Joseland S, Win AK, Macrae FA, Hopper JL, Mouradov D, Gibbs P, Sieber OM, O’Sullivan DE, Brenner DR, Gallinger S, Jenkins MA, Winship IM, Buchanan DD. Evaluating the utility of tumour mutational signatures for identifying hereditary colorectal cancer and polyposis syndrome carriers. Gut 2021; 70:2138-2149. [PMID: 33414168 PMCID: PMC8260632 DOI: 10.1136/gutjnl-2019-320462] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Germline pathogenic variants (PVs) in the DNA mismatch repair (MMR) genes and in the base excision repair gene MUTYH underlie hereditary colorectal cancer (CRC) and polyposis syndromes. We evaluated the robustness and discriminatory potential of tumour mutational signatures in CRCs for identifying germline PV carriers. DESIGN Whole-exome sequencing of formalin-fixed paraffin-embedded (FFPE) CRC tissue was performed on 33 MMR germline PV carriers, 12 biallelic MUTYH germline PV carriers, 25 sporadic MLH1 methylated MMR-deficient CRCs (MMRd controls) and 160 sporadic MMR-proficient CRCs (MMRp controls) and included 498 TCGA CRC tumours. COSMIC V3 single base substitution (SBS) and indel (ID) mutational signatures were assessed for their ability to differentiate CRCs that developed in carriers from non-carriers. RESULTS The combination of mutational signatures SBS18 and SBS36 contributing >30% of a CRC's signature profile was able to discriminate biallelic MUTYH carriers from all other non-carrier control CRCs with 100% accuracy (area under the curve (AUC) 1.0). SBS18 and SBS36 were associated with specific MUTYH variants p.Gly396Asp (p=0.025) and p.Tyr179Cys (p=5×10-5), respectively. The combination of ID2 and ID7 could discriminate the 33 MMR PV carrier CRCs from the MMRp control CRCs (AUC 0.99); however, SBS and ID signatures, alone or in combination, could not provide complete discrimination (AUC 0.79) between CRCs from MMR PV carriers and sporadic MMRd controls. CONCLUSION Assessment of SBS and ID signatures can discriminate CRCs from biallelic MUTYH carriers and MMR PV carriers from non-carriers with high accuracy, demonstrating utility as a potential diagnostic and variant classification tool.
Collapse
Affiliation(s)
- Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Bernard J. Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Melbourne Bioinformatics, The University of Melbourne, Carlton, Victoria, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Envoi Pathology, Brisbane, Queensland, Australia,University of Queensland, School of Medicine, Herston, Queensland, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Melbourne Bioinformatics, The University of Melbourne, Carlton, Victoria, Australia
| | - Jihoon E. Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Ryan Hutchinson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Susan Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Aung K. Win
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia,Centre for Epidemiology and Biostatistics, The University of Melbourne, Carlton, Victoria, Australia
| | - Finlay A. Macrae
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia,Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Carlton, Victoria, Australia
| | - Dmitry Mouradov
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Gibbs
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia,Department of Medical Oncology, Western Health, Victoria, Australia
| | - Oliver M. Sieber
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia,Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Dylan E. O’Sullivan
- Department of Oncology, University of Calgary, Calgary, Canada,Department of Community Health Sciences, University of Calgary, Calgary, Canada
| | - Darren R. Brenner
- Department of Oncology, University of Calgary, Calgary, Canada,Department of Community Health Sciences, University of Calgary, Calgary, Canada,Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, Canada
| | - Steve Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada,Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mark A. Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Centre for Epidemiology and Biostatistics, The University of Melbourne, Carlton, Victoria, Australia
| | - Ingrid M. Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
69
|
de Freitas AJA, Causin RL, Varuzza MB, Hidalgo Filho CMT, da Silva VD, Souza CDP, Marques MMC. Molecular Biomarkers Predict Pathological Complete Response of Neoadjuvant Chemotherapy in Breast Cancer Patients: Review. Cancers (Basel) 2021; 13:cancers13215477. [PMID: 34771640 PMCID: PMC8582511 DOI: 10.3390/cancers13215477] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Breast cancer is the most common cancer in women worldwide. Although many studies have aimed to understand the genetic basis of breast cancer, leading to increasingly accurate diagnoses, only a few molecular biomarkers are used in clinical practice to predict response to therapy. Current studies aim to develop more personalized therapies to decrease the adverse effects of chemotherapy. Personalized medicine not only requires clinical, but also molecular characterization of tumors, which allows the use of more effective drugs for each patient. The aim of this study was to identify potential molecular biomarkers that can predict the response to therapy after neoadjuvant chemotherapy in patients with breast cancer. In this review, we summarize genomic, transcriptomic, and proteomic biomarkers that can help predict the response to therapy. Abstract Neoadjuvant chemotherapy (NAC) is often used to treat locally advanced disease for tumor downstaging, thus improving the chances of breast-conserving surgery. From the NAC response, it is possible to obtain prognostic information as patients may reach a pathological complete response (pCR). Those who do might have significant advantages in terms of survival rates. Breast cancer (BC) is a heterogeneous disease that requires personalized treatment strategies. The development of targeted therapies depends on identifying biomarkers that can be used to assess treatment efficacy as well as the discovery of new and more accurate therapeutic agents. With the development of new “OMICS” technologies, i.e., genomics, transcriptomics, and proteomics, among others, the discovery of new biomarkers is increasingly being used in the context of clinical practice, bringing us closer to personalized management of BC treatment. The aim of this review is to compile the main biomarkers that predict pCR in BC after NAC.
Collapse
Affiliation(s)
- Ana Julia Aguiar de Freitas
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos 14784-400, SP, Brazil; (A.J.A.d.F.); (R.L.C.); (M.B.V.)
| | - Rhafaela Lima Causin
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos 14784-400, SP, Brazil; (A.J.A.d.F.); (R.L.C.); (M.B.V.)
| | - Muriele Bertagna Varuzza
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos 14784-400, SP, Brazil; (A.J.A.d.F.); (R.L.C.); (M.B.V.)
| | | | | | | | - Márcia Maria Chiquitelli Marques
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos 14784-400, SP, Brazil; (A.J.A.d.F.); (R.L.C.); (M.B.V.)
- Barretos School of Health Sciences, Dr. Paulo Prata–FACISB, Barretos 14785-002, SP, Brazil
- Correspondence: ; Tel.: +55-17-3321-6600 (ext. 7057)
| |
Collapse
|
70
|
Gilad G, Leiserson MDM, Sharan R. A data-driven approach for constructing mutation categories for mutational signature analysis. PLoS Comput Biol 2021; 17:e1009542. [PMID: 34665813 PMCID: PMC8555780 DOI: 10.1371/journal.pcbi.1009542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/29/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
Mutational processes shape the genomes of cancer patients and their understanding has important applications in diagnosis and treatment. Current modeling of mutational processes by identifying their characteristic signatures views each base substitution in a limited context of a single flanking base on each side. This context definition gives rise to 96 categories of mutations that have become the standard in the field, even though wider contexts have been shown to be informative in specific cases. Here we propose a data-driven approach for constructing a mutation categorization for mutational signature analysis. Our approach is based on the assumption that tumor cells that are exposed to similar mutational processes, show similar expression levels of DNA damage repair genes that are involved in these processes. We attempt to find a categorization that maximizes the agreement between mutation and gene expression data, and show that it outperforms the standard categorization over multiple quality measures. Moreover, we show that the categorization we identify generalizes to unseen data from different cancer types, suggesting that mutation context patterns extend beyond the immediate flanking bases. Cancer is a group of genetic diseases that occur as a result of an accumulation of somatic mutations in genes that regulate cellular growth and differentiation. These mutations arise from mutagenic processes such as exposure to environmental mutagens and defective DNA damage repair pathways. Each of these processes results in a characteristic pattern of mutations, referred to as a mutational signature. These signatures reveal the mutagenic mechanisms that have influenced the development of a specific tumor, and thus provide new insights into its causes and potential treatments. Originally, a mutational signature has been defined using 96 mutation categories that take into account solely the information from the mutated base and its flanking bases. Here, we aim to challenge this arbitrary categorization, which is widely used in mutational signature analysis. We have developed a novel framework for the construction of mutation categories that is based on the assumption that the activities of DNA damage repair genes are correlated with the mutational processes that are active in a given tumor. We show that using this approach we are able to identify an alternative mutation categorization that outperforms the standard categorization with respect to multiple metrics. This categorization includes categories that account for bases that extend beyond the immediate flanking bases, suggesting that mutational signatures should be studied in broader sequence contexts.
Collapse
Affiliation(s)
- Gal Gilad
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Mark D. M. Leiserson
- Department of Computer Science and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Roded Sharan
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
71
|
Hussain SS, Lundine D, Leeman JE, Higginson DS. Genomic Signatures in HPV-Associated Tumors. Viruses 2021; 13:v13101998. [PMID: 34696429 PMCID: PMC8537705 DOI: 10.3390/v13101998] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 02/01/2023] Open
Abstract
Papillomaviruses dysregulate the G1/S cell cycle transition in order to promote DNA synthesis in S phase, which is a requirement for viral replication. The human papillomaviruses (HPV) E6 and E7 oncoproteins mediate degradation of the cell cycle regulators p53 and Rb, which are two of the most universally disrupted tumor-suppressor genes in all of cancer. The G1/S checkpoint is activated in normal cells to allow sufficient time for DNA repair in G1 before proceeding to replicate DNA and risk propagating unrepaired errors. The TP53 pathway suppresses a variety of such errors, including translocation, copy number alterations, and aneuploidy, which are thus found in HPV-associated tumors similarly to HPV-negative tumors with other mechanisms of TP53 disruption. However, E6 and E7 maintain a variety of other virus–host interactions that directly disrupt a growing list of other DNA repair and chromatin remodeling factors, implying HPV-specific repair deficiencies. In addition, HPV-associated squamous cell carcinomas tumors clinically respond differently to DNA damaging agents compared to their HPV negative counterparts. The focus of this review is to integrate three categories of observations: (1) pre-clinical understanding as to the effect of HPV on DNA repair, (2) genomic signatures of DNA repair in HPV-associated tumor genomes, and (3) clinical responses of HPV-associated tumors to DNA damaging agents. The goals are to try to explain why HPV-associated tumors respond so well to DNA damaging agents, identify missing pieces, and suggest clinical strategies could be used to further improve treatment of these cancers.
Collapse
Affiliation(s)
- Suleman S. Hussain
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.S.H.); (D.L.)
| | - Devon Lundine
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.S.H.); (D.L.)
| | - Jonathan E. Leeman
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02189, USA;
| | - Daniel S. Higginson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.S.H.); (D.L.)
- Correspondence:
| |
Collapse
|
72
|
Yoon JG, Kim MH, Jang M, Kim H, Hwang HK, Kang CM, Lee WJ, Kang B, Lee CK, Lee MG, Chung HC, Choi HJ, Park YN. Molecular Characterization of Biliary Tract Cancer Predicts Chemotherapy and Programmed Death 1/Programmed Death-Ligand 1 Blockade Responses. Hepatology 2021; 74:1914-1931. [PMID: 33884649 DOI: 10.1002/hep.31862] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Biliary tract cancer (BTC) exhibits diverse molecular characteristics. However, reliable biomarkers that predict therapeutic responses are yet to be discovered. We aimed to identify the molecular features of treatment responses to chemotherapy and immunotherapy in BTCs. APPROACH AND RESULTS We enrolled 121 advanced BTC patients (68 cholangiocarcinomas [33 intrahepatic, 35 extrahepatic], 41 gallbladder cancers, and 12 Ampulla of Vater cancers) whose specimens were analyzed by clinical sequencing platforms. All patients received first-line palliative chemotherapy; 48 patients underwent programmed death 1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade therapy after failed chemotherapy. Molecular and histopathological characterization was performed using targeted sequencing and immunohistochemical staining to investigate treatment response-associated biomarkers. Genomic analysis revealed a broad spectrum of mutational profiles according to anatomical location. Favorable responses to chemotherapy were observed in the small-duct type compared with the large-duct type intrahepatic cholangiocarcinoma, with frequent mutations in BRCA1-associated protein-1/isocitrate dehydrogenase 1/2 and KRAS proto-oncogene, GTPase/SMAD family member 4 genes, respectively. The molecular features were further analyzed in BTCs, and transforming growth factor beta and DNA damage response pathway-altered tumors exhibited poor and favorable chemotherapy responses, respectively. In PD-1/PD-L1 blockade-treated patients, KRAS alteration and chromosomal instability tumors were associated with resistance to immunotherapy. The majority of patients (95.0%) with these resistance factors show no clinical benefit to PD-1/PD-L1 blockade and low tumor mutational burdens. Low tumor-infiltrating lymphocyte (TIL) density in tumors with these resistance factors indicated immune-suppressive tumor microenvironments, whereas high intratumoral TIL density was associated with a favorable immunotherapy response. CONCLUSIONS This study proposes predictive molecular features of chemotherapy and immunotherapy responses in advanced BTCs using clinical sequencing platforms. Our result provides an intuitive framework to guide the treatment of advanced BTCs benefiting from therapeutic agents based on the tumors' molecular features.
Collapse
Affiliation(s)
- Jihoon G Yoon
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Hwan Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Pancreaticobiliary Cancer Clinic, Yonsei Cancer Center, Severance Hospital, Seoul, Republic of Korea
| | - Mi Jang
- Department of Pathology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Pathology, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Hoguen Kim
- Department of Pathology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ho Kyoung Hwang
- Pancreaticobiliary Cancer Clinic, Yonsei Cancer Center, Severance Hospital, Seoul, Republic of Korea.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang Moo Kang
- Pancreaticobiliary Cancer Clinic, Yonsei Cancer Center, Severance Hospital, Seoul, Republic of Korea.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woo Jung Lee
- Pancreaticobiliary Cancer Clinic, Yonsei Cancer Center, Severance Hospital, Seoul, Republic of Korea.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Beodeul Kang
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Pancreaticobiliary Cancer Clinic, Yonsei Cancer Center, Severance Hospital, Seoul, Republic of Korea
| | - Choong-Kun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Pancreaticobiliary Cancer Clinic, Yonsei Cancer Center, Severance Hospital, Seoul, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Cheol Chung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Jin Choi
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Pancreaticobiliary Cancer Clinic, Yonsei Cancer Center, Severance Hospital, Seoul, Republic of Korea
| | - Young Nyun Park
- Department of Pathology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
73
|
Chen CC, Chen CY, Cheng SF, Shieh TM, Leu YL, Chuang WY, Liu KT, Ueng SH, Shih YH, Chou LF, Wang TH. Hydroxygenkwanin Increases the Sensitivity of Liver Cancer Cells to Chemotherapy by Inhibiting DNA Damage Response in Mouse Xenograft Models. Int J Mol Sci 2021; 22:ijms22189766. [PMID: 34575923 PMCID: PMC8471855 DOI: 10.3390/ijms22189766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
Molecules involved in DNA damage response (DDR) are often overexpressed in cancer cells, resulting in poor responses to chemotherapy and radiotherapy. Although treatment efficacy can be improved with the concomitant use of DNA repair inhibitors, the accompanying side effects can compromise the quality of life of patients. Therefore, in this study, we identified a natural compound that could inhibit DDR, using the single-strand annealing yeast-cell analysis system, and explored its mechanisms of action and potential as a chemotherapy adjuvant in hepatocellular carcinoma (HCC) cell lines using comet assay, flow cytometry, Western blotting, immunofluorescence staining, and functional analyses. We developed a mouse model to verify the in vitro findings. We found that hydroxygenkwanin (HGK) inhibited the expression of RAD51 and progression of homologous recombination, thereby suppressing the ability of the HCC cell lines to repair DNA damage and enhancing their sensitivity to doxorubicin. HGK inhibited the phosphorylation of DNA damage checkpoint proteins, leading to apoptosis in the HCC cell lines. In the mouse xenograft model, HGK enhanced the sensitivity of liver cancer cells to doxorubicin without any physiological toxicity. Thus, HGK can inhibit DDR in liver cancer cells and mouse models, making it suitable for use as a chemotherapy adjuvant.
Collapse
Affiliation(s)
- Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-L.L.)
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-L.L.)
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Shu-Fang Cheng
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan;
| | - Yann-Lii Leu
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-L.L.)
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Wen-Yu Chuang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (W.-Y.C.); (S.-H.U.)
- College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan
| | - Kuang-Ting Liu
- Department of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
- Department of Pathology & Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 32551, Taiwan
| | - Shir-Hwa Ueng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (W.-Y.C.); (S.-H.U.)
- College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan;
| | - Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Correspondence: (L.-F.C.); (T.-H.W.)
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-L.L.)
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Correspondence: (L.-F.C.); (T.-H.W.)
| |
Collapse
|
74
|
Piett CG, Pecen TJ, Laverty DJ, Nagel ZD. Large-scale preparation of fluorescence multiplex host cell reactivation (FM-HCR) reporters. Nat Protoc 2021; 16:4265-4298. [PMID: 34363069 PMCID: PMC9272811 DOI: 10.1038/s41596-021-00577-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/28/2021] [Indexed: 01/14/2023]
Abstract
Repair of DNA damage is a critical survival mechanism that affects susceptibility to various human diseases and represents a key target for cancer therapy. A major barrier to applying this knowledge in research and clinical translation has been the lack of efficient, quantitative functional assays for measuring DNA repair capacity in living primary cells. To overcome this barrier, we recently developed a technology termed 'fluorescence multiplex host cell reactivation' (FM-HCR). We describe a method for using standard molecular biology techniques to generate large quantities of FM-HCR reporter plasmids containing site-specific DNA lesions and using these reporters to assess DNA repair capacity in at least six major DNA repair pathways in live cells. We improve upon previous methodologies by (i) providing a universal workflow for generating reporter plasmids, (ii) improving yield and purity to enable large-scale studies that demand milligram quantities and (iii) reducing preparation time >ten-fold.
Collapse
Affiliation(s)
- C G Piett
- Department of Environmental Health, JBL Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - T J Pecen
- Department of Environmental Health, JBL Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - D J Laverty
- Department of Environmental Health, JBL Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Z D Nagel
- Department of Environmental Health, JBL Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
75
|
Karimi MR, Karimi AH, Abolmaali S, Sadeghi M, Schmitz U. Prospects and challenges of cancer systems medicine: from genes to disease networks. Brief Bioinform 2021; 23:6361045. [PMID: 34471925 PMCID: PMC8769701 DOI: 10.1093/bib/bbab343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
It is becoming evident that holistic perspectives toward cancer are crucial in deciphering the overwhelming complexity of tumors. Single-layer analysis of genome-wide data has greatly contributed to our understanding of cellular systems and their perturbations. However, fundamental gaps in our knowledge persist and hamper the design of effective interventions. It is becoming more apparent than ever, that cancer should not only be viewed as a disease of the genome but as a disease of the cellular system. Integrative multilayer approaches are emerging as vigorous assets in our endeavors to achieve systemic views on cancer biology. Herein, we provide a comprehensive review of the approaches, methods and technologies that can serve to achieve systemic perspectives of cancer. We start with genome-wide single-layer approaches of omics analyses of cellular systems and move on to multilayer integrative approaches in which in-depth descriptions of proteogenomics and network-based data analysis are provided. Proteogenomics is a remarkable example of how the integration of multiple levels of information can reduce our blind spots and increase the accuracy and reliability of our interpretations and network-based data analysis is a major approach for data interpretation and a robust scaffold for data integration and modeling. Overall, this review aims to increase cross-field awareness of the approaches and challenges regarding the omics-based study of cancer and to facilitate the necessary shift toward holistic approaches.
Collapse
Affiliation(s)
| | | | | | - Mehdi Sadeghi
- Department of Cell & Molecular Biology, Semnan University, Semnan, Iran
| | - Ulf Schmitz
- Department of Molecular & Cell Biology, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
76
|
Boldrini L, Faviana P, Galli L, Paolieri F, Erba PA, Bardi M. Multi-Dimensional Scaling Analysis of Key Regulatory Genes in Prostate Cancer Using the TCGA Database. Genes (Basel) 2021; 12:1350. [PMID: 34573332 PMCID: PMC8468120 DOI: 10.3390/genes12091350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PC) is a polygenic disease with multiple gene interactions. Therefore, a detailed analysis of its epidemiology and evaluation of risk factors can help to identify more accurate predictors of aggressive disease. We used the transcriptome data from a cohort of 243 patients from the Cancer Genome Atlas (TCGA) database. Key regulatory genes involved in proliferation activity, in the regulation of stress, and in the regulation of inflammation processes of the tumor microenvironment were selected to test a priori multi-dimensional scaling (MDS) models and create a combined score to better predict the patients' survival and disease-free intervals. Survival was positively correlated with cortisol expression and negatively with Mini-Chromosome Maintenance 7 (MCM7) and Breast-Related Cancer Antigen2 (BRCA2) expression. The disease-free interval was negatively related to the expression of enhancer of zeste homolog 2 (EZH2), MCM7, BRCA2, and programmed cell death 1 ligand 1 (PD-L1). MDS suggested two separate pathways of activation in PC. Within these two dimensions three separate clusters emerged: (1) cortisol and brain-derived neurotrophic factor BDNF, (2) PD-L1 and cytotoxic-T-lymphocyte-associated protein 4 (CTL4); (3) and finally EZH2, MCM7, BRCA2, and c-Myc. We entered the three clusters of association shown in the MDS in several Kaplan-Meier analyses. It was found that only Cluster 3 was significantly related to the interval-disease free, indicating that patients with an overall higher activity of regulatory genes of proliferation and DNA repair had a lower probability to have a longer disease-free time. In conclusion, our data study provided initial evidence that selecting patients with a high grade of proliferation and DNA repair activity could lead to an early identification of an aggressive PC with a potentials for metastatic development.
Collapse
Affiliation(s)
- Laura Boldrini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy;
| | - Pinuccia Faviana
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy;
| | - Luca Galli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (L.G.); (F.P.); (P.A.E.)
| | - Federico Paolieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (L.G.); (F.P.); (P.A.E.)
| | - Paola Anna Erba
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (L.G.); (F.P.); (P.A.E.)
| | - Massimo Bardi
- Department of Psychology & Behavioral Neuroscience, Randolph-Macon College, Ashland, VA 23005, USA;
| |
Collapse
|
77
|
Jay A, Reitz D, Namekawa SH, Heyer WD. Cancer testis antigens and genomic instability: More than immunology. DNA Repair (Amst) 2021; 108:103214. [PMID: 34481156 PMCID: PMC9196322 DOI: 10.1016/j.dnarep.2021.103214] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022]
Abstract
Cancer testis antigens or genes (CTA, CTG) are predominantly expressed in adult testes while silenced in most or all somatic tissues with sporadic expression in many human cancers. Concerted misexpression of numerous CTA/CTGs is rarely observed. This finding argues against the germ cell theory of cancer. A surprising number of CTA/CTGs are involved in meiotic chromosome metabolism and specifically in meiotic recombination. Recent discoveries with a group of CTGs established that their misexpression in somatic cells results in genomic instability by interfering with homologous recombination (HR), a DNA repair pathway for complex DNA damage such as DNA double-stranded breaks, interstrand crosslinks, and single-stranded DNA gaps. HR-deficient tumors have specific vulnerabilities and show synthetic lethality with inhibition of polyADP-ribose polymerase, opening the possibility that expression of CTA/CTGs that result in an HR-defect could be used as an additional biomarker for HR status. Here, we review the repertoire of CTA/CTGs focusing on a cohort that functions in meiotic chromosome metabolism by interrogating relevant cancer databases and discussing recent discoveries.
Collapse
Affiliation(s)
- Ash Jay
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Diedre Reitz
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA; Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616-8665, USA.
| |
Collapse
|
78
|
Wojtowicz D, Hoinka J, Amgalan B, Kim YA, Przytycka TM. RepairSig: Deconvolution of DNA damage and repair contributions to the mutational landscape of cancer. Cell Syst 2021; 12:994-1003.e4. [PMID: 34375586 DOI: 10.1016/j.cels.2021.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 01/05/2023]
Abstract
Cancer genomes accumulate a large number of somatic mutations resulting from a combination of stochastic errors in DNA processing, cancer-related aberrations of the DNA repair machinery, or carcinogenic exposures; each mutagenic process leaves a characteristic mutational signature. A key challenge is understanding the interactions between signatures, particularly as DNA repair deficiencies often modify the effects of other mutagens. Here, we introduce RepairSig, a computational method that explicitly models additive primary mutagenic processes; non-additive secondary processes, which interact with the primary processes; and a mutation opportunity, that is, the distribution of sites across the genome that are vulnerable to damage or preferentially repaired. We demonstrate that RepairSig accurately recapitulates experimentally identified signatures, identifies autonomous signatures of deficient DNA repair processes, and explains mismatch repair deficiency in breast cancer by de novo inference of both primary and secondary signatures from patient data. RepairSig is freely available for download at https://github.com/ncbi/RepairSig.
Collapse
Affiliation(s)
- Damian Wojtowicz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Jan Hoinka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Bayarbaatar Amgalan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yoo-Ah Kim
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Teresa M Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
79
|
Wilson DM, Deacon AM, Duncton MAJ, Pellicena P, Georgiadis MM, Yeh AP, Arvai AS, Moiani D, Tainer JA, Das D. Fragment- and structure-based drug discovery for developing therapeutic agents targeting the DNA Damage Response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:130-142. [PMID: 33115610 PMCID: PMC8666131 DOI: 10.1016/j.pbiomolbio.2020.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Cancer will directly affect the lives of over one-third of the population. The DNA Damage Response (DDR) is an intricate system involving damage recognition, cell cycle regulation, DNA repair, and ultimately cell fate determination, playing a central role in cancer etiology and therapy. Two primary therapeutic approaches involving DDR targeting include: combinatorial treatments employing anticancer genotoxic agents; and synthetic lethality, exploiting a sporadic DDR defect as a mechanism for cancer-specific therapy. Whereas, many DDR proteins have proven "undruggable", Fragment- and Structure-Based Drug Discovery (FBDD, SBDD) have advanced therapeutic agent identification and development. FBDD has led to 4 (with ∼50 more drugs under preclinical and clinical development), while SBDD is estimated to have contributed to the development of >200, FDA-approved medicines. Protein X-ray crystallography-based fragment library screening, especially for elusive or "undruggable" targets, allows for simultaneous generation of hits plus details of protein-ligand interactions and binding sites (orthosteric or allosteric) that inform chemical tractability, downstream biology, and intellectual property. Using a novel high-throughput crystallography-based fragment library screening platform, we screened five diverse proteins, yielding hit rates of ∼2-8% and crystal structures from ∼1.8 to 3.2 Å. We consider current FBDD/SBDD methods and some exemplary results of efforts to design inhibitors against the DDR nucleases meiotic recombination 11 (MRE11, a.k.a., MRE11A), apurinic/apyrimidinic endonuclease 1 (APE1, a.k.a., APEX1), and flap endonuclease 1 (FEN1).
Collapse
Affiliation(s)
- David M Wilson
- Hasselt University, Biomedical Research Institute, Diepenbeek, Belgium; Boost Scientific, Heusden-Zolder, Belgium; XPose Therapeutics Inc., San Carlos, CA, USA
| | - Ashley M Deacon
- Accelero Biostructures Inc., San Francisco, CA, USA; XPose Therapeutics Inc., San Carlos, CA, USA
| | | | | | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; XPose Therapeutics Inc., San Carlos, CA, USA
| | - Andrew P Yeh
- Accelero Biostructures Inc., San Francisco, CA, USA
| | - Andrew S Arvai
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Davide Moiani
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA; Department of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - John A Tainer
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA; Department of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Debanu Das
- Accelero Biostructures Inc., San Francisco, CA, USA; XPose Therapeutics Inc., San Carlos, CA, USA.
| |
Collapse
|
80
|
Jo U, Senatorov IS, Zimmermann A, Saha LK, Murai Y, Kim SH, Rajapakse VN, Elloumi F, Takahashi N, Schultz CW, Thomas A, Zenke FT, Pommier Y. Novel and Highly Potent ATR Inhibitor M4344 Kills Cancer Cells With Replication Stress, and Enhances the Chemotherapeutic Activity of Widely Used DNA Damaging Agents. Mol Cancer Ther 2021; 20:1431-1441. [PMID: 34045232 PMCID: PMC9398135 DOI: 10.1158/1535-7163.mct-20-1026] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Accepted: 05/25/2021] [Indexed: 01/07/2023]
Abstract
Although several ATR inhibitors are in development, there are unresolved questions regarding their differential potency, molecular signatures of patients with cancer for predicting activity, and most effective therapeutic combinations. Here, we elucidate how to improve ATR-based chemotherapy with the newly developed ATR inhibitor, M4344 using in vitro and in vivo models. The potency of M4344 was compared with the clinically developed ATR inhibitors BAY1895344, berzosertib, and ceralasertib. The anticancer activity of M4344 was investigated as monotherapy and combination with clinical DNA damaging agents in multiple cancer cell lines, patient-derived tumor organoids, and mouse xenograft models. We also elucidated the anticancer mechanisms and potential biomarkers for M4344. We demonstrate that M4344 is highly potent among the clinically developed ATR inhibitors. Replication stress (RepStress) and neuroendocrine (NE) gene expression signatures are significantly associated with a response to M4344 treatment. M4344 kills cancer cells by inducing cellular catastrophe and DNA damage. M4344 is highly synergistic with a broad range of DNA-targeting anticancer agents. It significantly synergizes with topotecan and irinotecan in patient-derived tumor organoids and xenograft models. Taken together, M4344 is a promising and highly potent ATR inhibitor. It enhances the activity of clinical DNA damaging agents commonly used in cancer treatment including topoisomerase inhibitors, gemcitabine, cisplatin, and talazoparib. RepStress and NE gene expression signatures can be exploited as predictive markers for M4344.
Collapse
Affiliation(s)
- Ukhyun Jo
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland.,Corresponding Authors: Ukhyun Jo and Yves Pommier, 37 Convent Dr., Building 37-Room 5068, Bethesda, MD 20892. Phone: 240-760-6142; Fax: 240-541-4475; E-mail: and
| | - Ilya S. Senatorov
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Astrid Zimmermann
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Darmstadt, Germany
| | - Liton Kumar Saha
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Yasuhisa Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Se Hyun Kim
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland.,Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Vinodh N. Rajapakse
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Fathi Elloumi
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland.,General Dynamics Information Technology Inc., Fairfax, Virginia
| | - Nobuyuki Takahashi
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Christopher W. Schultz
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Anish Thomas
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Frank T. Zenke
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Darmstadt, Germany
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland.,Corresponding Authors: Ukhyun Jo and Yves Pommier, 37 Convent Dr., Building 37-Room 5068, Bethesda, MD 20892. Phone: 240-760-6142; Fax: 240-541-4475; E-mail: and
| |
Collapse
|
81
|
Hoes L, Dok R, Verstrepen KJ, Nuyts S. Ethanol-Induced Cell Damage Can Result in the Development of Oral Tumors. Cancers (Basel) 2021; 13:cancers13153846. [PMID: 34359747 PMCID: PMC8345464 DOI: 10.3390/cancers13153846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Alcohol consumption is linked to 26.4% of all lip and oral cavity cancer cases worldwide. Despite this clear causal relationship, the exact molecular mechanisms by which ethanol damages cells are still under investigation. It is well-established that the metabolism of ethanol plays an important role. Ethanol metabolism yields reactive metabolites that can directly damage the DNA. If the damage is repaired incorrectly, mutations can be fixed in the DNA sequence. Whenever mutations affect key regulatory genes, for instance cell cycle regulating genes, uncontrolled cell growth can be the consequence. Recently, global patterns of mutations have been identified. These so-called mutational signatures represent a fingerprint of the different mutational processes over time. Interestingly, there were ethanol-related signatures discovered that did not associate with ethanol metabolism. This finding highlights there might be other molecular effects of ethanol that are yet to be discovered. Abstract Alcohol consumption is an underestimated risk factor for the development of precancerous lesions in the oral cavity. Although alcohol is a well-accepted recreational drug, 26.4% of all lip and oral cavity cancers worldwide are related to heavy drinking. Molecular mechanisms underlying this carcinogenic effect of ethanol are still under investigation. An important damaging effect comes from the first metabolite of ethanol, being acetaldehyde. Concentrations of acetaldehyde detected in the oral cavity are relatively high due to the metabolization of ethanol by oral microbes. Acetaldehyde can directly damage the DNA by the formation of mutagenic DNA adducts and interstrand crosslinks. Additionally, ethanol is known to affect epigenetic methylation and acetylation patterns, which are important regulators of gene expression. Ethanol-induced hypomethylation can activate the expression of oncogenes which subsequently can result in malignant transformation. The recent identification of ethanol-related mutational signatures emphasizes the role of acetaldehyde in alcohol-associated carcinogenesis. However, not all signatures associated with alcohol intake also relate to acetaldehyde. This finding highlights that there might be other effects of ethanol yet to be discovered.
Collapse
Affiliation(s)
- Lore Hoes
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium; (L.H.); (K.J.V.)
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium;
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium;
| | - Kevin J. Verstrepen
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium; (L.H.); (K.J.V.)
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium;
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospital Leuven, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-1634-7600; Fax: +32-1634-7623
| |
Collapse
|
82
|
Kim YA, Leiserson MDM, Moorjani P, Sharan R, Wojtowicz D, Przytycka TM. Mutational Signatures: From Methods to Mechanisms. Annu Rev Biomed Data Sci 2021; 4:189-206. [PMID: 34465178 DOI: 10.1146/annurev-biodatasci-122320-120920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations are the driving force of evolution, yet they underlie many diseases, in particular, cancer. They are thought to arise from a combination of stochastic errors in DNA processing, naturally occurring DNA damage (e.g., the spontaneous deamination of methylated CpG sites), replication errors, and dysregulation of DNA repair mechanisms. High-throughput sequencing has made it possible to generate large datasets to study mutational processes in health and disease. Since the emergence of the first mutational process studies in 2012, this field is gaining increasing attention and has already accumulated a host of computational approaches and biomedical applications.
Collapse
Affiliation(s)
- Yoo-Ah Kim
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA;
| | - Mark D M Leiserson
- Department of Computer Science and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Priya Moorjani
- Department of Molecular and Cell Biology and Center for Computational Biology, University of California, Berkeley, California 94720, USA
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Damian Wojtowicz
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA;
| | - Teresa M Przytycka
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA;
| |
Collapse
|
83
|
Wang S, Tao Z, Wu T, Liu XS. Sigflow: an automated and comprehensive pipeline for cancer genome mutational signature analysis. Bioinformatics 2021; 37:1590-1592. [PMID: 33270873 PMCID: PMC8275980 DOI: 10.1093/bioinformatics/btaa895] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/20/2020] [Accepted: 10/09/2020] [Indexed: 11/24/2022] Open
Abstract
Summary Mutational signatures are recurring DNA alteration patterns caused by distinct mutational events during the evolution of cancer. In recent years, several bioinformatics tools are available for mutational signature analysis. However, most of them focus on specific type of mutation or have limited scope of application. A pipeline tool for comprehensive mutational signature analysis is still lacking. Here we present Sigflow pipeline, which provides an one-stop solution for de novo signature extraction, reference signature fitting, signature stability analysis, sample clustering based on signature exposure in different types of genome DNA alterations including single base substitution, doublet base substitution, small insertion and deletion and copy number alteration. A Docker image is constructed to solve the complex and time-consuming installation issues, and this enables reproducible research by version control of all dependent tools along with their environments. Sigflow pipeline can be applied to both human and mouse genomes. Availability and implementation Sigflow is an open source software under academic free license v3.0 and it is freely available at https://github.com/ShixiangWang/sigflow or https://hub.docker.com/r/shixiangwang/sigflow. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shixiang Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyu Tao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Song Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| |
Collapse
|
84
|
Stefos GC, Szantai E, Konstantopoulos D, Samiotaki M, Fousteri M. aniFOUND: analysing the associated proteome and genomic landscape of the repaired nascent non-replicative chromatin. Nucleic Acids Res 2021; 49:e64. [PMID: 33693861 DOI: 10.1093/nar/gkab144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Specific capture of chromatin fractions with distinct and well-defined features has emerged as both challenging and a key strategy towards a comprehensive understanding of genome biology. In this context, we developed aniFOUND (accelerated native isolation of factors on unscheduled nascent DNA), an antibody-free method, which can label, capture, map and characterise nascent chromatin fragments that are synthesized in response to specific cues outside S-phase. We used the 'unscheduled' DNA synthesis (UDS) that takes place during the repair of UV-induced DNA lesions and coupled the captured chromatin to high-throughput analytical technologies. By mass-spectrometry we identified several factors with no previously known role in UVC-DNA damage response (DDR) as well as known DDR proteins. We experimentally validated the repair-dependent recruitment of the chromatin remodeller RSF1 and the cohesin-loader NIPBL at sites of UVC-induced photolesions. Developing aniFOUND-seq, a protocol for mapping UDS activity with high resolution, allowed us to monitor the landscape of UVC repair-synthesis events genome wide. We further resolved repair efficacy of the rather unexplored repeated genome, in particular rDNA and telomeres. In summary, aniFOUND delineates the proteome composition and genomic landscape of chromatin loci with specific features by integrating state-of-the-art 'omics' technologies to promote a comprehensive view of their function.
Collapse
Affiliation(s)
- Georgios C Stefos
- Institute for Fundamental Biomedical Research, BSRC 'Alexander Fleming', Vari 16672, Greece
| | - Eszter Szantai
- Institute for Fundamental Biomedical Research, BSRC 'Alexander Fleming', Vari 16672, Greece
| | | | | | - Maria Fousteri
- Institute for Fundamental Biomedical Research, BSRC 'Alexander Fleming', Vari 16672, Greece
| |
Collapse
|
85
|
Hannon G, Tansi FL, Hilger I, Prina‐Mello A. The Effects of Localized Heat on the Hallmarks of Cancer. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging Group Trinity Translational Medicine Institute Dublin 8 Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute Trinity College Dublin Dublin 8 Ireland
| | - Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital—Friedrich Schiller University Jena Am Klinikum 1 07740 Jena Germany
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital—Friedrich Schiller University Jena Am Klinikum 1 07740 Jena Germany
| | - Adriele Prina‐Mello
- Nanomedicine and Molecular Imaging Group Trinity Translational Medicine Institute Dublin 8 Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute Trinity College Dublin Dublin 8 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute Trinity College Dublin Dublin 2 Ireland
| |
Collapse
|
86
|
Chiu TY, Lin RW, Huang CJ, Yeh DW, Wang YC. DNA Damage Repair Gene Set as a Potential Biomarker for Stratifying Patients with High Tumor Mutational Burden. BIOLOGY 2021; 10:biology10060528. [PMID: 34198473 PMCID: PMC8231881 DOI: 10.3390/biology10060528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 01/06/2023]
Abstract
Simple Summary Immunotherapy has been a promising therapeutic approach for cancer treatment in recent years. Although cancer immunotherapy has achieved remarkable success, treatment response is only observed in a small number of patients. As nonresponders need to endure high treatment costs and toxicities with little benefit from treatment, identifying potential predictive biomarkers is critical to optimize the benefits of immunotherapy in patients. The total number of mutations in the tumor genome is a useful biomarker. Patients with a large number of mutations tend to respond better to cancer immunotherapy. However, assessment of the total number of mutations may not be easy. In this study, we identified gene sets with only a small number of genes whose mutations serve as an indicator of the total number of mutations. These cancer-specific gene sets can be used as a cost-effective approach to stratify patients with a large number of mutations in clinical practice. Abstract Tumor mutational burden (TMB) is a promising predictive biomarker for cancer immunotherapy. Patients with a high TMB have better responses to immune checkpoint inhibitors. Currently, the gold standard for determining TMB is whole-exome sequencing (WES). However, high cost, long turnaround time, infrastructure requirements, and bioinformatics demands have prevented WES from being implemented in routine clinical practice. Panel-sequencing-based estimates of TMB have gradually replaced WES TMB; however, panel design biases could lead to overestimation of TMB. To stratify TMB-high patients better without sequencing all genes and avoid overestimating TMB, we focused on DNA damage repair (DDR) genes, in which dysfunction may increase somatic mutation rates. We extensively explored the association between the mutation status of DDR genes and TMB in different cancer types. By analyzing the mutation data from The Cancer Genome Atlas, which includes information for 33 different cancer types, we observed no single DDR gene/pathway in which mutation status was significantly associated with high TMB across all 33 cancer types. Therefore, a computational algorithm was proposed to identify a cancer-specific gene set as a surrogate for stratifying patients with high TMB in each cancer. We applied our algorithm to skin cutaneous melanoma and lung adenocarcinoma, demonstrating that the mutation status of the identified cancer-specific DDR gene sets, which included only 9 and 14 genes, respectively, was significantly associated with TMB. The cancer-specific DDR gene set can be used as a cost-effective approach to stratify patients with high TMB in clinical practice.
Collapse
Affiliation(s)
- To-Yuan Chiu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (T.-Y.C.); (R.W.L.); (C.-J.H.); (D.-W.Y.)
| | - Ryan Weihsiang Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (T.-Y.C.); (R.W.L.); (C.-J.H.); (D.-W.Y.)
- Center for Systems and Synthetic Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chien-Jung Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (T.-Y.C.); (R.W.L.); (C.-J.H.); (D.-W.Y.)
| | - Da-Wei Yeh
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (T.-Y.C.); (R.W.L.); (C.-J.H.); (D.-W.Y.)
| | - Yu-Chao Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (T.-Y.C.); (R.W.L.); (C.-J.H.); (D.-W.Y.)
- Center for Systems and Synthetic Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Correspondence:
| |
Collapse
|
87
|
Britten CM, Shalabi A, Hoos A. Industrializing engineered autologous T cells as medicines for solid tumours. Nat Rev Drug Discov 2021; 20:476-488. [PMID: 33833444 DOI: 10.1038/s41573-021-00175-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 02/06/2023]
Abstract
Cell therapy is one of the fastest growing areas in the pharmaceutical industry, with considerable therapeutic potential. However, substantial challenges regarding the utility of these therapies will need to be addressed before they can become mainstream medicines with applicability similar to that of small molecules or monoclonal antibodies. Engineered T cells have achieved success in the treatment of blood cancers, with four chimeric antigen receptor (CAR)-T cell therapies now approved for the treatment of B cell malignancies based on their unprecedented efficacy in clinical trials. However, similar results have not yet been achieved in the treatment of the much larger patient population with solid tumours. For cell therapies to become mainstream medicines, they may need to offer transformational clinical effects for patients and be applicable in disease settings that remain unaddressed by simpler approaches. This Perspective provides an industry perspective on the progress achieved by engineered T cell therapies to date and the opportunities and current barriers for accessing broader patient populations, and discusses the solutions and new development strategies required to fully industrialize the therapeutic potential of engineered T cells as medicines.
Collapse
Affiliation(s)
- Cedrik M Britten
- Oncology R&D, GlaxoSmithKline, Stevenage, UK
- Immatics Biotechnologies, Munich, Germany
| | - Aiman Shalabi
- Oncology R&D, GlaxoSmithKline, Philadelphia, PA, USA
| | - Axel Hoos
- Oncology R&D, GlaxoSmithKline, Philadelphia, PA, USA.
| |
Collapse
|
88
|
Helderman NC, Bajwa-Ten Broeke SW, Morreau H, Suerink M, Terlouw D, van der Werf-' T Lam AS, van Wezel T, Nielsen M. The diverse molecular profiles of lynch syndrome-associated colorectal cancers are (highly) dependent on underlying germline mismatch repair mutations. Crit Rev Oncol Hematol 2021; 163:103338. [PMID: 34044097 DOI: 10.1016/j.critrevonc.2021.103338] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Lynch syndrome (LS) is a hereditary cancer syndrome that accounts for 3% of all new colorectal cancer (CRC) cases. Patients carry a germline pathogenic variant in one of the mismatch repair (MMR) genes (MLH1, MSH2, MSH6 or PMS2), which encode proteins involved in a post-replicative proofreading and editing mechanism. The clinical presentation of LS is highly heterogeneous, showing high variability in age at onset and penetrance of cancer, which may be partly attributable to the molecular profiles of carcinomas. This review discusses the frequency of alterations in the WNT/B-CATENIN, RAF/MEK/ERK and PI3K/PTEN/AKT pathways identified in all four LS subgroups and how these changes may relate to the 'three pathway model' of carcinogenesis, in which LS CRCs develop from MMR-proficient adenomas, MMR-deficient adenomas or directly from MMR-deficient crypts. Understanding the specific differences in carcinogenesis for each LS subgroup will aid in the further optimization of guidelines for diagnosis, surveillance and treatment.
Collapse
Affiliation(s)
- Noah C Helderman
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Hans Morreau
- Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Diantha Terlouw
- Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Tom van Wezel
- Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
89
|
Karpinets TV, Mitani Y, Liu B, Zhang J, Pytynia KB, Sellen LD, Karagiannis DT, Ferrarotto R, Futreal AP, El-Naggar AK. Whole-Genome Sequencing of Common Salivary Gland Carcinomas: Subtype-Restricted and Shared Genetic Alterations. Clin Cancer Res 2021; 27:3960-3969. [PMID: 34011559 DOI: 10.1158/1078-0432.ccr-20-4071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/27/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Salivary gland carcinomas (SGCs) are pathologically classified into several widely diverse subtypes, of which adenoid cystic carcinoma (ACC), mucoepidermoid carcinoma (MEC), and salivary duct carcinoma (SDC) are the most commonly encountered. A comparative genetic analysis of these subtypes provides detailed information on the genetic alterations that are associated with their tumorigenesis and may lead to the identification of biomarkers to guide tumor-specific clinical trials. EXPERIMENTAL DESIGN Whole-genome sequencing of 58 common SGCs (20 ACCs, 20 SDCs, and 18 MECs) was performed to catalog structural variations, copy number, rearrangements, and driver mutations. Data were bioinformatically analyzed and correlated with clinicopathologic parameters, and selected targets were validated. RESULTS Novel and recurrent type-specific and shared genetic alterations were identified within and among 3 subtypes. Mutually exclusive canonical fusion and nonfusion genomic alterations were identified in both ACC and MEC. In ACCs, loss of chromosome 12q was dominant in MYB or MYBL1 fusion-positive tumors and mutations of NOTCH pathway were more common in these fusion negatives. In MECs, CRTC1-MAML2 fusion-positive tumors showed frequent BAP1 mutation, and tumors lacking this fusion were enriched with LRFN1 mutation. SDCs displayed considerable genetic instability, lacked recurrent chromosomal rearrangements, and demonstrated nonoverlapping TP53 mutation and ERBB2 amplification in a subset of tumors. Limited genetic alterations, including focal amplifications of 8q21-q23, were shared by all subtypes and were associated with poor survival. CONCLUSIONS This study delineates type-specific and shared genetic alterations that are associated with early phenotypic commitment and the biologic progression of common SGCs. These alterations, upon validation, could serve as biomarkers in tumor-specific clinical trials.
Collapse
Affiliation(s)
- Tatiana V Karpinets
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yoshitsugu Mitani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kristen B Pytynia
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Linton D Sellen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Danice T Karagiannis
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Renata Ferrarotto
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew P Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adel K El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
90
|
Genomic profiles and clinical outcomes of de novo blastoid/pleomorphic MCL are distinct from those of transformed MCL. Blood Adv 2021; 4:1038-1050. [PMID: 32191807 DOI: 10.1182/bloodadvances.2019001396] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/27/2020] [Indexed: 01/03/2023] Open
Abstract
Blastoid and pleomorphic mantle cell lymphomas (MCLs) are variants of aggressive histology MCL (AH-MCL). AH-MCL can arise de novo (AH-DN) or transform from prior classic variant MCL (AH-t). This study is the first integrated analysis of clinical and genomic characteristics of AH-MCL. Patient characteristics were collected from diagnosis (AH-DN) and at transformation (AH-t). Survival after initial diagnosis (AH-DN) and after transformation (AH-t) was calculated. Regression tree analysis was performed to evaluate prognostic variables and in univariate and multivariate analyses for survival. Whole-exome sequencing was performed in evaluable biopsy specimens. We identified 183 patients with AH-MCL (108 were AH-DN, and 75 were AH-t; 152 were blastoid, and 31 were pleomorphic). Median survival was 33 months (48 and 14 months for AH-DN and AH-t, respectively; P = .001). Factors associated with inferior survival were age (≥72 years), AH-t category, Ki-67 ≥50% and poor performance status. AH-t had a significantly higher degree of aneuploidy compared with AH-DN. Transformed MCL patients exhibited KMT2B mutations. AH-MCL patients with Ki-67 ≥50% had exclusive mutations in CCND1, NOTCH1, TP53, SPEN, SMARCA4, RANBP2, KMT2C, NOTCH2, NOTCH3, and NSD2 compared with low Ki-67 (<50%). AH-t patients have poor outcomes and distinct genomic profile. This is the first study to report that AH-MCL patients with high Ki-67 (≥50%) exhibit a distinct mutation profile and very poor survival.
Collapse
|
91
|
Abstract
Significance: Genomic instability, a hallmark of cancer, renders cancer cells susceptible to genomic stress from both endogenous and exogenous origins, resulting in the increased tendency to accrue DNA damage, chromosomal instability, or aberrant DNA localization. Apart from the cell autonomous tumor-promoting effects, genomic stress in cancer cells could have a profound impact on the tumor microenvironment. Recent Advances: Recently, it is increasingly appreciated that harnessing genomic stress could provide a promising strategy to revive antitumor immunity, and thereby offer new therapeutic opportunities in cancer treatment. Critical Issues: Genomic stress is closely intertwined with antitumor immunity via mechanisms involving the direct crosstalk with DNA damage response components, upregulation of immune-stimulatory/inhibitory ligands, release of damage-associated molecular patterns, increase of neoantigen repertoire, and activation of DNA sensing pathways. A better understanding of these mechanisms will provide molecular basis for exploiting the genomic stress to boost antitumor immunity. Future Directions: Future research should pay attention to the heterogeneity between individual cancers in the genomic instability and the associated immune response, and how to balance the toxicity and benefit by specifying the types, potency, and treatment sequence of genomic stress inducer in therapeutic practice. Antioxid. Redox Signal. 34, 1128-1150.
Collapse
Affiliation(s)
- Congying Pu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Siyao Tao
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Xu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Min Huang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
92
|
Stok C, Kok Y, van den Tempel N, van Vugt MATM. Shaping the BRCAness mutational landscape by alternative double-strand break repair, replication stress and mitotic aberrancies. Nucleic Acids Res 2021; 49:4239-4257. [PMID: 33744950 PMCID: PMC8096281 DOI: 10.1093/nar/gkab151] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Tumours with mutations in the BRCA1/BRCA2 genes have impaired double-stranded DNA break repair, compromised replication fork protection and increased sensitivity to replication blocking agents, a phenotype collectively known as 'BRCAness'. Tumours with a BRCAness phenotype become dependent on alternative repair pathways that are error-prone and introduce specific patterns of somatic mutations across the genome. The increasing availability of next-generation sequencing data of tumour samples has enabled identification of distinct mutational signatures associated with BRCAness. These signatures reveal that alternative repair pathways, including Polymerase θ-mediated alternative end-joining and RAD52-mediated single strand annealing are active in BRCA1/2-deficient tumours, pointing towards potential therapeutic targets in these tumours. Additionally, insight into the mutations and consequences of unrepaired DNA lesions may also aid in the identification of BRCA-like tumours lacking BRCA1/BRCA2 gene inactivation. This is clinically relevant, as these tumours respond favourably to treatment with DNA-damaging agents, including PARP inhibitors or cisplatin, which have been successfully used to treat patients with BRCA1/2-defective tumours. In this review, we aim to provide insight in the origins of the mutational landscape associated with BRCAness by exploring the molecular biology of alternative DNA repair pathways, which may represent actionable therapeutic targets in in these cells.
Collapse
Affiliation(s)
- Colin Stok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Yannick P Kok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Nathalie van den Tempel
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| |
Collapse
|
93
|
Kaur A, Lim JYS, Sepramaniam S, Patnaik S, Harmston N, Lee MA, Petretto E, Virshup DM, Madan B. WNT inhibition creates a BRCA-like state in Wnt-addicted cancer. EMBO Mol Med 2021; 13:e13349. [PMID: 33660437 PMCID: PMC8033517 DOI: 10.15252/emmm.202013349] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Wnt signaling maintains diverse adult stem cell compartments and is implicated in chemotherapy resistance in cancer. PORCN inhibitors that block Wnt secretion have proven effective in Wnt-addicted preclinical cancer models and are in clinical trials. In a survey for potential combination therapies, we found that Wnt inhibition synergizes with the PARP inhibitor olaparib in Wnt-addicted cancers. Mechanistically, we find that multiple genes in the homologous recombination and Fanconi anemia repair pathways, including BRCA1, FANCD2, and RAD51, are dependent on Wnt/β-catenin signaling in Wnt-high cancers, and treatment with a PORCN inhibitor creates a BRCA-like state. This coherent regulation of DNA repair genes occurs in part via a Wnt/β-catenin/MYBL2 axis. Importantly, this pathway also functions in intestinal crypts, where high expression of BRCA and Fanconi anemia genes is seen in intestinal stem cells, with further upregulation in Wnt-high APCmin mutant polyps. Our findings suggest a general paradigm that Wnt/β-catenin signaling enhances DNA repair in stem cells and cancers to maintain genomic integrity. Conversely, interventions that block Wnt signaling may sensitize cancers to radiation and other DNA damaging agents.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Program in Cancer and Stem Cell BiologyDuke‐NUS Medical SchoolSingaporeSingapore
| | - Jun Yi Stanley Lim
- Program in Cancer and Stem Cell BiologyDuke‐NUS Medical SchoolSingaporeSingapore
| | | | - Siddhi Patnaik
- Program in Cancer and Stem Cell BiologyDuke‐NUS Medical SchoolSingaporeSingapore
| | - Nathan Harmston
- Program in Cancer and Stem Cell BiologyDuke‐NUS Medical SchoolSingaporeSingapore
- Science DivisionYale‐NUS CollegeSingaporeSingapore
| | - May Ann Lee
- Experimental Drug Development CentreA*StarSingaporeSingapore
| | - Enrico Petretto
- Center for Computational Biology and Program in Cardiovascular and Metabolic DisordersDuke‐NUS Medical SchoolSingaporeSingapore
| | - David M Virshup
- Program in Cancer and Stem Cell BiologyDuke‐NUS Medical SchoolSingaporeSingapore
- Department of PediatricsDuke University School of MedicineDurhamNCUSA
| | - Babita Madan
- Program in Cancer and Stem Cell BiologyDuke‐NUS Medical SchoolSingaporeSingapore
| |
Collapse
|
94
|
Díaz-Gay M, Alexandrov LB. Unraveling the genomic landscape of colorectal cancer through mutational signatures. Adv Cancer Res 2021; 151:385-424. [PMID: 34148618 DOI: 10.1016/bs.acr.2021.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Colorectal cancer, along with most other cancer types, is driven by somatic mutations. Characteristic patterns of somatic mutations, known as mutational signatures, arise as a result of the activities of different mutational processes. Mutational signatures have diverse origins, including exogenous and endogenous sources. In the case of colorectal cancer, the analysis of mutational signatures has elucidated specific signatures for classically associated DNA repair deficiencies, namely mismatch repair (leading to microsatellite instability), base excision repair (due to MUTYH or NTHL1 mutations), and polymerase proofreading (due to POLE and POLD1 exonuclease domain mutations). Additional signatures also play a role in colorectal cancer, including those related to normal aging and those associated with gut microbiota, as well as a number of signatures with unknown etiologies. This chapter provides an overview of the current knowledge of mutational signatures, with a focus on colorectal cancer and on the recently reported signatures in physiologically normal and inflammatory bowel disease-affected somatic colon tissues.
Collapse
Affiliation(s)
- Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, United States; Department of Bioengineering, UC San Diego, La Jolla, CA, United States; Moores Cancer Center, UC San Diego, La Jolla, CA, United States
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, United States; Department of Bioengineering, UC San Diego, La Jolla, CA, United States; Moores Cancer Center, UC San Diego, La Jolla, CA, United States.
| |
Collapse
|
95
|
Caracciolo D, Riillo C, Di Martino MT, Tagliaferri P, Tassone P. Alternative Non-Homologous End-Joining: Error-Prone DNA Repair as Cancer's Achilles' Heel. Cancers (Basel) 2021; 13:cancers13061392. [PMID: 33808562 PMCID: PMC8003480 DOI: 10.3390/cancers13061392] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cancer onset and progression lead to a high rate of DNA damage, due to replicative and metabolic stress. To survive in this dangerous condition, cancer cells switch the DNA repair machinery from faithful systems to error-prone pathways, strongly increasing the mutational rate that, in turn, supports the disease progression and drug resistance. Although DNA repair de-regulation boosts genomic instability, it represents, at the same time, a critical cancer vulnerability that can be exploited for synthetic lethality-based therapeutic intervention. We here discuss the role of the error-prone DNA repair, named Alternative Non-Homologous End Joining (Alt-NHEJ), as inducer of genomic instability and as a potential therapeutic target. We portray different strategies to drug Alt-NHEJ and discuss future challenges for selecting patients who could benefit from Alt-NHEJ inhibition, with the aim of precision oncology. Abstract Error-prone DNA repair pathways promote genomic instability which leads to the onset of cancer hallmarks by progressive genetic aberrations in tumor cells. The molecular mechanisms which foster this process remain mostly undefined, and breakthrough advancements are eagerly awaited. In this context, the alternative non-homologous end joining (Alt-NHEJ) pathway is considered a leading actor. Indeed, there is experimental evidence that up-regulation of major Alt-NHEJ components, such as LIG3, PolQ, and PARP1, occurs in different tumors, where they are often associated with disease progression and drug resistance. Moreover, the Alt-NHEJ addiction of cancer cells provides a promising target to be exploited by synthetic lethality approaches for the use of DNA damage response (DDR) inhibitors and even as a sensitizer to checkpoint-inhibitors immunotherapy by increasing the mutational load. In this review, we discuss recent findings highlighting the role of Alt-NHEJ as a promoter of genomic instability and, therefore, as new cancer’s Achilles’ heel to be therapeutically exploited in precision oncology.
Collapse
|
96
|
Iqbal W, Demidova EV, Serrao S, ValizadehAslani T, Rosen G, Arora S. RRM2B Is Frequently Amplified Across Multiple Tumor Types: Implications for DNA Repair, Cellular Survival, and Cancer Therapy. Front Genet 2021; 12:628758. [PMID: 33868369 PMCID: PMC8045241 DOI: 10.3389/fgene.2021.628758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/23/2021] [Indexed: 01/21/2023] Open
Abstract
RRM2B plays a crucial role in DNA replication, repair and oxidative stress. While germline RRM2B mutations have been implicated in mitochondrial disorders, its relevance to cancer has not been established. Here, using TCGA studies, we investigated RRM2B alterations in cancer. We found that RRM2B is highly amplified in multiple tumor types, particularly in MYC-amplified tumors, and is associated with increased RRM2B mRNA expression. We also observed that the chromosomal region 8q22.3–8q24, is amplified in multiple tumors, and includes RRM2B, MYC along with several other cancer-associated genes. An analysis of genes within this 8q-amplicon showed that cancers that have both RRM2B-amplified along with MYC have a distinct pattern of amplification compared to cancers that are unaltered or those that have amplifications in RRM2B or MYC only. Investigation of curated biological interactions revealed that gene products of the amplified 8q22.3–8q24 region have important roles in DNA repair, DNA damage response, oxygen sensing, and apoptosis pathways and interact functionally. Notably, RRM2B-amplified cancers are characterized by mutation signatures of defective DNA repair and oxidative stress, and at least RRM2B-amplified breast cancers are associated with poor clinical outcome. These data suggest alterations in RR2MB and possibly the interacting 8q-proteins could have a profound effect on regulatory pathways such as DNA repair and cellular survival, highlighting therapeutic opportunities in these cancers.
Collapse
Affiliation(s)
- Waleed Iqbal
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,School of Biomedical Engineering, Science and Health Systems, Drexel University College of Engineering, Philadelphia, PA, United States
| | - Elena V Demidova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Samantha Serrao
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, United States
| | - Taha ValizadehAslani
- Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, PA, United States
| | - Gail Rosen
- Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, PA, United States
| | - Sanjeevani Arora
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
97
|
Roufas C, Georgakopoulos-Soares I, Zaravinos A. Molecular correlates of immune cytolytic subgroups in colorectal cancer by integrated genomics analysis. NAR Cancer 2021; 3:zcab005. [PMID: 34316699 PMCID: PMC8210146 DOI: 10.1093/narcan/zcab005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Although immune checkpoint inhibition (ICI) has shown promising results in metastatic dMMR/MSI-H colorectal cancer (CRC), the majority of pMMR/MSS patients do not respond to such therapies. To systematically evaluate the determinants of immune response in CRC, we explored whether patients with diverse levels of immune cytolytic activity (CYT) have different patterns of chromothripsis and kataegis. Analysis of CRC genomic data from the TCGA, indicated an excess of chromothriptic clusters among CYT-low colon adenocarcinomas, affecting known cancer drivers (APC, KRAS, BRAF, TP53 and FBXW7), immune checkpoints (CD274, PDCD1LG2, IDO1/2 and LAG3) and immune-related genes (ENTPD1, PRF1, NKG7, FAS, GZMA/B/H/K and CD73). CYT-high tumors were characterized by hypermutation, enrichment in APOBEC-associated mutations and kataegis events, as well as APOBEC activation. We also assessed differences in the most prevalent mutational signatures (SBS15, SBS20, SBS54 and DBS2) across cytolytic subgroups. Regarding the composition of immune cells in the tumor milieu, we found enrichment of M1 macrophages, CD8+ T cells and Tregs, as well as higher CD8+ T-cells/Tregs ratio among CYT-high tumors. CYT-high patients had higher immunophenoscores, which is predictive of their responsiveness if they were to be treated with anti-PD-1 alone or in combination with anti-CTLA-4 drugs. These results could have implications for patient responsiveness to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Constantinos Roufas
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Ilias Georgakopoulos-Soares
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Apostolos Zaravinos
- Department of Basic Medical Sciences, College of Medicine, Member of QU Health, Qatar University, 2713 Doha, Qatar
| |
Collapse
|
98
|
Ginsburg O, Ashton-Prolla P, Cantor A, Mariosa D, Brennan P. The role of genomics in global cancer prevention. Nat Rev Clin Oncol 2021; 18:116-128. [PMID: 32973296 DOI: 10.1038/s41571-020-0428-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Despite improvements in the understanding of cancer causation, much remains unknown regarding the mechanisms by which genomic and non-genomic factors initiate carcinogenesis, drive cell invasion and metastasis, and enable cancer to develop. Technological advances have enabled the analysis of whole genomes, comprising thousands of tumours across populations worldwide, with the aim of identifying mutation signatures associated with particular tumour types. Large collaborative efforts have resulted in the identification and improved understanding of causal factors, and have shed light on new opportunities to prevent cancer. In this new era in cancer genomics, discoveries from studies conducted on an international scale can inform evidence-based strategies in cancer control along the cancer care continuum, from prevention to treatment. In this Review, we present the relevant history and emerging frontiers of cancer genetics and genomics from the perspective of global cancer prevention. We highlight the importance of local context in the adoption of new technologies and emergent evidence, with illustrative examples from worldwide. We emphasize the challenges in implementing important genomic findings in clinical settings with disparate resource availability and present a conceptual framework for the translation of such findings into clinical practice, and evidence-based policies in order to maximize the utility for a population.
Collapse
Affiliation(s)
- Ophira Ginsburg
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
- Section for Global Health, Division of Health and Behavior, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA.
| | - Patricia Ashton-Prolla
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre and Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Anna Cantor
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | | | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
99
|
Vitiello PP, Martini G, Mele L, Giunta EF, De Falco V, Ciardiello D, Belli V, Cardone C, Matrone N, Poliero L, Tirino V, Napolitano S, Della Corte C, Selvaggi F, Papaccio G, Troiani T, Morgillo F, Desiderio V, Ciardiello F, Martinelli E. Vulnerability to low-dose combination of irinotecan and niraparib in ATM-mutated colorectal cancer. J Exp Clin Cancer Res 2021; 40:15. [PMID: 33407715 PMCID: PMC7789007 DOI: 10.1186/s13046-020-01811-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/11/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Despite the advancements in new therapies for colorectal cancer (CRC), chemotherapy still constitutes the mainstay of the medical treatment. For this reason, new strategies to increase the efficacy of chemotherapy are desirable. Poly-ADP-Ribose Polymerase inhibitors (PARPi) have shown to increase the activity of DNA damaging chemotherapeutics used in the treatment of CRC, however previous clinical trials failed to validate these results and pointed out dose-limiting toxicities that hamper the use of such combinations in unselected CRC patients. Nevertheless, in these studies little attention was paid to the mutational status of homologous recombination repair (HRR) genes. METHODS We tested the combination of the PARPi niraparib with either 5-fluorouracil, oxaliplatin or irinotecan (SN38) in a panel of 12 molecularly annotated CRC cell lines, encompassing the 4 consensus molecular subtypes (CMSs). Synergism was calculated using the Chou-Talalay method for drug interaction. A correlation between synergism and genetic alterations in genes involved in homologous recombination (HR) repair was performed. We used clonogenic assays, mice xenograft models and patient-derived 3D spheroids to validate the results. The induction of DNA damage was studied by immunofluorescence. RESULTS We showed that human CRC cell lines, as well as patient-derived 3D spheroids, harboring pathogenic ATM mutations are significantly vulnerable to PARPi/chemotherapy combination at low doses, regardless of consensus molecular subtypes (CMS) and microsatellite status. The strongest synergism was shown for the combination of niraparib with irinotecan, and the presence of ATM mutations was associated to a delay in the resolution of double strand breaks (DSBs) through HRR and DNA damage persistence. CONCLUSIONS This work demonstrates that a numerically relevant subset of CRCs carrying heterozygous ATM mutations may benefit from the combination treatment with low doses of niraparib and irinotecan, suggesting a new potential approach in the treatment of ATM-mutated CRC, that deserves to be prospectively validated in clinical trials.
Collapse
Affiliation(s)
- Pietro Paolo Vitiello
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Giulia Martini
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Luigi Mele
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Emilio Francesco Giunta
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Vincenzo De Falco
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Davide Ciardiello
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Valentina Belli
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Claudia Cardone
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Nunzia Matrone
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Luca Poliero
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Virginia Tirino
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Stefania Napolitano
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Carminia Della Corte
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Francesco Selvaggi
- Department of Medical, Surgical, General and oncology surgery, Neurologic, Metabolic and Ageing Sciences, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Teresa Troiani
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Floriana Morgillo
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Erika Martinelli
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| |
Collapse
|
100
|
Mpakali A, Stratikos E. The Role of Antigen Processing and Presentation in Cancer and the Efficacy of Immune Checkpoint Inhibitor Immunotherapy. Cancers (Basel) 2021; 13:E134. [PMID: 33406696 PMCID: PMC7796214 DOI: 10.3390/cancers13010134] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Recent clinical successes of cancer immunotherapy using immune checkpoint inhibitors (ICIs) are rapidly changing the landscape of cancer treatment. Regardless of initial impressive clinical results though, the therapeutic benefit of ICIs appears to be limited to a subset of patients and tumor types. Recent analyses have revealed that the potency of ICI therapies depends on the efficient presentation of tumor-specific antigens by cancer cells and professional antigen presenting cells. Here, we review current knowledge on the role of antigen presentation in cancer. We focus on intracellular antigen processing and presentation by Major Histocompatibility class I (MHCI) molecules and how it can affect cancer immune evasion. Finally, we discuss the pharmacological tractability of manipulating intracellular antigen processing as a complementary approach to enhance tumor immunogenicity and the effectiveness of ICI immunotherapy.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15784 Athens, Greece
| |
Collapse
|