51
|
Sun Z, Wang C, Zhao Y, Ling Q. CAR-T cell therapy in advanced thyroid cancer: from basic to clinical. Front Immunol 2024; 15:1411300. [PMID: 38911868 PMCID: PMC11190081 DOI: 10.3389/fimmu.2024.1411300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
The majority of patients with thyroid cancer can attain a favorable prognosis with a comprehensive treatment program based on surgical treatment. However, the current treatment options for advanced thyroid cancer are still limited. In recent years, chimeric antigen receptor-modified T-cell (CAR-T) therapy has received widespread attention in the field of oncology treatment. It has achieved remarkable results in the treatment of hematologic tumors. However, due to the constraints of multiple factors, the therapeutic efficacy of CAR-T therapy for solid tumors, including thyroid cancer, has not yet met expectations. This review outlines the fundamental structure and treatment strategies of CAR-T cells, provides an overview of the advancements in both preclinical investigations and clinical trials focusing on targets associated with CAR-T cell therapy in treating thyroid cancer, and discusses the challenges and solutions to CAR-T cell therapy for thyroid cancer. In conclusion, CAR-T cell therapy is a promising therapeutic approach for thyroid cancer, and we hope that our review will provide a timely and updated study of CAR-T cell therapy for thyroid cancer to advance the field.
Collapse
|
52
|
Nie S, Song Y, Hu K, Zu W, Zhang F, Chen L, Ma Q, Zhou Z, Jiao S. CXCL10 and IL15 co-expressing chimeric antigen receptor T cells enhance anti-tumor effects in gastric cancer by increasing cytotoxic effector cell accumulation and survival. Oncoimmunology 2024; 13:2358590. [PMID: 38812569 PMCID: PMC11135867 DOI: 10.1080/2162402x.2024.2358590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cells have demonstrated outstanding therapeutic success in hematological malignancies. Yet, their efficacy against solid tumors remains constrained due to inadequate infiltration of cytotoxic T and CAR-T cells in the tumor microenvironment (TME), a factor correlated with poor prognosis in patients with solid tumors. To overcome this limitation, we engineered CAR-T cells to secrete CXCL10 and IL15 (10 × 15 CAR-T), which sustain T cell viability and enhance their recruitment, thereby amplifying the long-term cytotoxic capacity of CAR-T cells in vitro. In a xenograft model employing NUGC4-T21 cells, mice receiving 10 × 15 CAR-T cells showed superior tumor reduction and extended survival rates compared to those treated with second-generation CAR-T cells. Histopathological evaluations indicated a pronounced increase in cytotoxic T cell accumulation in the TME post 10 × 15 CAR-T cell treatment. Therefore, the synergistic secretion of CXCL10 and IL15 in these CAR-T cells enhances T cell recruitment and adaptability within tumor tissues, improving tumor control. This approach may offer a promising strategy for advancing CAR-T therapies in the treatment of solid tumors.
Collapse
Affiliation(s)
- Siyue Nie
- PLA Medical School, Beijing, China
- Research and Development Department, Beijing DCTY Biotech Co. LTD, Beijing, China
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yujie Song
- Research and Development Department, Beijing DCTY Biotech Co. LTD, Beijing, China
| | - Kun Hu
- Research and Development Department, Beijing DCTY Biotech Co. LTD, Beijing, China
| | - Wei Zu
- Department of Functional Neurosurgery, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Fengjiao Zhang
- Research and Development Department, Beijing DCTY Biotech Co. LTD, Beijing, China
| | - Lixia Chen
- Research and Development Department, Beijing DCTY Biotech Co. LTD, Beijing, China
| | - Qiang Ma
- Research and Development Department, Beijing DCTY Biotech Co. LTD, Beijing, China
| | - Zishan Zhou
- Research and Development Department, Beijing DCTY Biotech Co. LTD, Beijing, China
| | - Shunchang Jiao
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
53
|
Mendez-Gomez HR, DeVries A, Castillo P, von Roemeling C, Qdaisat S, Stover BD, Xie C, Weidert F, Zhao C, Moor R, Liu R, Soni D, Ogando-Rivas E, Chardon-Robles J, McGuiness J, Zhang D, Chung MC, Marconi C, Michel S, Barpujari A, Jobin GW, Thomas N, Ma X, Campaneria Y, Grippin A, Karachi A, Li D, Sahay B, Elliott L, Foster TP, Coleman KE, Milner RJ, Sawyer WG, Ligon JA, Simon E, Cleaver B, Wynne K, Hodik M, Molinaro AM, Guan J, Kellish P, Doty A, Lee JH, Massini T, Kresak JL, Huang J, Hwang EI, Kline C, Carrera-Justiz S, Rahman M, Gatica S, Mueller S, Prados M, Ghiaseddin AP, Silver NL, Mitchell DA, Sayour EJ. RNA aggregates harness the danger response for potent cancer immunotherapy. Cell 2024; 187:2521-2535.e21. [PMID: 38697107 PMCID: PMC11767857 DOI: 10.1016/j.cell.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/09/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024]
Abstract
Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.
Collapse
Affiliation(s)
- Hector R Mendez-Gomez
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Anna DeVries
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Paul Castillo
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Christina von Roemeling
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Sadeem Qdaisat
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA; University of Florida Genetics Institute, Gainesville, FL 32610, USA
| | - Brian D Stover
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Chao Xie
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Frances Weidert
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Chong Zhao
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Rachel Moor
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Ruixuan Liu
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Dhruvkumar Soni
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Elizabeth Ogando-Rivas
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Jonathan Chardon-Robles
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - James McGuiness
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Dingpeng Zhang
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Michael C Chung
- University of Texas at Austin, College of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Austin TX 78712
| | - Christiano Marconi
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Stephen Michel
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Arnav Barpujari
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Gabriel W Jobin
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Nagheme Thomas
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Xiaojie Ma
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA; University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Yodarlynis Campaneria
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Adam Grippin
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Aida Karachi
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Derek Li
- University of Florida, Division of Quantitative Sciences, UF Health Cancer Center, Gainesville, FL 32610, USA
| | - Bikash Sahay
- University of Florida, College of Veterinary Medicine, Gainesville, FL 32610, USA
| | - Leighton Elliott
- University of Florida, Department of Medicine, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Timothy P Foster
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Kirsten E Coleman
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Rowan J Milner
- University of Florida, College of Veterinary Medicine, Gainesville, FL 32610, USA
| | - W Gregory Sawyer
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - John A Ligon
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Eugenio Simon
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Brian Cleaver
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Kristine Wynne
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Marcia Hodik
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Annette M Molinaro
- University of California, San Francisco, Department of Neurological Surgery, San Francisco, CA 94158, USA
| | - Juan Guan
- University of Texas at Austin, College of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Austin TX 78712
| | - Patrick Kellish
- University of Florida Interdisciplinary Center for Biotechnology Research, Gainesville, FL 32610, USA
| | - Andria Doty
- University of Florida Interdisciplinary Center for Biotechnology Research, Gainesville, FL 32610, USA
| | - Ji-Hyun Lee
- University of Florida, Department of Biostatistics, Gainesville, FL 32610, USA
| | - Tara Massini
- University of Florida, Department of Radiology, Gainesville, FL 32610, USA
| | - Jesse L Kresak
- University of Florida, Department of Pathology, Gainesville, FL 32610, USA
| | - Jianping Huang
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Eugene I Hwang
- Children's National Hospital, Center for Cancer and Blood Disorders, Washington, DC 20010, USA
| | - Cassie Kline
- University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Department of Pediatrics, Division of Oncology, Philadelphia, PA 19104, USA
| | | | - Maryam Rahman
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Sebastian Gatica
- University of Florida, Department of Anesthesiology, Gainesville, FL 32610, USA
| | - Sabine Mueller
- University of California, San Francisco, Department of Neurology, Neurological Surgery, and Pediatrics, San Francisco, CA 94158, USA
| | - Michael Prados
- University of California, San Francisco, Department of Neurological Surgery, San Francisco, CA 94158, USA
| | - Ashley P Ghiaseddin
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Natalie L Silver
- Cleveland Clinic, Center of Immunotherapy and Precision Immuno-Oncology/Head and Neck Institute, Cleveland, OH 44106, USA
| | - Duane A Mitchell
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Elias J Sayour
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA; University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA.
| |
Collapse
|
54
|
Valerius AR, Webb LM, Sener U. Novel Clinical Trials and Approaches in the Management of Glioblastoma. Curr Oncol Rep 2024; 26:439-465. [PMID: 38546941 DOI: 10.1007/s11912-024-01519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss a wide variety of novel therapies recently studied or actively undergoing study in patients with glioblastoma. This review also discusses current and future strategies for improving clinical trial design in patients with glioblastoma to maximize efficacy in discovering effective treatments. RECENT FINDINGS Over the years, there has been significant expansion in therapy modalities studied in patients with glioblastoma. These therapies include, but are not limited to, targeted molecular therapies, DNA repair pathway targeted therapies, immunotherapies, vaccine therapies, and surgically targeted radiotherapies. Glioblastoma is the most common malignant primary brain tumor in adults and unfortunately remains with poor overall survival following the current standard of care. Given the dismal prognosis, significant clinical and research efforts are ongoing with the goal of improving patient outcomes and enhancing quality and quantity of life utilizing a wide variety of novel therapies.
Collapse
Affiliation(s)
| | - Lauren M Webb
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
55
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
56
|
Xu MY, Zeng N, Liu CQ, Sun JX, An Y, Zhang SH, Xu JZ, Zhong XY, Ma SY, He HD, Hu J, Xia QD, Wang SG. Enhanced cellular therapy: revolutionizing adoptive cellular therapy. Exp Hematol Oncol 2024; 13:47. [PMID: 38664743 PMCID: PMC11046957 DOI: 10.1186/s40164-024-00506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
Enhanced cellular therapy has emerged as a novel concept following the basis of cellular therapy. This treatment modality applied drugs or biotechnology to directly enhance or genetically modify cells to enhance the efficacy of adoptive cellular therapy (ACT). Drugs or biotechnology that enhance the killing ability of immune cells include immune checkpoint inhibitors (ICIs) / antibody drugs, small molecule inhibitors, immunomodulatory factors, proteolysis targeting chimera (PROTAC), oncolytic virus (OV), etc. Firstly, overcoming the inhibitory tumor microenvironment (TME) can enhance the efficacy of ACT, which can be achieved by blocking the immune checkpoint. Secondly, cytokines or cytokine receptors can be expressed by genetic engineering or added directly to adoptive cells to enhance the migration and infiltration of adoptive cells to tumor cells. Moreover, multi-antigen chimeric antigen receptors (CARs) can be designed to enhance the specific recognition of tumor cell-related antigens, and OVs can also stimulate antigen release. In addition to inserting suicide genes into adoptive cells, PROTAC technology can be used as a safety switch or degradation agent of immunosuppressive factors to enhance the safety and efficacy of adoptive cells. This article comprehensively summarizes the mechanism, current situation, and clinical application of enhanced cellular therapy, describing potential improvements to adoptive cellular therapy.
Collapse
Affiliation(s)
- Meng-Yao Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Na Zeng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ye An
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Si-Han Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xing-Yu Zhong
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Si-Yang Ma
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Hao-Dong He
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jia Hu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
57
|
Korbecki J, Bosiacki M, Szatkowska I, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Involvement in Molecular Cancer Processes of Chemokine CXCL1 in Selected Tumors. Int J Mol Sci 2024; 25:4365. [PMID: 38673949 PMCID: PMC11050300 DOI: 10.3390/ijms25084365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Chemokines play a key role in cancer processes, with CXCL1 being a well-studied example. Due to the lack of a complete summary of CXCL1's role in cancer in the literature, in this study, we examine the significance of CXCL1 in various cancers such as bladder, glioblastoma, hemangioendothelioma, leukemias, Kaposi's sarcoma, lung, osteosarcoma, renal, and skin cancers (malignant melanoma, basal cell carcinoma, and squamous cell carcinoma), along with thyroid cancer. We focus on understanding how CXCL1 is involved in the cancer processes of these specific types of tumors. We look at how CXCL1 affects cancer cells, including their proliferation, migration, EMT, and metastasis. We also explore how CXCL1 influences other cells connected to tumors, like promoting angiogenesis, recruiting neutrophils, and affecting immune cell functions. Additionally, we discuss the clinical aspects by exploring how CXCL1 levels relate to cancer staging, lymph node metastasis, patient outcomes, chemoresistance, and radioresistance.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Iwona Szatkowska
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland;
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| |
Collapse
|
58
|
Chen T, Wang M, Chen Y, Liu Y. Current challenges and therapeutic advances of CAR-T cell therapy for solid tumors. Cancer Cell Int 2024; 24:133. [PMID: 38622705 PMCID: PMC11017638 DOI: 10.1186/s12935-024-03315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
The application of chimeric antigen receptor (CAR) T cells in the management of hematological malignancies has emerged as a noteworthy therapeutic breakthrough. Nevertheless, the utilization and effectiveness of CAR-T cell therapy in solid tumors are still limited primarily because of the absence of tumor-specific target antigen, the existence of immunosuppressive tumor microenvironment, restricted T cell invasion and proliferation, and the occurrence of severe toxicity. This review explored the history of CAR-T and its latest advancements in the management of solid tumors. According to recent studies, optimizing the design of CAR-T cells, implementing logic-gated CAR-T cells and refining the delivery methods of therapeutic agents can all enhance the efficacy of CAR-T cell therapy. Furthermore, combination therapy shows promise as a way to improve the effectiveness of CAR-T cell therapy. At present, numerous clinical trials involving CAR-T cells for solid tumors are actively in progress. In conclusion, CAR-T cell therapy has both potential and challenges when it comes to treating solid tumors. As CAR-T cell therapy continues to evolve, further innovations will be devised to surmount the challenges associated with this treatment modality, ultimately leading to enhanced therapeutic response for patients suffered solid tumors.
Collapse
Affiliation(s)
- Tong Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mingzhao Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yanchao Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yutao Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
59
|
Shen Y, Thng DKH, Wong ALA, Toh TB. Mechanistic insights and the clinical prospects of targeted therapies for glioblastoma: a comprehensive review. Exp Hematol Oncol 2024; 13:40. [PMID: 38615034 PMCID: PMC11015656 DOI: 10.1186/s40164-024-00512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Glioblastoma (GBM) is a fatal brain tumour that is traditionally diagnosed based on histological features. Recent molecular profiling studies have reshaped the World Health Organization approach in the classification of central nervous system tumours to include more pathogenetic hallmarks. These studies have revealed that multiple oncogenic pathways are dysregulated, which contributes to the aggressiveness and resistance of GBM. Such findings have shed light on the molecular vulnerability of GBM and have shifted the disease management paradigm from chemotherapy to targeted therapies. Targeted drugs have been developed to inhibit oncogenic targets in GBM, including receptors involved in the angiogenic axis, the signal transducer and activator of transcription 3 (STAT3), the PI3K/AKT/mTOR signalling pathway, the ubiquitination-proteasome pathway, as well as IDH1/2 pathway. While certain targeted drugs showed promising results in vivo, the translatability of such preclinical achievements in GBM remains a barrier. We also discuss the recent developments and clinical assessments of targeted drugs, as well as the prospects of cell-based therapies and combinatorial therapy as novel ways to target GBM. Targeted treatments have demonstrated preclinical efficacy over chemotherapy as an alternative or adjuvant to the current standard of care for GBM, but their clinical efficacy remains hindered by challenges such as blood-brain barrier penetrance of the drugs. The development of combinatorial targeted therapies is expected to improve therapeutic efficacy and overcome drug resistance.
Collapse
Affiliation(s)
- Yating Shen
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Dexter Kai Hao Thng
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Andrea Li Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore.
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
60
|
Chen X, Zhong S, Zhan Y, Zhang X. CRISPR-Cas9 applications in T cells and adoptive T cell therapies. Cell Mol Biol Lett 2024; 29:52. [PMID: 38609863 PMCID: PMC11010303 DOI: 10.1186/s11658-024-00561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
T cell immunity is central to contemporary cancer and autoimmune therapies, encompassing immune checkpoint blockade and adoptive T cell therapies. Their diverse characteristics can be reprogrammed by different immune challenges dependent on antigen stimulation levels, metabolic conditions, and the degree of inflammation. T cell-based therapeutic strategies are gaining widespread adoption in oncology and treating inflammatory conditions. Emerging researches reveal that clustered regularly interspaced palindromic repeats-associated protein 9 (CRISPR-Cas9) genome editing has enabled T cells to be more adaptable to specific microenvironments, opening the door to advanced T cell therapies in preclinical and clinical trials. CRISPR-Cas9 can edit both primary T cells and engineered T cells, including CAR-T and TCR-T, in vivo and in vitro to regulate T cell differentiation and activation states. This review first provides a comprehensive summary of the role of CRISPR-Cas9 in T cells and its applications in preclinical and clinical studies for T cell-based therapies. We also explore the application of CRISPR screen high-throughput technology in editing T cells and anticipate the current limitations of CRISPR-Cas9, including off-target effects and delivery challenges, and envisioned improvements in related technologies for disease screening, diagnosis, and treatment.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Cardiology, Cardiovascular Institute of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Shuhan Zhong
- Department of Hematology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, 310003, China
| | - Yonghao Zhan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Xuepei Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
61
|
Cao JW, Lake J, Impastato R, Chow L, Perez L, Chubb L, Kurihara J, Verneris MR, Dow S. Targeting osteosarcoma with canine B7-H3 CAR T cells and impact of CXCR2 Co-expression on functional activity. Cancer Immunol Immunother 2024; 73:77. [PMID: 38554158 PMCID: PMC10981605 DOI: 10.1007/s00262-024-03642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/25/2024] [Indexed: 04/01/2024]
Abstract
The use of large animal spontaneous models of solid cancers, such as dogs with osteosarcoma (OS), can help develop new cancer immunotherapy approaches, including chimeric antigen receptor (CAR) T cells. The goal of the present study was to generate canine CAR T cells targeting the B7-H3 (CD276) co-stimulatory molecule overexpressed by several solid cancers, including OS in both humans and dogs, and to assess their ability to recognize B7-H3 expressed by canine OS cell lines or by canine tumors in xenograft models. A second objective was to determine whether a novel dual CAR that expressed a chemokine receptor together with the B7-H3 CAR improved the activity of the canine CAR T cells. Therefore, in the studies reported here we examined B7-H3 expression by canine OS tumors, evaluated target engagement by canine B7-H3 CAR T cells in vitro, and compared the relative effectiveness of B7-H3 CAR T cells versus B7-H3-CXCR2 dual CAR T cells in canine xenograft models. We found that most canine OS tumors expressed B7-H3; whereas, levels were undetectable on normal dog tissues. Both B7-H3 CAR T cells demonstrated activation and OS-specific target killing in vitro, but there was significantly greater cytokine production by B7-H3-CXCR2 CAR T cells. In canine OS xenograft models, little anti-tumor activity was generated by B7-H3 CAR T cells; whereas, B7-H3-CXCR2 CAR T cells significantly inhibited tumor growth, inducing complete tumor elimination in most treated mice. These findings indicated therefore that addition of a chemokine receptor could significantly improve the anti-tumor activity of canine B7-H3 CAR T cells, and that evaluation of this new dual CAR construct in dogs with primary or metastatic OS is warranted since such studies could provide a critical and realistic validation of the chemokine receptor concept.
Collapse
Affiliation(s)
- Jennifer W Cao
- Department of Microbiology, Immunology, and Pathology, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA
| | - Jessica Lake
- Department of Pediatrics, Center for Cancer and Blood Disorders, University of Colorado and Children's Hospital of Colorado, Research Complex 1, North Tower 12800 E. 19th Ave. Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA
| | - Renata Impastato
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lyndah Chow
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Luisanny Perez
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Laura Chubb
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jade Kurihara
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael R Verneris
- Department of Pediatrics, Center for Cancer and Blood Disorders, University of Colorado and Children's Hospital of Colorado, Research Complex 1, North Tower 12800 E. 19th Ave. Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA.
| | - Steven Dow
- Department of Microbiology, Immunology, and Pathology, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA.
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
62
|
Johnston AC, Alicea GM, Lee CC, Patel PV, Hanna EA, Vaz E, Forjaz A, Wan Z, Nair PR, Lim Y, Chen T, Du W, Kim D, Nichakawade TD, Rebecca VW, Bonifant CL, Fan R, Kiemen AL, Wu PH, Wirtz D. Engineering self-propelled tumor-infiltrating CAR T cells using synthetic velocity receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.13.571595. [PMID: 38168186 PMCID: PMC10760159 DOI: 10.1101/2023.12.13.571595] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Chimeric antigen receptor (CAR) T cells express antigen-specific synthetic receptors, which upon binding to cancer cells, elicit T cell anti-tumor responses. CAR T cell therapy has enjoyed success in the clinic for hematological cancer indications, giving rise to decade-long remissions in some cases. However, CAR T therapy for patients with solid tumors has not seen similar success. Solid tumors constitute 90% of adult human cancers, representing an enormous unmet clinical need. Current approaches do not solve the central problem of limited ability of therapeutic cells to migrate through the stromal matrix. We discover that T cells at low and high density display low- and high-migration phenotypes, respectively. The highly migratory phenotype is mediated by a paracrine pathway from a group of self-produced cytokines that include IL5, TNFα, IFNγ, and IL8. We exploit this finding to "lock-in" a highly migratory phenotype by developing and expressing receptors, which we call velocity receptors (VRs). VRs target these cytokines and signal through these cytokines' cognate receptors to increase T cell motility and infiltrate lung, ovarian, and pancreatic tumors in large numbers and at doses for which control CAR T cells remain confined to the tumor periphery. In contrast to CAR therapy alone, VR-CAR T cells significantly attenuate tumor growth and extend overall survival. This work suggests that approaches to the design of immune cell receptors that focus on migration signaling will help current and future CAR cellular therapies to infiltrate deep into solid tumors.
Collapse
Affiliation(s)
- Adrian C Johnston
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | | | - Cameron C Lee
- Department of Biomedical Engineering, Johns Hopkins University
| | - Payal V Patel
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - Eban A Hanna
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - Eduarda Vaz
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - André Forjaz
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - Zeqi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University
| | - Praful R Nair
- Institute for NanoBioTechnology, Johns Hopkins University
| | - Yeongseo Lim
- Department of Biomedical Engineering, Johns Hopkins University
| | - Tina Chen
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - Wenxuan Du
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University
| | - Tushar D Nichakawade
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
- Department of Oncology, Johns Hopkins School of Medicine, Johns Hopkins University
| | - Vito W Rebecca
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University
| | - Challice L Bonifant
- Department of Oncology, Johns Hopkins School of Medicine, Johns Hopkins University
| | - Rong Fan
- Department of Biomedical Engineering, Yale University
| | - Ashley L Kiemen
- Institute for NanoBioTechnology, Johns Hopkins University
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University
- Department of Oncology, Johns Hopkins School of Medicine, Johns Hopkins University
| | - Pei-Hsun Wu
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
| | - Denis Wirtz
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University
- Department of Oncology, Johns Hopkins School of Medicine, Johns Hopkins University
| |
Collapse
|
63
|
Dai Z, Lin X, Wang X, Zou X, Yan Y, Wang R, Chen Y, Tasiheng Y, Ma M, Wang X, Cheng H, Yu X, Liu C. Ectopic CXCR2 expression cells improve the anti-tumor efficiency of CAR-T cells and remodel the immune microenvironment of pancreatic ductal adenocarcinoma. Cancer Immunol Immunother 2024; 73:61. [PMID: 38430267 PMCID: PMC10908625 DOI: 10.1007/s00262-024-03648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Recent progressions in CAR-T cell therapy against pancreatic ductal adenocarcinoma (PDAC) remain disappointing, which are partially attributed to the immunosuppressive microenvironment including macrophage-mediated T cell repletion. METHODS We first characterized the expression patterns of macrophage-relevant chemokines and identified CXCR2 as the key factor regulating T cell trafficking and tumor-specific accumulation in PDAC microenvironment. After that, we synthesized and introduced a CXCR2 expression cascade into Claudin18.2 CAR-T cells and compared the behaviors of CAR-T cells in vitro and in vivo. The therapeutic potential of CXCR2 CAR-T was evaluated in two different allogeneic models: subcutaneous allografts and metastatic PDAC models. RESULTS The results showed that CXCR2 CAR-T not only reduced the size of allografted PDAC tumors, but also completely eliminated the formation of metastases. Lastly, we investigated the tumor tissues and found that expression of ectopic CXCR2 significantly improved tumor-targeted infiltration and residence of T cells and reduced the presence of MDSCs and CXCR2 + macrophages in PDAC microenvironment. CONCLUSION Our studies suggested that ectopic CXCR2 played a significant and promising role in improving the efficiency of CAR-T therapy against primary and metastatic PDAC and partially reversed the immune-suppressive microenvironment.
Collapse
Affiliation(s)
- Zhengjie Dai
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xuan Lin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xu Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
- Cancer Research Institute, Shanghai Key Laboratory of Radiation Oncology, , Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
| | - Xuan Zou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yu Yan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Ruijie Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yusheng Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yesiboli Tasiheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Mingjian Ma
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xu Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
64
|
Fawzy RM, Abdel-Aziz AA, Bassiouny K, Fayed AM. Phytocompounds-based therapeutic approach: Investigating curcumin and green tea extracts on MCF-7 breast cancer cell line. J Genet Eng Biotechnol 2024; 22:100339. [PMID: 38494270 PMCID: PMC10980874 DOI: 10.1016/j.jgeb.2023.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND Breast cancer (BC) has transcended lung cancer as the most common cancer in the world. Due to the disease's aggressiveness, rapid growth, and heterogeneity, it is crucial to investigate different therapeutic approaches for treatment. According to the World Health Organization (WHO), Plant-based therapeutics continue to be utilized as safe/non-toxic complementary or alternative treatments for cancer, even in developed countries, regardless of how cutting-edge conventional therapies are. Despite their low bioavailability, curcumin (CUR) and green tea (GT) represent safer therapeutic options. Due to their potent molecular-modulating properties on various cancer-related molecules and signaling pathways, they are considered gold-standard therapeutic agents and have been incorporated into the development of one or more therapeutic strategies of BC treatment. METHODS We investigated the modulatory role of CUR and GT extracts on significant multi molecular targets in MCF-7 BC cell line to assess their potential as BC multi-targeting agents. We analyzed the phytocompounds in GT leaves using High-performance liquid chromatography (HPLC) and Gas chromatography-mass spectrometry (GC-MS) techniques. The mRNA expression levels of Raf-1, Telomerase, Tumor necrosis factor alpha (TNF-α) and Interleukin-8 (IL-8) genes in MCF-7 cells were quantified using quantitative real-time PCR (qRT-PCR). The cytotoxicity of the extracts was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the released Lactate dehydrogenase (LDH), a valuable marker for identifying the programmed necrosis (necroptosis). Additionally, the concentrations of the necroptosis-related proinflammatory cytokines (TNF-α and IL-8) were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS In contrast to the GT, the results showed the anticancer and cytotoxic properties of CUR against MCF-7 cells, with a relatively higher level of released LDH. The CUR extract downregulated the oncogenic Raf-1, suppressed the Telomerase and upregulated the TNF-α and IL-8 genes. Results from the ELISA showed a notable increase in IL-8 and TNF-α cytokines levels after CUR treatment, which culminated after 72 h. CONCLUSIONS Among both extracts, only CUR effectively modulated the understudy molecular targets, achieving multi-targeting anticancer activity against MCF-7 cells. Moreover, the applied dosage significantly increased levels of the proinflammatory cytokines, which represent a component of the cytokines-targeting-based therapeutic strategy. However, further investigations are recommended to validate this therapeutic approach.
Collapse
Affiliation(s)
- Radwa M Fawzy
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.
| | - Amal A Abdel-Aziz
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Khalid Bassiouny
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Aysam M Fayed
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
65
|
Wang Z, Shang J, Qiu Y, Cheng H, Tao M, Xie E, Pei X, Li W, Zhang L, Wu A, Li G. Suppression of the METTL3-m 6A-integrin β1 axis by extracellular acidification impairs T cell infiltration and antitumor activity. Cell Rep 2024; 43:113796. [PMID: 38367240 DOI: 10.1016/j.celrep.2024.113796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/28/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024] Open
Abstract
The acidic metabolic byproducts within the tumor microenvironment (TME) hinder T cell effector functions. However, their effects on T cell infiltration remain largely unexplored. Leveraging the comprehensive The Cancer Genome Atlas dataset, we pinpoint 16 genes that correlate with extracellular acidification and establish a metric known as the "tumor acidity (TuAci) score" for individual patients. We consistently observe a negative association between the TuAci score and T lymphocyte score (T score) across various human cancer types. Mechanistically, extracellular acidification significantly impedes T cell motility by suppressing podosome formation. This phenomenon can be attributed to the reduced expression of methyltransferase-like 3 (METTL3) and the modification of RNA N6-methyladenosine (m6A), resulting in a subsequent decrease in the expression of integrin β1 (ITGB1). Importantly, enforced ITGB1 expression leads to enhanced T cell infiltration and improved antitumor activity. Our study suggests that modulating METTL3 activity or boosting ITGB1 expression could augment T cell infiltration within the acidic TME, thereby improving the efficacy of cell therapy.
Collapse
Affiliation(s)
- Zhe Wang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Jingzhe Shang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Yajing Qiu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Hongcheng Cheng
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Mengyuan Tao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Ermei Xie
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Xin Pei
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Wenhui Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Lianjun Zhang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China.
| | - Aiping Wu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China.
| | - Guideng Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China.
| |
Collapse
|
66
|
Kagoya Y. Cytokine signaling in chimeric antigen receptor T-cell therapy. Int Immunol 2024; 36:49-56. [PMID: 37591521 PMCID: PMC10872714 DOI: 10.1093/intimm/dxad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/15/2023] [Indexed: 08/19/2023] Open
Abstract
Adoptive immunotherapy using chimeric antigen-receptor (CAR)-engineered T cells can induce robust antitumor responses against hematologic malignancies. However, its efficacy is not durable in the majority of the patients, warranting further improvement of T-cell functions. Cytokine signaling is one of the key cascades regulating T-cell survival and effector functions. In addition to cytokines that use the common γ chain as a receptor subunit, multiple cytokines regulate T-cell functions directly or indirectly. Modulating cytokine signaling in CAR-T cells by genetic engineering is one promising strategy to augment their therapeutic efficacy. These strategies include ectopic expression of cytokines, cytokine receptors, and synthetic molecules that mimic endogenous cytokine signaling. Alternatively, autocrine IL-2 signaling can be augmented through reprogramming of CAR-T cell properties through transcriptional and epigenetic modification. On the other hand, cytokine production by CAR-T cells triggers systemic inflammatory responses, which mainly manifest as adverse events such as cytokine-release syndrome (CRS) and neurotoxicity. In addition to inhibiting direct inflammatory mediators such as IL-6 and IL-1 released from activated macrophages, suppression of T-cell-derived cytokines associated with the priming of macrophages can be accomplished through genetic modification of CAR-T cells. In this review, I will outline recently developed synthetic biology approaches to exploit cytokine signaling to enhance CAR-T cell functions. I will also discuss therapeutic target molecules to prevent or alleviate CAR-T cell-related toxicities.
Collapse
Affiliation(s)
- Yuki Kagoya
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
67
|
Kolahi Azar H, Imanpour A, Rezaee H, Ezzatifar F, Zarei-Behjani Z, Rostami M, Azami M, Behestizadeh N, Rezaei N. Mesenchymal stromal cells and CAR-T cells in regenerative medicine: The homing procedure and their effective parameters. Eur J Haematol 2024; 112:153-173. [PMID: 37254607 DOI: 10.1111/ejh.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Mesenchymal stromal cells (MSCs) and chimeric antigen receptor (CAR)-T cells are two core elements in cell therapy procedures. MSCs have significant immunomodulatory effects that alleviate inflammation in the tissue regeneration process, while administration of specific chemokines and adhesive molecules would primarily facilitate CAR-T cell trafficking into solid tumors. Multiple parameters affect cell homing, including the recipient's age, the number of cell passages, proper cell culture, and the delivery method. In addition, several chemokines are involved in the tumor microenvironment, affecting the homing procedure. This review discusses parameters that improve the efficiency of cell homing and significant cell therapy challenges. Emerging comprehensive mechanistic strategies such as non-systemic and systemic homing that revealed a significant role in cell therapy remodeling were also reviewed. Finally, the primary implications for the development of combination therapies that incorporate both MSCs and CAR-T cells for cancer treatment were discussed.
Collapse
Affiliation(s)
- Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Aylar Imanpour
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Rezaee
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ezzatifar
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Molecular and Cell Biology Research Center, Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zeinab Zarei-Behjani
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, Advanced School of Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahmoud Azami
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Behestizadeh
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
68
|
Lekan AA, Weiner LM. The Role of Chemokines in Orchestrating the Immune Response to Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:559. [PMID: 38339310 PMCID: PMC10854906 DOI: 10.3390/cancers16030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Chemokines are small molecules that function as chemotactic factors which regulate the migration, infiltration, and accumulation of immune cells. Here, we comprehensively assess the structural and functional role of chemokines, examine the effects of chemokines that are present in the pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME), specifically those produced by cancer cells and stromal components, and evaluate their impact on immune cell trafficking, both in promoting and suppressing anti-tumor responses. We further explore the impact of chemokines on patient outcomes in PDAC and their role in the context of immunotherapy treatments, and review clinical trials that have targeted chemokine receptors and ligands in the treatment of PDAC. Lastly, we highlight potential strategies that can be utilized to harness chemokines in order to increase cytotoxic immune cell infiltration and the anti-tumor effects of immunotherapy.
Collapse
Affiliation(s)
| | - Louis M. Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057, USA;
| |
Collapse
|
69
|
Czaplicka A, Lachota M, Pączek L, Zagożdżon R, Kaleta B. Chimeric Antigen Receptor T Cell Therapy for Pancreatic Cancer: A Review of Current Evidence. Cells 2024; 13:101. [PMID: 38201305 PMCID: PMC10777940 DOI: 10.3390/cells13010101] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of malignant and non-malignant disorders. CARs are synthetic transmembrane receptors expressed on genetically modified immune effector cells, including T cells, natural killer (NK) cells, or macrophages, which are able to recognize specific surface antigens on target cells and eliminate them. CAR-modified immune cells mediate cytotoxic antitumor effects via numerous mechanisms, including the perforin and granzyme pathway, Fas and Fas Ligand (FasL) pathway, and cytokine secretion. High hopes are associated with the prospective use of the CAR-T strategy against solid cancers, especially the ones resistant to standard oncological therapies, such as pancreatic cancer (PC). Herein, we summarize the current pre-clinical and clinical studies evaluating potential tumor-associated antigens (TAA), CAR-T cell toxicities, and their efficacy in PC.
Collapse
Affiliation(s)
- Agata Czaplicka
- Department of Internal Medicine and Gastroenterology, Mazovian “Bródnowski” Hospital, 03-242 Warsaw, Poland;
| | - Mieszko Lachota
- Laboratory of Cellular and Genetic Therapies, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.L.); (R.Z.)
| | - Leszek Pączek
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland;
| | - Radosław Zagożdżon
- Laboratory of Cellular and Genetic Therapies, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.L.); (R.Z.)
| | - Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland;
| |
Collapse
|
70
|
Han J, Zhang B, Zheng S, Jiang Y, Zhang X, Mao K. The Progress and Prospects of Immune Cell Therapy for the Treatment of Cancer. Cell Transplant 2024; 33:9636897241231892. [PMID: 38433349 PMCID: PMC10913519 DOI: 10.1177/09636897241231892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
Immune cell therapy as a revolutionary treatment modality, significantly transformed cancer care. It is a specialized form of immunotherapy that utilizes living immune cells as therapeutic reagents for the treatment of cancer. Unlike traditional drugs, cell therapies are considered "living drugs," and these products are currently customized and require advanced manufacturing techniques. Although chimeric antigen receptor (CAR)-T cell therapies have received tremendous attention in the industry regarding the treatment of hematologic malignancies, their effectiveness in treating solid tumors is often restricted, leading to the emergence of alternative immune cell therapies. Tumor-infiltrating lymphocytes (TIL) cell therapy, cytokine-induced killer (CIK) cell therapy, dendritic cell (DC) vaccines, and DC/CIK cell therapy are designed to use the body's natural defense mechanisms to target and eliminate cancer cells, and usually have fewer side effects or risks. On the other hand, cell therapies, such as chimeric antigen receptor-T (CAR-T) cell, T cell receptor (TCR)-T, chimeric antigen receptor-natural killer (CAR-NK), or CAR-macrophages (CAR-M) typically utilize either autologous stem cells, allogeneic or xenogeneic cells, or genetically modified cells, which require higher levels of manipulation and are considered high risk. These high-risk cell therapies typically hold special characteristics in tumor targeting and signal transduction, triggering new anti-tumor immune responses. Recently, significant advances have been achieved in both basic and clinical researches on anti-tumor mechanisms, cell therapy product designs, and technological innovations. With swift technological integration and a high innovation landscape, key future development directions have emerged. To meet the demands of cell therapy technological advancements in treating cancer, we comprehensively and systematically investigate the technological innovation and clinical progress of immune cell therapies in this study. Based on the therapeutic mechanisms and methodological features of immune cell therapies, we analyzed the main technical advantages and clinical transformation risks associated with these therapies. We also analyzed and forecasted the application prospects, providing references for relevant enterprises with the necessary information to make informed decisions regarding their R&D direction selection.
Collapse
Affiliation(s)
- Jia Han
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Bowen Zhang
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Senyu Zheng
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, UK
| | - Yuan Jiang
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xiaopeng Zhang
- Shanghai World Trade Organization Affairs Consultation Center, Shanghai, China
| | - Kaiyun Mao
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
71
|
Goutnik M, Iakovidis A, Still MEH, Moor RSF, Melnick K, Yan S, Abbas M, Huang J, Ghiaseddin AP. Advancements in chimeric antigen receptor-expressing T-cell therapy for glioblastoma multiforme: Literature review and future directions. Neurooncol Adv 2024; 6:vdae025. [PMID: 38486856 PMCID: PMC10939440 DOI: 10.1093/noajnl/vdae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive cancer that has been difficult to treat and often requires multimodal therapy consisting of surgery, radiotherapy, and chemotherapy. Chimeric antigen receptor-expressing (CAR-T) cells have been efficacious in treating hematological malignancies, resulting in several FDA-approved therapies. CAR-T cells have been more recently studied for the treatment of GBM, with some promising preclinical and clinical results. The purpose of this literature review is to highlight the commonly targeted antigens, results of clinical trials, novel modifications, and potential solutions for challenges that exist for CAR-T cells to become more widely implemented and effective in eradicating GBM.
Collapse
Affiliation(s)
- Michael Goutnik
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Alexandria Iakovidis
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Megan E H Still
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Rachel S F Moor
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Kaitlyn Melnick
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Sandra Yan
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Muhammad Abbas
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jianping Huang
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ashley P Ghiaseddin
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
72
|
Abstract
For our immune system to contain or eliminate malignant solid tumours, both myeloid and lymphoid haematopoietic cells must not only extravasate from the bloodstream into the tumour tissue but also further migrate to various specialized niches of the tumour microenvironment to functionally interact with each other, with non-haematopoietic stromal cells and, ultimately, with cancer cells. These interactions regulate local immune cell survival, proliferative expansion, differentiation and their execution of pro-tumour or antitumour effector functions, which collectively determine the outcome of spontaneous or therapeutically induced antitumour immune responses. None of these interactions occur randomly but are orchestrated and critically depend on migratory guidance cues provided by chemokines, a large family of chemotactic cytokines, and their receptors. Understanding the functional organization of the tumour immune microenvironment inevitably requires knowledge of the multifaceted roles of chemokines in the recruitment and positioning of its cellular constituents. Gaining such knowledge will not only generate new insights into the mechanisms underlying antitumour immunity or immune tolerance but also inform the development of biomarkers (or 'biopatterns') based on spatial tumour tissue analyses, as well as novel strategies to therapeutically engineer immune responses in patients with cancer. Here we will discuss recent observations on the role of chemokines in the tumour microenvironment in the context of our knowledge of their physiological functions in development, homeostasis and antimicrobial responses.
Collapse
Affiliation(s)
- Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Julia K Lill
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lukas M Altenburger
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
73
|
Majumder A. Evolving CAR-T-Cell Therapy for Cancer Treatment: From Scientific Discovery to Cures. Cancers (Basel) 2023; 16:39. [PMID: 38201467 PMCID: PMC10777914 DOI: 10.3390/cancers16010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
In recent years, chimeric antigen receptor (CAR)-T-cell therapy has emerged as the most promising immunotherapy for cancer that typically uses patients' T cells and genetically engineered them to target cancer cells. Although recent improvements in CAR-T-cell therapy have shown remarkable success for treating hematological malignancies, the heterogeneity in tumor antigens and the immunosuppressive nature of the tumor microenvironment (TME) limits its efficacy in solid tumors. Despite the enormous efforts that have been made to make CAR-T-cell therapy more effective and have minimal side effects for treating hematological malignancies, more research needs to be conducted regarding its use in the clinic for treating various other types of cancer. The main concern for CAR-T-cell therapy is severe toxicities due to the cytokine release syndrome, whereas the other challenges are associated with complexity and immune-suppressing TME, tumor antigen heterogeneity, the difficulty of cell trafficking, CAR-T-cell exhaustion, and reduced cytotoxicity in the tumor site. This review discussed the latest discoveries in CAR-T-cell therapy strategies and combination therapies, as well as their effectiveness in different cancers. It also encompasses ongoing clinical trials; current challenges regarding the therapeutic use of CAR-T-cell therapy, especially for solid tumors; and evolving treatment strategies to improve the therapeutic application of CAR-T-cell therapy.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
74
|
Park JJ, Lee KAV, Lam SZ, Tang K, Chen S. Genome Engineering for Next-Generation Cellular Immunotherapies. Biochemistry 2023; 62:3455-3464. [PMID: 35930700 PMCID: PMC11320893 DOI: 10.1021/acs.biochem.2c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past decade, cellular immunotherapies such as CAR-T, TCR-T, and NK cell therapies have achieved tremendous success in cancer treatment. However, various challenges and obstacles remain, including antigen escape, immunosuppression in the tumor microenvironment, toxicities, and on-target off-tumor effects. Recent strategies for overcoming these roadblocks have included the use of genome engineering. Multiplexed CRISPR-Cas and synthetic biology approaches facilitate the development of cell therapies with higher potency and sophisticated modular control; they also offer a toolkit for allogeneic therapy development. Engineering approaches have targeted genetic modifications to enhance long-term persistence through cytokine modulation, knockout of genes mediating immunosuppressive signals, and genes such as the endogenous TCR and MHC-I that elicit adverse host-graft interactions in an allogeneic context. Genome engineering approaches for other immune cell types are also being explored, such as CAR macrophages and CAR-NK cells. Future therapeutic development of cellular immunotherapies may also be guided by novel target discovery through unbiased CRISPR genetic screening approaches.
Collapse
Affiliation(s)
- Jonathan J Park
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- System Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Center for Cancer Systems Biology, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- M.D.-Ph.D. Program, Yale University, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Molecular Cell Biology, Genetics, and Development Program, Yale University, 333 Cedar Street, New Haven, Connecticut 06520, United States
| | - Kyoung A V Lee
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- System Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Center for Cancer Systems Biology, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, Connecticut 06510, United States
| | - Stanley Z Lam
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- System Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Center for Cancer Systems Biology, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Kaiyuan Tang
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- System Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Center for Cancer Systems Biology, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- System Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Center for Cancer Systems Biology, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- M.D.-Ph.D. Program, Yale University, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Molecular Cell Biology, Genetics, and Development Program, Yale University, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Immunobiology Program, Yale University, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Yale Comprehensive Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Yale Stem Cell Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Yale Center for Biomedical Data Science, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
75
|
Pawlowski KD, Duffy JT, Gottschalk S, Balyasnikova IV. Cytokine Modification of Adoptive Chimeric Antigen Receptor Immunotherapy for Glioblastoma. Cancers (Basel) 2023; 15:5852. [PMID: 38136398 PMCID: PMC10741789 DOI: 10.3390/cancers15245852] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Chimeric antigen receptor (CAR) cell-based therapies have demonstrated limited success in solid tumors, including glioblastoma (GBM). GBMs exhibit high heterogeneity and create an immunosuppressive tumor microenvironment (TME). In addition, other challenges exist for CAR therapy, including trafficking and infiltration into the tumor site, proliferation, persistence of CARs once in the tumor, and reduced functionality, such as suboptimal cytokine production. Cytokine modification is of interest, as one can enhance therapy efficacy and minimize off-target toxicity by directly combining CAR therapy with cytokines, antibodies, or oncolytic viruses that alter cytokine response pathways. Alternatively, one can genetically modify CAR T-cells or CAR NK-cells to secrete cytokines or express cytokines or cytokine receptors. Finally, CARs can be genetically altered to augment or suppress intracellular cytokine signaling pathways for a more direct approach. Codelivery of cytokines with CARs is the most straightforward method, but it has associated toxicity. Alternatively, combining CAR therapy with antibodies (e.g., anti-IL-6, anti-PD1, and anti-VEGF) or oncolytic viruses has enhanced CAR cell infiltration into GBM tumors and provided proinflammatory signals to the TME. CAR T- or NK-cells secreting cytokines (e.g., IL-12, IL-15, and IL-18) have shown improved efficacy within multiple GBM subtypes. Likewise, expressing cytokine-modulating receptors in CAR cells that promote or inhibit cytokine signaling has enhanced their activity. Finally, gene editing approaches are actively being pursued to directly influence immune signaling pathways in CAR cells. In this review, we summarize these cytokine modification methods and highlight any existing gaps in the hope of catalyzing an improved generation of CAR-based therapies for glioblastoma.
Collapse
Affiliation(s)
- Kristen D. Pawlowski
- Department of Neurological Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Joseph T. Duffy
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60208, USA;
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Irina V. Balyasnikova
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60208, USA;
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| |
Collapse
|
76
|
He J, Yan Y, Zhang J, Wei Z, Li H, Xing L. Synergistic treatment strategy: combining CAR-NK cell therapy and radiotherapy to combat solid tumors. Front Immunol 2023; 14:1298683. [PMID: 38162672 PMCID: PMC10755030 DOI: 10.3389/fimmu.2023.1298683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Immunotherapy, notably chimeric antigen receptor (CAR) modified natural killer (NK) cell therapy, has shown exciting promise in the treatment of hematologic malignancies due to its unique advantages including fewer side effects, diverse activation mechanisms, and wide availability. However, CAR-NK cell therapies have demonstrated limited efficacy against solid tumors, primarily due to challenges posed by the solid tumor microenvironment. In contrast, radiotherapy, a well-established treatment modality, has been proven to modulate the tumor microenvironment and facilitate immune cell infiltration. With these observations, we hypothesize that a novel therapeutic strategy integrating CAR-NK cell therapy with radiotherapy could enhance the ability to treat solid tumors. This hypothesis aims to address the obstacles CAR-NK cell therapies face within the solid tumor microenvironment and explore the potential efficacy of their combination with radiotherapy. By capitalizing on the synergistic advantages of CAR-NK cell therapy and radiotherapy, we posit that this could lead to improved prognoses for patients with solid tumors.
Collapse
Affiliation(s)
- Jie He
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yushan Yan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jun Zhang
- Asclepius (Soochow) Technology Company Group, Suzhou, Jiangsu, China
| | - Zhiming Wei
- Asclepius (Soochow) Technology Company Group, Suzhou, Jiangsu, China
| | - Huashun Li
- Asclepius (Soochow) Technology Company Group, Suzhou, Jiangsu, China
| | - Ligang Xing
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
77
|
Nasiri F, Farrokhi K, Safarzadeh Kozani P, Mahboubi Kancha M, Dashti Shokoohi S, Safarzadeh Kozani P. CAR-T cell immunotherapy for ovarian cancer: hushing the silent killer. Front Immunol 2023; 14:1302307. [PMID: 38146364 PMCID: PMC10749368 DOI: 10.3389/fimmu.2023.1302307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023] Open
Abstract
As the most lethal gynecologic oncological indication, carcinoma of the ovary has been ranked as the 5th cause of cancer-related mortality in women, with a high percentage of the patients being diagnosed at late stages of the disease and a five-year survival of ~ 30%. Ovarian cancer patients conventionally undergo surgery for tumor removal followed by platinum- or taxane-based chemotherapy; however, a high percentage of patients experience tumor relapse. Cancer immunotherapy has been regarded as a silver lining in the treatment of patients with various immunological or oncological indications; however, mirvetuximab soravtansine (a folate receptor α-specific mAb) and bevacizumab (a VEGF-A-specific mAb) are the only immunotherapeutics approved for the treatment of ovarian cancer patients. Chimeric antigen receptor T-cell (CAR-T) therapy has achieved tremendous clinical success in the treatment of patients with certain B-cell lymphomas and leukemias, as well as multiple myeloma. In the context of solid tumors, CAR-T therapies face serious obstacles that limit their therapeutic benefit. Such hindrances include the immunosuppressive nature of solid tumors, impaired tumor infiltration, lack of qualified tumor-associated antigens, and compromised stimulation and persistence of CAR-Ts following administration. Over the past years, researchers have made arduous attempts to apply CAR-T therapy to ovarian cancer. In this review, we outline the principles of CAR-T therapy and then highlight its limitations in the context of solid tumors. Ultimately, we focus on preclinical and clinical findings achieved in CAR-T-mediated targeting of different ovarian cancer-associated target antigens.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Khadijeh Farrokhi
- Department of Microbial Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maral Mahboubi Kancha
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Setareh Dashti Shokoohi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
78
|
Dagher OK, Posey AD. Forks in the road for CAR T and CAR NK cell cancer therapies. Nat Immunol 2023; 24:1994-2007. [PMID: 38012406 DOI: 10.1038/s41590-023-01659-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/20/2023] [Indexed: 11/29/2023]
Abstract
The advent of chimeric antigen receptor (CAR) T cell therapy has resulted in unprecedented long-term clearance of relapse/refractory hematological malignancies in both pediatric and adult patients. However, severe toxicities, such as cytokine release syndrome and neurotoxicity, associated with CAR T cells affect therapeutic utility; and treatment efficacies for solid tumors are still not impressive. As a result, engineering strategies that modify other immune cell types, especially natural killer (NK) cells have arisen. Owing to both CAR-dependent and CAR-independent (innate immune-mediated) antitumor killing capacity, major histocompatibility complex-independent cytotoxicity, reduced risk of alloreactivity and lack of major CAR T cell toxicities, CAR NK cells constitute one of the promising next-generation CAR immune cells that are also amenable as 'off-the-shelf' therapeutics. In this Review, we compare CAR T and CAR NK cell therapies, with particular focus on immunological synapses, engineering strategies and challenges.
Collapse
Affiliation(s)
- Oula K Dagher
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| | - Avery D Posey
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
| |
Collapse
|
79
|
Guerra C, Kalaitsidou M, Kueberuwa G, Hawkins R, Edmondson R. Engineering strategies to optimise adoptive cell therapy in ovarian cancer. Cancer Treat Rev 2023; 121:102632. [PMID: 37837788 DOI: 10.1016/j.ctrv.2023.102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Ovarian cancer is amongst the ten most common cancer types in women, and it is one of the leading causes of death. Despite the promising results of targeted therapies, including anti-angiogenic agents and poly (ADP-ribose) polymerase inhibitors (PARPi), the majority of patients will relapse and develop treatment resistance, implying that novel therapeutic strategies are required. Adoptive cell therapy (ACT) refers to the process by which autologous immune cells are used to eliminate cancer. Examples include tumour infiltrating lymphocytes (TILs), T cells genetically engineered with T cell receptors (TCR), or chimeric antigen receptor (CAR)-T cells. Recently, ACT has revealed promising results in the treatment of haematological malignancies, however, its application to solid tumours is still limited due to lack of functionality and persistence of T cells, prevalence of an exhausted phenotype and impaired trafficking towards the tumour microenvironment (TME). In this review we explore the potential of ACT for the treatment of ovarian cancer and strategies to overcome its principal limitations.
Collapse
Affiliation(s)
- Catarina Guerra
- InstilBio UK, 48 Grafton St, Manchester M13 9XX, Manchester, United Kingdom; School of Medical Sciences, The University of Manchester, Oxford Rd, Manchester, United Kingdom.
| | - Milena Kalaitsidou
- InstilBio UK, 48 Grafton St, Manchester M13 9XX, Manchester, United Kingdom.
| | - Gray Kueberuwa
- InstilBio UK, 48 Grafton St, Manchester M13 9XX, Manchester, United Kingdom.
| | - Robert Hawkins
- InstilBio UK, 48 Grafton St, Manchester M13 9XX, Manchester, United Kingdom.
| | - Richard Edmondson
- School of Medical Sciences, The University of Manchester, Oxford Rd, Manchester, United Kingdom.
| |
Collapse
|
80
|
Wala JA, Hanna GJ. Chimeric Antigen Receptor T-Cell Therapy for Solid Tumors. Hematol Oncol Clin North Am 2023; 37:1149-1168. [PMID: 37353377 DOI: 10.1016/j.hoc.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
We review chimeric antigen receptor (CAR) T-cell therapy for solid tumors. We discuss patient selection factors and aspects of clinical management. We describe challenges including physical and molecular barriers to trafficking CAR-Ts, an immunosuppressive tumor microenvironment, and difficulty finding cell surface target antigens. The application of new approaches in synthetic biology and cellular engineering toward solid tumor CAR-Ts is described. Finally, we summarize reported and ongoing clinical trials of CAR-T therapies for select disease sites such as head and neck (including thyroid cancer), lung, central nervous system (glioblastoma, neuroblastoma, glioma), sarcoma, genitourinary (prostate, renal, bladder, kidney), breast and ovarian cancer.
Collapse
Affiliation(s)
- Jeremiah A Wala
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building 2nd Floor, Room 2-140, Boston, MA 02215, USA
| | - Glenn J Hanna
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building 2nd Floor, Room 2-140, Boston, MA 02215, USA.
| |
Collapse
|
81
|
Hu D, Tian Y, Xu J, Xie D, Wang Y, Liu M, Wang Y, Yang L. Oncolytic viral therapy as promising immunotherapy against glioma. MEDCOMM – FUTURE MEDICINE 2023; 2. [DOI: 10.1002/mef2.61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 03/19/2025]
Abstract
AbstractGlioma is a common primary central nervous system malignant tumor in clinical, traditional methods such as surgery and chemoradiotherapy are not effective in treatment. Therefore, more effective treatments need to be found. Oncolytic viruses (OVs) are a new type of immunotherapy that selectively infects and kills tumor cells instead of normal cells. OVs can mediate antitumor immune responses through a variety of mechanisms, and have the ability to activate antitumor immune responses, transform the tumor microenvironment from “cold” to “hot,” and enhance the efficacy of immune checkpoint inhibitors. Recently, a large number of preclinical and clinical studies have shown that OVs show great prospects in the treatment of gliomas. In this review, we summarize the current status of glioma therapies with a focus on OVs. First, this article introduces the current status of treatment of glioma and their respective shortcomings. Then, the important progress of OVs of in clinical trials of glioma is summarized. Finally, the urgent challenges of oncolytic virus treatment for glioma are sorted out, and related solutions are proposed. This review will help to further promote the use of OVs in the treatment of glioma.
Collapse
Affiliation(s)
- Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yaomei Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
- College of Bioengineering Sichuan University of Science & Engineering Zigong China
| | - Jie Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Daoyuan Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yuanda Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| |
Collapse
|
82
|
Hong M, Talluri S, Chen YY. Advances in promoting chimeric antigen receptor T cell trafficking and infiltration of solid tumors. Curr Opin Biotechnol 2023; 84:103020. [PMID: 37976958 DOI: 10.1016/j.copbio.2023.103020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
T cells engineered to express chimeric antigen receptors (CARs) have demonstrated robust response rates in treating hematological malignancies. However, solid tumors present multiple challenges that hinder the antitumor efficacy of CAR-T cells, including antigen heterogeneity, off-tumor and systemic toxicities, and the immunosuppressive milieu of the tumor microenvironment (TME). Notably, the TME of solid tumors is characterized by chemokine dysregulation and a dense architecture consisting of tumor stroma, extracellular matrix, and aberrant vasculature that impede migration of CAR-T cells to the tumor site as well as infiltration into the solid-tumor mass. In this review, we highlight recent advances to improve CAR-T-cell trafficking to and infiltration of solid tumors to promote effective antigen recognition by CAR-T cells.
Collapse
Affiliation(s)
- Mihe Hong
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Sohan Talluri
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
83
|
Nguyen DT, Liu R, Ogando-Rivas E, Pepe A, Pedro D, Qdaisat S, Nguyen NTY, Lavrador JM, Golde GR, Smolchek RA, Ligon J, Jin L, Tao H, Webber A, Phillpot S, Mitchell DA, Sayour EJ, Huang J, Castillo P, Gregory Sawyer W. Bioconjugated liquid-like solid enhances characterization of solid tumor - chimeric antigen receptor T cell interactions. Acta Biomater 2023; 172:466-479. [PMID: 37788737 DOI: 10.1016/j.actbio.2023.09.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable success as an immunotherapy for hematological malignancies, and its potential for treating solid tumors is an active area of research. However, limited trafficking and mobility of T cells within the tumor microenvironment (TME) present challenges for CAR T cell therapy in solid tumors. To gain a better understanding of CAR T cell function in solid tumors, we subjected CD70-specific CAR T cells to a challenge by evaluating their immune trafficking and infiltration through a confined 3D microchannel network in a bio-conjugated liquid-like solid (LLS) medium. Our results demonstrated successful CAR T cell migration and anti-tumor activity against CD70-expressing glioblastoma and osteosarcoma tumors. Through comprehensive analysis of cytokines and chemokines, combined with in situ imaging, we elucidated that immune recruitment occurred via chemotaxis, and the effector-to-target ratio plays an important role in overall antitumor function. Furthermore, through single-cell collection and transcriptomic profiling, we identified differential gene expression among the immune subpopulations. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach. STATEMENT OF SIGNIFICANCE: The use of specialized immune cells named CAR T cells to combat cancers has demonstrated remarkable success against blood cancers. However, this success is not replicated in solid tumors, such as brain or bone cancers, mainly due to the physical barriers of these solid tumors. Currently, preclinical technologies do not allow for reliable evaluation of tumor-immune cell interactions. To better study these specialized CAR T cells, we have developed an innovative in vitro three-dimensional model that promises to dissect the interactions between tumors and CAR T cells at the single-cell level. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach.
Collapse
Affiliation(s)
- Duy T Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Ruixuan Liu
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Elizabeth Ogando-Rivas
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Alfonso Pepe
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Diego Pedro
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Sadeem Qdaisat
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States; University of Florida Genetics Institute, Gainesville, FL 32610, United States
| | - Nhi Tran Yen Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Julia M Lavrador
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Griffin R Golde
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Ryan A Smolchek
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - John Ligon
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, United States
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Haipeng Tao
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Alex Webber
- Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Simon Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Elias J Sayour
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Jianping Huang
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States.
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, United States.
| | - W Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
84
|
Giardino Torchia ML, Moody G. DIALing-up the preclinical characterization of gene-modified adoptive cellular immunotherapies. Front Immunol 2023; 14:1264882. [PMID: 38090585 PMCID: PMC10713823 DOI: 10.3389/fimmu.2023.1264882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
The preclinical characterization of gene modified adoptive cellular immunotherapy candidates for clinical development often requires the use of mouse models. Gene-modified lymphocytes (GML) incorporating chimeric antigen receptors (CAR) and T-cell receptors (TCR) into immune effector cells require in vivo characterization of biological activity, mechanism of action, and preclinical safety. Typically, this characterization involves the assessment of dose-dependent, on-target, on-tumor activity in severely immunocompromised mice. While suitable for the purpose of evaluating T cell-expressed transgene function in a living host, this approach falls short in translating cellular therapy efficacy, safety, and persistence from preclinical models to humans. To comprehensively characterize cell therapy products in mice, we have developed a framework called "DIAL". This framework aims to enable an end-to-end understanding of genetically engineered cellular immunotherapies in vivo, from infusion to tumor clearance and long-term immunosurveillance. The acronym DIAL stands for Distribution, Infiltration, Accumulation, and Longevity, compartmentalizing the systemic attributes of gene-modified cellular therapy and providing a platform for optimization with the ultimate goal of improving therapeutic efficacy. This review will discuss both existent and emerging examples of DIAL characterization in mouse models, as well as opportunities for future development and optimization.
Collapse
Affiliation(s)
| | - Gordon Moody
- Cell Therapy Unit, Oncology Research, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
85
|
Giordano Attianese GMP, Ash S, Irving M. Coengineering specificity, safety, and function into T cells for cancer immunotherapy. Immunol Rev 2023; 320:166-198. [PMID: 37548063 DOI: 10.1111/imr.13252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Adoptive T-cell transfer (ACT) therapies, including of tumor infiltrating lymphocytes (TILs) and T cells gene-modified to express either a T cell receptor (TCR) or a chimeric antigen receptor (CAR), have demonstrated clinical efficacy for a proportion of patients and cancer-types. The field of ACT has been driven forward by the clinical success of CD19-CAR therapy against various advanced B-cell malignancies, including curative responses for some leukemia patients. However, relapse remains problematic, in particular for lymphoma. Moreover, for a variety of reasons, relative limited efficacy has been demonstrated for ACT of non-hematological solid tumors. Indeed, in addition to pre-infusion challenges including lymphocyte collection and manufacturing, ACT failure can be attributed to several biological processes post-transfer including, (i) inefficient tumor trafficking, infiltration, expansion and retention, (ii) chronic antigen exposure coupled with insufficient costimulation resulting in T-cell exhaustion, (iii) a range of barriers in the tumor microenvironment (TME) mediated by both tumor cells and suppressive immune infiltrate, (iv) tumor antigen heterogeneity and loss, or down-regulation of antigen presentation machinery, (v) gain of tumor intrinsic mechanisms of resistance such as to apoptosis, and (vi) various forms of toxicity and other adverse events in patients. Affinity-optimized TCRs can improve T-cell function and innovative CAR designs as well as gene-modification strategies can be used to coengineer specificity, safety, and function into T cells. Coengineering strategies can be designed not only to directly support the transferred T cells, but also to block suppressive barriers in the TME and harness endogenous innate and adaptive immunity. Here, we review a selection of the remarkable T-cell coengineering strategies, including of tools, receptors, and gene-cargo, that have been developed in recent years to augment tumor control by ACT, more and more of which are advancing to the clinic.
Collapse
Affiliation(s)
- Greta Maria Paola Giordano Attianese
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sarah Ash
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
86
|
Long ZJ, Wang JD, Qiu SX, Zhang Y, Wu SJ, Lei XX, Huang ZW, Chen JJ, Yang YL, Zhang XZ, Liu Q. Dietary γ-mangostin triggers immunogenic cell death and activates cGAS signaling in acute myeloid leukemia. Pharmacol Res 2023; 197:106973. [PMID: 37898441 DOI: 10.1016/j.phrs.2023.106973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Immunogenic cell death (ICD), one of cell-death types through release of damage-associated molecular patterns from dying tumor cells, activates tumor-specific immune response and elicits anti-tumor immunity by traditional radiotherapy and chemotherapy. However, whether natural products could induce ICD in leukemia is not elucidated. Here, we report dietary γ-mangostin eradicates murine primary leukemic cells and prolongs the survival of leukemic mice. As well, it restrains primary leukemic cells and CD34+ leukemic progenitor cells from leukemia patients. Strikingly, γ-mangostin attenuates leukemic cells by inducing ICD as characterized by expression of HSP90B1, ANXA1 and IL1B. Additionally, γ-mangostin accelerates cytoplasmic chromatin fragments generation, promoting DNA damage response, and enhances cGAS activation, leading to up-regulation of chemokines. Meanwhile, it induces HDAC4 degradation and acetylated histone H3 accumulation, which promotes chemokines transcription. Ultimately, CD8+ T cell is activated and recruited by γ-mangostin-induced chemokines in the microenvironment. Our study identifies γ-mangostin triggers ICD and activates cGAS signaling through DNA damage response and epigenetic modification. Therefore, dietary γ-mangostin would act as a potential agent to provoke anti-tumor immunity in the prevention and treatment of leukemia.
Collapse
Affiliation(s)
- Zi-Jie Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China; Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, China.
| | - Jun-Dan Wang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China
| | - Sheng-Xiang Qiu
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, China
| | - Yi Zhang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China
| | - Si-Jin Wu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, China
| | - Xin-Xing Lei
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, China
| | - Ze-Wei Huang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China
| | - Jia-Jie Chen
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China
| | - Yong-Liang Yang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, China
| | - Xiang-Zhong Zhang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China.
| | - Quentin Liu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China; Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, China.
| |
Collapse
|
87
|
Tang OY, Binder ZA, O'Rourke DM, Bagley SJ. Optimizing CAR-T Therapy for Glioblastoma. Mol Diagn Ther 2023; 27:643-660. [PMID: 37700186 DOI: 10.1007/s40291-023-00671-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Chimeric antigen receptor T-cell therapies have transformed the management of hematologic malignancies but have not yet demonstrated consistent efficacy in solid tumors. Glioblastoma is the most common primary malignant brain tumor in adults and remains a major unmet medical need. Attempts at harnessing the potential of chimeric antigen receptor T-cell therapy for glioblastoma have resulted in glimpses of promise but have been met with substantial challenges. In this focused review, we discuss current and future strategies being developed to optimize chimeric antigen receptor T cells for efficacy in patients with glioblastoma, including the identification and characterization of new target antigens, reversal of T-cell dysfunction with novel chimeric antigen receptor constructs, regulatable platforms, and gene knockout strategies, and the use of combination therapies to overcome the immune-hostile microenvironment.
Collapse
Affiliation(s)
- Oliver Y Tang
- Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen J Bagley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
88
|
Sun R, Sun Y, Wu C, Liu Y, Zhou M, Dong Y, Du G, Luo H, Shi B, Jiang H, Li Z. CXCR4-modified CAR-T cells suppresses MDSCs recruitment via STAT3/NF-κB/SDF-1α axis to enhance efficacy against pancreatic cancer. Mol Ther 2023; 31:3193-3209. [PMID: 37735875 PMCID: PMC10638076 DOI: 10.1016/j.ymthe.2023.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/02/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Claudin18.2 (CLDN18.2)-specific chimeric antigen receptor (CAR-T) cells displayed limited efficacy in CLDN18.2-positive pancreatic ductal adenocarcinoma (PDAC). Strategies are needed to improve the trafficking capacity of CLDN18.2-specific CAR-T cells. PDAC has a unique microenvironment that consists of abundant cancer-associated fibroblasts (CAFs), which could secrete stromal cell-derived factor 1α (SDF-1α), the ligand of CXCR4. Then, we constructed and explored CLDN18.2-targeted CAR-T cells with CXCR4 co-expression in treating immunocompetent mouse models of PDAC. The results indicated that CXCR4 could promote the infiltration of CAR-T cells and enhance their efficacy in vivo. Mechanistically, the activation of signal transducer and activator of transcription 3 (STAT3) signaling was impaired in CXCR4 CAR-T cells, which reduced the release of inflammatory factors, such as tumor necrosis factor-α, IL-6, and IL-17A. Then, the lower release of inflammatory factors suppressed SDF-1α secretion in CAFs via the nuclear factor κB (NF-κB) pathway. Therefore, the decreased secretion of SDF-1α in feedback decreased the migration of myeloid-derived suppressor cells (MDSCs) in tumor sites. Overall, our study demonstrated that CXCR4 CAR-T cells could traffic more into tumor sites and also suppress MDSC migration via the STAT3/NF-κB/SDF-1α axis to obtain better efficacy in treating CLDN18.2-positive pancreatic cancer. Our findings provide a theoretical rationale for CXCR4 CAR-T cell therapy in PDAC.
Collapse
Affiliation(s)
- Ruixin Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yansha Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Chuanlong Wu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yifan Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Min Zhou
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Yiwei Dong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Guoxiu Du
- CARsgen Therapeutics, Shanghai 200032, China
| | - Hong Luo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Bizhi Shi
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; CARsgen Therapeutics, Shanghai 200032, China
| | - Hua Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; CARsgen Therapeutics, Shanghai 200032, China.
| | - Zonghai Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; CARsgen Therapeutics, Shanghai 200032, China.
| |
Collapse
|
89
|
Cui Y, Luo M, Gu C, He Y, Yao Y, Li P. CAR designs for solid tumors: overcoming hurdles and paving the way for effective immunotherapy. BIOPHYSICS REPORTS 2023; 9:279-297. [PMID: 38516299 PMCID: PMC10951476 DOI: 10.52601/bpr.2023.230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 03/23/2024] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has revolutionized immunotherapy by modifying patients' immune cells genetically. By expressing CARs, these modified cells can specifically identify and eliminate tumor cells. The success of CAR-T therapy in hematological malignancies, such as leukemia and lymphoma, has been remarkable. Numerous studies have reported improved patient outcomes and increased survival rates. However, the application of CAR-T therapy in treating solid tumors faces significant challenges. Solid tumors possess complex microenvironments containing stromal cells, extracellular matrix components, and blood vessels. These factors can impede the infiltration and persistence of CAR-T cells within the tumor. Additionally, the lack of target antigens exclusively expressed on tumor cells raises concerns about off-target effects and potential toxicity. This review aims to discuss advancements achieved by CAR-T therapy in solid tumors and the clinical outcomes in the realm of solid tumors.
Collapse
Affiliation(s)
- Yuanbin Cui
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Mintao Luo
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chuanyuan Gu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yuxian He
- University of California San Diego, La Jolla, CA 92093-0021, USA
| | - Yao Yao
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Peng Li
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
90
|
Requejo Cier CJ, Valentini N, Lamarche C. Unlocking the potential of Tregs: innovations in CAR technology. Front Mol Biosci 2023; 10:1267762. [PMID: 37900916 PMCID: PMC10602912 DOI: 10.3389/fmolb.2023.1267762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Regulatory T cells (Tregs) adoptive immunotherapy is emerging as a viable treatment option for both autoimmune and alloimmune diseases. However, numerous challenges remain, including limitations related to cell number, availability of target-specific cells, stability, purity, homing ability, and safety concerns. To address these challenges, cell engineering strategies have emerged as promising solutions. Indeed, it has become feasible to increase Treg numbers or enhance their stability through Foxp3 overexpression, post-translational modifications, or demethylation of the Treg-specific demethylated region (TSDR). Specificity can be engineered by the addition of chimeric antigen receptors (CARs), with new techniques designed to fine-tune specificity (tandem chimeric antigen receptors, universal chimeric antigen receptors, synNotch chimeric antigen receptors). The introduction of B-cell targeting antibody receptor (BAR) Tregs has paved the way for effective regulation of B cells and plasma cells. In addition, other constructs have emerged to enhance Tregs activation and function, such as optimized chimeric antigen receptors constructs and the use of armour proteins. Chimeric antigen receptor expression can also be better regulated to limit tonic signaling. Furthermore, various opportunities exist for enhancing the homing capabilities of CAR-Tregs to improve therapy outcomes. Many of these genetic modifications have already been explored for conventional CAR-T therapy but need to be further considered for CAR-Tregs therapies. This review highlights innovative CAR-engineering strategies that have the potential to precisely and efficiently manage immune responses in autoimmune diseases and improve transplant outcomes. As these strategies are further explored and optimized, CAR-Treg therapies may emerge as powerful tools for immune intervention.
Collapse
Affiliation(s)
- Christopher J. Requejo Cier
- Department of Microbiology, Infectiology and Immunology, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Valentini
- Department of Microbiology, Infectiology and Immunology, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| | - Caroline Lamarche
- Department of Medicine, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
91
|
Singh N, Maus MV. Synthetic manipulation of the cancer-immunity cycle: CAR-T cell therapy. Immunity 2023; 56:2296-2310. [PMID: 37820585 DOI: 10.1016/j.immuni.2023.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Synthetic immunity to cancer has been pioneered by the application of chimeric antigen receptor (CAR) engineering into autologous T cells. CAR T cell therapy is highly amenable to molecular engineering to bypass barriers of the cancer immunity cycle, such as endogenous antigen presentation, immune priming, and natural checkpoints that constrain immune responses. Here, we review CAR T cell design and the mechanisms that drive sustained CAR T cell effector activity and anti-tumor function. We discuss engineering approaches aimed at improving anti-tumor function through a variety of mechanistic interventions for both hematologic and solid tumors. The ability to engineer T cells in such a variety of ways, including by modifying their trafficking, antigen recognition, costimulation, and addition of synthetic genes, circuits, knockouts and base edits to finely tune complex functions, is arguably the most powerful way to manipulate the cancer immunity cycle in patients.
Collapse
Affiliation(s)
- Nathan Singh
- Division of Oncology, Washington University in St Louis School of Medicine, St. Louis, MO 63110, USA.
| | - Marcela V Maus
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
92
|
Quach HT, Skovgard MS, Villena-Vargas J, Bellis RY, Chintala NK, Amador-Molina A, Bai Y, Banerjee S, Saini J, Xiong Y, Vista WR, Byun AJ, De Biasi A, Zeltsman M, Mayor M, Morello A, Mittal V, Gomez DR, Rimner A, Jones DR, Adusumilli PS. Tumor-Targeted Nonablative Radiation Promotes Solid Tumor CAR T-cell Therapy Efficacy. Cancer Immunol Res 2023; 11:1314-1331. [PMID: 37540803 PMCID: PMC10592183 DOI: 10.1158/2326-6066.cir-22-0840] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/18/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
Infiltration of tumor by T cells is a prerequisite for successful immunotherapy of solid tumors. In this study, we investigate the influence of tumor-targeted radiation on chimeric antigen receptor (CAR) T-cell therapy tumor infiltration, accumulation, and efficacy in clinically relevant models of pleural mesothelioma and non-small cell lung cancers. We use a nonablative dose of tumor-targeted radiation prior to systemic administration of mesothelin-targeted CAR T cells to assess infiltration, proliferation, antitumor efficacy, and functional persistence of CAR T cells at primary and distant sites of tumor. A tumor-targeted, nonablative dose of radiation promotes early and high infiltration, proliferation, and functional persistence of CAR T cells. Tumor-targeted radiation promotes tumor-chemokine expression and chemokine-receptor expression in infiltrating T cells and results in a subpopulation of higher-intensity CAR-expressing T cells with high coexpression of chemokine receptors that further infiltrate distant sites of disease, enhancing CAR T-cell antitumor efficacy. Enhanced CAR T-cell efficacy is evident in models of both high-mesothelin-expressing mesothelioma and mixed-mesothelin-expressing lung cancer-two thoracic cancers for which radiotherapy is part of the standard of care. Our results strongly suggest that the use of tumor-targeted radiation prior to systemic administration of CAR T cells may substantially improve CAR T-cell therapy efficacy for solid tumors. Building on our observations, we describe a translational strategy of "sandwich" cell therapy for solid tumors that combines sequential metastatic site-targeted radiation and CAR T cells-a regional solution to overcome barriers to systemic delivery of CAR T cells.
Collapse
Affiliation(s)
- Hue Tu Quach
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Matthew S. Skovgard
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Jonathan Villena-Vargas
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Rebecca Y. Bellis
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Navin K. Chintala
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Alfredo Amador-Molina
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Yang Bai
- Department of Cardiothoracic Surgery, Weill Cornell Medicine; New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine; New York, NY, USA
| | - Srijita Banerjee
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Jasmeen Saini
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Yuquan Xiong
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - William-Ray Vista
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Alexander J. Byun
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Andreas De Biasi
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Masha Zeltsman
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Marissa Mayor
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Aurore Morello
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine; New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine; New York, NY, USA
| | - Daniel R. Gomez
- Thoracic Radiation Oncology, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Andreas Rimner
- Thoracic Radiation Oncology, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - David R. Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Prasad S. Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| |
Collapse
|
93
|
Wang Y, Drum DL, Sun R, Zhang Y, Chen F, Sun F, Dal E, Yu L, Jia J, Arya S, Jia L, Fan S, Isakoff SJ, Kehlmann AM, Dotti G, Liu F, Zheng H, Ferrone CR, Taghian AG, DeLeo AB, Ventin M, Cattaneo G, Li Y, Jounaidi Y, Huang P, Maccalli C, Zhang H, Wang C, Yang J, Boland GM, Sadreyev RI, Wong L, Ferrone S, Wang X. Stressed target cancer cells drive nongenetic reprogramming of CAR T cells and solid tumor microenvironment. Nat Commun 2023; 14:5727. [PMID: 37714830 PMCID: PMC10504259 DOI: 10.1038/s41467-023-41282-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
The poor efficacy of chimeric antigen receptor T-cell therapy (CAR T) for solid tumors is due to insufficient CAR T cell tumor infiltration, in vivo expansion, persistence, and effector function, as well as exhaustion, intrinsic target antigen heterogeneity or antigen loss of target cancer cells, and immunosuppressive tumor microenvironment (TME). Here we describe a broadly applicable nongenetic approach that simultaneously addresses the multiple challenges of CAR T as a therapy for solid tumors. The approach reprograms CAR T cells by exposing them to stressed target cancer cells which have been exposed to the cell stress inducer disulfiram (DSF) and copper (Cu)(DSF/Cu) plus ionizing irradiation (IR). The reprogrammed CAR T cells acquire early memory-like characteristics, potent cytotoxicity, enhanced in vivo expansion, persistence, and decreased exhaustion. Tumors stressed by DSF/Cu and IR also reprogram and reverse the immunosuppressive TME in humanized mice. The reprogrammed CAR T cells, derived from peripheral blood mononuclear cells of healthy donors or metastatic female breast cancer patients, induce robust, sustained memory and curative anti-solid tumor responses in multiple xenograft mouse models, establishing proof of concept for empowering CAR T by stressing tumor as a promising therapy for solid tumors.
Collapse
Affiliation(s)
- Yufeng Wang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - David L Drum
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruochuan Sun
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Gastrointestinal Surgery and General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yida Zhang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Feng Chen
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fengfei Sun
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emre Dal
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ling Yu
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jingyu Jia
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shahrzad Arya
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lin Jia
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Song Fan
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven J Isakoff
- Termeer Center for Targeted Therapies, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Allison M Kehlmann
- Termeer Center for Targeted Therapies, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Fubao Liu
- Department of Hepatobiliary & Pancreatic Surgery and Liver Transplantation, Anhui Medical University, Hefei, Anhui, China
| | - Hui Zheng
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina R Ferrone
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alphonse G Taghian
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Albert B DeLeo
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Ventin
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giulia Cattaneo
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yongxiang Li
- Department of Gastrointestinal Surgery and General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peigen Huang
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Hanyu Zhang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cheng Wang
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jibing Yang
- Center for Comparative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Genevieve M Boland
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - LaiPing Wong
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Orthopaedics, Massachusetts General Hospital, Boston, MA, USA
| | - Xinhui Wang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
94
|
Liang T, Song Y, Gu L, Wang Y, Ma W. Insight into the Progress in CAR-T Cell Therapy and Combination with Other Therapies for Glioblastoma. Int J Gen Med 2023; 16:4121-4141. [PMID: 37720174 PMCID: PMC10503554 DOI: 10.2147/ijgm.s418837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain cancer in adults. It is always resistant to existing treatments, including surgical resection, postoperative radiotherapy, and chemotherapy, which leads to a dismal prognosis and a high relapse rate. Therefore, novel curative therapies are urgently needed for GBM. Chimeric antigen receptor T (CAR-T) cell therapy has significantly improved life expectancy for hematological malignancies patients, and thus it increases the interest in applying CAR-T cell therapy for solid tumors. In the recently published research, it is indicated that there are numerous obstacles to achieve clinical benefits for solid tumors, especially for GBM, because of GBM anatomical characteristics (the blood-brain barrier and suppressive tumor microenvironment) and the tumor heterogeneity. CAR-T cells are difficult to penetrate blood-brain barrier, and immunosuppressive tumor microenvironment (TME), which induces CAR-T cell exhaustion, impairs CAR-T cell therapy response. Moreover, under the pressure of CAR-T cell therapy, the tumor heterogeneity and tumor plasticity drive tumor evolution and therapy resistance, such as antigen escape. Nonetheless, scientists strive for strategies to overcome these hurdles, including novel CAR-T cell designs and regional delivery. For instance, the structure of multi-antigen-targeted CAR-T cells can enrich CAR-T accumulation in tumor TME and eliminate abundant tumor cells to avoid tumor antigen heterogeneity. Additionally, paired with an immune modifier and one or more stimulating domains, different generation of innovations in the structure and manufacturing of CAR-T cells have improved efficacy and persistence. While single CAR-T cell therapy receives limited clinical survival benefit. Compared with single CAR-T cell therapy, the combination therapies have supplemented the treatment paradigm. Combinatorial treatment methods consolidate the CAR-T cells efficacy by regulating the tumor microenvironment, optimizing the CAR structure, targeting the CAR-T cells to the tumor cells, reversing the tumor-immune escape mechanisms, and represent a promising avenue against GBM, based on multiple impressive research. Moreover, exciting results are also reported to be realized through combining effective therapies with CAR-T cells in preclinical and clinical trials samples, have aroused inspiration to explore the antitumor function of combination therapies. In summary, this study aims to summarize the limitation of CAR-T cell therapies and introduces novel strategies to enhance CAR-T cell function as well as prospect the potential of the therapeutic combination.
Collapse
Affiliation(s)
- Tingyu Liang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yixuan Song
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Lingui Gu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
95
|
Chen Z, Will R, Kim SN, Busch MA, Dünker N, Dammann P, Sure U, Zhu Y. Novel Function of Cancer Stem Cell Marker ALDH1A3 in Glioblastoma: Pro-Angiogenesis through Paracrine PAI-1 and IL-8. Cancers (Basel) 2023; 15:4422. [PMID: 37686698 PMCID: PMC10487054 DOI: 10.3390/cancers15174422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Hyper-angiogenesis is a typical feature of glioblastoma (GBM), the most aggressive brain tumor. We have reported the expression of aldehyde dehydrogenase 1A3 (ALDH1A3) in proliferating vasculature in GBM patients. We hypothesized that ALDH1A3 may act as an angiogenesis promoter in GBM. Two GBM cell lines were lentivirally transduced with either ALDH1A3 (ox) or an empty vector (ev). The angiogenesis phenotype was studied in indirect and direct co-culture of endothelial cells (ECs) with oxGBM cells (oxGBMs) and in an angiogenesis model in vivo. Angiogenesis array was performed in oxGBMs. RT2-PCR, Western blot, and double-immunofluorescence staining were performed to confirm the expression of targets identified from the array. A significantly activated angiogenesis phenotype was observed in ECs indirectly and directly co-cultured with oxGBMs and in vivo. Overexpression of ALDH1A3 (oxALDH1A3) led to a marked upregulation of PAI-1 and IL-8 mRNA and protein and a consequential increased release of both proteins. Moreover, oxALDH1A3-induced angiogenesis was abolished by the treatment of the specific inhibitors, respectively, of PAI-1 and IL-8 receptors, CXCR1/2. This study defined ALDH1A3 as a novel angiogenesis promoter. oxALDH1A3 in GBM cells stimulated EC angiogenesis via paracrine upregulation of PAI-1 and IL-8, suggesting ALDH1A3-PAI-1/IL-8 as a novel signaling for future anti-angiogenesis therapy in GBM.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Rainer Will
- Core Facility Cellular Tools, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Su Na Kim
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Maike Anna Busch
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany
| | - Nicole Dünker
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Yuan Zhu
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
96
|
Fang L, Yuan S, Wang M, Zhang C, Wang X, Li H, Yang J, Li W, Sun N, Zhang Q, Zhang Y, Chai D, Li H, Zheng J, Wang G. Recombinant oncolytic adenovirus armed with CCL5, IL-12, and IFN-γ promotes CAR-T infiltration and proliferation in vivo to eradicate local and distal tumors. Cell Death Discov 2023; 9:328. [PMID: 37660142 PMCID: PMC10475122 DOI: 10.1038/s41420-023-01626-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023] Open
Abstract
The efficacy of chimeric antigen receptor T (CAR-T) cells for solid tumors remains unsatisfactory due to the limited tumor infiltration and immunosuppressive microenvironment. To overcome these limitations, the genetically engineered recombinant oncolytic adenoviruses (OAVs) that conditionally replicate in tumor cells were developed to modify the tumor microenvironment (TME) to facilitate CAR-T-mediated tumor eradication. Here in the present study, a novel recombinant OAV carrying CCL5, IL12, and IFN-γ controlled by Ki67 promoter was constructed (named AdKi67-C3). The antitumor activity of AdKi67-C3 was tested in vitro and in vivo by using mono administration or combing with CAR-T cells targeting B7H3. It proved that CCL5 expressed by AdKi67-C3 indeed induced more CAR-T migration in vitro and CAR-T infiltration in tumor mass in vivo. Meanwhile, cytokines of IFN-γ and IL12 secreted by AdKi67-C3-infected tumor cells significantly promoted proliferation and persistence of CAR-T cells in vitro and in vivo. In tumor-bearing xenograft mouse models of kidney, prostate or pancreatic cancer, local pretreatment with AdKi67-C3 dramatically enhanced CAR-T cell efficacy and eliminated local and distant tumors. More importantly, mice achieving complete tumor regression resisted to re-challenge with the same tumor cells, suggesting establishment of long-term antitumor immune response. Therefore, OAVs armored with cytokines could be developed as a bioenhancer to defeat the immunosuppressive microenvironment and improve therapeutic efficacy of CAR-T in solid tumors.
Collapse
Affiliation(s)
- Lin Fang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Sen Yuan
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Cancer Center of Xuzhou No.1 People's Hospital, Xuzhou, Jiangsu, China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Chen Zhang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Department of Oncology, The First People's Hospital of Yancheng, Xuzhou, Jiangsu, China
| | - Xueyan Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Hailong Li
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
| | - Jie Yang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
| | - Wanjing Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Nan Sun
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Qi Zhang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Yuxin Zhang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
97
|
Bonini C, Chapuis AG, Hudecek M, Guedan S, Magnani CF, Qasim W. Genome Editing in Engineered T Cells for Cancer Immunotherapy. Hum Gene Ther 2023; 34:853-869. [PMID: 37694593 PMCID: PMC10623081 DOI: 10.1089/hum.2023.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/10/2023] [Indexed: 09/12/2023] Open
Abstract
Advanced gene transfer technologies and profound immunological insights have enabled substantial increases in the efficacy of anticancer adoptive cellular therapy (ACT). In recent years, the U.S. Food and Drug Administration and European Medicines Agency have approved six engineered T cell therapeutic products, all chimeric antigen receptor-engineered T cells directed against B cell malignancies. Despite encouraging clinical results, engineered T cell therapy is still constrained by challenges, which could be addressed by genome editing. As RNA-guided Clustered Regularly Interspaced Short Palindromic Repeats technology passes its 10-year anniversary, we review emerging applications of genome editing approaches designed to (1) overcome resistance to therapy, including cancer immune evasion mechanisms; (2) avoid unwanted immune reactions related to allogeneic T cell products; (3) increase fitness, expansion capacity, persistence, and potency of engineered T cells, while preserving their safety profile; and (4) improve the ability of therapeutic cells to resist immunosuppressive signals active in the tumor microenvironment. Overall, these innovative approaches should widen the safe and effective use of ACT to larger number of patients affected by cancer.
Collapse
Affiliation(s)
- Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Aude G. Chapuis
- Program in Immunology, Division of Translational Sciences and Therapeutics, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Oncology, University of Washington, Seattle, Washington, USA
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Sonia Guedan
- Department of Hematology and Oncology, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Chiara F. Magnani
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Waseem Qasim
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
98
|
Liang YJ, Chen QY, Xu JX, Liu XF, Xia JC, Liu LT, Guo SS, Song B, Wang P, Li JB, Liu Q, Mo HY, Guo L, Sun R, Luo DH, He J, Liu YN, Nie CP, Tang LQ, Li J, Mai HQ. A phase II randomised controlled trial of adjuvant tumour-infiltrating lymphocytes for pretreatment Epstein-Barr virus DNA-selected high-risk nasopharyngeal carcinoma patients. Eur J Cancer 2023; 191:112965. [PMID: 37540921 DOI: 10.1016/j.ejca.2023.112965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/29/2023] [Accepted: 06/25/2023] [Indexed: 08/06/2023]
Abstract
PURPOSE The safety and objective clinical responses were observed in the phase I study using adjuvant autologous tumour-infiltrating lymphocytes (TILs) following concurrent chemoradiotherapy (CCRT) in nasopharyngeal carcinoma (NPC) patients. METHODS AND MATERIALS One hundred fifty-six patients with stage III-IVb and pretreatment Epstein-Barr virus DNA levels of ≥4000 copies/ml were randomly assigned to receive CCRT combined with TIL infusion (n = 78) or CCRT alone (n = 78). All patients received CCRT and patients assigned to the TIL group received TIL infusion within 1 week after CCRT. The primary endpoint was investigator-assessed progression-free survival (PFS) at 3 years. RESULTS After a median follow-up of 62.3 months, no significant difference was observed in the 3-year PFS rate between the CCRT plus TIL infusion group and CCRT alone group (75.6% versus 74.4%, hazard ratios, 1.08; 95% confidence intervals, 0.62-1.89). TIL infusion was safe without grade 3 or 4 adverse events and all the high-grade adverse effects were associated with myelosuppression caused by CCRT. Exploratory analysis showed that a potential survival benefit was observed with TILs in patients with lower levels of circulating CD8+TIM3+ cells, serum IL-8 or PD-L1. The infused TIL products in patients with favourable outcomes were associated with increased transcription of interferon-γ and a series of inflammatory related genes and a lower exhausted score. CONCLUSION The primary objective of prolonging PFS with CCRT plus TILs in high-risk NPC patients was not met. These findings may provide evidence for the design of future trials investigating the combination of TILs plus immune checkpoint inhibitors based on CCRT in high-risk NPC patients. TRIAL REGISTRATION NUMBER NCT02421640.
Collapse
Affiliation(s)
- Yu-Jing Liang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China; Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Qiu-Yan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Jing-Xiao Xu
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Xiu-Feng Liu
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Jian-Chuan Xia
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Li-Ting Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Shan-Shan Guo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Bin Song
- BGI-GenoImmune, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Wang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Ji-Bin Li
- Clinical Trials Centre, Sun Yat-sen University Cancer Centre, Guangzhou 510060, People's Republic of China
| | - Qing Liu
- Department of Medical Statistics and Epidemiology, Sun Yat-sen University Cancer Centre, Guangzhou 510060, People's Republic of China
| | - Hao-Yuan Mo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Ling Guo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Rui Sun
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Dong-Hua Luo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Jia He
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Yi-Na Liu
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Cai-Ping Nie
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Lin-Quan Tang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Jiang Li
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Hai-Qiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China.
| |
Collapse
|
99
|
Giansante V, Stati G, Sancilio S, Guerra E, Alberti S, Di Pietro R. The Dual Role of Necroptosis in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:12633. [PMID: 37628814 PMCID: PMC10454309 DOI: 10.3390/ijms241612633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic cancer (PC) is the seventh leading cause of cancer-related death. PC incidence has continued to increase by about 1% each year in both men and women. Although the 5-year relative survival rate of PC has increased from 3% to 12%, it is still the lowest among cancers. Hence, novel therapeutic strategies are urgently needed. Challenges in PC-targeted therapeutic strategies stem from the high PC heterogeneity and from the poorly understood interplay between cancer cells and the surrounding microenvironment. Signaling pathways that drive PC cell growth have been the subject of intense scrutiny and interest has been attracted by necroptosis, a distinct type of programmed cell death. In this review, we provide a historical background on necroptosis and a detailed analysis of the ongoing debate on the role of necroptosis in PC malignant progression.
Collapse
Affiliation(s)
- Valentina Giansante
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gianmarco Stati
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Sancilio
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Emanuela Guerra
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technologies (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Saverio Alberti
- Unit of Medical Genetics, Department of Biomedical Sciences, University of Messina, 98122 Messina, Italy
| | - Roberta Di Pietro
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
100
|
Sooreshjani M, Tripathi S, Dussold C, Najem H, de Groot J, Lukas RV, Heimberger AB. The Use of Targeted Cytokines as Cancer Therapeutics in Glioblastoma. Cancers (Basel) 2023; 15:3739. [PMID: 37509400 PMCID: PMC10378451 DOI: 10.3390/cancers15143739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Cytokines play an important role in regulating the immune response. Although there is great interest in exploiting cytokines for cancer immunotherapy, their clinical potential is limited by their pleiotropic properties and instability. A variety of cancer cell-intrinsic and extrinsic characteristics pose a barrier to effective treatments including cytokines. Recent studies using gene and cell therapy offer new opportunities for targeting cytokines or their receptors, demonstrating that they are actionable targets. Current efforts such as virotherapy, systemic cytokine therapy, and cellular and gene therapy have provided novel strategies that incorporate cytokines as potential therapeutic strategies for glioblastoma. Ongoing research on characterizing the tumor microenvironment will be informative for prioritization and combinatorial strategies of cytokines for future clinical trials. Unique therapeutic opportunities exist at the convergence of cytokines that play a dual role in tumorigenesis and immune modulation. Here, we discuss the underlying strategies in pre- and clinical trials aiming to enhance treatment outcomes in glioblastoma patients.
Collapse
Affiliation(s)
- Moloud Sooreshjani
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shashwat Tripathi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Corey Dussold
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hinda Najem
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - John de Groot
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Rimas V. Lukas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Neurosurgery, Northwestern University, Chicago, IL60611, USA
- Simpson Querrey Biomedical Research Center, 303 E. Superior Street, 6-516, Chicago, IL 60611, USA
| |
Collapse
|