51
|
Xue D, Xu Y, Kyani A, Roy J, Dai L, Sun D, Neamati N. Multiparameter Optimization of Oxidative Phosphorylation Inhibitors for the Treatment of Pancreatic Cancer. J Med Chem 2022; 65:3404-3419. [PMID: 35167303 DOI: 10.1021/acs.jmedchem.1c01934] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeting oxidative phosphorylation (OXPHOS) complexes is an emerging strategy to disrupt the metabolism of select cancer subtypes and to overcome resistance to targeted therapies. Here, we describe our lead optimization campaign on a series of benzene-1,4-disulfonamides as novel OXPHOS complex I inhibitors. This effort led to the discovery of compound 23 (DX3-213B) as one of the most potent complex I inhibitors reported to date. DX3-213B disrupts adenosine triphosphate (ATP) generation, inhibits complex I function, and results in the growth inhibition of pancreatic cancer cells in the low nanomolar range. Importantly, the oral administration of DX3-213B resulted in significant in vivo efficacy in a pancreatic cancer syngeneic model without obvious toxicity. Our data clearly demonstrate that OXPHOS inhibition can be a safe and efficacious strategy to treat pancreatic cancer.
Collapse
|
52
|
Hassan G, Ohara T, Afify SM, Kumon K, Zahra MH, Fu X, Al Kadi M, Seno A, Salomon DS, Seno M. Different pancreatic cancer microenvironments convert iPSCs into cancer stem cells exhibiting distinct plasticity with altered gene expression of metabolic pathways. J Exp Clin Cancer Res 2022; 41:29. [PMID: 35063003 PMCID: PMC8781112 DOI: 10.1186/s13046-021-02167-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/01/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are generated under irregular microenvironment in vivo, of which mimic is quite difficult due to the lack of enough information of the factors responsible for cancer initiation. Here, we demonstrated that mouse induced pluripotent cells (miPSCs) reprogrammed from normal embryonic fibroblasts were susceptible to the microenvironment affected by cancer cells to convert into CSCs in vivo. METHODS Three different pancreatic cancer line cells, BxPC3, PANC1, and PK8 cells were mixed with miPSCs and subcutaneously injected into immunodeficient mice. Tumors were evaluated by histological analysis and cells derived from iPSCs were isolated and selected from tumors. The isolated cells were characterized for cancer stem cell characters in vitro and in vivo as well as their responses to anticancer drugs. The impact of co-injection of iPSCs with cancer cells on transcriptome and signaling pathways of iPSCs was investigated. RESULTS The injection of miPSCs mixed with human pancreatic cancer cells into immunodeficient mice maintained the stemness of miPSCs and changed their phenotype. The miPSCs acquired CSC characteristics of tumorigenicity and self-renewal. The drug responses and the metastatic ability of CSCs converted from miPSCs varied depending on the microenvironment of cancer cells. Interestingly, transcriptome profiles of these cells indicated that the pathways related with aggressiveness and energy production were upregulated from the levels of miPSCs. CONCLUSIONS Our result suggests that cancer-inducing microenvironment in vivo could rewire the cell signaling and metabolic pathways to convert normal stem cells into CSCs.
Collapse
Affiliation(s)
- Ghmkin Hassan
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3.1.1 Tsushima-Naka, Kita, Okayama, 700-8530, Japan
- Department of Genomic Oncology and Oral Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Medical School, Okayama University, Okayama, 700-8558, Japan
| | - Said M Afify
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3.1.1 Tsushima-Naka, Kita, Okayama, 700-8530, Japan
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin El Koum-Menoufia, 32511, Egypt
| | - Kazuki Kumon
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3.1.1 Tsushima-Naka, Kita, Okayama, 700-8530, Japan
| | - Maram H Zahra
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3.1.1 Tsushima-Naka, Kita, Okayama, 700-8530, Japan
| | - Xiaoying Fu
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3.1.1 Tsushima-Naka, Kita, Okayama, 700-8530, Japan
- Department of Pathology, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Mohamad Al Kadi
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Akimasa Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3.1.1 Tsushima-Naka, Kita, Okayama, 700-8530, Japan
- The Laboratory of Natural Food and Medicine, Co., Ltd., Okayama, 700-8530, Japan
| | - David S Salomon
- Mouse genetics program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Masaharu Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3.1.1 Tsushima-Naka, Kita, Okayama, 700-8530, Japan.
| |
Collapse
|
53
|
Ho QT, Le NQK, Ou YY. mCNN-ETC: identifying electron transporters and their functional families by using multiple windows scanning techniques in convolutional neural networks with evolutionary information of protein sequences. Brief Bioinform 2022; 23:6361041. [PMID: 34472594 DOI: 10.1093/bib/bbab352] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
In the past decade, convolutional neural networks (CNNs) have been used as powerful tools by scientists to solve visual data tasks. However, many efforts of convolutional neural networks in solving protein function prediction and extracting useful information from protein sequences have certain limitations. In this research, we propose a new method to improve the weaknesses of the previous method. mCNN-ETC is a deep learning model which can transform the protein evolutionary information into image-like data composed of 20 channels, which correspond to the 20 amino acids in the protein sequence. We constructed CNN layers with different scanning windows in parallel to enhance the useful pattern detection ability of the proposed model. Then we filtered specific patterns through the 1-max pooling layer before inputting them into the prediction layer. This research attempts to solve a basic problem in biology in terms of application: predicting electron transporters and classifying their corresponding complexes. The performance result reached an accuracy of 97.41%, which was nearly 6% higher than its predecessor. We have also published a web server on http://bio219.bioinfo.yzu.edu.tw, which can be used for research purposes free of charge.
Collapse
Affiliation(s)
- Quang-Thai Ho
- Computer Science and Engineering Departments at the Yuan Ze University, Taiwan
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, Taipei Medical University, Taiwan
| | - Yu-Yen Ou
- Department of Computer Science and Engineering, Yuan-Ze University, Taiwan
| |
Collapse
|
54
|
Xue D, Xu Y, Kyani A, Roy J, Dai L, Sun D, Neamati N. Discovery and Lead Optimization of Benzene-1,4-disulfonamides as Oxidative Phosphorylation Inhibitors. J Med Chem 2022; 65:343-368. [PMID: 34982568 DOI: 10.1021/acs.jmedchem.1c01509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inhibition of oxidative phosphorylation (OXPHOS) is a promising therapeutic strategy for select cancers that are dependent on aerobic metabolism. Here, we report the discovery, optimization, and structure-activity relationship (SAR) study of a series of novel OXPHOS inhibitors. The hit compound, benzene-1,4-disulfonamide 1, was discovered in a phenotypic screen selective for cytotoxicity in a galactose-containing medium. Our multi-parameter optimization campaign led to the discovery of 65 (DX3-235), showing nanomolar inhibition of complex I function and adenosine triphosphate (ATP) production in a galactose-containing medium resulting in significant cytotoxicity. Importantly, 64 (DX3-234), a close analogue of 65, is well tolerated in mice and shows significant single agent efficacy in a Pan02 syngeneic pancreatic cancer model, suggesting that highly potent and selective OXPHOS inhibitors can be useful for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Ding Xue
- Departments of Medicinal Chemistry, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Yibin Xu
- Departments of Medicinal Chemistry, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Armita Kyani
- Departments of Medicinal Chemistry, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Joyeeta Roy
- Departments of Medicinal Chemistry, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Lipeng Dai
- Departments of Medicinal Chemistry, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States.,Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Departments of Medicinal Chemistry, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States.,Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Departments of Medicinal Chemistry, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
55
|
de Beauchamp L, Himonas E, Helgason GV. Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia 2022; 36:1-12. [PMID: 34561557 PMCID: PMC8727299 DOI: 10.1038/s41375-021-01416-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
While the understanding of the genomic aberrations that underpin chronic and acute myeloid leukaemia (CML and AML) has allowed the development of therapies for these diseases, limitations remain. These become apparent when looking at the frequency of treatment resistance leading to disease relapse in leukaemia patients. Key questions regarding the fundamental biology of the leukaemic cells, such as their metabolic dependencies, are still unresolved. Even though a majority of leukaemic cells are killed during initial treatment, persistent leukaemic stem cells (LSCs) and therapy-resistant cells are still not eradicated with current treatments, due to various mechanisms that may contribute to therapy resistance, including cellular metabolic adaptations. In fact, recent studies have shown that LSCs and treatment-resistant cells are dependent on mitochondrial metabolism, hence rendering them sensitive to inhibition of mitochondrial oxidative phosphorylation (OXPHOS). As a result, rewired energy metabolism in leukaemic cells is now considered an attractive therapeutic target and the significance of this process is increasingly being recognised in various haematological malignancies. Therefore, identifying and targeting aberrant metabolism in drug-resistant leukaemic cells is an imperative and a relevant strategy for the development of new therapeutic options in leukaemia. In this review, we present a detailed overview of the most recent studies that present experimental evidence on how leukaemic cells can metabolically rewire, more specifically the importance of OXPHOS in LSCs and treatment-resistant cells, and the current drugs available to target this process. We highlight that uncovering specific energy metabolism dependencies will guide the identification of new and more targeted therapeutic strategies for myeloid leukaemia.
Collapse
Affiliation(s)
- Lucie de Beauchamp
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ekaterini Himonas
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
56
|
Fovez Q, Laine W, Goursaud L, Berthon C, Germain N, Degand C, Sarry JE, Quesnel B, Marchetti P, Kluza J. Clinically Relevant Oxygraphic Assay to Assess Mitochondrial Energy Metabolism in Acute Myeloid Leukemia Patients. Cancers (Basel) 2021; 13:6353. [PMID: 34944972 PMCID: PMC8699320 DOI: 10.3390/cancers13246353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Resistant acute myeloid leukemia (AML) exhibits mitochondrial energy metabolism changes compared to newly diagnosed AML. This phenotype is often observed by evaluating the mitochondrial oxygen consumption of blasts, but most of the oximetry protocols were established from leukemia cell lines without validation on primary leukemia cells. Moreover, the cultures and storage conditions of blasts freshly extracted from patient blood or bone marrow cause stress, which must be evaluated before determining oxidative phosphorylation (OXPHOS). Herein, we evaluated different conditions to measure the oxygen consumption of blasts using extracellular flow analyzers. We first determined the minimum number of blasts required to measure OXPHOS. Next, we compared the OXPHOS of blasts cultured for 3 h and 18 h after collection and found that to maintain metabolic organization for 18 h, cytokine supplementation is necessary. Cytokines are also needed when measuring OXPHOS in cryopreserved, thawed and recultured blasts. Next, the concentrations of respiratory chain inhibitors and uncoupler FCCP were established. We found that the FCCP concentration required to reach the maximal respiration of blasts varied depending on the patient sample analyzed. These protocols provided can be used in future clinical studies to evaluate OXPHOS as a biomarker and assess the efficacy of treatments targeting mitochondria.
Collapse
Affiliation(s)
- Quentin Fovez
- Institut pour la Recherche sur le Cancer de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (Q.F.); (W.L.); (L.G.); (N.G.); (C.D.); (B.Q.); (P.M.)
| | - William Laine
- Institut pour la Recherche sur le Cancer de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (Q.F.); (W.L.); (L.G.); (N.G.); (C.D.); (B.Q.); (P.M.)
| | - Laure Goursaud
- Institut pour la Recherche sur le Cancer de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (Q.F.); (W.L.); (L.G.); (N.G.); (C.D.); (B.Q.); (P.M.)
- Hematology Department, CHU Lille, F-59000 Lille, France;
| | - Celine Berthon
- Hematology Department, CHU Lille, F-59000 Lille, France;
| | - Nicolas Germain
- Institut pour la Recherche sur le Cancer de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (Q.F.); (W.L.); (L.G.); (N.G.); (C.D.); (B.Q.); (P.M.)
- Centre de Bio-Pathologie, Banque de Tissus, CHU Lille, F-59000 Lille, France
| | - Claire Degand
- Institut pour la Recherche sur le Cancer de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (Q.F.); (W.L.); (L.G.); (N.G.); (C.D.); (B.Q.); (P.M.)
| | - Jean-Emmanuel Sarry
- Centre National de la Recherche Scientifique, Centre de Recherches en Cancérologie de Toulouse, Institut National de la Santé et de la Recherche Médicale, Université de Toulouse, 31100 Toulouse, France;
| | - Bruno Quesnel
- Institut pour la Recherche sur le Cancer de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (Q.F.); (W.L.); (L.G.); (N.G.); (C.D.); (B.Q.); (P.M.)
- Hematology Department, CHU Lille, F-59000 Lille, France;
| | - Philippe Marchetti
- Institut pour la Recherche sur le Cancer de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (Q.F.); (W.L.); (L.G.); (N.G.); (C.D.); (B.Q.); (P.M.)
- Centre de Bio-Pathologie, Banque de Tissus, CHU Lille, F-59000 Lille, France
| | - Jerome Kluza
- Institut pour la Recherche sur le Cancer de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (Q.F.); (W.L.); (L.G.); (N.G.); (C.D.); (B.Q.); (P.M.)
| |
Collapse
|
57
|
Wu HC, Rérolle D, Berthier C, Hleihel R, Sakamoto T, Quentin S, Benhenda S, Morganti C, Wu C, Conte L, Rimsky S, Sebert M, Clappier E, Souquere S, Gachet S, Soulier J, Durand S, Trowbridge JJ, Bénit P, Rustin P, El Hajj H, Raffoux E, Ades L, Itzykson R, Dombret H, Fenaux P, Espeli O, Kroemer G, Brunetti L, Mak TW, Lallemand-Breitenbach V, Bazarbachi A, Falini B, Ito K, Martelli MP, de Thé H. Actinomycin D Targets NPM1c-Primed Mitochondria to Restore PML-Driven Senescence in AML Therapy. Cancer Discov 2021; 11:3198-3213. [PMID: 34301789 PMCID: PMC7612574 DOI: 10.1158/2159-8290.cd-21-0177] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/07/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) pathogenesis often involves a mutation in the NPM1 nucleolar chaperone, but the bases for its transforming properties and overall association with favorable therapeutic responses remain incompletely understood. Here we demonstrate that an oncogenic mutant form of NPM1 (NPM1c) impairs mitochondrial function. NPM1c also hampers formation of promyelocytic leukemia (PML) nuclear bodies (NB), which are regulators of mitochondrial fitness and key senescence effectors. Actinomycin D (ActD), an antibiotic with unambiguous clinical efficacy in relapsed/refractory NPM1c-AMLs, targets these primed mitochondria, releasing mitochondrial DNA, activating cyclic GMP-AMP synthase signaling, and boosting reactive oxygen species (ROS) production. The latter restore PML NB formation to drive TP53 activation and senescence of NPM1c-AML cells. In several models, dual targeting of mitochondria by venetoclax and ActD synergized to clear AML and prolong survival through targeting of PML. Our studies reveal an unexpected role for mitochondria downstream of NPM1c and implicate a mitochondrial/ROS/PML/TP53 senescence pathway as an effector of ActD-based therapies. SIGNIFICANCE ActD induces complete remissions in NPM1-mutant AMLs. We found that NPM1c affects mitochondrial biogenesis and PML NBs. ActD targets mitochondria, yielding ROS which enforce PML NB biogenesis and restore senescence. Dual targeting of mitochondria with ActD and venetoclax sharply potentiates their anti-AML activities in vivo. This article is highlighted in the In This Issue feature, p. 2945.
Collapse
Affiliation(s)
- Hsin-Chieh Wu
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Domitille Rérolle
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Caroline Berthier
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Rita Hleihel
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Internal Medicine and Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
- Department of Experimental Pathology, Microbiology and Immunology, American University of Beirut, Beirut, Lebanon
| | - Takashi Sakamoto
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Samuel Quentin
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Shirine Benhenda
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research and Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Chengchen Wu
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Lidio Conte
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli, ” Napoli, Italy
| | - Sylvie Rimsky
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
| | - Marie Sebert
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Emmanuelle Clappier
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Sylvie Souquere
- Institut Gustave Roussy, Cell Biology and Metabolomics Platforms, INSERM UMS 3655, Villejuif, France
| | - Stéphanie Gachet
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Jean Soulier
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Sylvère Durand
- Institut Gustave Roussy, Cell Biology and Metabolomics Platforms, INSERM UMS 3655, Villejuif, France
| | | | - Paule Bénit
- INSERM, U1141 Hôpital Robert Debré, Paris France
| | | | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, American University of Beirut, Beirut, Lebanon
| | - Emmanuel Raffoux
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Lionel Ades
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Raphael Itzykson
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Hervé Dombret
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Pierre Fenaux
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Olivier Espeli
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
| | - Guido Kroemer
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli, ” Napoli, Italy
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lorenzo Brunetti
- Hematology, Department of Medicine and surgery, University of Perugia, Perugia, Italy
| | - Tak W. Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Valérie Lallemand-Breitenbach
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Ali Bazarbachi
- Department of Internal Medicine and Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Brunangelo Falini
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research and Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, New York
| | | | - Hugues de Thé
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| |
Collapse
|
58
|
Heterogeneous modulation of Bcl-2 family members and drug efflux mediate MCL-1 inhibitor resistance in multiple myeloma. Blood Adv 2021; 5:4125-4139. [PMID: 34478517 PMCID: PMC8945627 DOI: 10.1182/bloodadvances.2020003826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/07/2021] [Indexed: 01/19/2023] Open
Abstract
Antiapoptotic Bcl-2 family members have recently (re)emerged as key drug targets in cancer, with a tissue- and tumor-specific activity profile of available BH3 mimetics. In multiple myeloma, MCL-1 has been described as a major gatekeeper of apoptosis. This discovery has led to the rapid establishment of clinical trials evaluating the impact of various MCL-1 inhibitors. However, our understanding about the clinical impact and optimal use of MCL-1 inhibitors is still limited. We therefore explored mechanisms of acquired MCL-1 inhibitor resistance and optimization strategies in myeloma. Our findings indicated heterogeneous paths to resistance involving baseline Bcl-2 family alterations of proapoptotic (BAK, BAX, and BIM) and antiapoptotic (Bcl-2 and MCL-1) proteins. These manifestations depend on the BH3 profile of parental cells that guide the enhanced formation of Bcl-2:BIM and/or the dynamic (ie, treatment-induced) formation of Bcl-xL:BIM and Bcl-xL:BAK complexes. Accordingly, an unbiased high-throughput drug-screening approach (n = 528) indicated alternative BH3 mimetics as top combination partners for MCL-1 inhibitors in sensitive and resistant cells (Bcl-xL>Bcl-2 inhibition), whereas established drug classes were mainly antagonistic (eg, antimitotic agents). We also revealed reduced activity of MCL-1 inhibitors in the presence of stromal support as a drug-class effect that was overcome by concurrent Bcl-xL or Bcl-2 inhibition. Finally, we demonstrated heterogeneous Bcl-2 family deregulation and MCL-1 inhibitor cross-resistance in carfilzomib-resistant cells, a phenomenon linked to the MDR1-driven drug efflux of MCL-1 inhibitors. The implications of our findings for clinical practice emphasize the need for patient-adapted treatment protocols, with the tracking of tumor- and/or clone-specific adaptations in response to MCL-1 inhibition.
Collapse
|
59
|
Hsieh YT, Tu HF, Yang MH, Chen YF, Lan XY, Huang CL, Chen HM, Li WC. Mitochondrial genome and its regulator TFAM modulates head and neck tumourigenesis through intracellular metabolic reprogramming and activation of oncogenic effectors. Cell Death Dis 2021; 12:961. [PMID: 34663785 PMCID: PMC8523524 DOI: 10.1038/s41419-021-04255-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
Mitochondrial transcriptional factor A (TFAM) acts as a key regulatory to control mitochondrial DNA (mtDNA); the impact of TFAM and mtDNA in modulating carcinogenesis is controversial. Current study aims to define TFAM mediated regulations in head and neck cancer (HNC). Multifaceted analyses in HNC cells genetically manipulated for TFAM were performed. Clinical associations of TFAM and mtDNA encoded Electron Transport Chain (ETC) genes in regulating HNC tumourigenesis were also examined in HNC specimens. At cellular level, TFAM silencing led to an enhanced cell growth, motility and chemoresistance whereas enforced TFAM expression significantly reversed these phenotypic changes. These TFAM mediated cellular changes resulted from (1) metabolic reprogramming by directing metabolism towards aerobic glycolysis, based on the detection of less respiratory capacity in accompany with greater lactate production; and/or (2) enhanced ERK1/2-Akt-mTORC-S6 signalling activity in response to TFAM induced mtDNA perturbance. Clinical impacts of TFAM and mtDNA were further defined in carcinogen-induced mouse tongue cancer and clinical human HNC tissues; as the results showed that TFAM and mtDNA expression were significantly dropped in tumour compared with their normal counterparts and negatively correlated with disease progression. Collectively, our data uncovered a tumour-suppressing role of TFAM and mtDNA in determining HNC oncogenicity and potentially paved the way for development of TFAM/mtDNA based scheme for HNC diagnosis.
Collapse
Affiliation(s)
- Yi-Ta Hsieh
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsi-Feng Tu
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Dentistry, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Medical Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Fen Chen
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Xiang-Yun Lan
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Ling Huang
- Department of Health Technology and Informatics (HTI), The Hong Kong Polytechnic University (PolyU), Hung Hom, Kowloon, Hong Kong, SAR, China
| | - Hsin-Ming Chen
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Wan-Chun Li
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
60
|
Donati G, Ravà M, Filipuzzi M, Nicoli P, Cassina L, Verrecchia A, Doni M, Rodighiero S, Parodi F, Boletta A, Vellano CP, Marszalek JR, Draetta GF, Amati B. Targeting mitochondrial respiration and the BCL2 family in high-grade MYC-associated B-cell lymphoma. Mol Oncol 2021; 16:1132-1152. [PMID: 34632715 PMCID: PMC8895457 DOI: 10.1002/1878-0261.13115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/27/2021] [Accepted: 10/08/2021] [Indexed: 01/02/2023] Open
Abstract
Multiple molecular features, such as activation of specific oncogenes (e.g., MYC, BCL2) or a variety of gene expression signatures, have been associated with disease course in diffuse large B‐cell lymphoma (DLBCL), although their relationships and implications for targeted therapy remain to be fully unraveled. We report that MYC activity is closely correlated with—and most likely a driver of—gene signatures related to oxidative phosphorylation (OxPhos) in DLBCL, pointing to OxPhos enzymes, in particular mitochondrial electron transport chain (ETC) complexes, as possible therapeutic targets in high‐grade MYC‐associated lymphomas. In our experiments, indeed, MYC sensitized B cells to the ETC complex I inhibitor IACS‐010759. Mechanistically, IACS‐010759 triggered the integrated stress response (ISR) pathway, driven by the transcription factors ATF4 and CHOP, which engaged the intrinsic apoptosis pathway and lowered the apoptotic threshold in MYC‐overexpressing cells. In line with these findings, the BCL2‐inhibitory compound venetoclax synergized with IACS‐010759 against double‐hit lymphoma (DHL), a high‐grade malignancy with concurrent activation of MYC and BCL2. In BCL2‐negative lymphoma cells, instead, killing by IACS‐010759 was potentiated by the Mcl‐1 inhibitor S63845. Thus, combining an OxPhos inhibitor with select BH3‐mimetic drugs provides a novel therapeutic principle against aggressive, MYC‐associated DLBCL variants.
Collapse
Affiliation(s)
- Giulio Donati
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | - Micol Ravà
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | | | - Paola Nicoli
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | - Laura Cassina
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Mirko Doni
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | | | | | | | - Christopher P Vellano
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION), Houston, TX, USA
| | - Joseph R Marszalek
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION), Houston, TX, USA
| | - Giulio F Draetta
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bruno Amati
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| |
Collapse
|
61
|
Huang L, Bommireddy R, Munoz LE, Guin RN, Wei C, Ruggieri A, Menon AP, Li X, Shanmugam M, Owonikoko TK, Ramalingam SS, Selvaraj P. Expression of tdTomato and luciferase in a murine lung cancer alters the growth and immune microenvironment of the tumor. PLoS One 2021; 16:e0254125. [PMID: 34411144 PMCID: PMC8376001 DOI: 10.1371/journal.pone.0254125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/20/2021] [Indexed: 11/19/2022] Open
Abstract
Imaging techniques based on fluorescence and bioluminescence have been important tools in visualizing tumor progression and studying the effect of drugs and immunotherapies on tumor immune microenvironment in animal models of cancer. However, transgenic expression of foreign proteins may induce immune responses in immunocompetent syngeneic tumor transplant models and augment the efficacy of experimental drugs. In this study, we show that the growth rate of Lewis lung carcinoma (LL/2) tumors was reduced after transduction of tdTomato and luciferase (tdTomato/Luc) compared to the parental cell line. tdTomato/Luc expression by LL/2 cells altered the tumor microenvironment by increasing tumor-infiltrating lymphocytes (TILs) while inhibiting tumor-induced myeloid-derived suppressor cells (MDSCs). Interestingly, tdTomato/Luc expression did not alter the response of LL/2 tumors to anti-PD-1 and anti-CTLA-4 antibodies. These results suggest that the use of tdTomato/Luc-transduced cancer cells to conduct studies in immune competent mice may lead to cell-extrinsic tdTomato/Luc-induced alterations in tumor growth and tumor immune microenvironment that need to be taken into consideration when evaluating the efficacy of anti-cancer drugs and vaccines in immunocompetent animal models.
Collapse
Affiliation(s)
- Lei Huang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ramireddy Bommireddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Luis E. Munoz
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Rohini N. Guin
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Changyong Wei
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Amanda Ruggieri
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ashwathi P. Menon
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Taofeek K. Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
62
|
Therapeutic Advances Propelled by Deciphering Tumor Biology and Immunology-Highlights of the 8th Heidelberg Myeloma Workshop. Cancers (Basel) 2021; 13:cancers13164135. [PMID: 34439297 PMCID: PMC8393367 DOI: 10.3390/cancers13164135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022] Open
Abstract
Simple Summary The 8th Heidelberg Myeloma Workshop was held on 16–17 April 2021 at the University Hospital Heidelberg, Germany. The main topics of the meeting were diagnostics and prognostic factors of early-phase multiple myeloma (MM), the role of immunotherapy, as well as the biology and genomics of MM. This manuscript reports on recent advances in MM research and points out future directions. Abstract The diagnostics and treatment of newly diagnosed and relapsed MM are continuously evolving. While advances in the field of (single cell) genetic analysis now allow for characterization of the disease at an unprecedented resolution, immunotherapeutic approaches and MRD testing are at the forefront of the current clinical trial landscape. Here, we discuss research progress aimed at gaining a better understanding of this heterogenous disease entity, presented at the 8th Heidelberg Myeloma Workshop. We address the questions of whether biology can guide treatment decisions in MM and how assessment for measurable residual disease can help physicians in clinical decision-making. Finally, we summarize current developments in immunotherapeutic approaches that promise improved patient outcomes for MM patients. Besides summarizing key developments in MM research, we highlight perspectives given by key opinion leaders in the field.
Collapse
|
63
|
Koklesova L, Liskova A, Samec M, Zhai K, AL-Ishaq RK, Bugos O, Šudomová M, Biringer K, Pec M, Adamkov M, Hassan STS, Saso L, Giordano FA, Büsselberg D, Kubatka P, Golubnitschaja O. Protective Effects of Flavonoids Against Mitochondriopathies and Associated Pathologies: Focus on the Predictive Approach and Personalized Prevention. Int J Mol Sci 2021; 22:ijms22168649. [PMID: 34445360 PMCID: PMC8395457 DOI: 10.3390/ijms22168649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 01/10/2023] Open
Abstract
Multi-factorial mitochondrial damage exhibits a “vicious circle” that leads to a progression of mitochondrial dysfunction and multi-organ adverse effects. Mitochondrial impairments (mitochondriopathies) are associated with severe pathologies including but not restricted to cancers, cardiovascular diseases, and neurodegeneration. However, the type and level of cascading pathologies are highly individual. Consequently, patient stratification, risk assessment, and mitigating measures are instrumental for cost-effective individualized protection. Therefore, the paradigm shift from reactive to predictive, preventive, and personalized medicine (3PM) is unavoidable in advanced healthcare. Flavonoids demonstrate evident antioxidant and scavenging activity are of great therapeutic utility against mitochondrial damage and cascading pathologies. In the context of 3PM, this review focuses on preclinical and clinical research data evaluating the efficacy of flavonoids as a potent protector against mitochondriopathies and associated pathologies.
Collapse
Affiliation(s)
- Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (R.K.A.-I.)
| | - Raghad Khalid AL-Ishaq
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (R.K.A.-I.)
| | | | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic;
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy;
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (R.K.A.-I.)
- Correspondence: (D.B.); (P.K.); (O.G.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1150 Brussels, Belgium
- Correspondence: (D.B.); (P.K.); (O.G.)
| | - Olga Golubnitschaja
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1150 Brussels, Belgium
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
- Correspondence: (D.B.); (P.K.); (O.G.)
| |
Collapse
|
64
|
Pathogenetic and Prognostic Implications of Increased Mitochondrial Content in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13133189. [PMID: 34202390 PMCID: PMC8268477 DOI: 10.3390/cancers13133189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022] Open
Abstract
Many studies over the last 20 years have investigated the role of mitochondrial DNA (mtDNA) alterations in carcinogenesis. However, the status of the mtDNACN in MM and its implication in the pathogenesis of the disease remains unclear. We examined changes in plasma cell mtDNACN across different stages of MM by applying RT-PCR and high-throughput sequencing analysis. We observed a significant increase in the average mtDNACN in myeloma cells compared with healthy plasma cells (157 vs. 40 copies; p = 0.02). We also found an increase in mtDNACN in SMM and newly diagnosed MM (NDMM) paired samples and in consecutive relapses in the same patient. Survival analysis revealed the negative impact of a high mtDNACN in progression-free survival in NDMM (p = 0.005). Additionally, we confirmed the higher expression of mitochondrial biogenesis regulator genes in myeloma cells than in healthy plasma cells and we detected single nucleotide variants in several genes involved in mtDNA replication. Finally, we found that there was molecular similarity between "rapidly-progressing SMM" and MM regarding mtDNACN. Our data provide evidence that malignant transformation of myeloma cells involves the activation of mitochondrial biogenesis, resulting in increased mtDNA levels, and highlights vulnerabilities and potential therapeutic targets in the treatment of MM. Accordingly, mtDNACN tracking might guide clinical decision-making and management of complex entities such as high-risk SMM.
Collapse
|
65
|
Targeting Reactive Oxygen Species Metabolism to Induce Myeloma Cell Death. Cancers (Basel) 2021; 13:cancers13102411. [PMID: 34067602 PMCID: PMC8156203 DOI: 10.3390/cancers13102411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a common hematological disease characterized by the accumulation of clonal malignant plasma cells in the bone marrow. Over the past two decades, new therapeutic strategies have significantly improved the treatment outcome and patients survival. Nevertheless, most MM patients relapse underlying the need of new therapeutic approaches. Plasma cells are prone to produce large amounts of immunoglobulins causing the production of intracellular ROS. Although adapted to high level of ROS, MM cells die when exposed to drugs increasing ROS production either directly or by inhibiting antioxidant enzymes. In this review, we discuss the efficacy of ROS-generating drugs for inducing MM cell death and counteracting acquired drug resistance specifically toward proteasome inhibitors.
Collapse
|
66
|
Targeting Mitochondrial Metabolism in Clear Cell Carcinoma of the Ovaries. Int J Mol Sci 2021; 22:ijms22094750. [PMID: 33947138 PMCID: PMC8124918 DOI: 10.3390/ijms22094750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is a rare but chemorefractory tumor. About 50% of all OCCC patients have inactivating mutations of ARID1A, a member of the SWI/SNF chromatin-remodeling complex. Members of the SWI/SNF remodeling have emerged as regulators of the energetic metabolism of mammalian cells; however, the role of ARID1A as a modulator of the mitochondrial metabolism in OCCCs is yet to be defined. Here, we show that ARID1A loss results in increased mitochondrial metabolism and renders ARID1A-mutated cells increasingly and selectively dependent on it. The increase in mitochondrial activity following ARID1A loss is associated with increase in c-Myc expression and increased mitochondrial number and reduction of their size consistent with a higher mitochondrial cristae/outer membrane ratio. Significantly, preclinical testing of the complex I mitochondrial inhibitor IACS-010759 showed it extends overall survival in a preclinical model of ARID1A-mutated OCCC. These findings provide for the targeting mitochondrial activity in ARID1A-mutated OCCCs.
Collapse
|
67
|
Lernoux M, Schnekenburger M, Dicato M, Diederich M. Susceptibility of multiple myeloma to B-cell lymphoma 2 family inhibitors. Biochem Pharmacol 2021; 188:114526. [PMID: 33741332 DOI: 10.1016/j.bcp.2021.114526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 01/18/2023]
Abstract
Multiple myeloma (MM) is a biologically complex hematological disorder defined by the clonal proliferation of malignant plasma cells producing excessive monoclonal immunoglobulin that interacts with components of the bone marrow microenvironment, resulting in the major clinical features of MM. Despite the development of numerous protocols to treat MM patients, this cancer remains currently incurable; due in part to the emergence of resistant clones, highlighting the unmet need for innovative therapeutic approaches. Accumulating evidence suggests that the survival of MM molecular subgroups depends on the expression profiles of specific subsets of anti-apoptotic B-cell lymphoma (BCL)-2 family members. This review summarizes the mechanisms underlying the anti-myeloma activities of the potent BCL-2 family protein inhibitors, individually or in combination with conventional therapeutic options, and provides an overview of the strong rationale to clinically investigate such interventions for MM therapy.
Collapse
Affiliation(s)
- Manon Lernoux
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
68
|
Gupta VA, Ackley J, Kaufman JL, Boise LH. BCL2 Family Inhibitors in the Biology and Treatment of Multiple Myeloma. BLOOD AND LYMPHATIC CANCER-TARGETS AND THERAPY 2021; 11:11-24. [PMID: 33737856 PMCID: PMC7965688 DOI: 10.2147/blctt.s245191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Although much progress has been made in the treatment of multiple myeloma, the majority of patients fail to be cured and require numerous lines of therapy. Inhibitors of the BCL2 family represent an exciting new class of drugs with a novel mechanism of action that are likely to have activity as single agents and in combination with existing myeloma therapies. The BCL2 proteins are oncogenes that promote cell survival and are frequently upregulated in multiple myeloma, making them attractive targets. Venetoclax, a BCL2 specific inhibitor, is furthest along in development and has shown promising results in a subset of myeloma characterized by the t(11;14) translocation. Combining venetoclax with proteasome inhibitors and monoclonal antibodies has improved responses in a broader group of patients, but has come at the expense of a toxicity safety signal that requires additional follow-up. MCL1 inhibitors are likely to be effective in a broader range of patients and are currently in early clinical trials. This review will cover much of what is known about the biology of these drugs, biomarkers that predict response, mechanisms of resistance, and unanswered questions as they pertain to multiple myeloma.
Collapse
Affiliation(s)
- Vikas A Gupta
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | - James Ackley
- Cancer Biology Graduate Program, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan L Kaufman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
69
|
Innao V, Rizzo V, Allegra AG, Musolino C, Allegra A. Promising Anti-Mitochondrial Agents for Overcoming Acquired Drug Resistance in Multiple Myeloma. Cells 2021; 10:439. [PMID: 33669515 PMCID: PMC7922387 DOI: 10.3390/cells10020439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable tumor due to the high rate of relapse that still occurs. Acquired drug resistance represents the most challenging obstacle to the extension of survival and several studies have been conducted to understand the mechanisms of this phenomenon. Mitochondrial pathways have been extensively investigated, demonstrating that cancer cells become resistant to drugs by reprogramming their metabolic assessment. MM cells acquire resistance to proteasome inhibitors (PIs), activating protection programs, such as a reduction in oxidative stress, down-regulating pro-apoptotic, and up-regulating anti-apoptotic signals. Knowledge of the mechanisms through which tumor cells escape control of the immune system and acquire resistance to drugs has led to the creation of new compounds that can restore the response by leading to cell death. In this scenario, based on all literature data available, our review represents the first collection of anti-mitochondrial compounds able to overcome drug resistance in MM. Caspase-independent mechanisms, mainly based on increased oxidative stress, result from 2-methoxyestradiol, Artesunate, ascorbic acid, Dihydroartemisinin, Evodiamine, b-AP15, VLX1570, Erw-ASNase, and TAK-242. Other agents restore PIs' efficacy through caspase-dependent tools, such as CDDO-Im, NOXA-inhibitors, FTY720, GCS-100, LBH589, a derivative of ellipticine, AT-101, KD5170, SMAC-mimetics, glutaminase-1 (GLS1)-inhibitors, and thenoyltrifluoroacetone. Each of these substances improved the efficacy rates when employed in combination with the most frequently used antimyeloma drugs.
Collapse
Affiliation(s)
- Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (V.I.); (A.G.A.); (C.M.)
| | - Vincenzo Rizzo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (V.I.); (A.G.A.); (C.M.)
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (V.I.); (A.G.A.); (C.M.)
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (V.I.); (A.G.A.); (C.M.)
| |
Collapse
|
70
|
Barbato A, Scandura G, Puglisi F, Cambria D, La Spina E, Palumbo GA, Lazzarino G, Tibullo D, Di Raimondo F, Giallongo C, Romano A. Mitochondrial Bioenergetics at the Onset of Drug Resistance in Hematological Malignancies: An Overview. Front Oncol 2020; 10:604143. [PMID: 33409153 PMCID: PMC7779674 DOI: 10.3389/fonc.2020.604143] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
The combined derangements in mitochondria network, function and dynamics can affect metabolism and ATP production, redox homeostasis and apoptosis triggering, contributing to cancer development in many different complex ways. In hematological malignancies, there is a strong relationship between cellular metabolism, mitochondrial bioenergetics, interconnections with supportive microenvironment and drug resistance. Lymphoma and chronic lymphocytic leukemia cells, e.g., adapt to intrinsic oxidative stress by increasing mitochondrial biogenesis. In other hematological disorders such as myeloma, on the contrary, bioenergetics changes, associated to increased mitochondrial fitness, derive from the adaptive response to drug-induced stress. In the bone marrow niche, a reverse Warburg effect has been recently described, consisting in metabolic changes occurring in stromal cells in the attempt to metabolically support adjacent cancer cells. Moreover, a physiological dynamic, based on mitochondria transfer, between tumor cells and their supporting stromal microenvironment has been described to sustain oxidative stress associated to proteostasis maintenance in multiple myeloma and leukemia. Increased mitochondrial biogenesis of tumor cells associated to acquisition of new mitochondria transferred by mesenchymal stromal cells results in augmented ATP production through increased oxidative phosphorylation (OX-PHOS), higher drug resistance, and resurgence after treatment. Accordingly, targeting mitochondrial biogenesis, electron transfer, mitochondrial DNA replication, or mitochondrial fatty acid transport increases therapy efficacy. In this review, we summarize selected examples of the mitochondrial derangements in hematological malignancies, which provide metabolic adaptation and apoptosis resistance, also supported by the crosstalk with tumor microenvironment. This field promises a rational design to improve target-therapy including the metabolic phenotype.
Collapse
Affiliation(s)
- Alessandro Barbato
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Fabrizio Puglisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Daniela Cambria
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Enrico La Spina
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Giuseppe Alberto Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Giacomo Lazzarino
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Daniele Tibullo
- Department of Biotechnological and Biomedical Sciences, University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Alessandra Romano
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| |
Collapse
|
71
|
da Silva IDCG, de Castro Levatti EV, Pedroso AP, Marchioni DML, Carioca AAF, Colleoni GWB. Biochemical phenotyping of multiple myeloma patients at diagnosis reveals a disorder of mitochondrial complexes I and II and a Hartnup-like disturbance as underlying conditions, also influencing different stages of the disease. Sci Rep 2020; 10:21836. [PMID: 33318510 PMCID: PMC7736334 DOI: 10.1038/s41598-020-75862-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023] Open
Abstract
The aim of this study was to identify novel plasma metabolic signatures with possible relevance during multiple myeloma (MM) development and progression. A biochemical quantitative phenotyping platform based on targeted electrospray ionization tandem mass spectrometry technology was used to aid in the identification of any eventual perturbed biochemical pathway in peripheral blood plasma from 36 MM patients and 73 healthy controls. Our results showed that MM cases present an increase in short and medium/long-chain species of acylcarnitines resembling Multiple AcylCoA Dehydrogenase Deficiency (MADD), particularly, associated with MM advanced International Staging System (ISS). Lipids profile showed lower concentrations of phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and sphingomyelins (SM) in the MM patients and its respective ISS groups. MM cases were accompanied by a drop in the concentration of essential amino acids, especially tryptophan, with a significant inverse correlation between the progressive drop in tryptophan with the elevation of β2-microglobulin, with the increase in systemic methylation levels (Symmetric Arginine Dimethylation, SDMA) and with the accumulation of esterified carnitines in relation to free carnitine (AcylC/C0). Serotonin was significantly elevated in cases of MM, without a clear association with ISS. Kynurenine/tryptophan ratio demonstrates that the activity of dioxigenases is even higher in the cases classified as ISS 3. In conclusion, our study showed that MM patients at diagnosis showed metabolic disorders resembling both mitochondrial complexes I and II and Hartnup-like disturbances as underlying conditions, also influencing different stages of the disease.
Collapse
Affiliation(s)
| | | | - Amanda Paula Pedroso
- Departament of Physiology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Antonio Augusto Ferreira Carioca
- Nutrition Department, School of Public Health, University of São Paulo (MUSP), São Paulo, Brazil.,Nutrition Department, University of Fortaleza (UNIFOR), Fortaleza, Brazil
| | - Gisele Wally Braga Colleoni
- Department of Clinical and Experimental Oncology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
72
|
Bolomsky A, Vogler M, Köse MC, Heckman CA, Ehx G, Ludwig H, Caers J. MCL-1 inhibitors, fast-lane development of a new class of anti-cancer agents. J Hematol Oncol 2020; 13:173. [PMID: 33308268 PMCID: PMC7731749 DOI: 10.1186/s13045-020-01007-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022] Open
Abstract
Cell death escape is one of the most prominent features of tumor cells and closely linked to the dysregulation of members of the Bcl-2 family of proteins. Among those, the anti-apoptotic family member myeloid cell leukemia-1 (MCL-1) acts as a master regulator of apoptosis in various human malignancies. Irrespective of its unfavorable structure profile, independent research efforts recently led to the generation of highly potent MCL-1 inhibitors that are currently evaluated in clinical trials. This offers new perspectives to target a so far undruggable cancer cell dependency. However, a detailed understanding about the tumor and tissue type specific implications of MCL-1 are a prerequisite for the optimal (i.e., precision medicine guided) use of this novel drug class. In this review, we summarize the major functions of MCL-1 with a special focus on cancer, provide insights into its different roles in solid vs. hematological tumors and give an update about the (pre)clinical development program of state-of-the-art MCL-1 targeting compounds. We aim to raise the awareness about the heterogeneous role of MCL-1 as drug target between, but also within tumor entities and to highlight the importance of rationale treatment decisions on a case by case basis.
Collapse
Affiliation(s)
- Arnold Bolomsky
- Wilhelminen Cancer Research Institute, Wilhelminenspital, Vienna, Austria
| | - Meike Vogler
- Department of Clinical Hematology, GIGA-I3, University of Liège, CHU De Liège, 35, Dom Univ Sart Tilman B, 4000, Liège, Belgium
| | - Murat Cem Köse
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland-FIMM, HiLIFE-Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Grégory Ehx
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Heinz Ludwig
- Wilhelminen Cancer Research Institute, Wilhelminenspital, Vienna, Austria
| | - Jo Caers
- Department of Clinical Hematology, GIGA-I3, University of Liège, CHU De Liège, 35, Dom Univ Sart Tilman B, 4000, Liège, Belgium.
| |
Collapse
|
73
|
Da Vià MC, Ziccheddu B, Maeda A, Bagnoli F, Perrone G, Bolli N. A Journey Through Myeloma Evolution: From the Normal Plasma Cell to Disease Complexity. Hemasphere 2020; 4:e502. [PMID: 33283171 PMCID: PMC7710229 DOI: 10.1097/hs9.0000000000000502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
The knowledge of cancer origin and the subsequent tracking of disease evolution represent unmet needs that will soon be within clinical reach. This will provide the opportunity to improve patient's stratification and to personalize treatments based on cancer biology along its life history. In this review, we focus on the molecular pathogenesis of multiple myeloma (MM), a hematologic malignancy with a well-known multi-stage disease course, where such approach can sooner translate into a clinical benefit. We describe novel insights into modes and timing of disease initiation. We dissect the biology of the preclinical and pre-malignant phases, elucidating how knowledge of the genomics of the disease and the composition of the microenvironment allow stratification of patients based on risk of disease progression. Then, we explore cell-intrinsic and cell-extrinsic drivers of MM evolution to symptomatic disease. Finally, we discuss how this may relate to the development of refractory disease after treatment. By integrating an evolutionary view of myeloma biology with the recent acquisitions on its clonal heterogeneity, we envision a way to drive the clinical management of the disease based on its detailed biological features more than surrogates of disease burden.
Collapse
Affiliation(s)
- Matteo C. Da Vià
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Bachisio Ziccheddu
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Akihiro Maeda
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Filippo Bagnoli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Clinical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Perrone
- Department of Clinical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Niccolò Bolli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Clinical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
74
|
Targeting BCL-2 in B-cell malignancies and overcoming therapeutic resistance. Cell Death Dis 2020; 11:941. [PMID: 33139702 PMCID: PMC7608616 DOI: 10.1038/s41419-020-03144-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Defects in apoptosis can promote tumorigenesis and impair responses of malignant B cells to chemotherapeutics. Members of the B-cell leukemia/lymphoma-2 (BCL-2) family of proteins are key regulators of the intrinsic, mitochondrial apoptotic pathway. Overexpression of antiapoptotic BCL-2 family proteins is associated with treatment resistance and poor prognosis. Thus, inhibition of BCL-2 family proteins is a rational therapeutic option for malignancies that are dependent on antiapoptotic BCL-2 family proteins. Venetoclax (ABT-199, GDC-0199) is a highly selective BCL-2 inhibitor that represents the first approved agent of this class and is currently widely used in the treatment of chronic lymphocytic leukemia (CLL) as well as acute myeloid leukemia (AML). Despite impressive clinical activity, venetoclax monotherapy for a prolonged duration can lead to drug resistance or loss of dependence on the targeted protein. In this review, we provide an overview of the mechanism of action of BCL-2 inhibition and the role of this approach in the current treatment paradigm of B-cell malignancies. We summarize the drivers of de novo and acquired resistance to venetoclax that are closely associated with complex clonal shifts, interplay of expression and interactions of BCL-2 family members, transcriptional regulators, and metabolic modulators. We also examine how tumors initially resistant to venetoclax become responsive to it following prior therapies. Here, we summarize preclinical data providing a rationale for efficacious combination strategies of venetoclax to overcome therapeutic resistance by a targeted approach directed against alternative antiapoptotic BCL-2 family proteins (MCL-1, BCL-xL), compensatory prosurvival pathways, epigenetic modifiers, and dysregulated cellular metabolism/energetics for durable clinical remissions.
Collapse
|
75
|
Xu Y, Xue D, Bankhead A, Neamati N. Why All the Fuss about Oxidative Phosphorylation (OXPHOS)? J Med Chem 2020; 63:14276-14307. [PMID: 33103432 DOI: 10.1021/acs.jmedchem.0c01013] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Certain subtypes of cancer cells require oxidative phosphorylation (OXPHOS) to survive. Increased OXPHOS dependency is frequently a hallmark of cancer stem cells and cells resistant to chemotherapy and targeted therapies. Suppressing the OXPHOS function might also influence the tumor microenvironment by alleviating hypoxia and improving the antitumor immune response. Thus, targeting OXPHOS is a promising strategy to treat various cancers. A growing arsenal of therapeutic agents is under development to inhibit this biological process. This Perspective provides an overview of the structure and function of OXPHOS complexes, their biological functions in cancer, relevant research tools and models, as well as the limitations of OXPHOS as drug targets. We also focus on the current development status of OXPHOS inhibitors and potential therapeutic strategies to strengthen their clinical applications.
Collapse
Affiliation(s)
- Yibin Xu
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ding Xue
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Armand Bankhead
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Department of Biostatistics, University of Michigan, School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
76
|
Roca-Portoles A, Rodriguez-Blanco G, Sumpton D, Cloix C, Mullin M, Mackay GM, O'Neill K, Lemgruber L, Luo X, Tait SWG. Venetoclax causes metabolic reprogramming independent of BCL-2 inhibition. Cell Death Dis 2020; 11:616. [PMID: 32792521 PMCID: PMC7426836 DOI: 10.1038/s41419-020-02867-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022]
Abstract
BH3-mimetics are a new class of anti-cancer drugs that inhibit anti-apoptotic Bcl-2 proteins. In doing so, BH3-mimetics sensitise to cell death. Venetoclax is a potent, BCL-2 selective BH3-mimetic that is clinically approved for use in chronic lymphocytic leukaemia. Venetoclax has also been shown to inhibit mitochondrial metabolism, this is consistent with a proposed role for BCL-2 in metabolic regulation. We used venetoclax to understand BCL-2 metabolic function. Similar to others, we found that venetoclax inhibited mitochondrial respiration. In addition, we also found that venetoclax impairs TCA cycle activity leading to activation of reductive carboxylation. Importantly, the metabolic effects of venetoclax were independent of cell death because they were also observed in apoptosis-resistant BAX/BAK-deficient cells. However, unlike venetoclax treatment, inhibiting BCL-2 expression had no effect on mitochondrial respiration. Unexpectedly, we found that venetoclax also inhibited mitochondrial respiration and the TCA cycle in BCL-2 deficient cells and in cells lacking all anti-apoptotic BCL-2 family members. Investigating the basis of this off-target effect, we found that venetoclax-induced metabolic reprogramming was dependent upon the integrated stress response and ATF4 transcription factor. These data demonstrate that venetoclax affects cellular metabolism independent of BCL-2 inhibition. This off-target metabolic effect has potential to modulate venetoclax cytotoxicity.
Collapse
Affiliation(s)
- Alba Roca-Portoles
- Cancer Research UK Beatson Institute, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Giovanny Rodriguez-Blanco
- Cancer Research UK Beatson Institute, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - David Sumpton
- Cancer Research UK Beatson Institute, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Catherine Cloix
- Cancer Research UK Beatson Institute, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Margaret Mullin
- Glasgow Imaging Facility, Institute of Infection, Immunity and Inflammation, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Gillian M Mackay
- Cancer Research UK Beatson Institute, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Katelyn O'Neill
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Leandro Lemgruber
- Glasgow Imaging Facility, Institute of Infection, Immunity and Inflammation, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| |
Collapse
|