51
|
Heller JP, Odii T, Zheng K, Rusakov DA. Imaging tripartite synapses using super-resolution microscopy. Methods 2020; 174:81-90. [PMID: 31153907 PMCID: PMC7144327 DOI: 10.1016/j.ymeth.2019.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/03/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023] Open
Abstract
Astroglia are vital facilitators of brain development, homeostasis, and metabolic support. In addition, they are also essential to the formation and regulation of synaptic circuits. Due to the extraordinary complex, nanoscopic morphology of astrocytes, the underlying cellular mechanisms have been poorly understood. In particular, fine astrocytic processes that can be found in the vicinity of synapses have been difficult to study using traditional imaging techniques. Here, we describe a 3D three-colour super-resolution microscopy approach to unravel the nanostructure of tripartite synapses. The method is based on the SMLM technique direct stochastic optical reconstruction microscopy (dSTORM) which uses conventional fluorophore-labelled antibodies. This approach enables reconstructing the nanoscale localisation of individual astrocytic glutamate transporter (GLT-1) molecules surrounding presynaptic (bassoon) and postsynaptic (Homer1) protein localisations in fixed mouse brain sections. However, the technique is readily adaptable to other types of targets and tissues.
Collapse
Affiliation(s)
- Janosch Peter Heller
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Tuamoru Odii
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Physiology, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike Ikwo, PMB 1010 Abakaliki, Nigeria
| | - Kaiyu Zheng
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
52
|
Martinez-Banaclocha M. Astroglial Isopotentiality and Calcium-Associated Biomagnetic Field Effects on Cortical Neuronal Coupling. Cells 2020; 9:cells9020439. [PMID: 32069981 PMCID: PMC7073214 DOI: 10.3390/cells9020439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023] Open
Abstract
Synaptic neurotransmission is necessary but does not sufficiently explain superior cognitive faculties. Growing evidence has shown that neuron-astroglial chemical crosstalk plays a critical role in the processing of information, computation, and memory. In addition to chemical and electrical communication among neurons and between neurons and astrocytes, other nonsynaptic mechanisms called ephaptic interactions can contribute to the neuronal synchronization from different brain regions involved in the processing of information. New research on brain astrocytes has clearly shown that the membrane potential of these cells remains very stable among neighboring and distant astrocytes due to the marked bioelectric coupling between them through gap junctions. This finding raises the possibility that the neocortical astroglial network exerts a guiding template modulating the excitability and synchronization of trillions of neurons by astroglial Ca2+-associated bioelectromagnetic interactions. We propose that bioelectric and biomagnetic fields of the astroglial network equalize extracellular local field potentials (LFPs) and associated local magnetic field potentials (LMFPs) in the cortical layers of the brain areas involved in the processing of information, contributing to the adequate and coherent integration of external and internal signals. This article reviews the current knowledge of ephaptic interactions in the cerebral cortex and proposes that the isopotentiality of cortical astrocytes is a prerequisite for the maintenance of the bioelectromagnetic crosstalk between neurons and astrocytes in the neocortex.
Collapse
|
53
|
Yu X, Nagai J, Khakh BS. Improved tools to study astrocytes. Nat Rev Neurosci 2020; 21:121-138. [DOI: 10.1038/s41583-020-0264-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
|
54
|
Kopach O, Zheng K, Sindeeva OA, Gai M, Sukhorukov GB, Rusakov DA. Polymer microchamber arrays for geometry-controlled drug release: a functional study in human cells of neuronal phenotype. Biomater Sci 2019; 7:2358-2371. [PMID: 30916673 PMCID: PMC6873774 DOI: 10.1039/c8bm01499j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyelectrolyte multilayer (PEM) microchambers can provide a versatile cargo delivery system enabling rapid, site-specific drug release on demand.
Polyelectrolyte multilayer (PEM) microchambers can provide a versatile cargo delivery system enabling rapid, site-specific drug release on demand. However, experimental evidence for their potential benefits in live human cells is scarce. Equally, practical applications often require substance delivery that is geometrically constrained and highly localized. Here, we establish human-cell biocompatibility and on-demand cargo release properties of the PEM or polylactic acid (PLA)-based microchamber arrays fabricated on a patterned film base. We grow human N2A cells (a neuroblastoma cell line widely used for studies of neurotoxicity) on the surface of the patterned microchamber arrays loaded with either a fluorescent indicator or the ubiquitous excitatory neurotransmitter glutamate. The differentiating human N2A cells show no detrimental effects on viability when growing on either PEM@PLA or PLA-based arrays for up to ten days in vitro. Firstly, we use two-photon (2P) excitation with femtosecond laser pulses to open individual microchambers in a controlled way while monitoring release and diffusion of the fluorescent cargo (rhodamine or FITC fluorescent dye). Secondly, we document the increases in intracellular Ca2+ in local N2A cells in response to the laser-triggered glutamate release from individual microchambers. The functional cell response is site-specific and reproducible on demand and could be replicated by applying glutamate to the cells using a pressurised micropipette. Time-resolved fluorescence imaging confirms the physiological range of the glutamate-evoked intracellular Ca2+ dynamics in the differentiating N2A cells. Our data indicate that the nano-engineering design of the fabricated PEM or PLA-based patterned microchamber arrays could provide a biologically safe and efficient tool for targeted, geometrically constrained drug delivery.
Collapse
Affiliation(s)
- Olga Kopach
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
| | | | | | | | | | | |
Collapse
|
55
|
NCX activity generates spontaneous Ca 2+ oscillations in the astrocytic leaflet microdomain. Cell Calcium 2019; 86:102137. [PMID: 31838438 DOI: 10.1016/j.ceca.2019.102137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/01/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022]
Abstract
The synergy between synaptic Glu release and astrocytic Glu-Na+ symport is essential to the signalling function of the tripartite synapse. Here we used kinetic data of astrocytic Glu transporters (EAAT) and the Na+/Ca2+ exchanger (NCX) to simulate Glu release, Glu uptake and subsequent Na+ and Ca2+ dynamics in the astrocytic leaflet microdomain following single release event. Model simulations show that Glu-Na+ symport differently affect intracellular [Na+] in synapses with different extent of astrocytic coverage. Surprisingly, NCX activity alone has been shown to generate markedly stable, spontaneous Ca2+ oscillation in the astrocytic leaflet. These on-going oscillations appear when NCX operates either in the forward or reverse direction. We conjecture that intrinsic NCX activity may play a prominent role in the generation of astrocytic Ca2+ oscillations.
Collapse
|
56
|
Denizot A, Arizono M, Nägerl UV, Soula H, Berry H. Simulation of calcium signaling in fine astrocytic processes: Effect of spatial properties on spontaneous activity. PLoS Comput Biol 2019; 15:e1006795. [PMID: 31425510 PMCID: PMC6726244 DOI: 10.1371/journal.pcbi.1006795] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 09/04/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Astrocytes, a glial cell type of the central nervous system, have emerged as detectors and regulators of neuronal information processing. Astrocyte excitability resides in transient variations of free cytosolic calcium concentration over a range of temporal and spatial scales, from sub-microdomains to waves propagating throughout the cell. Despite extensive experimental approaches, it is not clear how these signals are transmitted to and integrated within an astrocyte. The localization of the main molecular actors and the geometry of the system, including the spatial organization of calcium channels IP3R, are deemed essential. However, as most calcium signals occur in astrocytic ramifications that are too fine to be resolved by conventional light microscopy, most of those spatial data are unknown and computational modeling remains the only methodology to study this issue. Here, we propose an IP3R-mediated calcium signaling model for dynamics in such small sub-cellular volumes. To account for the expected stochasticity and low copy numbers, our model is both spatially explicit and particle-based. Extensive simulations show that spontaneous calcium signals arise in the model via the interplay between excitability and stochasticity. The model reproduces the main forms of calcium signals and indicates that their frequency crucially depends on the spatial organization of the IP3R channels. Importantly, we show that two processes expressing exactly the same calcium channels can display different types of calcium signals depending on the spatial organization of the channels. Our model with realistic process volume and calcium concentrations successfully reproduces spontaneous calcium signals that we measured in calcium micro-domains with confocal microscopy and predicts that local variations of calcium indicators might contribute to the diversity of calcium signals observed in astrocytes. To our knowledge, this model is the first model suited to investigate calcium dynamics in fine astrocytic processes and to propose plausible mechanisms responsible for their variability.
Collapse
Affiliation(s)
- Audrey Denizot
- INRIA, F-69603, Villeurbanne, France
- Univ Lyon, LIRIS, UMR5205 CNRS, F-69621, Villeurbanne, France
| | - Misa Arizono
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Bordeaux, France
| | - U. Valentin Nägerl
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Bordeaux, France
| | - Hédi Soula
- INRIA, F-69603, Villeurbanne, France
- Univ P&M Curie, CRC, INSERM UMRS 1138, F-75006, Paris, France
| | - Hugues Berry
- INRIA, F-69603, Villeurbanne, France
- Univ Lyon, LIRIS, UMR5205 CNRS, F-69621, Villeurbanne, France
| |
Collapse
|
57
|
Gordleeva SY, Ermolaeva AV, Kastalskiy IA, Kazantsev VB. Astrocyte as Spatiotemporal Integrating Detector of Neuronal Activity. Front Physiol 2019; 10:294. [PMID: 31057412 PMCID: PMC6482266 DOI: 10.3389/fphys.2019.00294] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 03/06/2019] [Indexed: 11/21/2022] Open
Abstract
The functional role of astrocyte calcium signaling in brain information processing was intensely debated in recent decades. This interest was motivated by high resolution imaging techniques showing highly developed structure of distal astrocyte processes. Another point was the evidence of bi-directional astrocytic regulation of neuronal activity. To analyze the effects of interplay of calcium signals in processes and in soma mediating correlations between local signals and the cell-level response of the astrocyte we proposed spatially extended model of the astrocyte calcium dynamics. Specifically, we investigated how spatiotemporal properties of Ca2+ dynamics in spatially extended astrocyte model can coordinate (e.g., synchronize) networks of neurons and synapses.
Collapse
Affiliation(s)
- Susan Yu Gordleeva
- Department of Neurotechnology, Lobachevsky State University, Nizhny Novgorod, Russia
| | - Anastasia V Ermolaeva
- Department of Neurotechnology, Lobachevsky State University, Nizhny Novgorod, Russia
| | | | - Victor B Kazantsev
- Department of Neurotechnology, Lobachevsky State University, Nizhny Novgorod, Russia
| |
Collapse
|
58
|
Rusakov DA, Savtchenko LP. Extreme statistics may govern avalanche-type biological reactions: Comment on "Redundancy principle and the role of extreme statistics in molecular and cellular biology" by Z. Schuss, K. Basnayake, D. Holcman. Phys Life Rev 2019; 28:85-87. [PMID: 30819590 DOI: 10.1016/j.plrev.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 11/22/2022]
Affiliation(s)
- Dmitri A Rusakov
- Queen Square UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom.
| | - Leonid P Savtchenko
- Queen Square UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|