51
|
Yang Y, Meng WJ, Wang ZQ. MicroRNAs (miRNAs): Novel potential therapeutic targets in colorectal cancer. Front Oncol 2022; 12:1054846. [PMID: 36591525 PMCID: PMC9794577 DOI: 10.3389/fonc.2022.1054846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is the most common malignant tumor and one of the most lethal malignant tumors in the world. Despite treatment with a combination of surgery, radiotherapy, and/or systemic treatment, including chemotherapy and targeted therapy, the prognosis of patients with advanced CRC remains poor. Therefore, there is an urgent need to explore novel therapeutic strategies and targets for the treatment of CRC. MicroRNAs (miRNAs/miRs) are a class of short noncoding RNAs (approximately 22 nucleotides) involved in posttranscriptional gene expression regulation. The dysregulation of its expression is recognized as a key regulator related to the development, progression and metastasis of CRC. In recent years, a number of miRNAs have been identified as regulators of drug resistance in CRC, and some have gained attention as potential targets to overcome the drug resistance of CRC. In this review, we introduce the miRNAs and the diverse mechanisms of miRNAs in CRC and summarize the potential targeted therapies of CRC based on the miRNAs.
Collapse
|
52
|
Valencia K, Echepare M, Teijeira Á, Pasquier A, Bértolo C, Sainz C, Tamayo I, Picabea B, Bosco G, Thomas R, Agorreta J, López-Picazo JM, Frigola J, Amat R, Calvo A, Felip E, Melero I, Montuenga LM. DSTYK inhibition increases the sensitivity of lung cancer cells to T cell-mediated cytotoxicity. J Exp Med 2022; 219:213507. [PMID: 36169652 PMCID: PMC9524203 DOI: 10.1084/jem.20220726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 12/13/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related death worldwide. We identify DSTYK, a dual serine/threonine and tyrosine non-receptor protein kinase, as a novel actionable target altered in non-small cell lung cancer (NSCLC). We also show DSTYK's association with a lower overall survival (OS) and poorer progression-free survival (PFS) in multiple patient cohorts. Abrogation of DSTYK in lung cancer experimental systems prevents mTOR-dependent cytoprotective autophagy, impairs lysosomal biogenesis and maturation, and induces accumulation of autophagosomes. Moreover, DSTYK inhibition severely affects mitochondrial fitness. We demonstrate in vivo that inhibition of DSTYK sensitizes lung cancer cells to TNF-α-mediated CD8+-killing and immune-resistant lung tumors to anti-PD-1 treatment. Finally, in a series of lung cancer patients, DSTYK copy number gain predicts lack of response to the immunotherapy. In summary, we have uncovered DSTYK as new therapeutic target in lung cancer. Prioritization of this novel target for drug development and clinical testing may expand the percentage of NSCLC patients benefiting from immune-based treatments.
Collapse
Affiliation(s)
- Karmele Valencia
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.,Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Mirari Echepare
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain
| | - Álvaro Teijeira
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain.,Program of Immunology and Immunotherapy, CIMA-University of Navarra, Pamplona, Spain
| | - Andrea Pasquier
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain
| | - Cristina Bértolo
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain
| | - Cristina Sainz
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain
| | - Ibon Tamayo
- Navarra Health Research Institute (IDISNA), Pamplona, Spain.,Computational Biology program, CIMA-University of Navarra, Pamplona, Spain
| | - Beñat Picabea
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain
| | - Graziella Bosco
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Roman Thomas
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Pathology, University Hospital Cologne, Cologne, Germany.,German Cancer Research Center, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jackeline Agorreta
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.,Department of Health Sciences, Biochemistry Area, Public University of Navarra, Pamplona, Spain
| | | | - Joan Frigola
- Thoracic Cancers Translational Genomics Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ramon Amat
- Thoracic Cancers Translational Genomics Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alfonso Calvo
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain
| | - Enriqueta Felip
- Thoracic Cancers Translational Genomics Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Oncology Department, Hospital Universitari Vall d'Hebron and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ignacio Melero
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain.,Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Luis M Montuenga
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain
| |
Collapse
|
53
|
Shiralipour A, Khorsand B, Jafari L, Salehi M, Kazemi M, Zahiri J, Jajarmi V, Kazemi B. Identifying Key Lysosome-Related Genes Associated with Drug-Resistant Breast Cancer Using Computational and Systems Biology Approach. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e130342. [PMID: 36915401 PMCID: PMC10007991 DOI: 10.5812/ijpr-130342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022]
Abstract
Background Drug resistance in breast cancer is an unsolved problem in treating patients. It has been recently discussed that lysosomes contribute to the invasion and angiogenesis of cancer cells. There is evidence that lysosomes can also cause multi-drug resistance. We analyzed this emerging concept in breast cancer through computational and systems biology approaches. Objectives We aimed to identify the key lysosome-related genes associated with drug-resistant breast cancer. Methods All genes contributing to the structure and function of lysosomes were inquired through the Human Lysosome Gene Database. The prioritized top 51 genes from the provided lists of Endeavour, ToppGene, and GPSy as prioritization tools were selected. All lysosomal genes and 12 breast cancer-related genes aligned to identify the most similar genes to breast cancer-related genes. Different centralities were applied to score each human protein to calculate the most central lysosomal genes in the human protein-protein interaction (PPI) network. Common genes were extracted from the results of the mentioned methods as a selected gene set. For Gene Ontology enrichment, the selected gene set was analyzed by WebGestalt, DAVID, and KOBAS. The PPI network was constructed via the STRING database. The PPI network was analyzed utilizing Cytoscape for topology network interaction and CytoHubba to extract hub genes. Results Based on biological studies, literature reviews, and comparing all mentioned analyzing methods, six genes were introduced as essential in breast cancer. This computational approach to all lysosome-related genes suggested that candidate genes include PRF1, TLR9, CLTC, GJA1, AP3B1, and RPTOR. The analyses of these six genes suggest that they may have a crucial role in breast cancer development, which has rarely been evaluated. These genes have a potential therapeutic implication for new drug discovery for chemo-resistant breast cancer. Conclusions The present work focused on all the functional and structural lysosome-related genes associated with breast cancer. It revealed the top six lysosome hub genes that might serve as therapeutic targets in drug-resistant breast cancer. Since these genes play a pivotal role in the structure and function of lysosomes, targeting them can effectively overcome drug resistance.
Collapse
Affiliation(s)
- Aref Shiralipour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Khorsand
- Computer Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Leila Jafari
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University (TMU), Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Kazemi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Zahiri
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0662, USA
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahram Kazemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
54
|
Zhu J, Wang H, Jiang X. mTORC1 beyond anabolic metabolism: Regulation of cell death. J Biophys Biochem Cytol 2022; 221:213609. [PMID: 36282248 PMCID: PMC9606688 DOI: 10.1083/jcb.202208103] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/13/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1), a multi-subunit protein kinase complex, interrogates growth factor signaling with cellular nutrient and energy status to control metabolic homeostasis. Activation of mTORC1 promotes biosynthesis of macromolecules, including proteins, lipids, and nucleic acids, and simultaneously suppresses catabolic processes such as lysosomal degradation of self-constituents and extracellular components. Metabolic regulation has emerged as a critical determinant of various cellular death programs, including apoptosis, pyroptosis, and ferroptosis. In this article, we review the expanding knowledge on how mTORC1 coordinates metabolic pathways to impinge on cell death regulation. We focus on the current understanding on how nutrient status and cellular signaling pathways connect mTORC1 activity with ferroptosis, an iron-dependent cell death program that has been implicated in a plethora of human diseases. In-depth understanding of the principles governing the interaction between mTORC1 and cell death pathways can ultimately guide the development of novel therapies for the treatment of relevant pathological conditions.
Collapse
Affiliation(s)
- Jiajun Zhu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China,Tsinghua-Peking Center for Life Sciences, Beijing, China,Correspondence to Jiajun Zhu:
| | - Hua Wang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY,Xuejun Jiang:
| |
Collapse
|
55
|
Merle N, Elmshäuser S, Strassheimer F, Wanzel M, König AM, Funk J, Neumann M, Kochhan K, Helmprobst F, Pagenstecher A, Nist A, Mernberger M, Schneider A, Braun T, Borggrefe T, Savai R, Timofeev O, Stiewe T. Monitoring autochthonous lung tumors induced by somatic CRISPR gene editing in mice using a secreted luciferase. Mol Cancer 2022; 21:191. [PMID: 36192757 PMCID: PMC9531476 DOI: 10.1186/s12943-022-01661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/22/2022] [Indexed: 12/04/2022] Open
Abstract
Background In vivo gene editing of somatic cells with CRISPR nucleases has facilitated the generation of autochthonous mouse tumors, which are initiated by genetic alterations relevant to the human disease and progress along a natural timeline as in patients. However, the long and variable, orthotopic tumor growth in inner organs requires sophisticated, time-consuming and resource-intensive imaging for longitudinal disease monitoring and impedes the use of autochthonous tumor models for preclinical studies. Methods To facilitate a more widespread use, we have generated a reporter mouse that expresses a Cre-inducible luciferase from Gaussia princeps (GLuc), which is secreted by cells in an energy-consuming process and can be measured quantitatively in the blood as a marker for the viable tumor load. In addition, we have developed a flexible, complementary toolkit to rapidly assemble recombinant adenoviruses (AVs) for delivering Cre recombinase together with CRISPR nucleases targeting cancer driver genes. Results We demonstrate that intratracheal infection of GLuc reporter mice with CRISPR-AVs efficiently induces lung tumors driven by mutations in the targeted cancer genes and simultaneously activates the GLuc transgene, resulting in GLuc secretion into the blood by the growing tumor. GLuc blood levels are easily and robustly quantified in small-volume blood samples with inexpensive equipment, enable tumor detection already several months before the humane study endpoint and precisely mirror the kinetics of tumor development specified by the inducing gene combination. Conclusions Our study establishes blood-based GLuc monitoring as an inexpensive, rapid, high-throughput and animal-friendly method to longitudinally monitor autochthonous tumor growth in preclinical studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01661-2.
Collapse
Affiliation(s)
- Nastasja Merle
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Sabrina Elmshäuser
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Florian Strassheimer
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Michael Wanzel
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Alexander M König
- Clinic of Diagnostic and Interventional Radiology, Philipps-University, Core Facility 7T-small animal MRI, Marburg, Germany
| | - Julianne Funk
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Michelle Neumann
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Katharina Kochhan
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Frederik Helmprobst
- Mouse Pathology and Electron Microscopy Core Facility, Department of Neuropathology, Philipps-University, Marburg, Germany
| | - Axel Pagenstecher
- Mouse Pathology and Electron Microscopy Core Facility, Department of Neuropathology, Philipps-University, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps-University, Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - André Schneider
- Department of Cardiac Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Tilman Borggrefe
- Department of Biochemistry, Justus Liebig University, Giessen, Germany
| | - Rajkumar Savai
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Oleg Timofeev
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany. .,Genomics Core Facility, Philipps-University, Marburg, Germany. .,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.
| |
Collapse
|
56
|
Luo F, Zhao J, Liu S, Xue Y, Tang D, Yang J, Mei Y, Li G, Xie Y. Ursolic acid augments the chemosensitivity of drug-resistant breast cancer cells to doxorubicin by AMPK-mediated mitochondrial dysfunction. Biochem Pharmacol 2022; 205:115278. [PMID: 36191625 DOI: 10.1016/j.bcp.2022.115278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022]
Abstract
Multidrug resistance remains the major obstacle to successful therapy for breast carcinoma. Ursolic acid (UA), a triterpenoid compound, has been regarded as a potential neoplasm chemopreventive drug in some preclinical studies since it exerts multiple biological activities. In this research, we investigated the role of UA in augmenting the chemosensitivity of drug-resistant breast carcinoma cells to doxorubicin (DOX), and we further explored the possible molecular mechanisms. Notably, we found that UA treatment led to inhibition of cellular proliferation and migration and cell cycle arrest in DOX-resistant breast cancers. Furthermore, combination treatment with UA and DOX showed a stronger inhibitory effect on cell viability, colony formation, and cell migration; induced more cell apoptosis in vitro; and generated a more potent inhibitory effect on the growth of the MCF-7/ADR xenograft tumor model than DOX alone. Mechanistically, UA effectively increased p-AMPK levels and concomitantly reduced p-mTOR and PGC-1α protein levels, resulting in impaired mitochondrial function, such as mitochondrial respiration inhibition, ATP depletion, and excessive reactive oxygen species (ROS) generation. In addition, UA induced a DNA damage response by increasing intracellular ROS production, thus causing cell cycle arrest at the G0/G1 phase. UA also suppressed aerobic glycolysis by prohibiting the expression and function of Glut1. Considered together, our data demonstrated that UA potentiated the susceptibility of DOX-resistant breast carcinoma cells to DOX by targeting energy metabolism through the AMPK/mTOR/PGC-1α signaling pathway, and it is a potential adjuvant chemotherapeutic candidate in MDR breast cancer.
Collapse
Affiliation(s)
- Fazhen Luo
- Research Center for Health and Nutrition, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Pharmacy Department, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Juanjuan Zhao
- Research Center for Health and Nutrition, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Pharmacy Department, Xiangshan Hospital of Traditional Chinese Medicine, Shanghai 200020, China
| | - Shuo Liu
- Research Center for Health and Nutrition, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanfei Xue
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Dongyun Tang
- Research Center for Health and Nutrition, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Pharmacy Department, Xiangshan Hospital of Traditional Chinese Medicine, Shanghai 200020, China
| | - Jun Yang
- Pharmacy Department, Xiangshan Hospital of Traditional Chinese Medicine, Shanghai 200020, China
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Guowen Li
- Pharmacy Department, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Yan Xie
- Research Center for Health and Nutrition, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
57
|
Metabolic Adaptation as Potential Target in Papillary Renal Cell Carcinomas Based on Their In Situ Metabolic Characteristics. Int J Mol Sci 2022; 23:ijms231810587. [PMID: 36142502 PMCID: PMC9503093 DOI: 10.3390/ijms231810587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Metabolic characteristics of kidney cancers have mainly been obtained from the most frequent clear cell renal cell carcinoma (CCRCC) studies. Moreover, the bioenergetic perturbances that affect metabolic adaptation possibilities of papillary renal cell carcinoma (PRCC) have not yet been detailed. Therefore, our study aimed to analyze the in situ metabolic features of PRCC vs. CCRCC tissues and compared the metabolic characteristics of PRCC, CCRCC, and normal tubular epithelial cell lines. The protein and mRNA expressions of the molecular elements in mammalian target of rapamycin (mTOR) and additional metabolic pathways were analyzed in human PRCC cases compared to CCRCC. The metabolic protein expression pattern, metabolite content, mTOR, and metabolic inhibitor sensitivity of renal carcinoma cell lines were also studied and compared with tubular epithelial cells, as “normal” control. We observed higher protein expressions of the “alternative bioenergetic pathway” elements, in correlation with the possible higher glutamine and acetate consumption in PRCC cells instead of higher glycolytic and mTOR activity in CCRCCs. Increased expression of certain metabolic pathway markers correlates with the detected differences in metabolite ratios, as well. The lower lactate/pyruvate, lactate/malate, and higher pyruvate/citrate intracellular metabolite ratios in PRCC compared to CCRCC cell lines suggest that ACHN (PRCC) have lower Warburg glycolytic capacity, less pronounced pyruvate to lactate producing activity and shifted OXPHOS phenotype. However, both studied renal carcinoma cell lines showed higher mTOR activity than tubular epithelial cells cultured in vitro, the metabolite ratio, the enzyme expression profiles, and the higher mitochondrial content also suggest increased importance of mitochondrial functions, including mitochondrial OXPHOS in PRCCs. Additionally, PRCC cells showed significant mTOR inhibitor sensitivity and the used metabolic inhibitors increased the effect of rapamycin in combined treatments. Our study revealed in situ metabolic differences in mTOR and metabolic protein expression patterns of human PRCC and CCRCC tissues as well as in cell lines. These underline the importance in the development of specific new treatment strategies, new mTOR inhibitors, and other anti-metabolic drug combinations in PRCC therapy.
Collapse
|
58
|
Protein tyrosine kinase 2b inhibition reverts niche-associated resistance to tyrosine kinase inhibitors in AML. Leukemia 2022; 36:2418-2429. [PMID: 36056084 PMCID: PMC9522596 DOI: 10.1038/s41375-022-01687-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022]
Abstract
FLT3 tyrosine kinase inhibitor (TKI) therapy evolved into a standard therapy in FLT3-mutated AML. TKI resistance, however, develops frequently with poor outcomes. We analyzed acquired TKI resistance in AML cell lines by multilayered proteome analyses. Leupaxin (LPXN), a regulator of cell migration and adhesion, was induced during early resistance development, alongside the tyrosine kinase PTK2B which phosphorylated LPXN. Resistant cells differed in cell adhesion and migration, indicating altered niche interactions. PTK2B and LPXN were highly expressed in leukemic stem cells in FLT3-ITD patients. PTK2B/FAK inhibition abrogated resistance-associated phenotypes, such as enhanced cell migration. Altered pathways in resistant cells, assessed by nascent proteomics, were largely reverted upon PTK2B/FAK inhibition. PTK2B/FAK inhibitors PF-431396 and defactinib synergized with different TKIs or daunorubicin in FLT3-mutated AML. Midostaurin-resistant and AML cells co-cultured with mesenchymal stroma cells responded particularly well to PTK2B/FAK inhibitor addition. Xenograft mouse models showed significant longer time to leukemia symptom-related endpoint upon gilteritinib/defactinib combination treatment in comparison to treatment with either drug alone. Our data suggest that the leupaxin-PTK2B axis plays an important role in acquired TKI resistance in AML. PTK2B/FAK inhibitors act synergistically with currently used therapeutics and may overcome emerging TKI resistance in FLT3-mutated AML at an early timepoint.
Collapse
|
59
|
Farooqi AA, Kapanova G, Kalmakhanov S, Tanbayeva G, Zhakipbekov KS, Rakhmetova VS, Syzdykbayev MK. Regulation of Cell Signaling Pathways and Non-Coding RNAs by Baicalein in Different Cancers. Int J Mol Sci 2022; 23:ijms23158377. [PMID: 35955525 PMCID: PMC9368823 DOI: 10.3390/ijms23158377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Landmark discoveries in molecular oncology have provided a wide-angle overview of the heterogenous and therapeutically challenging nature of cancer. The power of modern ‘omics’ technologies has enabled researchers to deeply and comprehensively characterize molecular mechanisms underlying cellular functions. Interestingly, high-throughput technologies have opened new horizons for the design and scientific fool-proof evaluation of the pharmacological properties of targeted chemical compounds to tactfully control the activities of the oncogenic protein networks. Groundbreaking discoveries have galvanized the expansion of the repertoire of available pharmacopoeia to therapeutically target a myriad of deregulated oncogenic pathways. Natural product research has undergone substantial broadening, and many of the drugs which constitute the backbone of modern pharmaceuticals have been derived from the natural cornucopia. Baicalein has gradually gained attention because of its unique ability to target different oncogenic signal transduction cascades in various cancers. We have partitioned this review into different sub-sections to provide a broader snapshot of the oncogenic pathways regulated by baicalein. In this review, we summarize baicalein-mediated targeting of WNT/β-catenin, AKT/mTOR, JAK/STAT, MAPK, and NOTCH pathways. We also critically analyze how baicalein regulates non-coding RNAs (microRNAs and long non-coding RNAs) in different cancers. Finally, we conceptually interpret baicalein-mediated inhibition of primary and secondary growths in xenografted mice.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
- Correspondence:
| | - Gulnara Kapanova
- Scientific Center of Anti-Infectious Drugs, 75 al-Faraby Ave, Almaty 050040, Kazakhstan;
- Al-Farabi Kazakh National University, 71 al-Farabi Ave, Almaty 050040, Kazakhstan; (S.K.); (G.T.)
| | - Sundetgali Kalmakhanov
- Al-Farabi Kazakh National University, 71 al-Farabi Ave, Almaty 050040, Kazakhstan; (S.K.); (G.T.)
| | - Gulnur Tanbayeva
- Al-Farabi Kazakh National University, 71 al-Farabi Ave, Almaty 050040, Kazakhstan; (S.K.); (G.T.)
| | - Kairat S. Zhakipbekov
- Department of Organization and Management and Economics of Pharmacy and Clinical Pharmacy, Asfendiyarov Kazakh National Medical University KazNMU, Tole Bi St. 94, Almaty 050000, Kazakhstan;
| | - Venera S. Rakhmetova
- Department Internal Diseases, Astana Medical University, Nur-Sultan 010000, Kazakhstan;
| | - Marat K. Syzdykbayev
- Department of Anesthesiology, Reanimatology and Narcology, Semey Medical University, Semey 071400, Kazakhstan;
| |
Collapse
|
60
|
Uddin MH, Zhou JY, Pimentel J, Patrick SM, Kim S, Shekhar MP, Wu GS. Proteomic Analysis Identifies p62/SQSTM1 as a Critical Player in PARP Inhibitor Resistance. Front Oncol 2022; 12:908603. [PMID: 35847859 PMCID: PMC9277186 DOI: 10.3389/fonc.2022.908603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) are currently being used for treating breast cancer patients with deleterious or suspected deleterious germline BRCA-mutated, HER2-negative locally advanced or metastatic diseases. Despite durable responses, almost all patients receiving PARPis ultimately develop resistance and succumb to their illness, but the mechanism of PARPi resistance is not fully understood. To better understand the mechanism of PARPi resistance, we established two olaparib-resistant SUM159 and MDA468 cells by chronically exposing olaparib-sensitive SUM159 and MDA468 cells to olaparib. Olaparib-resistant SUM159 and MDA468 cells displayed 5-fold and 7-fold more resistance over their corresponding counterparts. Despite defects in PARPi-induced DNA damage, these olaparib-resistant cells are sensitive to cisplatin-induced cell death. Using an unbiased proteomic approach, we identified 6 447 proteins, of which 107 proteins were differentially expressed between olaparib-sensitive and -resistant cells. Ingenuity pathway analysis (IPA) revealed a number of pathways that are significantly altered, including mTOR and ubiquitin pathways. Among these differentially expressed proteins, p62/SQSTM1 (thereafter p62), a scaffold protein, plays a critical role in binding to and delivering the ubiquitinated proteins to the autophagosome membrane for autophagic degradation, was significantly downregulated in olaparib-resistant cells. We found that autophagy inducers rapamycin and everolimus synergistically sensitize olaparib-resistant cells to olaparib. Moreover, p62 protein expression was correlated with better overall survival in estrogen receptor-negative breast cancer. Thus, these findings suggest that PARPi-sensitive TNBC cells hyperactivate autophagy as they develop acquired resistance and that pharmacological stimulation of excessive autophagy could lead to cell death and thus overcome PARPi resistance.
Collapse
Affiliation(s)
- Mohammed Hafiz Uddin
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jun-Ying Zhou
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Julio Pimentel
- Cancer Biology Program, Wayne State University School of Medicine, Detroit, MI, United States
| | - Steve M. Patrick
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States,Cancer Biology Program, Wayne State University School of Medicine, Detroit, MI, United States,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Seongho Kim
- Cancer Biology Program, Wayne State University School of Medicine, Detroit, MI, United States,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Malathy P. Shekhar
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States,Cancer Biology Program, Wayne State University School of Medicine, Detroit, MI, United States,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Gen Sheng Wu
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States,Cancer Biology Program, Wayne State University School of Medicine, Detroit, MI, United States,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States,*Correspondence: Gen Sheng Wu,
| |
Collapse
|
61
|
Robustness of the Autophagy Pathway to Somatic Copy Number Losses. Cells 2022; 11:cells11111762. [PMID: 35681458 PMCID: PMC9179279 DOI: 10.3390/cells11111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Autophagy allows cells to temporarily tolerate energy stress by replenishing critical metabolites through self-digestion, thereby attenuating the cytotoxic effects of anticancer drugs that target tumor metabolism. Autophagy defects could therefore mark a metabolically vulnerable cancer state and open a therapeutic window. While mutations of autophagy genes (ATGs) are notably rare in cancer, haploinsufficiency network analyses across many cancers have shown that the autophagy pathway is frequently hit by somatic copy number losses of ATGs such as MAP1LC3B/ATG8F (LC3), BECN1/ATG6 (Beclin-1), and ATG10. Here, we used CRISPR/Cas9 technology to delete increasing numbers of copies of one or more of these ATGs in non-small cell lung cancer cells and examined the effects on sensitivity to compounds targeting aerobic glycolysis, a hallmark of cancer metabolism. Whereas the complete knockout of one ATG blocked autophagy and led to profound metabolic vulnerability, this was not the case for combinations of different nonhomozygous deletions. In cancer patients, the effect of ATG copy number loss was blunted at the protein level and did not lead to the accumulation of p62 as a sign of reduced autophagic flux. Thus, the autophagy pathway is shown to be markedly robust and resilient, even with the concomitant copy number loss of key autophagy genes.
Collapse
|
62
|
Oleksak P, Nepovimova E, Chrienova Z, Musilek K, Patocka J, Kuca K. Contemporary mTOR inhibitor scaffolds to diseases breakdown: A patent review (2015–2021). Eur J Med Chem 2022; 238:114498. [DOI: 10.1016/j.ejmech.2022.114498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023]
|
63
|
Vergani E, Busico A, Dugo M, Devecchi A, Valeri B, Cossa M, Di Guardo L, De Cecco L, Feltrin E, Valle G, Deho P, Frigerio S, Lalli L, Gallino G, Del Vecchio M, Santinami M, Pruneri G, Tamborini E, Rivoltini L, Sensi M, Vallacchi V, Rodolfo M. Genetic layout of melanoma lesions associates to BRAF/MEK-targeted therapy resistance and to transcriptional profiles. J Invest Dermatol 2022; 142:3030-3040.e5. [DOI: 10.1016/j.jid.2022.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022]
|
64
|
Progressing Vulvar Melanoma Caused by Instability in cKIT Juxtamembrane Domain: A Case Report and Review of Literature. Curr Oncol 2022; 29:3130-3137. [PMID: 35621644 PMCID: PMC9139488 DOI: 10.3390/curroncol29050254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 01/15/2023] Open
Abstract
In order to identify the molecular pathways governing melanoma and track its progression, the next-generation sequencing (NGS) approach and targeted sequencing of cancer genes were employed. The primary tumor, as well as metastatic tissue, of an 84-year-old patient diagnosed with vulvar melanoma (VM), were investigated. The primary tumor specimen showed multiple somatic mutations in TP53 gene, suggesting its major contribution to melanoma origin. The metastatic sample showed additional alterations, including other melanoma-related genes. Clinical relevancy is postulated to juxtamembrane region instability of KIT gene (c-KIT). We did not identify BRAF or NRAS alterations, which are typical for the most common melanoma pathway–MAPK cascade. However, it should be noted that this is the first report evidencing PDGFRA in melanoma, although its role in triggering VM needs to be further elucidated.
Collapse
|
65
|
Simon C, Stielow B, Nist A, Rohner I, Weber LM, Geller M, Fischer S, Stiewe T, Liefke R. The CpG Island-Binding Protein SAMD1 Contributes to an Unfavorable Gene Signature in HepG2 Hepatocellular Carcinoma Cells. BIOLOGY 2022; 11:557. [PMID: 35453756 PMCID: PMC9032685 DOI: 10.3390/biology11040557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The unmethylated CpG island-binding protein SAMD1 is upregulated in many human cancer types, but its cancer-related role has not yet been investigated. Here, we used the hepatocellular carcinoma cell line HepG2 as a cancer model and investigated the cellular and transcriptional roles of SAMD1 using ChIP-Seq and RNA-Seq. SAMD1 targets several thousand gene promoters, where it acts predominantly as a transcriptional repressor. HepG2 cells with SAMD1 deletion showed slightly reduced proliferation, but strongly impaired clonogenicity. This phenotype was accompanied by the decreased expression of pro-proliferative genes, including MYC target genes. Consistently, we observed a decrease in the active H3K4me2 histone mark at most promoters, irrespective of SAMD1 binding. Conversely, we noticed an increase in interferon response pathways and a gain of H3K4me2 at a subset of enhancers that were enriched for IFN-stimulated response elements (ISREs). We identified key transcription factor genes, such as IRF1, STAT2, and FOSL2, that were directly repressed by SAMD1. Moreover, SAMD1 deletion also led to the derepression of the PI3K-inhibitor PIK3IP1, contributing to diminished mTOR signaling and ribosome biogenesis pathways. Our work suggests that SAMD1 is involved in establishing a pro-proliferative setting in hepatocellular carcinoma cells. Inhibiting SAMD1's function in liver cancer cells may therefore lead to a more favorable gene signature.
Collapse
Affiliation(s)
- Clara Simon
- Institute of Molecular Biology and Tumor Research (IMT), Faculty of Medicine, Philipps University of Marburg, 35043 Marburg, Germany; (C.S.); (B.S.); (I.R.); (L.M.W.); (M.G.); (S.F.)
| | - Bastian Stielow
- Institute of Molecular Biology and Tumor Research (IMT), Faculty of Medicine, Philipps University of Marburg, 35043 Marburg, Germany; (C.S.); (B.S.); (I.R.); (L.M.W.); (M.G.); (S.F.)
| | - Andrea Nist
- Genomics Core Facility, Faculty of Medicine, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, 35043 Marburg, Germany; (A.N.); (T.S.)
| | - Iris Rohner
- Institute of Molecular Biology and Tumor Research (IMT), Faculty of Medicine, Philipps University of Marburg, 35043 Marburg, Germany; (C.S.); (B.S.); (I.R.); (L.M.W.); (M.G.); (S.F.)
| | - Lisa Marie Weber
- Institute of Molecular Biology and Tumor Research (IMT), Faculty of Medicine, Philipps University of Marburg, 35043 Marburg, Germany; (C.S.); (B.S.); (I.R.); (L.M.W.); (M.G.); (S.F.)
| | - Merle Geller
- Institute of Molecular Biology and Tumor Research (IMT), Faculty of Medicine, Philipps University of Marburg, 35043 Marburg, Germany; (C.S.); (B.S.); (I.R.); (L.M.W.); (M.G.); (S.F.)
| | - Sabrina Fischer
- Institute of Molecular Biology and Tumor Research (IMT), Faculty of Medicine, Philipps University of Marburg, 35043 Marburg, Germany; (C.S.); (B.S.); (I.R.); (L.M.W.); (M.G.); (S.F.)
| | - Thorsten Stiewe
- Genomics Core Facility, Faculty of Medicine, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, 35043 Marburg, Germany; (A.N.); (T.S.)
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Faculty of Medicine, Philipps University of Marburg, 35043 Marburg, Germany; (C.S.); (B.S.); (I.R.); (L.M.W.); (M.G.); (S.F.)
- Department of Hematology, Oncology, and Immunology, University Hospital Giessen and Marburg, 35043 Marburg, Germany
| |
Collapse
|
66
|
Mascaraque-Checa M, Gallego-Rentero M, Nicolás-Morala J, Portillo-Esnaola M, Cuezva JM, González S, Gilaberte Y, Juarranz Á. Metformin overcomes metabolic reprogramming-induced resistance of skin squamous cell carcinoma to photodynamic therapy. Mol Metab 2022; 60:101496. [PMID: 35405370 PMCID: PMC9048115 DOI: 10.1016/j.molmet.2022.101496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Cancer metabolic reprogramming promotes resistance to therapies. In this study, we addressed the role of the Warburg effect in the resistance to photodynamic therapy (PDT) in skin squamous cell carcinoma (sSCC). Furthermore, we assessed the effect of metformin treatment, an antidiabetic type II drug that modulates metabolism, as adjuvant to PDT. Methods For that, we have used two human SCC cell lines: SCC13 and A431, called parental (P) and from these cell lines we have generated the corresponding PDT resistant cells (10GT). Results Here, we show that 10GT cells induced metabolic reprogramming to an enhanced aerobic glycolysis and reduced activity of oxidative phosphorylation, which could influence the response to PDT. This result was also confirmed in P and 10GT SCC13 tumors developed in mice. The treatment with metformin caused a reduction in aerobic glycolysis and an increase in oxidative phosphorylation in 10GT sSCC cells. Finally, the combination of metformin with PDT improved the cytotoxic effects on P and 10GT cells. The combined treatment induced an increase in the protoporphyrin IX production, in the reactive oxygen species generation and in the AMPK expression and produced the inhibition of AKT/mTOR pathway. The greater efficacy of combined treatments was also seen in vivo, in xenografts of P and 10GT SCC13 cells. Conclusions Altogether, our results reveal that PDT resistance implies, at least partially, a metabolic reprogramming towards aerobic glycolysis that is prevented by metformin treatment. Therefore, metformin may constitute an excellent adjuvant for PDT in sSCC. Cell resistant to Photodynamic therapy (PDT) is due to the metabolic reprogramming. Metformin modulates energetic metabolism in PDT-resistant cells, sensitizing to PDT. Metformin increases protoporphyrin IX and reactive oxygen species generation. Metformin+PDT is proposed as potential therapy against skin squamous cell carcinoma.
Collapse
|
67
|
Du L, Wang D, Nagle PW, Groen AAH, Zhang H, Muijs CT, Plukker JTM, Coppes RP. Role of mTOR through Autophagy in Esophageal Cancer Stemness. Cancers (Basel) 2022; 14:cancers14071806. [PMID: 35406578 PMCID: PMC9040713 DOI: 10.3390/cancers14071806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Esophageal cancer (EC) is a highly aggressive disease with a poor prognosis. Therapy resistance and early recurrences are major obstacles in reaching a better outcome. Esophageal cancer stem-like cells (CSCs) seem tightly related with chemoradiation resistance, initiating new tumors and metastases. Several oncogenic pathways seem to be involved in the regulation of esophageal CSCs and might harbor novel therapeutic targets to eliminate CSCs. Previously, we identified a subpopulation of EC cells that express high levels of CD44 and low levels of CD24 (CD44+/CD24-), show CSC characteristics and reside in hypoxic niches. Here, we aim to clarify the role of the hypoxia-responding mammalian target of the rapamycin (mTOR) pathway in esophageal CSCs. We showed that under a low-oxygen culture condition and nutrient deprivation, the CD44+/CD24- population is enriched. Since both low oxygen and nutrient deprivation may inhibit the mTOR pathway, we next chemically inhibited the mTOR pathway using Torin-1. Torin-1 upregulated SOX2 resulted in an enrichment of the CD44+/CD24- population and increased sphere formation potential. In contrast, stimulation of the mTOR pathway using MHY1485 induced the opposite effects. In addition, Torin-1 increased autophagic activity, while MHY1485 suppressed autophagy. Torin-1-mediated CSCs upregulation was significantly reduced in cells treated with autophagy inhibitor, hydroxychloroquine (HCQ). Finally, a clearly defined CD44+/CD24- CSC population was detected in EC patients-derived organoids (ec-PDOs) and here, MHY1485 also reduced this population. These data suggest that autophagy may play a crucial role in mTOR-mediated CSCs repression. Stimulation of the mTOR pathway might aid in the elimination of putative esophageal CSCs.
Collapse
Affiliation(s)
- Liang Du
- Section Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (L.D.); (D.W.); (P.W.N.); (A.A.H.G.)
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
- Graduate School, Shantou University Medical College, Shantou 515041, China
| | - Da Wang
- Section Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (L.D.); (D.W.); (P.W.N.); (A.A.H.G.)
- Department of Surgery, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Peter W. Nagle
- Section Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (L.D.); (D.W.); (P.W.N.); (A.A.H.G.)
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
- Medical Research Council (MRC) Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Andries A. H. Groen
- Section Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (L.D.); (D.W.); (P.W.N.); (A.A.H.G.)
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Hao Zhang
- Department of Pathology, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China;
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Christina T. Muijs
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - John Th. M. Plukker
- Department of Surgery, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Robert P. Coppes
- Section Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (L.D.); (D.W.); (P.W.N.); (A.A.H.G.)
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
- Correspondence:
| |
Collapse
|
68
|
Gunasekaran M, Ravi R, Subramanian K. Molecular docking analysis of lupeol with different cancer targets. Bioinformation 2022; 18:134-140. [PMID: 36518133 PMCID: PMC9722432 DOI: 10.6026/97320630018134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 08/15/2023] Open
Abstract
Lupeol is one of the secondary metabolite (triterpenoid) present in many medicinally effective plants. It has numerous biological and pharmacological actions. Lupeol is found to have effective herbs and has immense biological activity against several diseases including its cytotoxic effect on cancer cells. In recent drug designing, molecular study of analysis is usually used for understanding the target and the ligand interaction. Therefore, it is of interest to document the molecular docking analysis data of lupeol with different cancer targets such as Caspase- 3, BCL-2, Topoisomerase, PTK, mTOR, H-Ras, PI3K, and AKT. These molecular docking studies were carried out by using AutoDock tools 4.2 version software. Molecular docking analyses of lupeol with target protein were found to have good dock score and minimum inhibition constant. BCL-2, Topoisomerase, PTK, mTOR and PI3Kdocking studies showed the best binding energy inhibition constant and ligand efficiency. The in-silico molecular docking analysis showed that the lupeol having relatively good docking energy, affinity and efficiency towards the active macromolecule, thus it may be considered as good inhibitor of proliferating cancer cells. By this knowledge of docking results, the lupeol can be used as promising drug for anticancer activity.
Collapse
Affiliation(s)
- Mahalakshmi Gunasekaran
- Department of Pharmacology, College of Pharmacy, Mother Theresa Post Graduate and Research Institute of Health Science, Pondicherry University, Puducherry-605006, India
| | - Ravali Ravi
- Department of Pharmacology, College of Pharmacy, Mother Theresa Post Graduate and Research Institute of Health Science, Pondicherry University, Puducherry-605006, India
| | - Kavimani Subramanian
- Department of Pharmacology, College of Pharmacy, Mother Theresa Post Graduate and Research Institute of Health Science, Pondicherry University, Puducherry-605006, India
| |
Collapse
|
69
|
Peng Y, Wang Y, Zhou C, Mei W, Zeng C. PI3K/Akt/mTOR Pathway and Its Role in Cancer Therapeutics: Are We Making Headway? Front Oncol 2022; 12:819128. [PMID: 35402264 PMCID: PMC8987494 DOI: 10.3389/fonc.2022.819128] [Citation(s) in RCA: 291] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is a severe public health issue that is a leading cause of mortality globally. It is also an impediment to improving life expectancy worldwide. Furthermore, the global burden of cancer incidence and death is continuously growing. Current therapeutic options are insufficient for patients, and tumor complexity and heterogeneity necessitate customized medicine or targeted therapy. It is critical to identify potential cancer therapeutic targets. Aberrant activation of the PI3K/AKT/mTOR pathway has a significant role in carcinogenesis. This review summarized oncogenic PI3K/Akt/mTOR pathway alterations in cancer and various cancer hallmarks associated with the PI3K/AKT/mTOR pathway, such as cell proliferation, autophagy, apoptosis, angiogenesis, epithelial-to-mesenchymal transition (EMT), and chemoresistance. Importantly, this review provided recent advances in PI3K/AKT/mTOR inhibitor research. Overall, an in-depth understanding of the association between the PI3K/AKT/mTOR pathway and tumorigenesis and the development of therapies targeting the PI3K/AKT/mTOR pathway will help make clinical decisions.
Collapse
Affiliation(s)
- Yan Peng
- Department of Obstetrics, Longhua District Central Hospital, Shenzhen, China
| | - Yuanyuan Wang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Cheng Zhou
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| | - Wuxuan Mei
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
70
|
Ashrafizadeh M, Paskeh MDA, Mirzaei S, Gholami MH, Zarrabi A, Hashemi F, Hushmandi K, Hashemi M, Nabavi N, Crea F, Ren J, Klionsky DJ, Kumar AP, Wang Y. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res 2022; 41:105. [PMID: 35317831 PMCID: PMC8939209 DOI: 10.1186/s13046-022-02293-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer is a leading cause of death worldwide and new estimates revealed prostate cancer as the leading cause of death in men in 2021. Therefore, new strategies are pertinent in the treatment of this malignant disease. Macroautophagy/autophagy is a “self-degradation” mechanism capable of facilitating the turnover of long-lived and toxic macromolecules and organelles. Recently, attention has been drawn towards the role of autophagy in cancer and how its modulation provides effective cancer therapy. In the present review, we provide a mechanistic discussion of autophagy in prostate cancer. Autophagy can promote/inhibit proliferation and survival of prostate cancer cells. Besides, metastasis of prostate cancer cells is affected (via induction and inhibition) by autophagy. Autophagy can affect the response of prostate cancer cells to therapy such as chemotherapy and radiotherapy, given the close association between autophagy and apoptosis. Increasing evidence has demonstrated that upstream mediators such as AMPK, non-coding RNAs, KLF5, MTOR and others regulate autophagy in prostate cancer. Anti-tumor compounds, for instance phytochemicals, dually inhibit or induce autophagy in prostate cancer therapy. For improving prostate cancer therapy, nanotherapeutics such as chitosan nanoparticles have been developed. With respect to the context-dependent role of autophagy in prostate cancer, genetic tools such as siRNA and CRISPR-Cas9 can be utilized for targeting autophagic genes. Finally, these findings can be translated into preclinical and clinical studies to improve survival and prognosis of prostate cancer patients. • Prostate cancer is among the leading causes of death in men where targeting autophagy is of importance in treatment; • Autophagy governs proliferation and metastasis capacity of prostate cancer cells; • Autophagy modulation is of interest in improving the therapeutic response of prostate cancer cells; • Molecular pathways, especially involving non-coding RNAs, regulate autophagy in prostate cancer; • Autophagy possesses both diagnostic and prognostic roles in prostate cancer, with promises for clinical application.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 1417466191, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.,Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Daniel J Klionsky
- Life Sciences Institute & Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
71
|
Lin R, Xu Y, Xie S, Zhang Y, Wang H, Yi GZ, Huang G, Ni B, Song H, Wang Z, Qi ST, Liu Y. Recycling of SLC38A1 to the plasma membrane by DSCR3 promotes acquired temozolomide resistance in glioblastoma. J Neurooncol 2022; 157:15-26. [PMID: 35187626 DOI: 10.1007/s11060-022-03964-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is a primary brain tumor with devastating prognosis. Although the O6-methylguanine-DNA methyltransferase (MGMT) leads to inherent temozolomide (TMZ) resistance, approximately half of GBMs were sufficient to confer acquired TMZ resistance, which express low levels of MGMT. The purpose of this study was to investigate the underlying mechanisms of the acquired TMZ resistance in MGMT-deficient GBM. METHODS The function of Down syndrome critical region protein 3 (DSCR3) on MGMT-deficient GBM was investigated in vitro and in an orthotopic brain tumor model in mice. Purification of plasma membrane proteins by membrane-cytoplasmic separation and subsequent label free-based quantitative proteomics were used to identified potential protein partners for DSCR3. Immunofluorescence was performed to show the reverse transport of solute carrier family 38 member 1 (SLC38A1) mediated by DSCR3. RESULTS DSCR3 is upregulated in MGMT-deficient GBM cells during TMZ treatment. Both DSCR3 and SLC38A1 were highly expressed in recurrent GBM patients. Silencing DSCR3 or SLC38A1 expression can increase TMZ sensitivity in MGMT-deficient GBM cells. Combination of proteomics and in vitro experiments show that DSCR3 directly binds internalized SLC38A1 to mediate its sorting into recycling pathway, which maintains the abundance on plasma membrane and enhances uptake of glutamine in MGMT-deficient GBM cells. CONCLUSIONS DSCR3 is a crucial regulator of acquired TMZ resistance in MGMT-deficient GBM. The DSCR3-dependent recycling of SLC38A1 maintains its abundance on plasma membrane, leading to tumor progression and acquired TMZ resistance in MGMT-deficient GBM.
Collapse
Affiliation(s)
- Rui Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Yimin Xu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Sidi Xie
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yunxiao Zhang
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Hai Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Guo-Zhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Bowen Ni
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Haimin Song
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Ziyu Wang
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Song-Tao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yawei Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| |
Collapse
|
72
|
Quintanal-Villalonga A, Taniguchi H, Hao Y, Chow A, Zhan YA, Chavan SS, Uddin F, Allaj V, Manoj P, Shah NS, Chan JM, Offin M, Ciampricotti M, Ray-Kirton J, Egger J, Bhanot U, Linkov I, Asher M, Roehrl MH, Qiu J, de Stanchina E, Hollmann TJ, Koche RP, Sen T, Poirier JT, Rudin CM. Inhibition of XPO1 Sensitizes Small Cell Lung Cancer to First- and Second-Line Chemotherapy. Cancer Res 2022; 82:472-483. [PMID: 34815254 PMCID: PMC8813890 DOI: 10.1158/0008-5472.can-21-2964] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/17/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive malignancy characterized by early metastasis and extreme lethality. The backbone of SCLC treatment over the past several decades has been platinum-based doublet chemotherapy, with the recent addition of immunotherapy providing modest benefits in a subset of patients. However, nearly all patients treated with systemic therapy quickly develop resistant disease, and there is an absence of effective therapies for recurrent and progressive disease. Here we conducted CRISPR-Cas9 screens using a druggable genome library in multiple SCLC cell lines representing distinct molecular subtypes. This screen nominated exportin-1, encoded by XPO1, as a therapeutic target. XPO1 was highly and ubiquitously expressed in SCLC relative to other lung cancer histologies and other tumor types. XPO1 knockout enhanced chemosensitivity, and exportin-1 inhibition demonstrated synergy with both first- and second-line chemotherapy. The small molecule exportin-1 inhibitor selinexor in combination with cisplatin or irinotecan dramatically inhibited tumor growth in chemonaïve and chemorelapsed SCLC patient-derived xenografts, respectively. Together these data identify exportin-1 as a promising therapeutic target in SCLC, with the potential to markedly augment the efficacy of cytotoxic agents commonly used in treating this disease. SIGNIFICANCE: CRISPR-Cas9 screening nominates exportin-1 as a therapeutic target in SCLC, and exportin-1 inhibition enhances chemotherapy efficacy in patient-derived xenografts, providing a novel therapeutic opportunity in this disease.
Collapse
Affiliation(s)
- Alvaro Quintanal-Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Hirokazu Taniguchi
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yuan Hao
- Perlmutter Cancer Center, New York University Langone Health, New York, New York
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, New York
| | - Andrew Chow
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yingqian A Zhan
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shweta S Chavan
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fathema Uddin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Viola Allaj
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Parvathy Manoj
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nisargbhai S Shah
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph M Chan
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael Offin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Metamia Ciampricotti
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jordana Ray-Kirton
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacklynn Egger
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Umesh Bhanot
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Irina Linkov
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marina Asher
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael H Roehrl
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Juan Qiu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Travis J Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Triparna Sen
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, New York.
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.
- Weill Cornell Medical College, New York, New York
| |
Collapse
|
73
|
The Anticancer Ruthenium Compound BOLD-100 Targets Glycolysis and Generates a Metabolic Vulnerability towards Glucose Deprivation. Pharmaceutics 2022; 14:pharmaceutics14020238. [PMID: 35213972 PMCID: PMC8875291 DOI: 10.3390/pharmaceutics14020238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Cellular energy metabolism is reprogrammed in cancer to fuel proliferation. In oncological therapy, treatment resistance remains an obstacle and is frequently linked to metabolic perturbations. Identifying metabolic changes as vulnerabilities opens up novel approaches for the prevention or targeting of acquired therapy resistance. Insights into metabolic alterations underlying ruthenium-based chemotherapy resistance remain widely elusive. In this study, colon cancer HCT116 and pancreatic cancer Capan-1 cells were selected for resistance against the clinically evaluated ruthenium complex sodium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (BOLD-100). Gene expression profiling identified transcriptional deregulation of carbohydrate metabolism as a response to BOLD-100 and in resistance against the drug. Mechanistically, acquired BOLD-100 resistance is linked to elevated glucose uptake and an increased lysosomal compartment, based on a defect in downstream autophagy execution. Congruently, metabolomics suggested stronger glycolytic activity, in agreement with the distinct hypersensitivity of BOLD-100-resistant cells to 2-deoxy-d-glucose (2-DG). In resistant cells, 2-DG induced stronger metabolic perturbations associated with ER stress induction and cytoplasmic lysosome deregulation. The combination with 2-DG enhanced BOLD-100 activity against HCT116 and Capan-1 cells and reverted acquired BOLD-100 resistance by synergistic cell death induction and autophagy disturbance. This newly identified enhanced glycolytic activity as a metabolic vulnerability in BOLD-100 resistance suggests the targeting of glycolysis as a promising strategy to support BOLD-100 anticancer activity.
Collapse
|
74
|
Pei X, Zheng F, Li Y, Lin Z, Han X, Feng Y, Tian Z, Ren D, Cao K, Li C. Niclosamide Ethanolamine Salt Alleviates Idiopathic Pulmonary Fibrosis by Modulating the PI3K-mTORC1 Pathway. Cells 2022; 11:cells11030346. [PMID: 35159160 PMCID: PMC8834116 DOI: 10.3390/cells11030346] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/05/2022] [Accepted: 01/15/2022] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial pneumonia characterized by chronic progressive fibrosis, ultimately leading to respiratory failure and early mortality. Although not fully explored, the major causative factors in IPF pathogenesis are dysregulated fibroblast proliferation and excessive accumulation of extracellular matrix (ECM) deposited by myofibroblasts differentiated from pulmonary fibroblasts. More signalling pathways, including the PI3K-Akt-mTOR and autophagy pathways, are involved in IPF pathogenesis. Niclosamide ethanolamine salt (NEN) is a highly effective multitarget small-molecule inhibitor reported in antitumor studies. Here, we reported that in an IPF animal model treated with NEN for 14 days, attractive relief of pulmonary function and hydroxyproline content were observed. To further explore, the therapeutic effect of NEN in IPF and pathological changes in bleomycin-challenged mouse lung sections were assessed. Additionally, the effects of NEN on abnormal proliferation and ECM production in IPF cell models established with TGF-β1-stimulated A549 cells or DHLF-IPF cells were studied. In nonclinical studies, NEN ameliorated lung function and histopathological changes in bleomycin-challenged mice, and the lung hydroxyproline content was significantly diminished with NEN treatment. In vitro, NEN inhibited PI3K-mTORC1 signalling and arrested the cell cycle to prevent uncontrolled fibroblast proliferation. Additionally, NEN inhibited TGF-β1-induced epithelial–mesenchymal transition (EMT) and ECM accumulation via the mTORC1-4EBP1 axis. Furthermore, NEN-activated noncanonical autophagy resensitized fibroblasts to apoptosis. The above findings demonstrated the potential antifibrotic effect of NEN mediated via modulation of the PI3K-mTORC1 and autophagy pathways. These data provide strong evidence for a therapeutic role for NEN in IPF.
Collapse
Affiliation(s)
- Xiaolin Pei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; (X.P.); (F.Z.); (Y.L.); (Z.L.); (X.H.); (Y.F.)
| | - Fangxu Zheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; (X.P.); (F.Z.); (Y.L.); (Z.L.); (X.H.); (Y.F.)
| | - Yin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; (X.P.); (F.Z.); (Y.L.); (Z.L.); (X.H.); (Y.F.)
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; (X.P.); (F.Z.); (Y.L.); (Z.L.); (X.H.); (Y.F.)
| | - Xiao Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; (X.P.); (F.Z.); (Y.L.); (Z.L.); (X.H.); (Y.F.)
| | - Ya Feng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; (X.P.); (F.Z.); (Y.L.); (Z.L.); (X.H.); (Y.F.)
| | - Zhenhuan Tian
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing 100730, China;
| | - Dunqiang Ren
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China;
| | - Ke Cao
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou 121001, China
- Correspondence: (K.C.); (C.L.)
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; (X.P.); (F.Z.); (Y.L.); (Z.L.); (X.H.); (Y.F.)
- Correspondence: (K.C.); (C.L.)
| |
Collapse
|
75
|
Sebestyén A, Dankó T, Sztankovics D, Moldvai D, Raffay R, Cervi C, Krencz I, Zsiros V, Jeney A, Petővári G. The role of metabolic ecosystem in cancer progression — metabolic plasticity and mTOR hyperactivity in tumor tissues. Cancer Metastasis Rev 2022; 40:989-1033. [PMID: 35029792 PMCID: PMC8825419 DOI: 10.1007/s10555-021-10006-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Despite advancements in cancer management, tumor relapse and metastasis are associated with poor outcomes in many cancers. Over the past decade, oncogene-driven carcinogenesis, dysregulated cellular signaling networks, dynamic changes in the tissue microenvironment, epithelial-mesenchymal transitions, protein expression within regulatory pathways, and their part in tumor progression are described in several studies. However, the complexity of metabolic enzyme expression is considerably under evaluated. Alterations in cellular metabolism determine the individual phenotype and behavior of cells, which is a well-recognized hallmark of cancer progression, especially in the adaptation mechanisms underlying therapy resistance. In metabolic symbiosis, cells compete, communicate, and even feed each other, supervised by tumor cells. Metabolic reprogramming forms a unique fingerprint for each tumor tissue, depending on the cellular content and genetic, epigenetic, and microenvironmental alterations of the developing cancer. Based on its sensing and effector functions, the mechanistic target of rapamycin (mTOR) kinase is considered the master regulator of metabolic adaptation. Moreover, mTOR kinase hyperactivity is associated with poor prognosis in various tumor types. In situ metabolic phenotyping in recent studies highlights the importance of metabolic plasticity, mTOR hyperactivity, and their role in tumor progression. In this review, we update recent developments in metabolic phenotyping of the cancer ecosystem, metabolic symbiosis, and plasticity which could provide new research directions in tumor biology. In addition, we suggest pathomorphological and analytical studies relating to metabolic alterations, mTOR activity, and their associations which are necessary to improve understanding of tumor heterogeneity and expand the therapeutic management of cancer.
Collapse
|
76
|
Woodward K, Shirokikh NE. Translational control in cell ageing: an update. Biochem Soc Trans 2021; 49:2853-2869. [PMID: 34913471 PMCID: PMC8786278 DOI: 10.1042/bst20210844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022]
Abstract
Cellular ageing is one of the main drivers of organismal ageing and holds keys towards improving the longevity and quality of the extended life. Elucidating mechanisms underlying the emergence of the aged cells as well as their altered responses to the environment will help understanding the evolutionarily defined longevity preferences across species with different strategies of survival. Much is understood about the role of alterations in the DNA, including many epigenetic modifications such as methylation, in relation to the aged cell phenotype. While transcriptomes of the aged cells are beginning to be better-characterised, their translational responses remain under active investigation. Many of the translationally controlled homeostatic pathways are centred around mitigation of DNA damage, cell stress response and regulation of the proliferative potential of the cells, and thus are critical for the aged cell function. Translation profiling-type studies have boosted the opportunities in discovering the function of protein biosynthesis control and are starting to be applied to the aged cells. Here, we provide a summary of the current knowledge about translational mechanisms considered to be commonly altered in the aged cells, including the integrated stress response-, mechanistic target of Rapamycin- and elongation factor 2 kinase-mediated pathways. We enlist and discuss findings of the recent works that use broad profiling-type approaches to investigate the age-related translational pathways. We outline the limitations of the methods and the remaining unknowns in the established ageing-associated translation mechanisms, and flag translational mechanisms with high prospective importance in ageing, for future studies.
Collapse
Affiliation(s)
- Katrina Woodward
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Acton, Canberra, ACT 2601, Australia
| | - Nikolay E. Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Acton, Canberra, ACT 2601, Australia
| |
Collapse
|
77
|
Gonçalves AC, Richiardone E, Jorge J, Polónia B, Xavier CPR, Salaroglio IC, Riganti C, Vasconcelos MH, Corbet C, Sarmento-Ribeiro AB. Impact of cancer metabolism on therapy resistance - Clinical implications. Drug Resist Updat 2021; 59:100797. [PMID: 34955385 DOI: 10.1016/j.drup.2021.100797] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite an increasing arsenal of anticancer therapies, many patients continue to have poor outcomes due to the therapeutic failures and tumor relapses. Indeed, the clinical efficacy of anticancer therapies is markedly limited by intrinsic and/or acquired resistance mechanisms that can occur in any tumor type and with any treatment. Thus, there is an urgent clinical need to implement fundamental changes in the tumor treatment paradigm by the development of new experimental strategies that can help to predict the occurrence of clinical drug resistance and to identify alternative therapeutic options. Apart from mutation-driven resistance mechanisms, tumor microenvironment (TME) conditions generate an intratumoral phenotypic heterogeneity that supports disease progression and dismal outcomes. Tumor cell metabolism is a prototypical example of dynamic, heterogeneous, and adaptive phenotypic trait, resulting from the combination of intrinsic [(epi)genetic changes, tissue of origin and differentiation dependency] and extrinsic (oxygen and nutrient availability, metabolic interactions within the TME) factors, enabling cancer cells to survive, metastasize and develop resistance to anticancer therapies. In this review, we summarize the current knowledge regarding metabolism-based mechanisms conferring adaptive resistance to chemo-, radio-and immunotherapies as well as targeted therapies. Furthermore, we report the role of TME-mediated intratumoral metabolic heterogeneity in therapy resistance and how adaptations in amino acid, glucose, and lipid metabolism support the growth of therapy-resistant cancers and/or cellular subpopulations. We also report the intricate interplay between tumor signaling and metabolic pathways in cancer cells and discuss how manipulating key metabolic enzymes and/or providing dietary changes may help to eradicate relapse-sustaining cancer cells. Finally, in the current era of personalized medicine, we describe the strategies that may be applied to implement metabolic profiling for tumor imaging, biomarker identification, selection of tailored treatments and monitoring therapy response during the clinical management of cancer patients.
Collapse
Affiliation(s)
- Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Elena Richiardone
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| | - Joana Jorge
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Bárbara Polónia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | - Chiara Riganti
- Department of Oncology, School of Medicine, University of Torino, Italy
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium.
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
| |
Collapse
|
78
|
Nussinov R, Tsai CJ, Jang H. Anticancer drug resistance: An update and perspective. Drug Resist Updat 2021; 59:100796. [PMID: 34953682 PMCID: PMC8810687 DOI: 10.1016/j.drup.2021.100796] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
Driver mutations promote initiation and progression of cancer. Pharmacological treatment can inhibit the action of the mutant protein; however, drug resistance almost invariably emerges. Multiple studies revealed that cancer drug resistance is based upon a plethora of distinct mechanisms. Drug resistance mutations can occur in the same protein or in different proteins; as well as in the same pathway or in parallel pathways, bypassing the intercepted signaling. The dilemma that the clinical oncologist is facing is that not all the genomic alterations as well as alterations in the tumor microenvironment that facilitate cancer cell proliferation are known, and neither are the alterations that are likely to promote metastasis. For example, the common KRasG12C driver mutation emerges in different cancers. Most occur in NSCLC, but some occur, albeit to a lower extent, in colorectal cancer and pancreatic ductal carcinoma. The responses to KRasG12C inhibitors are variable and fall into three categories, (i) new point mutations in KRas, or multiple copies of KRAS G12C which lead to higher expression level of the mutant protein; (ii) mutations in genes other than KRAS; (iii) original cancer transitioning to other cancer(s). Resistance to adagrasib, an experimental antitumor agent exerting its cytotoxic effect as a covalent inhibitor of the G12C KRas, indicated that half of the cases present multiple KRas mutations as well as allele amplification. Redundant or parallel pathways included MET amplification; emerging driver mutations in NRAS, BRAF, MAP2K1, and RET; gene fusion events in ALK, RET, BRAF, RAF1, and FGFR3; and loss-of-function mutations in NF1 and PTEN tumor suppressors. In the current review we discuss the molecular mechanisms underlying drug resistance while focusing on those emerging to common targeted cancer drivers. We also address questions of why cancers with a common driver mutation are unlikely to evolve a common drug resistance mechanism, and whether one can predict the likely mechanisms that the tumor cell may develop. These vastly important and tantalizing questions in drug discovery, and broadly in precision medicine, are the focus of our present review. We end with our perspective, which calls for target combinations to be selected and prioritized with the help of the emerging massive compute power which enables artificial intelligence, and the increased gathering of data to overcome its insatiable needs.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, 21702, USA
| |
Collapse
|
79
|
Wang Y, Lin X, Sun D. A narrative review of prognosis prediction models for non-small cell lung cancer: what kind of predictors should be selected and how to improve models? ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1597. [PMID: 34790803 PMCID: PMC8576716 DOI: 10.21037/atm-21-4733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/02/2021] [Indexed: 12/18/2022]
Abstract
Objective To discover potential predictors and explore how to build better models by summarizing the existing prognostic prediction models of non-small cell lung cancer (NSCLC). Background Research on clinical prediction models of NSCLC has experienced explosive growth in recent years. As more predictors of prognosis are discovered, the choice of predictors to build models is particularly important, and in the background of more applications of next-generation sequencing technology, gene-related predictors are widely used. As it is more convenient to obtain samples and follow-up data, the prognostic model is preferred by researchers. Methods PubMed and the Cochrane Library were searched using the items “NSCLC”, “prognostic model”, “prognosis prediction”, and “survival prediction” from 1 January 1980 to 5 May 2021. Reference lists from articles were reviewed and relevant articles were identified. Conclusions The performance of gene-related models has not obviously improved. Relative to the innovation and diversity of predictors, it is more important to establish a highly stable model that is convenient for clinical application. Most of the prevalent models are highly biased and referring to PROBAST at the beginning of the study may be able to significantly control the bias. Existing models should be validated in a large external dataset to make a meaningful comparison.
Collapse
Affiliation(s)
- Yuhang Wang
- Graduate School, Tianjin Medical University, Tianjin, China
| | | | - Daqiang Sun
- Graduate School, Tianjin Medical University, Tianjin, China.,Department of Thoracic Surgery, Tianjin Chest Hospital of Nankai University, Tianjin, China
| |
Collapse
|
80
|
Ganzleben I, Neurath MF, Becker C. Autophagy in Cancer Therapy-Molecular Mechanisms and Current Clinical Advances. Cancers (Basel) 2021; 13:cancers13215575. [PMID: 34771737 PMCID: PMC8583685 DOI: 10.3390/cancers13215575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Autophagy is the capability of cells to dismantle and recycle parts of themselves. This process is closely intertwined with other crucial cell functions, such as growth and control of metabolism. Autophagy is oftentimes dysregulated in cancer and offers established and advanced tumors protection against a lack of nutrients and an advantage regarding proliferation. This review will present an overview of the basics of human autophagy, its dysregulation in cancer, and approaches to target autophagy in cancer treatment in recent and current clinical trials as well as new findings of preclinical research. Abstract Autophagy is a crucial general survival tactic of mammalian cells. It describes the capability of cells to disassemble and partially recycle cellular components (e.g., mitochondria) in case they are damaged and pose a risk to cell survival or simply if their resources are urgently needed elsewhere at the time. Autophagy-associated pathomechanisms have been increasingly recognized as important disease mechanisms in non-malignant (neurodegeneration, diffuse parenchymal lung disease) and malignant conditions alike. However, the overall consequences of autophagy for the organism depend particularly on the greater context in which autophagy occurs, such as the cell type or whether the cell is proliferating. In cancer, autophagy sustains cancer cell survival under challenging, i.e., resource-depleted, conditions. However, this leads to situations in which cancer cells are completely dependent on autophagy. Accordingly, autophagy represents a promising yet complex target in cancer treatment with therapeutically induced increase and decrease of autophagic flux as important therapeutic principles.
Collapse
Affiliation(s)
- Ingo Ganzleben
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.G.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.G.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.G.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
81
|
Morscher RJ, Brard C, Berlanga P, Marshall LV, André N, Rubino J, Aerts I, De Carli E, Corradini N, Nebchi S, Paoletti X, Mortimer P, Lacroix L, Pierron G, Schleiermacher G, Vassal G, Geoerger B. First-in-child phase I/II study of the dual mTORC1/2 inhibitor vistusertib (AZD2014) as monotherapy and in combination with topotecan-temozolomide in children with advanced malignancies: arms E and F of the AcSé-ESMART trial. Eur J Cancer 2021; 157:268-277. [PMID: 34543871 DOI: 10.1016/j.ejca.2021.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
AIM Arms E and F of the AcSé-ESMART phase I/II platform trial aimed to define the recommended dose and preliminary activity of the dual mTORC1/2 inhibitor vistusertib as monotherapy and with topotecan-temozolomide in a molecularly enriched population of paediatric patients with relapsed/refractory malignancies. In addition, we evaluated genetic phosphatidylinositol 3-kinase (PI3K)/AKT/ mammalian (or mechanistic) target of rapamycin (mTOR) pathway alterations across the Molecular Profiling for Paediatric and Young Adult Cancer Treatment Stratification (MAPPYACTS) trial (NCT02613962). EXPERIMENTAL DESIGN AND RESULTS Four patients were treated in arm E and 10 in arm F with a median age of 14.3 years. Main diagnoses were glioma and sarcoma. Dose escalation was performed as per the continuous reassessment method, expansion in an Ensign design. The vistusertib single agent administered at 75 mg/m2 twice a day (BID) on 2 days/week and vistusertib 30 mg/m2 BID on 3 days/week combined with temozolomide 100 mg/m2/day and topotecan 0.50 mg/m2/day on the first 5 days of each 4-week cycle were safe. Treatment was well tolerated with the main toxicity being haematological. Pharmacokinetics indicates equivalent exposure in children compared with adults. Neither tumour response nor prolonged stabilisation was observed, including in the 12 patients whose tumours exhibited PI3K/AKT/mTOR pathway alterations. Advanced profiling across relapsed/refractory paediatric cancers of the MAPPYACTS cohort shows genetic alterations associated with this pathway in 28.0% of patients, with 10.5% carrying mutations in the core pathway genes. CONCLUSIONS Vistusertib was well tolerated in paediatric patients. Study arms were terminated because of the absence of tumour responses and insufficient target engagement of vistusertib observed in adult trials. Targeting the PI3K/AKT/mTOR pathway remains a therapeutic avenue to be explored in paediatric patients. CLINICAL TRIAL IDENTIFIER NCT2813135.
Collapse
Affiliation(s)
- Raphael J Morscher
- Gustave Roussy Cancer Campus, Department of Paediatric and Adolescent Oncology, Villejuif, France; INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Caroline Brard
- Gustave Roussy Cancer Campus, Biostatistics and Epidemiology Unit, INSERM U1018, CESP, Université Paris-Saclay, Université Paris-Sud, UVSQ, Villejuif, France
| | - Pablo Berlanga
- Gustave Roussy Cancer Campus, Department of Paediatric and Adolescent Oncology, Villejuif, France
| | - Lynley V Marshall
- Paediatric and Adolescent Oncology Drug Development Unit, The Royal Marsden Hospital & The Institute of Cancer Research, London, United Kingdom
| | - Nicolas André
- Department of Paediatric Hematology & Oncology, Hôpital de la Timone, AP-HM, Marseille, France; UMR Inserm 1068, CNRS UMR 7258, Aix Marseille Université U105, Marseille Cancer Research Center (CRCM), Marseille, France
| | - Jonathan Rubino
- Gustave Roussy Cancer Campus, Clinical Research Direction, Villejuif, France
| | - Isabelle Aerts
- SIREDO Oncology Center, Institut Curie, PSL Research University, Paris, France
| | - Emilie De Carli
- Centre Hospitalier Universitaire, Department of Paediatric Oncology, Angers, France
| | - Nadège Corradini
- Pediatric Oncology Department, Institute of Pediatric Hematology and Oncology, Centre Leon Berard, Lyon, France
| | - Souad Nebchi
- Gustave Roussy Cancer Campus, Biostatistics and Epidemiology Unit, INSERM U1018, CESP, Université Paris-Saclay, Université Paris-Sud, UVSQ, Villejuif, France
| | - Xavier Paoletti
- Gustave Roussy Cancer Campus, Biostatistics and Epidemiology Unit, INSERM U1018, CESP, Université Paris-Saclay, Université Paris-Sud, UVSQ, Villejuif, France
| | | | - Ludovic Lacroix
- Department of Medical Biology and Pathology of Translational Research and Biobank, AMMICA, Laboratory INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, 94805 Villejuif, France
| | - Gaelle Pierron
- Unité de Génétique Somatique, Service d'oncogénétique, Institut Curie, Centre Hospitalier, Paris, France
| | - Gudrun Schleiermacher
- SIREDO Oncology Center, Institut Curie, PSL Research University, Paris, France; Laboratory of Translational Research in Paediatric Oncology - INSERM U830, Paris, France
| | - Gilles Vassal
- Gustave Roussy Cancer Campus, Clinical Research Direction, Villejuif, France
| | - Birgit Geoerger
- Gustave Roussy Cancer Campus, Department of Paediatric and Adolescent Oncology, Villejuif, France; INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
82
|
Zhang X, Cao Y, Chen L. Construction of a prognostic signature of autophagy-related lncRNAs in non-small-cell lung cancer. BMC Cancer 2021; 21:921. [PMID: 34391383 PMCID: PMC8364711 DOI: 10.1186/s12885-021-08654-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/29/2021] [Indexed: 01/18/2023] Open
Abstract
Background Autophagy inhibits tumorigenesis by limiting inflammation. LncRNAs regulate gene expression at various levels as RNAs; thus, both autophagy and lncRNAs are closely related to the occurrence and development of tumours. Methods A total of 232 autophagy-related genes were used to construct a coexpression network to extract autophagy-related lncRNAs. A prognostic signature was constructed by multivariate regression analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was applied to analyse enrichment in cancer-related pathways. Immune infiltration analysis was used to analyse the relationship between the prognostic signature and the tumour microenvironment. Results Nine autophagy-related lncRNAs were used to construct a prognostic model for non-small-cell lung cancer. The median risk score was used to discriminate the high- and low-risk groups, and the low-risk group was found to have better survival. Because KEGG pathway analysis showed that the prognostic signature was enriched in some immune pathways, further analysis of immune infiltration was conducted, and it was found that the prognostic signature did play a unique role in the immune microenvironment. Additionally, the prognostic signature was associated with clinical factors. Conclusion We constructed a prognostic model of autophagy-related lncRNAs that can predict the prognosis of non-small-cell lung cancer.
Collapse
Affiliation(s)
- Xinyang Zhang
- Department of Pathology Anatomy, Medical College of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yu Cao
- Third People's Hospital of Nantong, Nantong, 226001, Jiangsu, China
| | - Li Chen
- Department of Pathology Anatomy, Medical College of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
83
|
Oiwa K, Hosono N, Nishi R, Scotto L, O'Connor OA, Yamauchi T. Characterization of newly established Pralatrexate-resistant cell lines and the mechanisms of resistance. BMC Cancer 2021; 21:879. [PMID: 34332580 PMCID: PMC8325835 DOI: 10.1186/s12885-021-08607-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/16/2021] [Indexed: 11/20/2022] Open
Abstract
Background Pralatrexate (PDX) is a novel antifolate approved for the treatment of patients with relapsed/refractory peripheral T-cell lymphoma, but some patients exhibit intrinsic resistance or develop acquired resistance. Here, we evaluated the mechanisms underlying acquired resistance to PDX and explored potential therapeutic strategies to overcome PDX resistance. Methods To investigate PDX resistance, we established two PDX-resistant T-lymphoblastic leukemia cell lines (CEM and MOLT4) through continuous exposure to increasing doses of PDX. The resistance mechanisms were evaluated by measuring PDX uptake, apoptosis induction and folate metabolism-related protein expression. We also applied gene expression analysis and methylation profiling to identify the mechanisms of resistance. We then explored rational drug combinations using a spheroid (3D)-culture assay. Results Compared with their parental cells, PDX-resistant cells exhibited a 30-fold increase in half-maximal inhibitory concentration values. Induction of apoptosis by PDX was significantly decreased in both PDX-resistant cell lines. Intracellular uptake of [14C]-PDX decreased in PDX-resistant CEM cells but not in PDX-resistant MOLT4 cells. There was no significant change in expression of dihydrofolate reductase (DHFR) or folylpolyglutamate synthetase (FPGS). Gene expression array analysis revealed that DNA-methyltransferase 3β (DNMT3B) expression was significantly elevated in both cell lines. Gene set enrichment analysis revealed that adipogenesis and mTORC1 signaling pathways were commonly upregulated in both resistant cell lines. Moreover, CpG island hypermethylation was observed in both PDX resistant cells lines. In the 3D-culture assay, decitabine (DAC) plus PDX showed synergistic effects in PDX-resistant cell lines compared with parental lines. Conclusions The resistance mechanisms of PDX were associated with reduced cellular uptake of PDX and/or overexpression of DNMT3B. Epigenetic alterations were also considered to play a role in the resistance mechanism. The combination of DAC and PDX exhibited synergistic activity, and thus, this approach might improve the clinical efficacy of PDX. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08607-9.
Collapse
Affiliation(s)
- Kana Oiwa
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Naoko Hosono
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Rie Nishi
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Luigi Scotto
- The Center of Lymphoid Malignancy, Columbia University Medical Center, College of Physicians and Surgeons, 630 West 168th St, New York, NY, 10032, USA
| | - Owen A O'Connor
- The Center of Lymphoid Malignancy, Columbia University Medical Center, College of Physicians and Surgeons, 630 West 168th St, New York, NY, 10032, USA.,Department of Medicine, Division of Hematology and Oncology, University of Virginia, 1215 Lee Street, Charlottesville, VA, 22903, USA
| | - Takahiro Yamauchi
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| |
Collapse
|
84
|
Dankó T, Petővári G, Sztankovics D, Moldvai D, Raffay R, Lőrincz P, Visnovitz T, Zsiros V, Barna G, Márk Á, Krencz I, Sebestyén A. Rapamycin Plus Doxycycline Combination Affects Growth Arrest and Selective Autophagy-Dependent Cell Death in Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22158019. [PMID: 34360785 PMCID: PMC8347279 DOI: 10.3390/ijms22158019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/22/2022] Open
Abstract
Metabolic alteration is characteristic during tumour growth and therapy; however, targeting metabolic rewiring could overcome therapy resistance. mTOR hyperactivity, autophagy and other metabolic processes, including mitochondrial functions, could be targeted in breast cancer progression. We investigated the growth inhibitory mechanism of rapamycin + doxycycline treatment in human breast cancer model systems. Cell cycle and cell viability, including apoptotic and necrotic cell death, were analysed using flow cytometry, caspase activity measurements and caspase-3 immunostainings. mTOR-, autophagy-, necroptosis-related proteins and treatment-induced morphological alterations were analysed by WesTM, Western blot, immunostainings and transmission electron microscopy. The rapamycin + doxycycline combination decreased tumour proliferation in about 2/3rd of the investigated cell lines. The continuous treatment reduced tumour growth significantly both in vivo and in vitro. The effect after short-term treatment was reversible; however, autophagic vacuoles and degrading mitochondria were detected simultaneously, and the presence of mitophagy was also observed after the long-term rapamycin + doxycycline combination treatment. The rapamycin + doxycycline combination did not cause apoptosis or necrosis/necroptosis, but the alterations in autophagy- and mitochondria-related protein levels (LC3-B-II/I, p62, MitoTracker, TOM20 and certain co-stainings) were correlated to autophagy induction and mitophagy, without mitochondria repopulation. Based on these results, we suggest considering inducing metabolic stress and targeting mTOR hyperactivity and mitochondrial functions in combined anti-cancer treatments.
Collapse
Affiliation(s)
- Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Gábor Petővári
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Dániel Sztankovics
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Dorottya Moldvai
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Regina Raffay
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Pázmány Péter sétány 1/c, H-1117 Budapest, Hungary;
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary;
| | - Viktória Zsiros
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tűzoltó utca 58, H-1094 Budapest, Hungary;
| | - Gábor Barna
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Ágnes Márk
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Ildikó Krencz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
- Correspondence:
| |
Collapse
|
85
|
McCann C, Kerr EM. Metabolic Reprogramming: A Friend or Foe to Cancer Therapy? Cancers (Basel) 2021; 13:3351. [PMID: 34283054 PMCID: PMC8267696 DOI: 10.3390/cancers13133351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Drug resistance is a major cause of cancer treatment failure, effectively driven by processes that promote escape from therapy-induced cell death. The mechanisms driving evasion of apoptosis have been widely studied across multiple cancer types, and have facilitated new and exciting therapeutic discoveries with the potential to improve cancer patient care. However, an increasing understanding of the crosstalk between cancer hallmarks has highlighted the complexity of the mechanisms of drug resistance, co-opting pathways outside of the canonical "cell death" machinery to facilitate cell survival in the face of cytotoxic stress. Rewiring of cellular metabolism is vital to drive and support increased proliferative demands in cancer cells, and recent discoveries in the field of cancer metabolism have uncovered a novel role for these programs in facilitating drug resistance. As a key organelle in both metabolic and apoptotic homeostasis, the mitochondria are at the forefront of these mechanisms of resistance, coordinating crosstalk in the event of cellular stress, and promoting cellular survival. Importantly, the appreciation of this role metabolism plays in the cytotoxic response to therapy, and the ability to profile metabolic adaptions in response to treatment, has encouraged new avenues of investigation into the potential of exploiting metabolic addictions to improve therapeutic efficacy and overcome drug resistance in cancer. Here, we review the role cancer metabolism can play in mediating drug resistance, and the exciting opportunities presented by imposed metabolic vulnerabilities.
Collapse
Affiliation(s)
| | - Emma M. Kerr
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Rd, BT9 7AE Belfast, Ireland;
| |
Collapse
|
86
|
Bhingarkar A, Vangapandu HV, Rathod S, Hoshitsuki K, Fernandez CA. Amino Acid Metabolic Vulnerabilities in Acute and Chronic Myeloid Leukemias. Front Oncol 2021; 11:694526. [PMID: 34277440 PMCID: PMC8281237 DOI: 10.3389/fonc.2021.694526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Amino acid (AA) metabolism plays an important role in many cellular processes including energy production, immune function, and purine and pyrimidine synthesis. Cancer cells therefore require increased AA uptake and undergo metabolic reprogramming to satisfy the energy demand associated with their rapid proliferation. Like many other cancers, myeloid leukemias are vulnerable to specific therapeutic strategies targeting metabolic dependencies. Herein, our review provides a comprehensive overview and TCGA data analysis of biosynthetic enzymes required for non-essential AA synthesis and their dysregulation in myeloid leukemias. Furthermore, we discuss the role of the general control nonderepressible 2 (GCN2) and-mammalian target of rapamycin (mTOR) pathways of AA sensing on metabolic vulnerability and drug resistance.
Collapse
Affiliation(s)
- Aboli Bhingarkar
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Hima V. Vangapandu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Sanjay Rathod
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Keito Hoshitsuki
- Division of General Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christian A. Fernandez
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| |
Collapse
|
87
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
88
|
Martins WK, Silva MDND, Pandey K, Maejima I, Ramalho E, Olivon VC, Diniz SN, Grasso D. Autophagy-targeted therapy to modulate age-related diseases: Success, pitfalls, and new directions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100033. [PMID: 34909664 PMCID: PMC8663935 DOI: 10.1016/j.crphar.2021.100033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a critical metabolic process that supports homeostasis at a basal level and is dynamically regulated in response to various physiological and pathological processes. Autophagy has some etiologic implications that support certain pathological processes due to alterations in the lysosomal-degradative pathway. Some of the conditions related to autophagy play key roles in highly relevant human diseases, e.g., cardiovascular diseases (15.5%), malignant and other neoplasms (9.4%), and neurodegenerative conditions (3.7%). Despite advances in the discovery of new strategies to treat these age-related diseases, autophagy has emerged as a therapeutic option after preclinical and clinical studies. Here, we discuss the pitfalls and success in regulating autophagy initiation and its lysosome-dependent pathway to restore its homeostatic role and mediate therapeutic effects for cancer, neurodegenerative, and cardiac diseases. The main challenge for the development of autophagy regulators for clinical application is the lack of specificity of the repurposed drugs, due to the low pharmacological uniqueness of their target, including those that target the PI3K/AKT/mTOR and AMPK pathway. Then, future efforts must be conducted to deal with this scenery, including the disclosure of key components in the autophagy machinery that may intervene in its therapeutic regulation. Among all efforts, those focusing on the development of novel allosteric inhibitors against autophagy inducers, as well as those targeting autolysosomal function, and their integration into therapeutic regimens should remain a priority for the field.
Collapse
Affiliation(s)
- Waleska Kerllen Martins
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Maryana do Nascimento da Silva
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Kiran Pandey
- Center for Neural Science, New York University, Meyer Building, Room 823, 4 Washington Place, New York, NY, 10003, USA
| | - Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa Machi, Maebashi, Gunma, 3718512, Japan
| | - Ercília Ramalho
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Vania Claudia Olivon
- Laboratory of Pharmacology and Physiology, UNIDERP, Av. Ceará, 333. Vila Miguel Couto, Campo Grande, MS, 79003-010, Brazil
| | - Susana Nogueira Diniz
- Laboratory of Molecular Biology and Functional Genomics, Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Daniel Grasso
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, CONICET, Junín 954 p4, Buenos Aires, C1113AAD, Argentina
| |
Collapse
|
89
|
Zada S, Hwang JS, Ahmed M, Lai TH, Pham TM, Elashkar O, Kim DR. Cross talk between autophagy and oncogenic signaling pathways and implications for cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188565. [PMID: 33992723 DOI: 10.1016/j.bbcan.2021.188565] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Autophagy is a highly conserved metabolic process involved in the degradation of intracellular components including proteins and organelles. Consequently, it plays a critical role in recycling metabolic energy for the maintenance of cellular homeostasis in response to various stressors. In cancer, autophagy either suppresses or promotes cancer progression depending on the stage and cancer type. Epithelial-mesenchymal transition (EMT) and cancer metastasis are directly mediated by oncogenic signal proteins including SNAI1, SLUG, ZEB1/2, and NOTCH1, which are functionally correlated with autophagy. In this report, we discuss the crosstalk between oncogenic signaling pathways and autophagy followed by possible strategies for cancer treatment via regulation of autophagy. Although autophagy affects EMT and cancer metastasis, the overall signaling pathways connecting cancer progression and autophagy are still illusive. In general, autophagy plays a critical role in cancer cell survival by providing a minimum level of energy via self-digestion. Thus, cancer cells face nutrient limitations and challenges under stress during EMT and metastasis. Conversely, autophagy acts as a potential cancer suppressor by degrading oncogenic proteins, which are essential for cancer progression, and by removing damaged components such as mitochondria to enhance genomic stability. Therefore, autophagy activators or inhibitors represent possible cancer therapeutics. We further discuss the regulation of autophagy-dependent degradation of oncogenic proteins and its functional correlation with oncogenic signaling pathways, with potential applications in cancer therapy.
Collapse
Affiliation(s)
- Sahib Zada
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Trang Minh Pham
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Omar Elashkar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea.
| |
Collapse
|
90
|
Abstract
Ecological fitness is the ability of individuals in a population to survive and reproduce. Individuals with increased fitness are better equipped to withstand the selective pressures of their environments. This paradigm pertains to all organismal life as we know it; however, it is also becoming increasingly clear that within multicellular organisms exist highly complex, competitive, and cooperative populations of cells under many of the same ecological and evolutionary constraints as populations of individuals in nature. In this review I discuss the parallels between populations of cancer cells and populations of individuals in the wild, highlighting how individuals in either context are constrained by their environments to converge on a small number of critical phenotypes to ensure survival and future reproductive success. I argue that the hallmarks of cancer can be distilled into key phenotypes necessary for cancer cell fitness: survival and reproduction. I posit that for therapeutic strategies to be maximally beneficial, they should seek to subvert these ecologically driven phenotypic responses.
Collapse
|
91
|
Plasminogen Activator Inhibitor-1 Secretion by Autophagy Contributes to Melanoma Resistance to Chemotherapy through Tumor Microenvironment Modulation. Cancers (Basel) 2021; 13:cancers13061253. [PMID: 33809137 PMCID: PMC7999393 DOI: 10.3390/cancers13061253] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Dysregulation of tumor autophagy is implicated in cancer progression and chemotherapeutic response. It is unclear how tumor autophagy modulates tumor microenvironment and thereby contributes to chemoresistance. In this study, we found that autophagy-dependent plasminogen activator inhibitor (PAI)-1 secretion contributed to melanoma resistance to mitoxantrone (MitoX), a chemotherapeutic agent clinically used for treating various types of cancers (but not melanoma), by shaping a pro-tumoral microenvironment. Disruption of autophagy activity or targeting PAI-1 pharmacologically reshaped a tumor-suppressive immune microenvironment and enhanced the susceptibility of melanoma to MitoX in vivo. Overall, the results show that targeting autophagy/PAI-1 axis can serve as a novel strategy to repurpose MitoX-based chemotherapy. Abstract Autophagy plays a crucial role in maintenance of cellular homeostasis via intracellular signaling pathways, lysosomal degradation of selective cargo and mediating protein secretion. Dysregulation of autophagy has been implicated in tumorigenesis, tumor progression, and resistance to therapy. However, the mechanism of autophagy-dependent secretion involved in the responsiveness to chemotherapy is poorly understood. In this study, we showed that mitoxantrone (MitoX), a chemotherapeutic agent used for treating various cancers but not melanoma, induced autophagy in melanoma cells in vitro and in vivo. We also found that plasminogen activator inhibitor (PAI)-1 secretion by MitoX-induced autophagy modulated the pro-tumoral microenvironment. Attenuation of PAI-1 activity using a specific inhibitor, tiplaxtinin (TPX), or by targeting the autophagy gene, Becn1, induced efficient antitumor immunity, thereby overcoming the resistance to MitoX in vivo. Of note, the therapeutic efficacy of TPX was abolished in MitoX-treated Becn1-defective tumors. Collectively, our results demonstrate that tumor autophagy-dependent PAI-1 secretion impairs the therapeutic efficacy of MitoX and highlight targeting of tumor autophagy or its secretory cargo, PAI-1, as a novel strategy to repurpose MitoX-based chemotherapy for melanoma treatment.
Collapse
|
92
|
Grasmann G, Mondal A, Leithner K. Flexibility and Adaptation of Cancer Cells in a Heterogenous Metabolic Microenvironment. Int J Mol Sci 2021; 22:1476. [PMID: 33540663 PMCID: PMC7867260 DOI: 10.3390/ijms22031476] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
The metabolic microenvironment, comprising all soluble and insoluble nutrients and co-factors in the extracellular milieu, has a major impact on cancer cell proliferation and survival. A large body of evidence from recent studies suggests that tumor cells show a high degree of metabolic flexibility and adapt to variations in nutrient availability. Insufficient vascular networks and an imbalance of supply and demand shape the metabolic tumor microenvironment, which typically contains a lower concentration of glucose compared to normal tissues. The present review sheds light on the recent literature on adaptive responses in cancer cells to nutrient deprivation. It focuses on the utilization of alternative nutrients in anabolic metabolic pathways in cancer cells, including soluble metabolites and macromolecules and outlines the role of central metabolic enzymes conferring metabolic flexibility, like gluconeogenesis enzymes. Moreover, a conceptual framework for potential therapies targeting metabolically flexible cancer cells is presented.
Collapse
Affiliation(s)
- Gabriele Grasmann
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (G.G.); (A.M.)
| | - Ayusi Mondal
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (G.G.); (A.M.)
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (G.G.); (A.M.)
- BioTechMed-Graz, A-8010 Graz, Austria
| |
Collapse
|
93
|
Martins WK, Belotto R, Silva MN, Grasso D, Suriani MD, Lavor TS, Itri R, Baptista MS, Tsubone TM. Autophagy Regulation and Photodynamic Therapy: Insights to Improve Outcomes of Cancer Treatment. Front Oncol 2021; 10:610472. [PMID: 33552982 PMCID: PMC7855851 DOI: 10.3389/fonc.2020.610472] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is considered an age-related disease that, over the next 10 years, will become the most prevalent health problem worldwide. Although cancer therapy has remarkably improved in the last few decades, novel treatment concepts are needed to defeat this disease. Photodynamic Therapy (PDT) signalize a pathway to treat and manage several types of cancer. Over the past three decades, new light sources and photosensitizers (PS) have been developed to be applied in PDT. Nevertheless, there is a lack of knowledge to explain the main biochemical routes needed to trigger regulated cell death mechanisms, affecting, considerably, the scope of the PDT. Although autophagy modulation is being raised as an interesting strategy to be used in cancer therapy, the main aspects referring to the autophagy role over cell succumbing PDT-photoinduced damage remain elusive. Several reports emphasize cytoprotective autophagy, as an ultimate attempt of cells to cope with the photo-induced stress and to survive. Moreover, other underlying molecular mechanisms that evoke PDT-resistance of tumor cells were considered. We reviewed the paradigm about the PDT-regulated cell death mechanisms that involve autophagic impairment or boosted activation. To comprise the autophagy-targeted PDT-protocols to treat cancer, it was underlined those that alleviate or intensify PDT-resistance of tumor cells. Thereby, this review provides insights into the mechanisms by which PDT can be used to modulate autophagy and emphasizes how this field represents a promising therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Waleska K Martins
- Laboratory of Cell and Membrane, Anhanguera University of São Paulo, São Paulo, Brazil
| | - Renata Belotto
- Perola Byington Hospital Gynecology - Lasertherapy Clinical Research Department, São Paulo, Brazil
| | - Maryana N Silva
- Laboratory of Cell and Membrane, Anhanguera University of São Paulo, São Paulo, Brazil
| | - Daniel Grasso
- CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maynne D Suriani
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Tayná S Lavor
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo, Brazil
| | | | - Tayana M Tsubone
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
94
|
Sarmah DT, Bairagi N, Chatterjee S. Tracing the footsteps of autophagy in computational biology. Brief Bioinform 2020; 22:5985288. [PMID: 33201177 PMCID: PMC8293817 DOI: 10.1093/bib/bbaa286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy plays a crucial role in maintaining cellular homeostasis through the degradation of unwanted materials like damaged mitochondria and misfolded proteins. However, the contribution of autophagy toward a healthy cell environment is not only limited to the cleaning process. It also assists in protein synthesis when the system lacks the amino acids’ inflow from the extracellular environment due to diet consumptions. Reduction in the autophagy process is associated with diseases like cancer, diabetes, non-alcoholic steatohepatitis, etc., while uncontrolled autophagy may facilitate cell death. We need a better understanding of the autophagy processes and their regulatory mechanisms at various levels (molecules, cells, tissues). This demands a thorough understanding of the system with the help of mathematical and computational tools. The present review illuminates how systems biology approaches are being used for the study of the autophagy process. A comprehensive insight is provided on the application of computational methods involving mathematical modeling and network analysis in the autophagy process. Various mathematical models based on the system of differential equations for studying autophagy are covered here. We have also highlighted the significance of network analysis and machine learning in capturing the core regulatory machinery governing the autophagy process. We explored the available autophagic databases and related resources along with their attributes that are useful in investigating autophagy through computational methods. We conclude the article addressing the potential future perspective in this area, which might provide a more in-depth insight into the dynamics of autophagy.
Collapse
Affiliation(s)
| | - Nandadulal Bairagi
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata, India
| | - Samrat Chatterjee
- Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|