51
|
Yelden K, James LM, Duport S, Kempny A, Farmer SF, Leff AP, Playford ED. A simple intervention for disorders of consciousness- is there a light at the end of the tunnel? Front Neurol 2022; 13:824880. [PMID: 35937075 PMCID: PMC9355643 DOI: 10.3389/fneur.2022.824880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Sleep is a physiological state necessary for memory processing, learning and brain plasticity. Patients with disorders of consciousness (DOC) show none or minimal sign of awareness of themselves or their environment but appear to have sleep-wake cycles. The aim of our study was to assess baseline circadian rhythms and sleep in patients with DOC; to optimize circadian rhythm using an intervention combining blue light, melatonin and caffeine, and to identify the impact of this intervention on brain function using event related potentials. We evaluated baseline circadian rhythms and sleep in 17 patients with DOC with 24-h polysomnography (PSG) and 4-hourly saliva melatonin measurements for 48 h. Ten of the 17 patients (5 female, age 30-71) were then treated for 5 weeks with melatonin each night and blue light and caffeine treatment in the mornings. Behavioral assessment of arousal and awareness [Coma recovery scale-revised (CRS-R)], 24-h polysomnography and 4-hourly saliva melatonin measurements, oddball mismatch negativity (MMN) and subject's own name (SON) experiments were performed twice at baseline and following intervention. Baseline sleep was abnormal in all patients. Cosinor analysis of saliva melatonin results revealed that averaged baseline % rhythmicity was low (M: 31%, Range: 13-66.4%, SD: 18.4). However, increase in % Melatonin Rhythm following intervention was statistically significant (p = 0.012). 7 patients showed improvement of CRS-R scores with intervention and this was statistically significant (p = 0.034). All the patients who had improvement of clinical scores also had statistically significant improvement of neurophysiological responses on MMN and SON experiments at group level (p = 0.001). Our study shows that sleep and circadian rhythms are severely deranged in DOC but optimization is possible with melatonin, caffeine and blue light treatment. Clinical and physiological parameters improved with this simple and inexpensive intervention. Optimization of sleep and circadian rhythms should be integrated into rehabilitation programs for people with DOC.
Collapse
Affiliation(s)
- Kudret Yelden
- Neurological Rehabilitation, Royal Hospital for Neuro-Disability, London, United Kingdom
- Department of Neuroscience, King's College Hospital, London, United Kingdom
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Leon M. James
- Neurophysiology Department, Bupa Cromwell Hospital, London, United Kingdom
| | - Sophie Duport
- Research Department, Royal Hospital for Neuro-Disability, London, United Kingdom
| | - Agnieszka Kempny
- Research Department, Royal Hospital for Neuro-Disability, London, United Kingdom
| | - Simon F. Farmer
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- National Hospital for Neurology and Neurosurgery, University College London Hospital, London, United Kingdom
| | - Alex P. Leff
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- National Hospital for Neurology and Neurosurgery, University College London Hospital, London, United Kingdom
| | - E. Diane Playford
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
52
|
谢 江, 林 新. [Recent research on gene polymorphisms related to caffeine therapy in preterm infants with apnea of prematurity]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:832-837. [PMID: 35894202 PMCID: PMC9336620 DOI: 10.7499/j.issn.1008-8830.2203134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Apnea of prematurity (AOP) is one of the common diseases in preterm infants. The main cause of AOP is immature development of the respiratory control center. If AOP is not treated timely and effectively, it will lead to respiratory failure, hypoxic brain injury, and even death in severe cases. Caffeine is the first choice for the treatment of AOP, but its effectiveness varies in preterm infants. With the deepening of AOP research, more and more genetic factors have been confirmed to play important roles in the pathogenesis and treatment of AOP; in particular, the influence of single nucleotide polymorphism on the efficacy of caffeine has become a research hotspot in recent years. This article reviews the gene polymorphisms that affect the efficacy of caffeine, in order to provide a reference for individualized caffeine therapy. Citation.
Collapse
|
53
|
Schubert C, Schulz K, Träger S, Plath AL, Omriouate A, Rosenkranz SC, Morellini F, Friese MA, Hirnet D. Neuronal Adenosine A1 Receptor is Critical for Olfactory Function but Unable to Attenuate Olfactory Dysfunction in Neuroinflammation. Front Cell Neurosci 2022; 16:912030. [PMID: 35846561 PMCID: PMC9279574 DOI: 10.3389/fncel.2022.912030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Adenine nucleotides, such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), as well as the nucleoside adenosine are important modulators of neuronal function by engaging P1 and P2 purinergic receptors. In mitral cells, signaling of the G protein-coupled P1 receptor adenosine 1 receptor (A1R) affects the olfactory sensory pathway by regulating high voltage-activated calcium channels and two-pore domain potassium (K2P) channels. The inflammation of the central nervous system (CNS) impairs the olfactory function and gives rise to large amounts of extracellular ATP and adenosine, which act as pro-inflammatory and anti-inflammatory mediators, respectively. However, it is unclear whether neuronal A1R in the olfactory bulb modulates the sensory function and how this is impacted by inflammation. Here, we show that signaling via neuronal A1R is important for the physiological olfactory function, while it cannot counteract inflammation-induced hyperexcitability and olfactory deficit. Using neuron-specific A1R-deficient mice in patch-clamp recordings, we found that adenosine modulates spontaneous dendro-dendritic signaling in mitral and granule cells via A1R. Furthermore, neuronal A1R deficiency resulted in olfactory dysfunction in two separate olfactory tests. In mice with experimental autoimmune encephalomyelitis (EAE), we detected immune cell infiltration and microglia activation in the olfactory bulb as well as hyperexcitability of mitral cells and olfactory dysfunction. However, neuron-specific A1R activity was unable to attenuate glutamate excitotoxicity in the primary olfactory bulb neurons in vitro or EAE-induced olfactory dysfunction and disease severity in vivo. Together, we demonstrate that A1R modulates the dendro-dendritic inhibition (DDI) at the site of mitral and granule cells and impacts the processing of the olfactory sensory information, while A1R activity was unable to counteract inflammation-induced hyperexcitability.
Collapse
Affiliation(s)
- Charlotte Schubert
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristina Schulz
- Division of Neurophysiology, Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Simone Träger
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna-Lena Plath
- Research Group Behavioral Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Asina Omriouate
- Research Group Behavioral Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sina C. Rosenkranz
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabio Morellini
- Research Group Behavioral Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A. Friese
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Manuel A. Friese,
| | - Daniela Hirnet
- Division of Neurophysiology, Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
- Daniela Hirnet,
| |
Collapse
|
54
|
Murillo-Rodríguez E, Coronado-Álvarez A, López-Muciño LA, Pastrana-Trejo JC, Viana-Torre G, Barberena JJ, Soriano-Nava DM, García-García F. Neurobiology of dream activity and effects of stimulants on dreams. Curr Top Med Chem 2022; 22:1280-1295. [PMID: 35761491 DOI: 10.2174/1568026622666220627162032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/18/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
Abstract
The sleep-wake cycle is the result of the activity of a multiple neurobiological network interaction. Dreaming feature is one interesting sleep phenomena that represents sensorial components, mostly visual perceptions, accompanied with intense emotions. Further complexity has been added to the topic of the neurobiological mechanism of dreams generation by the current data that suggests the influence of drugs on dream generation. Here, we discuss the review on some of the neurobiological mechanism of the regulation of dream activity, with special emphasis on the effects of stimulants on dreaming.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Astrid Coronado-Álvarez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Luis Angel López-Muciño
- Health Sciences Program. Health Sciences Institute. Veracruzana University. Xalapa. Veracruz. Mexico
| | - José Carlos Pastrana-Trejo
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Gerardo Viana-Torre
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Juan José Barberena
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group.,Escuela de Psicología, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México
| | - Daniela Marcia Soriano-Nava
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Fabio García-García
- Intercontinental Neuroscience Research Group.,Health Sciences Program. Health Sciences Institute. Veracruzana University. Xalapa. Veracruz. Mexico
| |
Collapse
|
55
|
Hu S, Hu C, Luo L, Zhang H, Zhao S, Liu Z, Zeng L. Pu-erh tea increases the metabolite Cinnabarinic acid to improve circadian rhythm disorder-induced obesity. Food Chem 2022; 394:133500. [PMID: 35749873 DOI: 10.1016/j.foodchem.2022.133500] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/04/2022]
Abstract
Obesity is one of the circadian rhythm disorders (CRD)-mediated metabolic disorder syndromes. Pu-erh tea is a viable dietary intervention for CRD, however its effect on CRD-induced obesity is unclear. Here, we found that Pu-erh tea improved obesity in CRD-induced mice, which stemmed from the production of Cinnabarinic acid (CA). CA promoted adipose tissue lipolysis and thermogenic response (HSL, ATGL, Pparα, CKB, UCP1) and increased adipocyte sensitivity to hormones and neurotransmitters by targeting the expression of adipose tissue receptor proteins (Q6KAT8, P51655, A2AKQ0, M0QWX7, Q6ZQ33, and mGluR4). This improved mitochondrial activity and facilitated adipose tissue metabolic processes, thereby accelerating glucolipid metabolism. Also, CA-induced alterations in gut microbes and short-chain fatty acids further improved CRD-mediated lipid accumulation. These results suggest that the increase of CA caused by Pu-erh tea, targeted to adipose tissue via the metabolite-blood circulation-adipose tissue axis, maybe a key mechanism for reducing the development of CRD-induced obesity.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Changhua Hu
- College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Beibei, Chongqing 400715, China
| | - Haotian Zhang
- College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Sibo Zhao
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China.
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
56
|
Roenneberg T, Foster RG, Klerman EB. The circadian system, sleep, and the health/disease balance: a conceptual review. J Sleep Res 2022; 31:e13621. [PMID: 35670313 PMCID: PMC9352354 DOI: 10.1111/jsr.13621] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/30/2022]
Abstract
The field of "circadian medicine" is a recent addition to chronobiology and sleep research efforts. It represents a logical step arising from the increasing insights into the circadian system and its interactions with life in urbanised societies; applying these insights to the health/disease balance at home and in the medical practice (outpatient) and clinic (inpatient). Despite its fast expansion and proliferating research efforts, circadian medicine lacks a formal framework to categorise the many observations describing interactions among the circadian system, sleep, and the health/disease balance. A good framework allows us to categorise observations and then assign them to one or more components with hypothesised interactions. Such assignments can lead to experiments that document causal (rather than correlational) relationships and move from describing observations to discovering mechanisms. This review details such a proposed formal framework for circadian medicine and will hopefully trigger discussion among our colleagues, so that the framework can be improved and expanded. As the basis of the framework for circadian medicine, we define "circadian health" and how it links to general health. We then define interactions among the circadian system, sleep, and the health/disease balance and put the framework into the context of the literature with examples from six domains of health/disease balance: fertility, cancer, immune system, mental health, cardiovascular, and metabolism.
Collapse
Affiliation(s)
- Till Roenneberg
- Institute of Medical Psychology and Institute for Occupational, Social and Environmental Medicine, Munich, Germany
| | - Russell G Foster
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, UK
| | - Elizabeth B Klerman
- Department of Neurology, Massachusetts General Hospital, Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
57
|
Abstract
Behavioral states naturally alternate between wakefulness and the sleep phases rapid eye movement and nonrapid eye movement sleep. Waking and sleep states are complex processes that are elegantly orchestrated by spatially fine-tuned neurochemical changes of neurotransmitters and neuromodulators including glutamate, acetylcholine, γ-aminobutyric acid, norepinephrine, dopamine, serotonin, histamine, hypocretin, melanin concentrating hormone, adenosine, and melatonin. However, as highlighted in this brief overview, no single neurotransmitter or neuromodulator, but rather their complex interactions within organized neuronal ensembles, regulate waking and sleep states. The neurochemical pathways presented here are aimed to provide a conceptual framework for the understanding of the effects of currently used sleep medications.
Collapse
Affiliation(s)
- Sebastian C Holst
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland.
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland; Zürich Center for Interdisciplinary Sleep Research (ZiS), University of Zürich, Zürich, Switzerland
| |
Collapse
|
58
|
Hu S, Luo L, Bian X, Liu RH, Zhao S, Chen Y, Sun K, Jiang J, Liu Z, Zeng L. Pu-erh Tea Restored Circadian Rhythm Disruption by Regulating Tryptophan Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5610-5623. [PMID: 35475616 DOI: 10.1021/acs.jafc.2c01883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pu-erh tea is a healthy beverage rich in phytochemicals, and its effect on the risk of inducing circadian rhythm disorders (CRD) is unclear. In this study, healthy mice were given water or 0.25% (w/v) Pu-erh tea for 7 weeks, followed by a 40 day disruption of the light/dark cycle. CRD caused dysregulation of neurotransmitter secretion and clock gene oscillations, intestinal inflammation, and disruption of intestinal microbes and metabolites. Pu-erh tea boosted the indole and 5-hydroxytryptamine pathways of tryptophan metabolism via the gut-liver-brain axis. Furthermore, its metabolites (e.g., IAA, Indole, 5-HT) enhanced hepatic glycolipid metabolism and down-regulated intestinal oxidative stress by improving the brain hormone release. Tryptophan metabolites and bile acids also promoted liver lipid metabolism and inhibited intestinal inflammation (MyD88/NF-κB) via the enterohepatic circulation. Collectively, 0.25% (w/v) Pu-erh tea has the potential to prevent CRD by promoting indole and 5-HT pathways of tryptophan metabolism and signaling interactions in the gut-liver-brain axis.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Xintong Bian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine Chongqing Medical University, Chongqing 400016, China
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, New York 14850-7201, United States
| | - Sibo Zhao
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Chen
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Kang Sun
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Jielin Jiang
- Menghai Tea Factory·TAETEA Group, Xishuangbanna Dai Autonomous Prefecture, Yunnan 666200, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
59
|
Tang B, Yu Y, Yu F, Fang J, Wang G, Jiang J, Han Q, Shi J, Zhang J. The mechanism study of YZG-331 on sedative and hypnotic effects. Behav Brain Res 2022; 428:113885. [DOI: 10.1016/j.bbr.2022.113885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 01/28/2023]
|
60
|
Lee R, McGee A, Fernandez FX. Systematic review of drugs that modify the circadian system's phase-shifting responses to light exposure. Neuropsychopharmacology 2022; 47:866-879. [PMID: 34961774 PMCID: PMC8882192 DOI: 10.1038/s41386-021-01251-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022]
Abstract
We searched PubMed for primary research quantifying drug modification of light-induced circadian phase-shifting in rodents. This search, conducted for work published between 1960 and 2018, yielded a total of 146 papers reporting results from 901 studies. Relevant articles were those with any extractable data on phase resetting in wildtype (non-trait selected) rodents administered a drug, alongside a vehicle/control group, near or at the time of exposure. Most circadian pharmacology experiments were done using drugs thought to act directly on either the brain's central pacemaker, the suprachiasmatic nucleus (SCN), the SCN's primary relay, the retinohypothalamic tract, secondary pathways originating from the medial/dorsal raphe nuclei and intergeniculate leaflet, or the brain's sleep-arousal centers. While the neurotransmitter systems underlying these circuits were of particular interest, including those involving glutamate, gamma-aminobutyric acid, serotonin, and acetylcholine, other signaling modalities have also been assessed, including agonists and antagonists of receptors linked to dopamine, histamine, endocannabinoids, adenosine, opioids, and second-messenger pathways downstream of glutamate receptor activation. In an effort to identify drugs that unduly influence circadian responses to light, we quantified the net effects of each drug class by ratioing the size of the phase-shift observed after administration to that observed with vehicle in a given experiment. This allowed us to organize data across the literature, compare the relative efficacy of one mechanism versus another, and clarify which drugs might best suppress or potentiate phase resetting. Aggregation of the available data in this manner suggested that several candidates might be clinically relevant as auxiliary treatments to suppress ectopic light responses during shiftwork or amplify the circadian effects of timed bright light therapy. Future empirical research will be necessary to validate these possibilities.
Collapse
Affiliation(s)
- Robert Lee
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Austin McGee
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Fabian-Xosé Fernandez
- Department of Psychology, University of Arizona, Tucson, AZ, USA.
- Department of Neurology, University of Arizona, Tucson, AZ, USA.
- BIO5 and McKnight Brain Research Institutes, Tucson, AZ, USA.
| |
Collapse
|
61
|
Losenkova K, Takeda A, Ragauskas S, Cerrada-Gimenez M, Vähätupa M, Kaja S, Paul ML, Schmies CC, Rolshoven G, Müller CE, Sandholm J, Jalkanen S, Kalesnykas G, Yegutkin GG. CD73 controls ocular adenosine levels and protects retina from light-induced phototoxicity. Cell Mol Life Sci 2022; 79:152. [PMID: 35212809 PMCID: PMC8881442 DOI: 10.1007/s00018-022-04187-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 01/03/2023]
Abstract
ATP and adenosine have emerged as important signaling molecules involved in vascular remodeling, retinal functioning and neurovascular coupling in the mammalian eye. However, little is known about the regulatory mechanisms of purinergic signaling in the eye. Here, we used three-dimensional multiplexed imaging, in situ enzyme histochemistry, flow cytometric analysis, and single cell transcriptomics to characterize the whole pattern of purine metabolism in mouse and human eyes. This study identified ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39), NTPDase2, and ecto-5′-nucleotidase/CD73 as major ocular ecto-nucleotidases, which are selectively expressed in the photoreceptor layer (CD73), optic nerve head, retinal vasculature and microglia (CD39), as well as in neuronal processes and cornea (CD39, NTPDase2). Specifically, microglial cells can create a spatially arranged network in the retinal parenchyma by extending and retracting their branched CD39high/CD73low processes and forming local “purinergic junctions” with CD39low/CD73− neuronal cell bodies and CD39high/CD73− retinal blood vessels. The relevance of the CD73–adenosine pathway was confirmed by flash electroretinography showing that pharmacological inhibition of adenosine production by injection of highly selective CD73 inhibitor PSB-12489 in the vitreous cavity of dark-adapted mouse eyes rendered the animals hypersensitive to prolonged bright light, manifested as decreased a-wave and b-wave amplitudes. The impaired electrical responses of retinal cells in PSB-12489-treated mice were not accompanied by decrease in total thickness of the retina or death of photoreceptors and retinal ganglion cells. Our study thus defines ocular adenosine metabolism as a complex and spatially integrated network and further characterizes the critical role of CD73 in maintaining the functional activity of retinal cells.
Collapse
Affiliation(s)
- Karolina Losenkova
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | - Akira Takeda
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | | | | | | | - Simon Kaja
- Experimentica Ltd., Kuopio, Finland.,Department of Ophthalmology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Marius L Paul
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland.,Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Constanze C Schmies
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Georg Rolshoven
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Christa E Müller
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Jouko Sandholm
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | | | - Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland.
| |
Collapse
|
62
|
Rossetti C, Cherix A, Guiraud LF, Cardinaux JR. New Insights Into the Pivotal Role of CREB-Regulated Transcription Coactivator 1 in Depression and Comorbid Obesity. Front Mol Neurosci 2022; 15:810641. [PMID: 35242012 PMCID: PMC8886117 DOI: 10.3389/fnmol.2022.810641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Depression and obesity are major public health concerns, and there is mounting evidence that they share etiopathophysiological mechanisms. The neurobiological pathways involved in both mood and energy balance regulation are complex, multifactorial and still incompletely understood. As a coactivator of the pleiotropic transcription factor cAMP response element-binding protein (CREB), CREB-regulated transcription coactivator 1 (CRTC1) has recently emerged as a novel regulator of neuronal plasticity and brain functions, while CRTC1 dysfunction has been associated with neurodegenerative and psychiatric diseases. This review focuses on recent evidence emphasizing the critical role of CRTC1 in the neurobiology of depression and comorbid obesity. We discuss the role of CRTC1 downregulation in mediating chronic stress-induced depressive-like behaviors, and antidepressant response in the light of the previously characterized Crtc1 knockout mouse model of depression. The putative role of CRTC1 in the alteration of brain energy homeostasis observed in depression is also discussed. Finally, we highlight rodent and human studies supporting the critical involvement of CRTC1 in depression-associated obesity.
Collapse
Affiliation(s)
- Clara Rossetti
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Antoine Cherix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laetitia F. Guiraud
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Jean-René Cardinaux
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
63
|
Guo HL, Long JY, Hu YH, Liu Y, He X, Li L, Xia Y, Ding XS, Chen F, Xu J, Cheng R. Caffeine Therapy for Apnea of Prematurity: Role of the Circadian CLOCK Gene Polymorphism. Front Pharmacol 2022; 12:724145. [PMID: 35145399 PMCID: PMC8822171 DOI: 10.3389/fphar.2021.724145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/14/2021] [Indexed: 01/11/2023] Open
Abstract
Standard-dose caffeine citrate has been routinely prescribed for apnea of prematurity (AOP) management; however, some preterm infants respond well to the therapy while others do not. The AOP phenotype has been attributed solely to the immature control of the respiratory system consequent to preterm birth, but there are also important genetic influences. Based on our previous report, we tested the hypothesis that the human circadian locomotor output cycles kaput (CLOCK) gene polymorphisms play a role in the response to caffeine citrate therapy in preterm infants. We also studied the interactions of the circadian clock with aryl hydrocarbon receptor (AHR) signaling pathways in preterm babies who received caffeine citrate. This single-center study collected data from 112 preterm infants (<35 weeks gestational age) between July 2017 and July 2018, including apnea-free (n = 48) and apneic (n = 64) groups. Eighty-eight candidate single nucleotide polymorphisms (SNPs) were tested using the MassARRAY system. Association analysis was performed using the PLINK Whole Genome Data Analysis Toolset and SNPStats software. Linkage disequilibrium (LD) and haplotype analyses were performed using Hapview software. No significant intergroup differences in allele distributions or genotype frequencies of CYP1A2, CYP3A4, CYP3A5, and CYP3A7 were detected in our study on preterm babies. Two more SNPs in AHR were found to be associated with determining the response to caffeine citrate therapy in our pediatric patients. Of the 46 candidate SNPs in the CLOCK gene, 26 were found to be associated with determining the response to caffeine treatment in these babies. Interestingly, a significant association was retained for 18 SNPs in the CLOCK gene after false discovery rate correction. Moreover, strong LD formed in those variants in AHR, ADORA2A, and CLOCK genes was confirmed to be significantly associated with a better response to standard-dose caffeine therapy. In summary, CLOCK gene polymorphisms play a role in determining the response to caffeine therapy in premature neonates with AOP. However, whether the AHR and CLOCK signaling pathways crosstalk with each other during caffeine treatment remains largely unclear. Future clinical studies including more immature babies and basic research are needed to explore the mechanism by which circadian rhythms affect the response to caffeine therapy.
Collapse
Affiliation(s)
- Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jia-Yi Long
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Liu
- Neonatal Intensive Care Unit, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xin He
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Li
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ying Xia
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan-Sheng Ding
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Xu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Cheng
- Neonatal Intensive Care Unit, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
64
|
Ashton A, Foster RG, Jagannath A. Photic Entrainment of the Circadian System. Int J Mol Sci 2022; 23:ijms23020729. [PMID: 35054913 PMCID: PMC8775994 DOI: 10.3390/ijms23020729] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 01/27/2023] Open
Abstract
Circadian rhythms are essential for the survival of all organisms, enabling them to predict daily changes in the environment and time their behaviour appropriately. The molecular basis of such rhythms is the circadian clock, a self-sustaining molecular oscillator comprising a transcriptional–translational feedback loop. This must be continually readjusted to remain in alignment with the external world through a process termed entrainment, in which the phase of the master circadian clock in the suprachiasmatic nuclei (SCN) is adjusted in response to external time cues. In mammals, the primary time cue, or “zeitgeber”, is light, which inputs directly to the SCN where it is integrated with additional non-photic zeitgebers. The molecular mechanisms underlying photic entrainment are complex, comprising a number of regulatory factors. This review will outline the photoreception pathways mediating photic entrainment, and our current understanding of the molecular pathways that drive it in the SCN.
Collapse
|
65
|
Ray DW. Circadian Rhythm and Nuclear Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:143-153. [PMID: 36107317 DOI: 10.1007/978-3-031-11836-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
All life of Earth has evolved mechanisms to track time. This permits anticipation of predictable changes in light/dark, and in most cases also directs fed/fasted cycles, and sleep/wake. The nuclear receptors enjoy a close relationship with the molecular machinery of the clock. Some play a core role within the circadian machinery, other respond to ligands which oscillate in concentration, and physical cross-talk between clock transcription factors, eg cryptochromes, and multiple nuclear receptors also enable coupling of nuclear receptor function to time of day. Essential processes including inflammation, and energy metabolism are strongly regulated by both the circadian machinery, and rhythmic behaviour, and also by multiple members of the nuclear receptor family. An emerging theme is reciprocal regulation of key processes by different members of the nuclear receptor family, for example NR1D1/2, and NR1F1, in regulation of the core circadian clock transcription factor BMAL1.
Collapse
|
66
|
Parameswaran G, Ray DW. Sleep, circadian rhythms, and type 2 diabetes mellitus. Clin Endocrinol (Oxf) 2022; 96:12-20. [PMID: 34637144 PMCID: PMC8939263 DOI: 10.1111/cen.14607] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 01/01/2023]
Abstract
Over the last 60 years we have seen a significant rise in metabolic disease, especially type 2 diabetes. In the same period, the emergence of electricity and artificial lighting has allowed our behavioural cycles to be independent of external patterns of sunlight. This has led to a corresponding increase in sleep deprivation, estimated to be about 1 hour per night, as well as circadian misalignment (living against the clock). Evidence from experimental animals as well as controlled human subjects have shown that sleep deprivation and circadian misalignment can both directly drive metabolic dysfunction, causing diabetes. However, the precise mechanism by which these processes contribute to insulin resistance remains poorly understood. In this article, we will review the new literature in the field and propose a model attempting to reconcile the experimental observations made. We believe our model will serve as a useful point of reference to understand how metabolic dysfunction can emerge from sleep or circadian rhythm disruptions, providing new directions for research and therapy.
Collapse
Affiliation(s)
- Gokul Parameswaran
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
| | - David W. Ray
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
| |
Collapse
|
67
|
Jagannath A, Pretoro SD, Ebrahimjee F, Ftouni S, Taylor L, Foster RG, Vasudevan S. The regulation of circadian entrainment in mice by the adenosine the A 2A /A 1 receptor antagonist CT1500. Front Physiol 2022; 13:1085217. [PMID: 36605898 PMCID: PMC9808084 DOI: 10.3389/fphys.2022.1085217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Circadian entrainment in mice relies primarily on photic cues that trigger the transcription of the core clock genes Period1/2 in the suprachiasmatic nucleus (SCN), thus aligning the phase of the clock with the dawn/dusk cycle. It has been shown previously that this pathway is directly regulated by adenosine signalling and that adenosine A2A/A1 receptor antagonists can both enhance photic entrainment and phase shift circadian rhythms of wheel-running behaviour in mice. In this study, we tested the ability of CT1500, a clinically safe adenosine A2A/A1 receptor antagonist to effect circadian entrainment. We show that CT1500 lengthens circadian period in SCN ex vivo preparations. Furthermore, we show in vivo that a single dose of CT1500 enhances re-entrainment to a shifted light dark cycle in a dose-dependent manner in mice and also phase shifts the circadian clock under constant dark with a clear time-of-day related pattern. The phase response curve shows CT1500 causes phase advances during the day and phase delays at dusk. Finally, we show that daily timed administration of CT1500 can entrain the circadian clock to a 24 h rhythm in free-running mice. Collectively, these data support the use of CT1500 in the treatment of disorders of circadian entrainment.
Collapse
Affiliation(s)
- Aarti Jagannath
- Sir Jules Thorne Sleep and Circadian Neuroscience Institute (SCNi) and Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Simona Di Pretoro
- Sir Jules Thorne Sleep and Circadian Neuroscience Institute (SCNi) and Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Farid Ebrahimjee
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Suzanne Ftouni
- Sir Jules Thorne Sleep and Circadian Neuroscience Institute (SCNi) and Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Lewis Taylor
- Sir Jules Thorne Sleep and Circadian Neuroscience Institute (SCNi) and Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Russell G Foster
- Sir Jules Thorne Sleep and Circadian Neuroscience Institute (SCNi) and Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Sridhar Vasudevan
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
68
|
Gonçalves MCB, Andrejew R, Gubert C. The Purinergic System as a Target for the Development of Treatments for Bipolar Disorder. CNS Drugs 2022; 36:787-801. [PMID: 35829960 PMCID: PMC9345801 DOI: 10.1007/s40263-022-00934-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 11/27/2022]
Abstract
The neurobiological and neurochemical mechanisms underlying the pathophysiology of bipolar disorder are complex and not yet fully understood. From circadian disruption to neuroinflammation, many pathways and signaling molecules are important contributors to bipolar disorder development, some specific to a disease subtype or a cycling episode. Pharmacological agents for bipolar disorder have shown only partial efficacy, including mood stabilizers and antipsychotics. The purinergic hypothesis for bipolar disorder emerges in this scenario as a promising target for further research and drug development, given its role in neurotransmission and neuroinflammation that results in behavioral and mood regulation. Here, we review the basic concepts of purinergic signaling in the central nervous system and its contribution to bipolar disorder pathophysiology. Allopurinol and novel P2X7 receptor antagonists are promising candidates for treating bipolar disorder. We further explore currently available pharmacotherapies and the emerging new purinergic targets for drug development in bipolar disorder.
Collapse
Affiliation(s)
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3032, Australia.
| |
Collapse
|
69
|
Brunmair J, Gotsmy M, Niederstaetter L, Neuditschko B, Bileck A, Slany A, Feuerstein ML, Langbauer C, Janker L, Zanghellini J, Meier-Menches SM, Gerner C. Finger sweat analysis enables short interval metabolic biomonitoring in humans. Nat Commun 2021; 12:5993. [PMID: 34645808 PMCID: PMC8514494 DOI: 10.1038/s41467-021-26245-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 09/22/2021] [Indexed: 01/28/2023] Open
Abstract
Metabolic biomonitoring in humans is typically based on the sampling of blood, plasma or urine. Although established in the clinical routine, these sampling procedures are often associated with a variety of compliance issues, which are impeding time-course studies. Here, we show that the metabolic profiling of the minute amounts of sweat sampled from fingertips addresses this challenge. Sweat sampling from fingertips is non-invasive, robust and can be accomplished repeatedly by untrained personnel. The sweat matrix represents a rich source for metabolic phenotyping. We confirm the feasibility of short interval sampling of sweat from the fingertips in time-course studies involving the consumption of coffee or the ingestion of a caffeine capsule after a fasting interval, in which we successfully monitor all known caffeine metabolites as well as endogenous metabolic responses. Fluctuations in the rate of sweat production are accounted for by mathematical modelling to reveal individual rates of caffeine uptake, metabolism and clearance. To conclude, metabotyping using sweat from fingertips combined with mathematical network modelling shows promise for broad applications in precision medicine by enabling the assessment of dynamic metabolic patterns, which may overcome the limitations of purely compositional biomarkers.
Collapse
Affiliation(s)
- Julia Brunmair
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Mathias Gotsmy
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Laura Niederstaetter
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Benjamin Neuditschko
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University and Medical University of Vienna, Vienna, Austria
| | - Astrid Slany
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Max Lennart Feuerstein
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Clemens Langbauer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University and Medical University of Vienna, Vienna, Austria
| | - Jürgen Zanghellini
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Samuel M Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University and Medical University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
- Joint Metabolome Facility, University and Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
70
|
Joseph MD, Tomas Bort E, Grose RP, McCormick PJ, Simoncelli S. Quantitative Super-Resolution Imaging for the Analysis of GPCR Oligomerization. Biomolecules 2021; 11:biom11101503. [PMID: 34680136 PMCID: PMC8533726 DOI: 10.3390/biom11101503] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are known to form homo- and hetero- oligomers which are considered critical to modulate their function. However, studying the existence and functional implication of these complexes is not straightforward as controversial results are obtained depending on the method of analysis employed. Here, we use a quantitative single molecule super-resolution imaging technique named qPAINT to quantify complex formation within an example GPCR. qPAINT, based upon DNA-PAINT, takes advantage of the binding kinetics between fluorescently labelled DNA imager strands to complementary DNA docking strands coupled to protein targeting antibodies to quantify the protein copy number in nanoscale dimensions. We demonstrate qPAINT analysis via a novel pipeline to study the oligomerization of the purinergic receptor Y2 (P2Y2), a rhodopsin-like GPCR, highly expressed in the pancreatic cancer cell line AsPC-1, under control, agonistic and antagonistic conditions. Results reveal that whilst the density of P2Y2 receptors remained unchanged, antagonistic conditions displayed reduced percentage of oligomers, and smaller numbers of receptors in complexes. Yet, the oligomeric state of the receptors was not affected by agonist treatment, in line with previous reports. Understanding P2Y2 oligomerization under agonistic and antagonistic conditions will contribute to unravelling P2Y2 mechanistic action and therapeutic targeting.
Collapse
Affiliation(s)
- Megan D. Joseph
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK;
| | - Elena Tomas Bort
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (E.T.B.); (R.P.G.)
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Richard P. Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (E.T.B.); (R.P.G.)
| | - Peter J. McCormick
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Sabrina Simoncelli
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK;
- Department of Chemistry, University College London, London WC1H 0AJ, UK
- Correspondence:
| |
Collapse
|
71
|
Healy KL, Morris AR, Liu AC. Circadian Synchrony: Sleep, Nutrition, and Physical Activity. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:732243. [PMID: 35156088 PMCID: PMC8830366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 11/11/2022]
Abstract
The circadian clock in mammals regulates the sleep/wake cycle and many associated behavioral and physiological processes. The cellular clock mechanism involves a transcriptional negative feedback loop that gives rise to circadian rhythms in gene expression with an approximately 24-h periodicity. To maintain system robustness, clocks throughout the body must be synchronized and their functions coordinated. In mammals, the master clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is entrained to the light/dark cycle through photic signal transduction and subsequent induction of core clock gene expression. The SCN in turn relays the time-of-day information to clocks in peripheral tissues. While the SCN is highly responsive to photic cues, peripheral clocks are more sensitive to non-photic resetting cues such as nutrients, body temperature, and neuroendocrine hormones. For example, feeding/fasting and physical activity can entrain peripheral clocks through signaling pathways and subsequent regulation of core clock genes and proteins. As such, timing of food intake and physical activity matters. In an ideal world, the sleep/wake and feeding/fasting cycles are synchronized to the light/dark cycle. However, asynchronous environmental cues, such as those experienced by shift workers and frequent travelers, often lead to misalignment between the master and peripheral clocks. Emerging evidence suggests that the resulting circadian disruption is associated with various diseases and chronic conditions that cause further circadian desynchrony and accelerate disease progression. In this review, we discuss how sleep, nutrition, and physical activity synchronize circadian clocks and how chronomedicine may offer novel strategies for disease intervention.
Collapse
Affiliation(s)
| | | | - Andrew C. Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
72
|
Healy KL, Morris AR, Liu AC. Circadian Synchrony: Sleep, Nutrition, and Physical Activity. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:732243. [PMID: 35156088 PMCID: PMC8830366 DOI: 10.3389/fnetp.2021.732243] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 08/01/2023]
Abstract
The circadian clock in mammals regulates the sleep/wake cycle and many associated behavioral and physiological processes. The cellular clock mechanism involves a transcriptional negative feedback loop that gives rise to circadian rhythms in gene expression with an approximately 24-h periodicity. To maintain system robustness, clocks throughout the body must be synchronized and their functions coordinated. In mammals, the master clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is entrained to the light/dark cycle through photic signal transduction and subsequent induction of core clock gene expression. The SCN in turn relays the time-of-day information to clocks in peripheral tissues. While the SCN is highly responsive to photic cues, peripheral clocks are more sensitive to non-photic resetting cues such as nutrients, body temperature, and neuroendocrine hormones. For example, feeding/fasting and physical activity can entrain peripheral clocks through signaling pathways and subsequent regulation of core clock genes and proteins. As such, timing of food intake and physical activity matters. In an ideal world, the sleep/wake and feeding/fasting cycles are synchronized to the light/dark cycle. However, asynchronous environmental cues, such as those experienced by shift workers and frequent travelers, often lead to misalignment between the master and peripheral clocks. Emerging evidence suggests that the resulting circadian disruption is associated with various diseases and chronic conditions that cause further circadian desynchrony and accelerate disease progression. In this review, we discuss how sleep, nutrition, and physical activity synchronize circadian clocks and how chronomedicine may offer novel strategies for disease intervention.
Collapse
|
73
|
Brancaccio M, Wolfes AC, Ness N. Astrocyte Circadian Timekeeping in Brain Health and Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1344:87-110. [PMID: 34773228 DOI: 10.1007/978-3-030-81147-1_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marco Brancaccio
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, UK.
- UK Dementia Research Institute at Imperial College London, London, UK.
| | - Anne C Wolfes
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Natalie Ness
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| |
Collapse
|