51
|
Lin Q, Shan X, Li X, Luo Z, Yu X, Liu H, Wang S, Zhao X, Zhu Y, Zhou H, Luo L, You J. Solvent exchange-motivated and tunable in situ forming implants sustaining triamcinolone acetonide release for arthritis treatment. Int J Pharm 2023; 645:123383. [PMID: 37678476 DOI: 10.1016/j.ijpharm.2023.123383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Arthritis is a syndrome characterized by inflammation in the joints. Triamcinolone acetonide (TA) was used as an anti-inflammatory agent in the treatment of this disease. However, there are limitations to its clinical application, including rapid clearance from the joint cavity, potential joint damage from multiple injections, and adverse joint events. To address these drawbacks, we developed a tunable in situ forming implant loaded with TA. This injectable polymer solution utilized poly (lactic-co-glycolic acid) (PLGA) as an extended-release material. When injected into the joints, the solution solidifies into implants through a solvent exchange in the aqueous environment. The implants demonstrated robust retention at the injection site and released TA over several weeks even months through diffusion and erosion. By adding different proportions of low water-miscible plasticizers, the release period of the drug could be precisely adjusted. The plasticizers-optimized implants exhibited a tough texture, enhancing the therapeutic efficiency and drug safety in vivo. In arthritic model studies, the tunable TA-loaded implants significantly reduced swelling, pain, and motor discoordination, and also showed suppression of arthritis progression to some extent. These findings suggested that TA-loaded ISFI holds promise for managing inflammatory disorders in individuals with arthritis.
Collapse
Affiliation(s)
- Qing Lin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xinyu Shan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xin Yu
- College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, No. 26 Huatuo Dajie, Benxi, Liaoning 117004, China
| | - Huihui Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xiaoqi Zhao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Ying Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China; Jinhua Institute of Zhejiang University, 321299 Jinhua, China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China; Jinhua Institute of Zhejiang University, 321299 Jinhua, China; Zhejiang-California International Nanosystems Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
52
|
Luo J, Meng J, Zhennan C, Xueli Y, Xinran W, Ze L, Luo S, Wang L, Zhou J, Qin H. Preparation and properties of lignin-based dual network hydrogel and its application in sensing. Int J Biol Macromol 2023; 249:125913. [PMID: 37481187 DOI: 10.1016/j.ijbiomac.2023.125913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Ionic conductive hydrogels prepared from various biological macromolecules are ideal materials for the manufacture of human motion sensors from the perspective of resource regeneration and environmental sustainability. However, it is now difficult to develop conductive hydrogels including excellent self-healing and mechanical properties, mainly due to their inherent trade-off between dynamic cross-linked healing and stable cross-linked mechanical strength. In this work, alkali lignin-Polyvinyl alcohol-polyacrylic acid double network conductive hydrogels with high mechanical strength and good self-healing properties were prepared. We formed the primary network structure by hydrogen bonding interaction between polyvinyl alcohol, alkali lignin and polyacrylic acid, and the secondary network structure by coordination interaction with polyacrylic acid through the addition of Fe3+. The added lignin acts as a dynamic linkage bridge in a porous network mediated by multiple ligand bonds, imparting superior mechanical properties to the hydrogels. The relationships between the alkali lignin and iron ion dosage and the comprehensive properties of hydrogels (adhesion, antibacterial, self-healing, electrical conductivity and mechanical properties) were studied in detail. On this basis, the hydrogels explored the role of lignin in the regulation of hydrogels properties and revealed the self-healing and conductive mechanism.
Collapse
Affiliation(s)
- Jing Luo
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Juan Meng
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Chen Zhennan
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yang Xueli
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Wang Xinran
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Li Ze
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Shipeng Luo
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Liangcai Wang
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, China
| | - Jianbin Zhou
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, China
| | - Hengfei Qin
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; Key Laboratory of precious metal deep processing technology and application of Jiangsu Province, Jiangsu University of Technology, Changzhou 213001, China.
| |
Collapse
|
53
|
Pan Z, Fu QQ, Wang MH, Gao HL, Dong L, Zhou P, Cheng DD, Chen Y, Zou DH, He JC, Feng X, Yu SH. Designing nanohesives for rapid, universal, and robust hydrogel adhesion. Nat Commun 2023; 14:5378. [PMID: 37666848 PMCID: PMC10477317 DOI: 10.1038/s41467-023-40753-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023] Open
Abstract
Nanoparticles-based glues have recently been shown with substantial potential for hydrogel adhesion. Nevertheless, the transformative advance in hydrogel-based application places great challenges on the rapidity, robustness, and universality of achieving hydrogel adhesion, which are rarely accommodated by existing nanoparticles-based glues. Herein, we design a type of nanohesives based on the modulation of hydrogel mechanics and the surface chemical activation of nanoparticles. The nanohesives can form robust hydrogel adhesion in seconds, to the surface of arbitrary engineering solids and biological tissues without any surface pre-treatments. A representative application of hydrogel machine demonstrates the tough and compliant adhesion between dynamic tissues and sensors via nanohesives, guaranteeing accurate and stable blood flow monitoring in vivo. Combined with their biocompatibility and inherent antimicrobial properties, the nanohesives provide a promising strategy in the field of hydrogel based engineering.
Collapse
Affiliation(s)
- Zhao Pan
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Qi-Qi Fu
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, 314000, China
| | - Mo-Han Wang
- Department of Oral Implant, Stomatology Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230026, China
| | - Huai-Ling Gao
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Liang Dong
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Pu Zhou
- Department of Oral Implant, Stomatology Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230026, China
| | - Dong-Dong Cheng
- Department of Oral Implant, Stomatology Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230026, China
| | - Ying Chen
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, 314000, China
| | - Duo-Hong Zou
- Department of Oral Implant, Stomatology Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230026, China
| | - Jia-Cai He
- Department of Oral Implant, Stomatology Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230026, China
| | - Xue Feng
- AML, Department of Engineering Mechanics, Centre for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China.
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
54
|
Zhong W, Hu R, Zhou S, Xu J, Wang K, Yao B, Xiong R, Fu J. Spatiotemporally Responsive Hydrogel Dressing with Self-Adaptive Antibacterial Activity and Cell Compatibility for Wound Sealing and Healing. Adv Healthc Mater 2023; 12:e2203241. [PMID: 37222707 DOI: 10.1002/adhm.202203241] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/13/2023] [Indexed: 05/25/2023]
Abstract
Adhesive hydrogels containing quaternary ammonium salt (QAS) moieties have shown attractive advantages in treatment for acute wounds, attributed to their high performances in wound sealing and sterilization. However, the introduction of QAS commonly leads to high cytotoxicity and adhesive deterioration. Herein, aimed to solve these two issues, a self-adaptive dressing with delicate spatiotemporal responsiveness is developed by employing cellulose sulfate (CS) as dynamic layers to coat QAS-based hydrogel. In detail, due to the acid environment of wound in the early stages of healing, the CS coating will quickly detach to expose the active QAS groups for maximum disinfectant efficacy; meanwhile, as the wound gradually heals and recovers to a neutral pH, the CS will remain stable to keep QAS screened, realizing a high cell growth-promoting activity for epithelium regeneration. Additionally, attributed to the synergy of temporary hydrophobicity by CS and slow water absorption kinetics of the hydrogel, the resultant dressing possesses outstanding wound sealing and hemostasis performance. At last, this work anticipates this approach to intelligent wound dressings based on dynamic and responsive intermolecular interaction can also be applied to a wide range of self-adaptive biomedical materials employing different chemistries for applications in medical therapy and health monitoring.
Collapse
Affiliation(s)
- Wei Zhong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Rongjian Hu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shuai Zhou
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jianhua Xu
- Jiangsu Co-Innovation of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Bowen Yao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ranhua Xiong
- Jiangsu Co-Innovation of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiajun Fu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
55
|
Lu C, Chai Y, Xu X, Wang Z, Bao Y, Fei Z. Large-scale in situ self-assembly and doping engineering of zinc ferrite nanoclusters for high performance bioimaging. Colloids Surf B Biointerfaces 2023; 229:113473. [PMID: 37517338 DOI: 10.1016/j.colsurfb.2023.113473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023]
Abstract
Iron oxide nanomaterials has good biocompatibility and safety, and has been used as contrast agents for magnetic resonance imaging (MRI). However, its clinical usefulness is hampered by its difficult preparation on large scale, its rapid clearance in vivo and low target tissue enrichment efficiency. Here, we report the synthesis of water-soluble, biocompatible, superparamagnetic non-stoichiometric zinc ferrite nanoclusters (nZFNCs) of approximately 50 g in a single batch using a one-pot synthesis technique. nZFNCs is a secondary cluster structure with a size of about 40 nm composed of zinc-doped iron oxide nanoparticles with a size of about 6 nm. The surface of nZFNCS is endowed with a large number of carboxyl groups as active sites. By simply controlling the synthesis process and adjusting the proportion of metal precursors, the amount of zinc doping can be controlled, while maintaining the same size to ensure similar pharmacokinetics. Compared with undoped, the magnetic responsiveness and relaxation efficiency of nZFNCs are significantly improved, and the transverse relaxation efficiency (r2) can reach 425.5 mM-1 s-1 (doping amount x = 0.25), which is 7 times higher than that of commercial Resovist and 10 times higher than that of Feridex. In vivo imaging results also further confirmed the excellent contrast enhancement performance of the nanoclusters, which can achieve high contrast for more than 2 h in the liver. The advantage of this platform over comparable systems is that the contrast enhancement features are derived from simple techniques that do not require complex physical and chemical methods.
Collapse
Affiliation(s)
- Chichong Lu
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Yuyun Chai
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xue Xu
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zhijie Wang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yingjie Bao
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zihan Fei
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
56
|
Yadid M, Hagel M, Labro MB, Le Roi B, Flaxer C, Flaxer E, Barnea AR, Tejman‐Yarden S, Silberman E, Li X, Rauti R, Leichtmann‐Bardoogo Y, Yuan H, Maoz BM. A Platform for Assessing Cellular Contractile Function Based on Magnetic Manipulation of Magnetoresponsive Hydrogel Films. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207498. [PMID: 37485582 PMCID: PMC10520681 DOI: 10.1002/advs.202207498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/08/2023] [Indexed: 07/25/2023]
Abstract
Despite significant advancements in in vitro cardiac modeling approaches, researchers still lack the capacity to obtain in vitro measurements of a key indicator of cardiac function: contractility, or stroke volume under specific loading conditions-defined as the pressures to which the heart is subjected prior to and during contraction. This work puts forward a platform that creates this capability, by providing a means of dynamically controlling loading conditions in vitro. This dynamic tissue loading platform consists of a thin magnetoresponsive hydrogel cantilever on which 2D engineered myocardial tissue is cultured. Exposing the cantilever to an external magnetic field-generated by positioning magnets at a controlled distance from the cantilever-causes the hydrogel film to stretch, creating tissue load. Next, cell contraction is induced through electrical stimulation, and the force of the contraction is recorded, by measuring the cantilever's deflection. Force-length-based measurements of contractility are then derived, comparable to clinical measurements. In an illustrative application, the platform is used to measure contractility both in untreated myocardial tissue and in tissue exposed to an inotropic agent. Clear differences are observed between conditions, suggesting that the proposed platform has significant potential to provide clinically relevant measurements of contractility.
Collapse
Affiliation(s)
- Moran Yadid
- The Azrieli Faculty of MedicineBar Ilan University8 Henrietta Szold St.Safed1311502Israel
- The Shmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv69978Israel
| | - Mario Hagel
- Department of Biomedical EngineeringTel Aviv UniversityTel Aviv69978Israel
| | | | - Baptiste Le Roi
- Department of Biomedical EngineeringTel Aviv UniversityTel Aviv69978Israel
| | - Carina Flaxer
- Department of Biomedical EngineeringTel Aviv UniversityTel Aviv69978Israel
| | - Eli Flaxer
- AFEKA – Tel‐Aviv Academic College of EngineeringTel‐Aviv69107Israel
| | - A. Ronny Barnea
- Department of Biomedical EngineeringTel Aviv UniversityTel Aviv69978Israel
| | - Shai Tejman‐Yarden
- The Edmond J. Safra International Congenital Heart CenterSheba Medical CenterRamat Gan52621Israel
- The Engineering Medical Research LabSheba Medical CenterRamat Gan52621Israel
- The Sackler School of MedicineTel Aviv UniversityTel Aviv69978Israel
| | - Eric Silberman
- The Shmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv69978Israel
| | - Xin Li
- Shenzhen Key Laboratory of Soft Mechanics and Smart ManufacturingDepartment of Mechanics and Aerospace EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Rossana Rauti
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbino61029Italy
| | | | - Hongyan Yuan
- Shenzhen Key Laboratory of Soft Mechanics and Smart ManufacturingDepartment of Mechanics and Aerospace EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Ben M. Maoz
- Department of Biomedical EngineeringTel Aviv UniversityTel Aviv69978Israel
- Sagol School of NeuroscienceTel Aviv UniversityTel Aviv69978Israel
- The Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv69978Israel
| |
Collapse
|
57
|
Pourtalebi Jahromi L, Rothammer M, Fuhrmann G. Polysaccharide hydrogel platforms as suitable carriers of liposomes and extracellular vesicles for dermal applications. Adv Drug Deliv Rev 2023; 200:115028. [PMID: 37517778 DOI: 10.1016/j.addr.2023.115028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Lipid-based nanocarriers have been extensively investigated for their application in drug delivery. Particularly, liposomes are now clinically established for treating various diseases such as fungal infections. In contrast, extracellular vesicles (EVs) - small cell-derived nanoparticles involved in cellular communication - have just recently sparked interest as drug carriers but their development is still at the preclinical level. To drive this development further, the methods and technologies exploited in the context of liposome research should be applied in the domain of EVs to facilitate and accelerate their clinical translation. One of the crucial steps for EV-based therapeutics is designing them as proper dosage forms for specific applications. This review offers a comprehensive overview of state-of-the-art polysaccharide-based hydrogel platforms designed for artificial and natural vesicles with application in drug delivery to the skin. We discuss their various physicochemical and biological properties and try to create a sound basis for the optimization of EV-embedded hydrogels as versatile therapeutic avenues.
Collapse
Affiliation(s)
- Leila Pourtalebi Jahromi
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Markus Rothammer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Gregor Fuhrmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany; FAU NeW, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|
58
|
Sabiu G, Kasinath V, Jung S, Li X, Tsokos GC, Abdi R. Targeted nanotherapy for kidney diseases: a comprehensive review. Nephrol Dial Transplant 2023; 38:1385-1396. [PMID: 35945647 PMCID: PMC10229287 DOI: 10.1093/ndt/gfac233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney diseases represent a major public health problem, affecting millions of people worldwide. Moreover, the treatment of kidney diseases is burdened by the problematic effects of conventional drug delivery, such as systemic drug toxicity, rapid drug clearance, and the absence of precise targeting of the kidney. Although the use of nanotechnology in medicine is in its early stage and lacks robust translational studies, nanomedicines have already shown great promise as novel drug-delivery systems for the treatment of kidney disease. On the basis of our current knowledge of renal anatomy and physiology, pathophysiology of kidney diseases, and physicochemical characteristics of nanoparticles, an expansive repertoire and wide use of nanomedicines could be developed for kidney diseases in the near future. Some limitations have slowed the transition of these agents from preclinical studies to clinical trials, however. In this review, we summarize the current knowledge on renal drug-delivery systems and recent advances in renal cell targeting; we also demonstrate their important potential as future paradigm-shifting therapies for kidney diseases.
Collapse
Affiliation(s)
- Gianmarco Sabiu
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- School of Nephrology, University of Milan, Milan, Italy
| | - Vivek Kasinath
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sungwook Jung
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofei Li
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Reza Abdi
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
59
|
Tian J, Xie SH, Borucu U, Lei S, Zhang Y, Manners I. High-resolution cryo-electron microscopy structure of block copolymer nanofibres with a crystalline core. NATURE MATERIALS 2023:10.1038/s41563-023-01559-4. [PMID: 37217702 DOI: 10.1038/s41563-023-01559-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Seeded growth of crystallizable block copolymers and π-stacking molecular amphiphiles in solution using living crystallization-driven self-assembly is an emerging route to fabricate uniform one-dimensional and two-dimensional core-shell micellar nanoparticles of controlled size with a range of potential applications. Although experimental evidence indicates that the crystalline core of these nanomaterials is highly ordered, a direct observation of their crystal lattice has not been successful. Here we report the high-resolution cryo-transmission electron microscopy studies of vitrified solutions of nanofibres made from a crystalline core of poly(ferrocenyldimethylsilane) (PFS) and a corona of polysiloxane grafted with 4-vinylpyridine groups. These studies show that poly(ferrocenyldimethylsilane) chains pack in an 8-nm-diameter core lattice with two-dimensional pseudo-hexagonal symmetry that is coated by a 27 nm 4-vinylpyridine corona with a 3.5 nm distance between each 4-vinylpyridine strand. We combine this structural information with a molecular modelling analysis to propose a detailed molecular model for solvated poly(ferrocenyldimethylsilane)-b-4-vinylpyridine nanofibres.
Collapse
Affiliation(s)
- Jia Tian
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Song-Hai Xie
- Department of Chemistry, Fudan University, Shanghai, China
| | - Ufuk Borucu
- GW4 Facility for High-Resolution Electron Cryo-Microscopy, University of Bristol, Bristol, UK
| | - Shixing Lei
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
| | - Yifan Zhang
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
60
|
Li X, Xu M, Geng Z, Liu Y. Functional hydrogels for the repair and regeneration of tissue defects. Front Bioeng Biotechnol 2023; 11:1190171. [PMID: 37260829 PMCID: PMC10227617 DOI: 10.3389/fbioe.2023.1190171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Tissue defects can be accompanied by functional impairments that affect the health and quality of life of patients. Hydrogels are three-dimensional (3D) hydrophilic polymer networks that can be used as bionic functional tissues to fill or repair damaged tissue as a promising therapeutic strategy in the field of tissue engineering and regenerative medicine. This paper summarises and discusses four outstanding advantages of hydrogels and their applications and advances in the repair and regeneration of tissue defects. First, hydrogels have physicochemical properties similar to the extracellular matrix of natural tissues, providing a good microenvironment for cell proliferation, migration and differentiation. Second, hydrogels have excellent shape adaptation and tissue adhesion properties, allowing them to be applied to a wide range of irregularly shaped tissue defects and to adhere well to the defect for sustained and efficient repair function. Third, the hydrogel is an intelligent delivery system capable of releasing therapeutic agents on demand. Hydrogels are capable of delivering therapeutic reagents and releasing therapeutic substances with temporal and spatial precision depending on the site and state of the defect. Fourth, hydrogels are self-healing and can maintain their integrity when damaged. We then describe the application and research progress of functional hydrogels in the repair and regeneration of defects in bone, cartilage, skin, muscle and nerve tissues. Finally, we discuss the challenges faced by hydrogels in the field of tissue regeneration and provide an outlook on their future trends.
Collapse
|
61
|
Shen Z, Zhang C, Wang T, Xu J. Advances in Functional Hydrogel Wound Dressings: A Review. Polymers (Basel) 2023; 15:polym15092000. [PMID: 37177148 PMCID: PMC10180742 DOI: 10.3390/polym15092000] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
One of the most advanced, promising, and commercially viable research issues in the world of hydrogel dressing is gaining functionality to achieve improved therapeutic impact or even intelligent wound repair. In addition to the merits of ordinary hydrogel dressings, functional hydrogel dressings can adjust their chemical/physical properties to satisfy different wound types, carry out the corresponding reactions to actively create a healing environment conducive to wound repair, and can also control drug release to provide a long-lasting benefit. Although a lot of in-depth research has been conducted over the last few decades, very few studies have been properly summarized. In order to give researchers a basic blueprint for designing functional hydrogel dressings and to motivate them to develop ever-more intelligent wound dressings, we summarized the development of functional hydrogel dressings in recent years, as well as the current situation and future trends, in light of their preparation mechanisms and functional effects.
Collapse
Affiliation(s)
- Zihao Shen
- Aulin College, Northeast Forestry University, Harbin 150040, China
| | - Chenrui Zhang
- Aulin College, Northeast Forestry University, Harbin 150040, China
| | - Ting Wang
- Aulin College, Northeast Forestry University, Harbin 150040, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Juan Xu
- National Research Institute for Family Planning, Haidian District, No. 12, Da Hui Si Road, Beijing 100081, China
| |
Collapse
|
62
|
Li Y, Xu C, Lei C. The Delivery and Activation of Growth Factors Using Nanomaterials for Bone Repair. Pharmaceutics 2023; 15:pharmaceutics15031017. [PMID: 36986877 PMCID: PMC10052849 DOI: 10.3390/pharmaceutics15031017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Bone regeneration is a comprehensive process that involves different stages, and various growth factors (GFs) play crucial roles in the entire process. GFs are currently widely used in clinical settings to promote bone repair; however, the direct application of GFs is often limited by their fast degradation and short local residual time. Additionally, GFs are expensive, and their use may carry risks of ectopic osteogenesis and potential tumor formation. Nanomaterials have recently shown great promise in delivering GFs for bone regeneration, as they can protect fragile GFs and control their release. Moreover, functional nanomaterials can directly activate endogenous GFs, modulating the regeneration process. This review provides a summary of the latest advances in using nanomaterials to deliver exogenous GFs and activate endogenous GFs to promote bone regeneration. We also discuss the potential for synergistic applications of nanomaterials and GFs in bone regeneration, along with the challenges and future directions that need to be addressed.
Collapse
Affiliation(s)
- Yiwei Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
63
|
Chemical shield effect of metal complexation on seeded growth of poly(ε-caprolactone) core-forming blends. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
64
|
Zhang Y, Guo Y, Liu F, Luo Y. Recent development of egg protein fractions and individual proteins as encapsulant materials for delivery of bioactives. Food Chem 2023; 403:134353. [DOI: 10.1016/j.foodchem.2022.134353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 10/14/2022]
|
65
|
Rudich A, Sapru S, Shoseyov O. Biocompatible, Resilient, and Tough Nanocellulose Tunable Hydrogels. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050853. [PMID: 36903731 PMCID: PMC10005666 DOI: 10.3390/nano13050853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/19/2023] [Accepted: 02/19/2023] [Indexed: 06/12/2023]
Abstract
Hydrogels have been proposed as potential candidates for many different applications. However, many hydrogels exhibit poor mechanical properties, which limit their applications. Recently, various cellulose-derived nanomaterials have emerged as attractive candidates for nanocomposite-reinforcing agents due to their biocompatibility, abundance, and ease of chemical modification. Due to abundant hydroxyl groups throughout the cellulose chain, the grafting of acryl monomers onto the cellulose backbone by employing oxidizers such as cerium(IV) ammonium nitrate ([NH4]2[Ce(NO3)6], CAN) has proven a versatile and effective method. Moreover, acrylic monomers such as acrylamide (AM) may also polymerize by radical methods. In this work, cerium-initiated graft polymerization was applied to cellulose-derived nanomaterials, namely cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF), in a polyacrylamide (PAAM) matrix to fabricate hydrogels that display high resilience (~92%), high tensile strength (~0.5 MPa), and toughness (~1.9 MJ/m3). We propose that by introducing mixtures of differing ratios of CNC and CNF, the composite's physical behavior can be fine-tuned across a wide range of mechanical and rheological properties. Moreover, the samples proved to be biocompatible when seeded with green fluorescent protein (GFP)-transfected mouse fibroblasts (3T3s), showing a significant increase in cell viability and proliferation compared to samples comprised of acrylamide alone.
Collapse
|
66
|
Guo R, Yu D, Wang S, Fu L, Lin Y. Nanosheet-hydrogel composites: from preparation and fundamental properties to their promising applications. SOFT MATTER 2023; 19:1465-1481. [PMID: 36752168 DOI: 10.1039/d2sm01471h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogels are an important class of soft materials with elastic and intelligent properties. Nevertheless, these traditional hydrogels usually possess poor mechanical properties and limited functions, which greatly restrict their further applications. With the rapid development of nanotechnology, there have been significant advances in the design and fabrication of functional nanocomposite hydrogels with unique properties and functions. Among various materials, nanosheets with planar topography, large specific surface areas, and versatile physicochemical properties have attracted intense research interest. Herein, this review summarises the synthesis mechanisms, fundamental properties, and promising applications of nanosheet-incorporated hydrogels. In particular, how the nanosheet structure is applied to improve the overall performance of the hydrogel in each application is emphasized. Additionally, the current challenges and prospects are briefly discussed in this area. We expect that the combination of nanosheets and hydrogels can attract more researchers' interest and bring new opportunities in the future.
Collapse
Affiliation(s)
- Rongrong Guo
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
| | - Deshuai Yu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
| | - Sen Wang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
| | - Lianlian Fu
- College of Material Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China.
| | - Youhui Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, P. R. China
| |
Collapse
|
67
|
Nanocomposite Hydrogels as Functional Extracellular Matrices. Gels 2023; 9:gels9020153. [PMID: 36826323 PMCID: PMC9957407 DOI: 10.3390/gels9020153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Over recent years, nano-engineered materials have become an important component of artificial extracellular matrices. On one hand, these materials enable static enhancement of the bulk properties of cell scaffolds, for instance, they can alter mechanical properties or electrical conductivity, in order to better mimic the in vivo cell environment. Yet, many nanomaterials also exhibit dynamic, remotely tunable optical, electrical, magnetic, or acoustic properties, and therefore, can be used to non-invasively deliver localized, dynamic stimuli to cells cultured in artificial ECMs in three dimensions. Vice versa, the same, functional nanomaterials, can also report changing environmental conditions-whether or not, as a result of a dynamically applied stimulus-and as such provide means for wireless, long-term monitoring of the cell status inside the culture. In this review article, we present an overview of the technological advances regarding the incorporation of functional nanomaterials in artificial extracellular matrices, highlighting both passive and dynamically tunable nano-engineered components.
Collapse
|
68
|
Luo Z, Sun L, Bian F, Wang Y, Yu Y, Gu Z, Zhao Y. Erythrocyte-Inspired Functional Materials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206150. [PMID: 36581585 PMCID: PMC9951328 DOI: 10.1002/advs.202206150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/03/2022] [Indexed: 05/30/2023]
Abstract
Erythrocytes are the most abundant cells in the blood. As the results of long-term natural selection, their specific biconcave discoid morphology and cellular composition are responsible for gaining excellent biological performance. Inspired by the intrinsic features of erythrocytes, various artificial biomaterials emerge and find broad prospects in biomedical applications such as therapeutic delivery, bioimaging, and tissue engineering. Here, a comprehensive review from the fabrication to the applications of erythrocyte-inspired functional materials is given. After summarizing the biomaterials mimicking the biological functions of erythrocytes, the synthesis strategies of particles with erythrocyte-inspired morphologies are presented. The emphasis is on practical biomedical applications of these bioinspired functional materials. The perspectives for the future possibilities of the advanced erythrocyte-inspired biomaterials are also discussed. It is hoped that the summary of existing studies can inspire researchers to develop novel biomaterials; thus, accelerating the progress of these biomaterials toward clinical biomedical applications.
Collapse
Affiliation(s)
- Zhiqiang Luo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Lingyu Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Feika Bian
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yunru Yu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Zhuxiao Gu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| |
Collapse
|
69
|
Zhu T, Ni Y, Biesold GM, Cheng Y, Ge M, Li H, Huang J, Lin Z, Lai Y. Recent advances in conductive hydrogels: classifications, properties, and applications. Chem Soc Rev 2023; 52:473-509. [PMID: 36484322 DOI: 10.1039/d2cs00173j] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogel-based conductive materials for smart wearable devices have attracted increasing attention due to their excellent flexibility, versatility, and outstanding biocompatibility. This review presents the recent advances in multifunctional conductive hydrogels for electronic devices. First, conductive hydrogels with different components are discussed, including pure single network hydrogels based on conductive polymers, single network hydrogels with additional conductive additives (i.e., nanoparticles, nanowires, and nanosheets), double network hydrogels based on conductive polymers, and double network hydrogels with additional conductive additives. Second, conductive hydrogels with a variety of functionalities, including self-healing, super toughness, self-growing, adhesive, anti-swelling, antibacterial, structural color, hydrophobic, anti-freezing, shape memory and external stimulus responsiveness are introduced in detail. Third, the applications of hydrogels in flexible devices are illustrated (i.e., strain sensors, supercapacitors, touch panels, triboelectric nanogenerator, bioelectronic devices, and robot). Next, the current challenges facing hydrogels are summarized. Finally, an imaginative but reasonable outlook is given, which aims to drive further development in the future.
Collapse
Affiliation(s)
- Tianxue Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Yimeng Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yan Cheng
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang 325000, P. R. China
| | - Mingzheng Ge
- School of Textile and Clothing, Nantong University, Nantong 226019, P. R. China
| | - Huaqiong Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang 325000, P. R. China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China. .,Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China. .,Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| |
Collapse
|
70
|
Sperry B, Kukhta NA, Huang Y, Luscombe CK. Ligand Decomposition during Nanoparticle Synthesis: Influence of Ligand Structure and Precursor Selection. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:570-583. [PMID: 36711050 PMCID: PMC9879203 DOI: 10.1021/acs.chemmater.2c03006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/02/2022] [Indexed: 06/18/2023]
Abstract
Aliphatic amine and carboxylic acid ligands are widely used as organic solvents during the bottom-up synthesis of inorganic nanoparticles (NPs). Although the ligands' ability to alter final NP properties has been widely studied, side reactivity of these ligands is emerging as an important mechanism to consider. In this work, we study the thermal decomposition of common ligands with varying functional groups (amines and carboxylic acids) and bond saturations (from saturated to polyunsaturated). Here, we investigate how these ligand properties influence decomposition in the absence and presence of precursors used in NP synthesis. We show that during the synthesis of inorganic chalcogenide NPs (Cu2ZnSnS4, Cu x S, and SnS x ) with metal acetylacetonate precursors and elemental sulfur, the ligand pyrolyzes, producing alkylated graphitic species. Additionally, there was less to no ligand decomposition observed during the sulfur-free synthesis of ZnO and CuO with metal acetylacetonate precursors. These results will help guide ligand selection for NP syntheses and improve reaction purity, an important factor in many applications.
Collapse
Affiliation(s)
- Breena
M. Sperry
- Department
of Materials Science and Engineering, University
of Washington, Seattle, Washington 98195, United States
| | - Nadzeya A. Kukhta
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yunping Huang
- Department
of Materials Science and Engineering, University
of Washington, Seattle, Washington 98195, United States
- University
of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christine K. Luscombe
- Department
of Materials Science and Engineering, University
of Washington, Seattle, Washington 98195, United States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Pi-Conjugated
Polymers Unit, Okinawa Institute of Science
and Technology, Okinawa 904-0495, Japan
| |
Collapse
|
71
|
Fan W, Jensen LR, Dong Y, Deloria AJ, Xing B, Yu D, Smedskjaer MM. Highly Stretchable, Swelling-Resistant, Self-Healed, and Biocompatible Dual-Reinforced Double Polymer Network Hydrogels. ACS APPLIED BIO MATERIALS 2023; 6:228-237. [PMID: 36537710 DOI: 10.1021/acsabm.2c00856] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Superior flexibility and toughness can be achieved in bioactive hydrogels by the use of a double polymer network with complementary properties. Inspired by this design principle, we here combine polyacrylic acid (PAA) and sodium alginate (SA) to obtain a dual-reinforced double interpenetrating network (d-DIPN) hydrogel. The dual reinforcement involves ionic cross-linking and introduction of SiO2 nanoparticles, which leads to extraordinary improvements in strength and toughness. Compared with the standard PAA hydrogel that offers an elongation of 240% and a breakage stress of 0.03 MPa, the prepared SA(Ca2+)-PAA-SiO2 hydrogel shows an elongation above 1000% and a breakage stress of 1.62 MPa. Moreover, the combination of strong covalent cross-links and weak reversible interactions provides the d-DIPN hydrogel with swelling resistance and self-healing behavior, adhesive abilities, and shape memory performance. Furthermore, we show that the biocompatibility and bone cell proliferation ability of the hydrogels can be improved through a mineralization process despite an observed reduction in breakage strain and stress. Taken as a whole, our work paves the way for the design of strong and tough hydrogels, with potential applications within biomedicine and particularly tissue engineering.
Collapse
Affiliation(s)
- Wei Fan
- Department of Chemistry and Bioscience, Aalborg University, 9220Aalborg, Denmark
| | - Lars R Jensen
- Department of Materials and Production, Aalborg University, 9220Aalborg, Denmark
| | - Yibing Dong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore637459, Singapore
| | - Abigail J Deloria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090Vienna, Austria
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore637371, Singapore
| | - Donghong Yu
- Department of Chemistry and Bioscience, Aalborg University, 9220Aalborg, Denmark
| | - Morten M Smedskjaer
- Department of Chemistry and Bioscience, Aalborg University, 9220Aalborg, Denmark
| |
Collapse
|
72
|
Qiao S, Li S, Song Q, Liu B. Shape-Tunable Biconcave Disc-Like Polymer Particles by Swelling-Induced Phase Separation of Seeded Particles with Hydrophilic Shells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1190-1197. [PMID: 36621841 DOI: 10.1021/acs.langmuir.2c02995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Anisotropic shape-tunable polymer particles have gained significant attention for their wide applications, and their performances are usually strongly correlated to their shapes. In contrast to convex particles, the synthesis of highly uniform concave polymer particles remains a great challenge. Here, we present a facile and effective route to synthesize biconcave polystyrene (PS) discs by swelling-induced phase separation of hydrophilically modified PS microspheres and report an unexpected finding that even a tiny amount of hydrophilic units that were incorporated into PS microspheres can significantly change the shape of phase interfaces, resulting in the transformation of disc shapes from convex to flat to concave. This is realized by several typical hydrophilic monomers, such as sodium styrene sulfonate (NaSS), acrylic acid (AA), or (2-(methacryloyloxy)ethyl)trimethylammonium chloride (METAC). The effect of the distribution of hydrophilic units in microspheres was investigated, and the mechanism of shape tuning has been discussed. The curvatures of the bottom surfaces of discs show a strong correlation to the content of hydrophilic units. In particular, we emphasize that the shape control method is general since it does not depend on specific hydrophilic units. This research paves the way for precisely structuring polymer particle shapes, which is important for polymer particles to be used for self-assembly, diffusion, rheology, transport, filler, and many other applications.
Collapse
Affiliation(s)
- Shuoyuan Qiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100149, China
| | - Shanshan Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100149, China
| | - Qing Song
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100149, China
| | - Bing Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100149, China
| |
Collapse
|
73
|
Sajjan K, Ahammad NA, Raju CSK, Prasad MK, Shah NA, Botmart T. Study of nonlinear thermal convection of ternary nanofluid within Darcy-Brinkman porous structure with time dependent heat source/sink. AIMS MATHEMATICS 2023; 8:4237-4260. [DOI: 10.3934/math.2023211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
<abstract>
<p>The dynamical behaviour and thermal transportation feature of mixed convective Casson bi-phasic flows of water-based ternary Hybrid nanofluids with different shapes are examined numerically in a Darcy- Brinkman medium bounded by a vertical elongating slender concave-shaped surface. The mathematical framework of the present flow model is developed properly by adopting the single-phase approach, whose solid phase is selected to be metallic or metallic oxide nanoparticles. Besides, the influence of thermal radiation is taken into consideration in the presence of an internal variable heat generation. A set of feasible similarity transformations are applied for the conversion of the governing PDEs into a nonlinear differential structure of coupled ODEs. An advanced differential quadrature algorithm is employed herein to acquire accurate numerical solutions for momentum and energy equations. Results of the conducted parametric study are explained and revealed in graphs using bvp5c in MATLAB to solve the governing system. The solution with three mixture compositions is provided (Type-I and Type-II). Al<sub>2</sub>O<sub>3</sub> (Platelet), GNT (Cylindrical), and CNTs (Spherical), Type-II mixture of copper (Cylindrical), silver (Platelet), and copper oxide (Spherical). In comparison to Type-I ternary combination Type-II ternary mixtures is lesser in terms of the temperature distribution. The skin friction coefficient is more in Type-1 compared to Type-2.</p>
</abstract>
Collapse
Affiliation(s)
- Kiran Sajjan
- Department of Mathematics, GITAM School of Science, GITAM Deemed to be University, Bangalore-Campus, Karnataka 562163, India
| | - N. Ameer Ahammad
- Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box741, Tabuk 71491, Saudi Arabia
| | - C. S. K. Raju
- Department of Mathematics, GITAM School of Science, GITAM Deemed to be University, Bangalore-Campus, Karnataka 562163, India
| | - M. Karuna Prasad
- Department of Mathematics, GITAM School of Science, GITAM Deemed to be University, Bangalore-Campus, Karnataka 562163, India
| | - Nehad Ali Shah
- Department of Mechanical Engineering, Sejong University, Seoul 05006, South Korea
| | - Thongchai Botmart
- Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
74
|
Ma J, Ma C, Huang X, de Araujo PHH, Goyal AK, Lu G, Feng C. Preparation and cellular uptake behaviors of uniform fiber-like micelles with length controllability and high colloidal stability in aqueous media. FUNDAMENTAL RESEARCH 2023; 3:93-101. [PMID: 38933561 PMCID: PMC11197544 DOI: 10.1016/j.fmre.2022.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/19/2022] Open
Abstract
Fragmentation/disassembly of fiber-like micelles generated by living crystalline-driven self-assembly (CDSA) is usually encountered in aqueous media, which hinders the applications of micelles. Herein, we report the generation of uniform fiber-like micelles consisting of a π-conjugated oligo(p-phenylenevinylene) core and a cross-linking silica shell with grafted poly(ethylene glycol) (PEG) chains by the combination of living CDSA, silica chemistry and surface grafting-onto strategy. Owing to the presence of crosslinking silica shell and the outmost PEG chains, the resulting micelles exhibit excellent dispersity and colloidal stability in PBS buffer, BSA aqueous solution and upon heating at 80 °C for 2 h without micellar fragmentation/disassembly. The micelles also show negligible cytotoxicity toward both HeLa cervical cancer and HEK239T human embryonic kidney cell lines. Interestingly, micelles with L n of 156 nm show the "stealth" property with no significant uptake by HeLa cells, whereas some certain amounts of micelles with L n of 535 nm can penetrate into HeLa cells, showing length-dependent cellular uptake behaviors. These results provide a route to prepare uniform, colloidally stable fiber-like nanostructures with tunable length and functions derived for biomedical applications.
Collapse
Affiliation(s)
- Junyu Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chen Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pedro Henrique Hermes de Araujo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis-SC, 88040-970, SC, Brazil
| | - Amit Kumal Goyal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Tehsil-Kishangarh-305 801 Distt.-Ajmer, Rajasthan, India
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
75
|
Constriction size retention criterion for calcium alginate microcapsules in granular materials. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2022.118034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
76
|
Sajjan K, Ahammad NA, Raju CSK, Prasad MK, Shah NA, Botmart T. Study of nonlinear thermal convection of ternary nanofluid within Darcy-Brinkman porous structure with time dependent heat source/sink. AIMS MATHEMATICS 2023; 8:4237-4260. [DOI: 10.3934/math.2023211 previous articlenext article] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
<abstract>
<p>The dynamical behaviour and thermal transportation feature of mixed convective Casson bi-phasic flows of water-based ternary Hybrid nanofluids with different shapes are examined numerically in a Darcy- Brinkman medium bounded by a vertical elongating slender concave-shaped surface. The mathematical framework of the present flow model is developed properly by adopting the single-phase approach, whose solid phase is selected to be metallic or metallic oxide nanoparticles. Besides, the influence of thermal radiation is taken into consideration in the presence of an internal variable heat generation. A set of feasible similarity transformations are applied for the conversion of the governing PDEs into a nonlinear differential structure of coupled ODEs. An advanced differential quadrature algorithm is employed herein to acquire accurate numerical solutions for momentum and energy equations. Results of the conducted parametric study are explained and revealed in graphs using bvp5c in MATLAB to solve the governing system. The solution with three mixture compositions is provided (Type-I and Type-II). Al<sub>2</sub>O<sub>3</sub> (Platelet), GNT (Cylindrical), and CNTs (Spherical), Type-II mixture of copper (Cylindrical), silver (Platelet), and copper oxide (Spherical). In comparison to Type-I ternary combination Type-II ternary mixtures is lesser in terms of the temperature distribution. The skin friction coefficient is more in Type-1 compared to Type-2.</p>
</abstract>
Collapse
Affiliation(s)
- Kiran Sajjan
- Department of Mathematics, GITAM School of Science, GITAM Deemed to be University, Bangalore-Campus, Karnataka 562163, India
| | - N. Ameer Ahammad
- Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box741, Tabuk 71491, Saudi Arabia
| | - C. S. K. Raju
- Department of Mathematics, GITAM School of Science, GITAM Deemed to be University, Bangalore-Campus, Karnataka 562163, India
| | - M. Karuna Prasad
- Department of Mathematics, GITAM School of Science, GITAM Deemed to be University, Bangalore-Campus, Karnataka 562163, India
| | - Nehad Ali Shah
- Department of Mechanical Engineering, Sejong University, Seoul 05006, South Korea
| | - Thongchai Botmart
- Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
77
|
Yu Y, Yu T, Wang X, Liu D. Functional Hydrogels and Their Applications in Craniomaxillofacial Bone Regeneration. Pharmaceutics 2022; 15:pharmaceutics15010150. [PMID: 36678779 PMCID: PMC9864650 DOI: 10.3390/pharmaceutics15010150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Craniomaxillofacial bone defects are characterized by an irregular shape, bacterial and inflammatory environment, aesthetic requirements, and the need for the functional recovery of oral-maxillofacial areas. Conventional clinical treatments are currently unable to achieve high-quality craniomaxillofacial bone regeneration. Hydrogels are a class of multifunctional platforms made of polymers cross-linked with high water content, good biocompatibility, and adjustable physicochemical properties for the intelligent delivery of goods. These characteristics make hydrogel systems a bright prospect for clinical applications in craniomaxillofacial bone. In this review, we briefly demonstrate the properties of hydrogel systems that can come into effect in the field of bone regeneration. In addition, we summarize the hydrogel systems that have been developed for craniomaxillofacial bone regeneration in recent years. Finally, we also discuss the prospects in the field of craniomaxillofacial bone tissue engineering; these discussions can serve as an inspiration for future hydrogel design.
Collapse
Affiliation(s)
- Yi Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (X.W.); (D.L.)
| | - Dawei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
- Correspondence: (X.W.); (D.L.)
| |
Collapse
|
78
|
Zhao C, Chen Q, Garcia-Hernandez JD, Watanabe LK, Rawson JM, Rao J, Manners I. Uniform and Length-Tunable, Paramagnetic Self-Assembled Nitroxide-Based Nanofibers for Magnetic Resonance Imaging. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chuanqi Zhao
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Qi Chen
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | | | - Lara K. Watanabe
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Jeremy M. Rawson
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Jianghong Rao
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
79
|
Yang W, Xuan C, Liu X, Zhang Q, Wu K, Bian L, Shi X. A sandwiched patch toward leakage-free and anti-postoperative tissue adhesion sealing of intestinal injuries. Bioact Mater 2022; 24:112-123. [PMID: 36582344 PMCID: PMC9760658 DOI: 10.1016/j.bioactmat.2022.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Ideal repair of intestinal injury requires a combination of leakage-free sealing and postoperative antiadhesion. However, neither conventional hand-sewn closures nor existing bioglues/patches can achieve such a combination. To this end, we develop a sandwiched patch composed of an inner adhesive and an outer antiadhesive layer that are topologically linked together through a reinforced interlayer. The inner adhesive layer tightly and instantly adheres to the wound sites via -NHS chemistry; the outer antiadhesive layer can inhibit cell and protein fouling based on the zwitterion structure; and the interlayer enhances the bulk resilience of the patch under excessive deformation. This complementary trilayer patch (TLP) possesses a unique combination of instant wet adhesion, high mechanical strength, and biological inertness. Both rat and pig models demonstrate that the sandwiched TLP can effectively seal intestinal injuries and inhibit undesired postoperative tissue adhesion. The study provides valuable insight into the design of multifunctional bioadhesives to enhance the treatment efficacy of intestinal injuries.
Collapse
Affiliation(s)
- Wei Yang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chengkai Xuan
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China,Guangzhou Soonheal Medical Technology. Co, Ltd, Guangzhou, 510230, China
| | - Xuemin Liu
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qiang Zhang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Liming Bian
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China,School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China,Corresponding author. National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China,Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
80
|
Xu R, Mu X, Hu Z, Jia C, Yang Z, Yang Z, Fan Y, Wang X, Wu Y, Lu X, Chen J, Xiang G, Li H. Enhancing bioactivity and stability of polymer-based material-tissue interface through coupling multiscale interfacial interactions with atomic-thin TiO 2 nanosheets. NANO RESEARCH 2022; 16:5247-5255. [PMID: 36532602 PMCID: PMC9734535 DOI: 10.1007/s12274-022-5153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 05/25/2023]
Abstract
Stable and bioactive material-tissue interface (MTF) basically determines the clinical applications of biomaterials in wound healing, sustained drug release, and tissue engineering. Although many inorganic nanomaterials have been widely explored to enhance the stability and bioactivity of polymer-based biomaterials, most are still restricted by their stability and biocompatibility. Here we demonstrate the enhanced bioactivity and stability of polymer-matrix bio-composite through coupling multiscale material-tissue interfacial interactions with atomically thin TiO2 nanosheets. Resin modified with TiO2 nanosheets displays improved mechanical properties, hydrophilicity, and stability. Also, we confirm that this resin can effectively stimulate the adhesion, proliferation, and differentiation into osteogenic and odontogenic lineages of human dental pulp stem cells using in vitro cell-resin interface model. TiO2 nanosheets can also enhance the interaction between demineralized dentinal collagen and resin. Our results suggest an approach to effectively up-regulate the stability and bioactivity of MTFs by designing biocompatible materials at the sub-nanoscale. Electronic Supplementary Material Supplementary material (further details of fabrication and characterization of TiO2 NSs and TiO2-ARCs, the bioactivity evaluation of TiO2-ARCs on hDPSCs, and the measurement of interaction with demineralized dentin collagen) is available in the online version of this article at 10.1007/s12274-022-5153-1.
Collapse
Affiliation(s)
- Rongchen Xu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
- Department of Stomatology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039 China
| | - Xiaodan Mu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Zunhan Hu
- Department of Stomatology, Kunming Medical University, Kunming, 650500 China
| | - Chongzhi Jia
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Zhenyu Yang
- National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Zhongliang Yang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Yiping Fan
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Xiaoyu Wang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
- Department of Stomatology, The Strategic Support Force Medical Center, Beijing, 100101 China
| | - Yuefeng Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Xiaotong Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Jihua Chen
- National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Guolei Xiang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Hongbo Li
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| |
Collapse
|
81
|
Shao Y, Xiang L, Zhang W, Chen Y. Responsive shape-shifting nanoarchitectonics and its application in tumor diagnosis and therapy. J Control Release 2022; 352:600-618. [PMID: 36341936 DOI: 10.1016/j.jconrel.2022.10.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Nanodrug delivery system has a great application in the treatment of solid tumors by virtue of EPR effect, though its success in clinics is still limited by its poor extravasation, small intratumoral accumulation, and weak tumor penetration. The shape of nanoparticles (NPs) greatly affects their circulation time, flow behavior, intratumoral amassing, cell internalization as well as tumor tissue penetration. Generally, short nanorods and 100-200 nm spherical nanocarriers possess nice circulation behaviors, nanorods and nanofibers with a large aspect ratio (AR) cumulate well at tumor sites, and tiny nanospheres/disks (< 50 nm) and short nanorods with a low AR achieve a favorable tumor tissue penetration. The AR and surface evenness of NPs also tune their cell contact, cell ingestion, and drug accumulation at tumor sites. Therefore, adopting stimulus-responsive shape-switching (namely, shape-shifting nanoarchitectonics) can not only ensure a good circulation and extravasation for NPs, but also and more importantly, promote their amassing, retention, and penetration in tumor tissues to maximize therapeutic efficacy. Here we review the recently developed shape-switching nanoarchitectonics of antitumoral NPs based on stimulus-responsiveness, demonstrate how successful they are in tumor shrinking and elimination, and provide new ideas for the optimization of anticancer nanotherapeutics.
Collapse
Affiliation(s)
- Yaru Shao
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Li Xiang
- Hengyang Medical School, University of South China, Hengyang 410001, China
| | - Wenhui Zhang
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| |
Collapse
|
82
|
Qiu X, Huang X, Zhang L. Electrochemical Bonding of Hydrogels at Rigid Surfaces. SMALL METHODS 2022; 6:e2201132. [PMID: 36382565 DOI: 10.1002/smtd.202201132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Flexible hydrogels can be chemically/physically bonded on soft surfaces. However, there is a lack of a facile method to build strong interfacial adhesion between hydrogel and various rigid surfaces. Herein, an electrochemical bonding protocol, which improves the interfacial adhesion energy of hydrogel from initial 8 to 3480 J m-2 , ≈435 times enhancement at rigid glass surface, superior to the most of traditional methods, is proposed. A series of electrochemical bonding models to analyze the bonding mechanism, is demonstrated. The results indicate that the electrode reactions generate Fe3+ ions at the anode and OH- ions at the cathode, which migrate and react to form nanoparticles of Fe(OH)3 . These nanoparticles form hump-like physical structures at the interface and work as mechanical-bonding sites, enabling the strong interfacial adhesion. Upon applying acidic solution to decompose the nanoparticles, the strong adhesion can be weakened to easily remove hydrogel from the bonded surface. The electrochemically-bonded hydrogel can maintain its adhesion in water, which enables the electrochemical bonding of hydrogels for repairing various damaged surfaces such as plastic water tubes/bags, indicating promising potential for adhesive engineering applications.
Collapse
Affiliation(s)
- Xiaxin Qiu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Xiaowen Huang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Lidong Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
83
|
Meng H, Ye W, Wang C, Gao Z, Hu B, Wang C. Crystalline micro-nanoparticles enhance cross-linked hydrogels via a confined assembly of chitosan and γ-cyclodextrin. Carbohydr Polym 2022; 298:120145. [DOI: 10.1016/j.carbpol.2022.120145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2022]
|
84
|
Torres-Ortega PV, Del Campo-Montoya R, Plano D, Paredes J, Aldazabal J, Luquin MR, Santamaría E, Sanmartín C, Blanco-Prieto MJ, Garbayo E. Encapsulation of MSCs and GDNF in an Injectable Nanoreinforced Supramolecular Hydrogel for Brain Tissue Engineering. Biomacromolecules 2022; 23:4629-4644. [DOI: 10.1021/acs.biomac.2c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pablo Vicente Torres-Ortega
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008Pamplona, Spain
| | - Rubén Del Campo-Montoya
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008Pamplona, Spain
| | - Jacobo Paredes
- Tecnun, School of Engineering, University of Navarra, C/Manuel de Lardizábal 15, 20018San Sebastián, Spain
| | - Javier Aldazabal
- Tecnun, School of Engineering, University of Navarra, C/Manuel de Lardizábal 15, 20018San Sebastián, Spain
| | - María-Rosario Luquin
- Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008Pamplona, Spain
- Department of Neurology and Neurosciences, Clínica Universidad de Navarra, Pamplona, C/Pío XII 36, 31008Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdisNa), 31008Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008Pamplona, Spain
| | - María J. Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008Pamplona, Spain
| | - Elisa Garbayo
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008Pamplona, Spain
| |
Collapse
|
85
|
Li TJ, Yang WH, Pan JY, Huang R, Shao GF, Wen YH. Thermally Activated Microstructural Evolution of PtIrCu Alloyed Nanorings: Insights from Molecular Dynamics Simulations. ACS OMEGA 2022; 7:37436-37441. [PMID: 36312425 PMCID: PMC9607661 DOI: 10.1021/acsomega.2c04214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Nanoalloys have attracted extensive interest from the research and industrial community due to their unique properties. In this work, the thermally activated microstructural evolution and resultant collapse of PtIrCu nanorings were investigated using molecular dynamics simulations. Three PtIrCu nanorings with a fixed outer radius and varied inner radii were addressed to investigate the size effects on their thermal and shape stabilities. The shape factor was introduced to monitor their shape changes, and a common neighbor analysis was employed to characterize the local structures of atoms. The results reveal that both the thermal and shape stabilities of these nanorings can be remarkably improved by decreasing the inner radius. Furthermore, they all experienced the evolutionary process from ring to pie and spherelike morphologies, finally resulting in structural collapse. The stacking faults were observed in these rings during the heating process. Our work sheds light on the fundamental understanding of alloyed nanorings subjected to heating, hence offering a theoretical foundation for their syntheses and applications.
Collapse
Affiliation(s)
- Tie-Jun Li
- School
of Ocean Information Engineering, Jimei
University, Xiamen361021, People’s Republic
of China
| | - Wei-Hua Yang
- Department
of Physics, Xiamen University, Xiamen361005, People’s Republic of China
| | - Jin-Yan Pan
- School
of Ocean Information Engineering, Jimei
University, Xiamen361021, People’s Republic
of China
| | - Rao Huang
- Department
of Physics, Xiamen University, Xiamen361005, People’s Republic of China
| | - Gui-Fang Shao
- Department
of Automation, Xiamen University, Xiamen361005, People’s Republic of China
| | - Yu-Hua Wen
- Department
of Physics, Xiamen University, Xiamen361005, People’s Republic of China
| |
Collapse
|
86
|
Choudhary N, Kumar V, Mobin SM. Bimetallic CoNi Nanoflowers for Catalytic Transfer Hydrogenation of Terminal Alkynes. ChemistrySelect 2022. [DOI: 10.1002/slct.202202501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Neha Choudhary
- Department of Chemistry Indian Institute of Technology Indore Simrol Indore Khandwa Road 453552 India
| | - Viresh Kumar
- Department of Chemistry Indian Institute of Technology Indore Simrol Indore Khandwa Road 453552 India
| | - Shaikh M. Mobin
- Department of Chemistry Indian Institute of Technology Indore Simrol Indore Khandwa Road 453552 India
- Department of Biosciences and Bio-Medical Engineering Indian Institute of Technology Indore Simrol Khandwa Road, Indore 453552 India
- Center for Electric Vehicle and Intelligent Transport Systems Indian Institute of Technology Indore Simrol Indore Khandwa Road 453552 India
| |
Collapse
|
87
|
Liu Z, Shi X, Shu W, Qi S, He X, Wang X, He X. Effect of Hydrophobic Hydration on the Self-Assembling Behavior of Poly ( l-Lactide) Homopolymers with an Ionic End Group. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhen Liu
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Xinjie Shi
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Wenchao Shu
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Shuo Qi
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Xiaoming He
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Xiaosong Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Xiaohua He
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
88
|
Lei S, Tian J, Kang Y, Zhang Y, Manners I. AIE-Active, Stimuli-Responsive Fluorescent 2D Block Copolymer Nanoplatelets Based on Corona Chain Compression. J Am Chem Soc 2022; 144:17630-17641. [PMID: 36107414 DOI: 10.1021/jacs.2c07133] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aggregation-induced emission (AIE) represents a powerful tool in nanoscience as a result of enhanced luminescence in the condensed state. Although AIEgenic materials have been utilized in a wide range of applications, well-defined self-assembled nanoparticles with tailorable and uniform dimensions and morphology remain challenging to access. Herein, we use the seeded growth, living crystallization-driven self-assembly (CDSA) method to prepare size-tunable and uniform AIE-active 2D nanoplatelets from amphiphilic block copolymer (BCP) precursors with a crystallizable core-forming block and a corona-forming block to which tetraphenylethene (TPE) groups were covalently grafted as AIE-active pendants. The nanoplatelets were formed as a result of a solvophobicity-induced 1D to 2D morphology preference change, which accompanied the seeded growth of a BCP with a quaternized corona-forming block bearing the TPE luminogen. The 2D nanoplatelets exhibited a solvent-responsive fluorescent emission, and examples with coronas containing homogeneously distributed AIE-active TPE groups and Hg(II)-capturing thymine units exhibited excellent performance as proof-of-concept "turn-on" sensors for Hg(II) detection with a rapid response, high selectivity, and a low detection limit (5-125 × 10-9 M, i.e., 1-25 ppb). The fluorescence intensity was found to be nonlinear with respect to analyte concentration and to increase with the area of the nanoplatelet. This behavior is consistent with a cooperative mechanism based on changes in the steric compression of the corona chains, which gives rise to a restriction of the intramolecular motion (RIM) effect.
Collapse
Affiliation(s)
- Shixing Lei
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Jia Tian
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Yuetong Kang
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Yifan Zhang
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
89
|
Ding R, Padilla Espinosa IM, Loevlie D, Azadehranjbar S, Baker AJ, Mpourmpakis G, Martini A, Jacobs TDB. Size-dependent shape distributions of platinum nanoparticles. NANOSCALE ADVANCES 2022; 4:3978-3986. [PMID: 36133342 PMCID: PMC9470057 DOI: 10.1039/d2na00326k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
While it is well established that nanoparticle shape can depend on equilibrium thermodynamics or growth kinetics, recent computational work has suggested the importance of thermal energy in controlling the distribution of shapes in populations of nanoparticles. Here, we used transmission electron microscopy to characterize the shapes of bare platinum nanoparticles and observed a strong dependence of shape distribution on particle size. Specifically, the smallest nanoparticles (<2.5 nm) had a truncated octahedral shape, bound by 〈111〉 and 〈100〉 facets, as predicted by lowest-energy thermodynamics. However, as particle size increased, the higher-energy 〈110〉 facets became increasingly common, leading to a large population of non-equilibrium truncated cuboctahedra. The observed trends were explained by combining atomistic simulations (both molecular dynamics and an empirical square-root bond-cutting model) with Boltzmann statistics. Overall, this study demonstrates experimentally how thermal energy leads to shape variation in populations of metal nanoparticles, and reveals the dependence of shape distributions on particle size. The prevalence of non-equilibrium facets has implications for metal nanoparticles applications from catalysis to solar energy.
Collapse
Affiliation(s)
- Ruikang Ding
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh Pittsburgh PA 15261 USA
| | | | - Dennis Loevlie
- Department of Chemical and Petroleum Engineering, University of Pittsburgh Pittsburgh PA 15261 USA
| | - Soodabeh Azadehranjbar
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh Pittsburgh PA 15261 USA
| | - Andrew J Baker
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh Pittsburgh PA 15261 USA
| | - Giannis Mpourmpakis
- Department of Chemical and Petroleum Engineering, University of Pittsburgh Pittsburgh PA 15261 USA
| | - Ashlie Martini
- Department of Mechanical Engineering, University of California, Merced Merced CA 95343 USA
| | - Tevis D B Jacobs
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh Pittsburgh PA 15261 USA
| |
Collapse
|
90
|
Wang A, Fan G, Qi H, Li H, Pang C, Zhu Z, Ji S, Liang H, Jiang BP, Shen XC. H 2O 2-activated in situ polymerization of aniline derivative in hydrogel for real-time monitoring and inhibition of wound bacterial infection. Biomaterials 2022; 289:121798. [PMID: 36108582 DOI: 10.1016/j.biomaterials.2022.121798] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
Wound is highly susceptible to bacterial infection, which can cause chronic wound and serial complications. However, timely treatment is hampered by the lack of real-time monitoring of wound status and effective therapeutic systems. Herein, in situ biosynthesis of functional conjugated polymer in artificial hydrogel was developed via the utilization of biological microenvironment to realize monitoring in real time of wound infection and inhibition of bacteria for the first time. Specially, an easily polymerizable aniline dimer derivative (N-(3-sulfopropyl) p-aminodiphenylamine, SPA) was artfully in situ polymerized into polySPA (PSPA) in calcium alginate hydrogel, which was initiated via the catalysis of hydrogen peroxide (H2O2) overexpressed in infected wound to produce hydroxyl radical (•OH) by preloaded horseradish peroxidase (HRP). Benefitting from outstanding near infrared (NIR) absorption of PSPA, such polymerization can be ingeniously used for real-time monitoring of H2O2 via naked-eye and photoacoustic signal, as well as NIR light-mediated photothermal inhibition of bacteria. Furthermore, combining the persistent chemodynamic activity of •OH, the in vivo experimental data proved that the wound healing rate was 99.03% on the 11th day after treatment. Therefore, the present work opens the way to manipulate in situ biosynthesis of functional conjugated polymer in artificial hydrogels for overcoming the issues on wound theranostics.
Collapse
Affiliation(s)
- Aihui Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Guishi Fan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Hongli Qi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Hongyan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Congcong Pang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Zhongkai Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Shichen Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
91
|
Verma M, Dar AI, Acharya A. Facile synthesis of biogenic silica nanomaterial loaded transparent tragacanth gum hydrogels with improved physicochemical properties and inherent anti-bacterial activity. NANOSCALE 2022; 14:11635-11654. [PMID: 35904404 DOI: 10.1039/d2nr02051c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this report, biogenic, crystalline (∼60.5 ± 2%) bowknot structured silica nanoparticles (BSNPs) of length ∼ 274 ± 7 nm and width ∼ 36 ± 2 nm were isolated from invasive species viz. Lantana camara. These were then chemically modified using nitrogen containing moieties viz. APTES and CTAB. These modified BSNPs were then used as electrostatic cross-linking agents for the formation of tragacanth gum (TG) hydrogels. The cytocompatible CTAB@BSNP-TG hydrogels documented ∼10-12 fold enhancement in anti-bacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa when compared with TG hydrogels. Disruption of the bacterial membrane by ROS generation and protein leakage were responsible for anti-bacterial activity. A cell migration assay suggested that CTAB@BSNP-TG augmented the cell proliferation of NIH-3T3 cells compared to other TG hydrogels. The present study will pave the path for the development of organic-inorganic hybrid nanocomposite-based hydrogels for anti-bacterial and cell migration applications.
Collapse
Affiliation(s)
- Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Aqib Iqbal Dar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
92
|
Ellis CE, Hils C, Oliver AM, Greiner A, Schmalz H, Manners I. Electrospinning of 1D Fiber‐Like Block Copolymer Micelles with a Crystalline Core. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Charlotte E. Ellis
- Department of Chemistry University of Victoria Victoria BC V8P 5C2 Canada
| | - Christian Hils
- Macromolecular Chemistry II University of Bayreuth 95440 Bayreuth Germany
| | - Alex M. Oliver
- Department of Chemistry University of Victoria Victoria BC V8P 5C2 Canada
- School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Andreas Greiner
- Macromolecular Chemistry II University of Bayreuth 95440 Bayreuth Germany
- Bavarian Polymer Institute University of Bayreuth 95440 Bayreuth Germany
| | - Holger Schmalz
- Macromolecular Chemistry II University of Bayreuth 95440 Bayreuth Germany
- Bavarian Polymer Institute University of Bayreuth 95440 Bayreuth Germany
| | - Ian Manners
- Department of Chemistry University of Victoria Victoria BC V8P 5C2 Canada
- Center for Advanced Materials and Related Technology (CAMTEC) University of Victoria 3800 Finnerty Rd Victoria BC V8P 5C2 Canada
| |
Collapse
|
93
|
Shah S, Famta P, Bagasariya D, Charankumar K, Amulya E, Kumar Khatri D, Singh Raghuvanshi R, Bala Singh S, Srivastava S. Nanotechnology based drug delivery systems: Does shape really matter? Int J Pharm 2022; 625:122101. [PMID: 35961415 DOI: 10.1016/j.ijpharm.2022.122101] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
As of today, the era of nanomedicine has brought numerous breakthroughs and overcome challenges in the treatment of various disorders. Various factors like size, charge and surface hydrophilicity have garnered significant attention by nanotechnologists. However, more exploration in the field of nanoparticle shape and geometry, one of the basic physical phenomenon is required. Tuning nanoparticle shape and geometry could potentially overcome pitfalls in therapeutics and biomedical fields. Thus, in this article, we unveil the importance of tuning nanoparticle shape selection across the delivery platforms. This article provides an in-depth understanding of nanoparticle shape modulation and advise the researchers on the ideal morphology selection tailored for each implication. We deliberated the importance of nanoparticle shape selection for specific implications with respect to organ targeting, cellular internalization, pharmacokinetics and bio-distribution, protein corona formation as well as RES evasion and tumor targeting. An additional section on the significance of shape transformation, a recently introduced novel avenue with applications in drug delivery was discussed. Furthermore, regulatory concerns towards nanoparticle shape which need to be addressed for harnessing their clinical translation will be explained.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Deepkumar Bagasariya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kondasingh Charankumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
94
|
Zhang J, Wang Y, Zhang J, Lei IM, Chen G, Xue Y, Liang X, Wang D, Wang G, He S, Liu J. Robust Hydrogel Adhesion by Harnessing Bioinspired Interfacial Mineralization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201796. [PMID: 35801492 DOI: 10.1002/smll.202201796] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Hydrogels have gained intensive interest in biomedical and flexible electronics, and adhesion of hydrogels to substrates or devices is indispensable in these application scenarios. Although numerous hydrogel adhesion strategies have been developed, it is still challenging to achieve a hydrogel with robust adhesion interface through a universal yet simple method. Here, a strategy for establishing strong interfacial adhesion between various hydrogels and a wide variety of substrates (i.e., soft hydrogels and rigid solids, including glass, aluminum, PET, nylon and PDMS) even under wet conditions, is reported. This strong interfacial adhesion is realized by constructing a bioinspired mineralized transition layer through ion diffusion and subsequent mineral deposition. This strategy is not only generally applicable to a broad range of substrates and ionic pairs, but also compatible with various fabrication approaches without compromising their interfacial robustnesses. This strategy is further demonstrated in the application of single-electrode triboelectric nanogenerators (TENG), where a robust interface between the hydrogel and elastomer layers is enabled to ensure a reliable signal generation and output.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yaya Wang
- Flexible Printed Electronics Technology Center, School of Science, Harbin Institute of Technology Shenzhen, Nanshan District, Shenzhen, Guangdong Province, 518055, China
| | - Jiajun Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Iek Man Lei
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guangda Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Xue
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiangyu Liang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Daozeng Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guigen Wang
- Flexible Printed Electronics Technology Center, School of Science, Harbin Institute of Technology Shenzhen, Nanshan District, Shenzhen, Guangdong Province, 518055, China
| | - Sisi He
- Flexible Printed Electronics Technology Center, School of Science, Harbin Institute of Technology Shenzhen, Nanshan District, Shenzhen, Guangdong Province, 518055, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
95
|
Contemporary nanocellulose-composites: A new paradigm for sensing applications. Carbohydr Polym 2022; 298:120052. [DOI: 10.1016/j.carbpol.2022.120052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/21/2023]
|
96
|
Mattern A, Claßen R, Wolf A, Pouokam E, Schlüter KD, Wickleder MS, Diener M. Multivalent stimulation of β 1-, but not β 2-receptors by adrenaline functionalised gold nanoparticles. NANOSCALE ADVANCES 2022; 4:3182-3193. [PMID: 36132815 PMCID: PMC9418053 DOI: 10.1039/d2na00171c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/25/2022] [Indexed: 05/13/2023]
Abstract
In this study, we present a strategy for the synthesis of catecholamine functionalised gold nanoparticles and investigated their multivalent interactions with adrenergic receptors in different biological systems. The catecholamines adrenaline and noradrenaline represent key examples of adrenergic agonists. We used gold nanoparticles as carriers and functionalised them on their surface with a variety of these neurotransmitter molecules. For this purpose, we synthesised each ligand separately using mercaptoundecanoic acid as a bifunctional linking unit and adrenaline (or noradrenaline) as a biogenic amine. This ligand was then immobilised onto the surface of presynthesised spherical monodispersive gold nanoparticles in a ligand exchange reaction. After detailed analytical characterisations, the functionalised gold nanoparticles were investigated for their interactions with adrenergic receptors in intestinal, cardiac and respiratory tissues. Whereas the contractility of respiratory smooth muscle cells (regulated by β2-receptors) was not influenced, (nor)adrenaline functionalised nanoparticles administered in nanomolar concentrations induced epithelial K+ secretion (mediated via different β-receptors) and increased contractility of isolated rat cardiomyocytes (mediated by β1-receptors). The present results suggest differences in the accessibility of adrenergic agonists bound to gold nanoparticles to the binding pockets of different β-receptor subtypes.
Collapse
Affiliation(s)
- Annabelle Mattern
- Institute of Inorganic Chemistry, University of Cologne Greinstrasse 6 50939 Cologne Germany
| | - Rebecca Claßen
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen Frankfurter Strasse 100 35392 Giessen Germany
| | - Annemarie Wolf
- Institute of Physiology, Justus Liebig University Giessen Aulweg 129 35392 Giessen Germany
| | - Ervice Pouokam
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen Frankfurter Strasse 100 35392 Giessen Germany
| | - Klaus-Dieter Schlüter
- Institute of Physiology, Justus Liebig University Giessen Aulweg 129 35392 Giessen Germany
| | - Mathias S Wickleder
- Institute of Inorganic Chemistry, University of Cologne Greinstrasse 6 50939 Cologne Germany
| | - Martin Diener
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen Frankfurter Strasse 100 35392 Giessen Germany
| |
Collapse
|
97
|
Particles Morphology Impact on Cytotoxicity, Hemolytic Activity and Sorption Properties of Porous Aluminosilicates of Kaolinite Group. NANOMATERIALS 2022; 12:nano12152559. [PMID: 35893527 PMCID: PMC9332423 DOI: 10.3390/nano12152559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023]
Abstract
A comparative study of the properties of aluminosilicates of the kaolinite (Al2Si2O5(OH)4∙nH2O) group with different particles morphology has been carried out. Under conditions of directed hydrothermal synthesis, kaolinite nanoparticles with spherical, sponge, and platy morphologies were obtained. Raw nanotubular halloysite was used as particles with tubular morphology. The samples were studied by X-ray diffraction, SEM, solid-state NMR, low-temperature nitrogen adsorption, and the dependence of the zeta potential of the samples on the pH of the medium was defined. The sorption capacity with respect to cationic dye methylene blue in aqueous solutions was studied. It was found that sorption capacity depends on particles morphology and decreases in the series spheres-sponges-tubes-plates. The Langmuir, Freundlich, and Temkin models describe experimental methylene blue adsorption isotherms on aluminosilicates of the kaolinite subgroup with different particles morphology. To process the kinetic data, pseudo-first order and pseudo-second order were used. For the first time, studies of the dependence of hemolytic activity and cytotoxicity of aluminosilicate nanoparticles on their morphology were carried out. It was found that aluminosilicate nanosponges and spherical particles are not toxic to human erythrocytes and do not cause their destruction at sample concentrations from 0.1 to 1 mg/g. Based on the results of the MTT test, the concentration value that causes 50% inhibition of cell population growth (IC50, mg/mL) was calculated. For nanotubes, this value turned out to be the smallest—0.33 mg/mL. For samples with platy, spherical and nanosponge morphology, the IC50 values were 1.55, 2.68, and 4.69 mg/mL, respectively.
Collapse
|
98
|
Jiang X, Yan N, Wang M, Feng M, Guan Q, Xu L. Magnetic nanostructure and biomolecule synergistically promoted Suaeda-inspired self-healing hydrogel composite for seawater evaporation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154545. [PMID: 35304147 DOI: 10.1016/j.scitotenv.2022.154545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Multifunctional hydrogels with excellent comprehensive performance are essential prerequisite for the implementation of effective water resources technology with high efficiency and low energy consumption. Inspired by the water purification and self-healing properties of natural plants, and based on the synergy of photothermal and biological effects, high photothermal Fe3O4 nanoparticles and natural polyhydroxy oligomeric proanthocyanidin (OPC) are introduced into a water-active polyvinyl alcohol (PVA) hydrogel. Two new bio-hydrogels of PVA/Fe3O4/graphite and PVA/OPC with self-healing and stretchable properties are proposed and designed. The obtained hydrogels exhibit reversible covalent cross-linked water-promoted healing (chemically) and photothermal melting/recrystallization healing (physically). The double-layered hydrogel composite demonstrates a dual response function (sunlight and near-infrared light), along with water purification properties. It is prepared through a water spray triggered self-healing process. The ultimate fracture strain of the photothermal layer and purification layer hydrogel was more than 1000% and 400% respectively after self-healing.After 48 h of hydrogel composite adsorption, the color of a methylene blue solution faded, and the absorption peak at 664 nm decreased. In addition, this research adopts a phased evaporation method to concentrate local energy and provide power for seawater evaporation. The evaporation efficiency of seawater induced by near-infrared (NIR) light was up to 3.15 kg m-2 h-1, whereas that under sunlight was 1.25 kg m-2 h-1. Selection of the evaporation excitation light source allowed control of the evaporation efficiency. The proposed technology is expected to be widely applicable to the staged evaporation of seawater as well as water purification.
Collapse
Affiliation(s)
- Xizhi Jiang
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Nina Yan
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Min Wang
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Min Feng
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qingbao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Lei Xu
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
99
|
Zhu C, Nicolas J. (Bio)degradable and Biocompatible Nano-Objects from Polymerization-Induced and Crystallization-Driven Self-Assembly. Biomacromolecules 2022; 23:3043-3080. [PMID: 35707964 DOI: 10.1021/acs.biomac.2c00230] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) techniques have emerged as powerful approaches to produce a broad range of advanced synthetic nano-objects with high potential in biomedical applications. PISA produces nano-objects of different morphologies (e.g., spheres, vesicles and worms), with high solids content (∼10-50 wt %) and without additional surfactant. CDSA can finely control the self-assembly of block copolymers and readily forms nonspherical crystalline nano-objects and more complex, hierarchical assemblies, with spatial and dimensional control over particle length or surface area, which is typically difficult to achieve by PISA. Considering the importance of these two assembly techniques in the current scientific landscape of block copolymer self-assembly and the craze for their use in the biomedical field, this review will focus on the advances in PISA and CDSA to produce nano-objects suitable for biomedical applications in terms of (bio)degradability and biocompatibility. This review will therefore discuss these two aspects in order to guide the future design of block copolymer nanoparticles for future translation toward clinical applications.
Collapse
Affiliation(s)
- Chen Zhu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
100
|
Shukla SK, Sarode A, Wang X, Mitragotri S, Gupta V. Particle shape engineering for improving safety and efficacy of doxorubicin - A case study of rod-shaped carriers in resistant small cell lung cancer. BIOMATERIALS ADVANCES 2022; 137:212850. [PMID: 35929278 DOI: 10.1016/j.bioadv.2022.212850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
Therapeutic drug delivery is known to be influenced by interplay between various design parameters of delivery carriers which influence the drug uptake efficiency and subsequently the effectiveness of treatment. Amongst, the several design parameters such as size, shape and surface charge, particle shape is gaining attention as a crucial design parameter for development of robust and efficient delivery carriers. In this exploration, we investigated the influence of particle shape on injectability and therapeutic effectiveness of the delivery carriers using doxorubicin (DOX) conjugated polymeric microparticles. Results of injectability experiments demonstrated the influence of particle shape with anisotropic rod-shaped particles displaying increased injectability as against spherical particles. Impact of particle shape on therapeutic effectiveness was assessed against small cell lung cancer (SCLC) which was selected as a model disease. Results of cellular uptake studies revealed preferential uptake of rod-shaped particles than spherical particles in cancer cells. These results were further validated by in-vitro tumor simulation studies wherein rod-shaped particles displayed enhanced anti-tumorigenic activity along with distortion of tumor integrity against spheres. Furthermore, the impact of particle size was also assessed on cardiotoxicity, an adverse effect of DOX which limits its therapeutic use. Results illustrated that the high aspect ratio particles displayed diminished cardiotoxicity activity. These results provide valuable insights about influence of particle shape for designing efficient therapeutics.
Collapse
Affiliation(s)
- Snehal K Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Apoorva Sarode
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Xuechun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Samir Mitragotri
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|