51
|
Lila ASA, Rajab AAH, Abdallah MH, Rizvi SMD, Moin A, Khafagy ES, Tabrez S, Hegazy WAH. Biofilm Lifestyle in Recurrent Urinary Tract Infections. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010148. [PMID: 36676100 PMCID: PMC9865985 DOI: 10.3390/life13010148] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Urinary tract infections (UTIs) represent one of the most common infections that are frequently encountered in health care facilities. One of the main mechanisms used by bacteria that allows them to survive hostile environments is biofilm formation. Biofilms are closed bacterial communities that offer protection and safe hiding, allowing bacteria to evade host defenses and hide from the reach of antibiotics. Inside biofilm communities, bacteria show an increased rate of horizontal gene transfer and exchange of resistance and virulence genes. Additionally, bacterial communication within the biofilm allows them to orchestrate the expression of virulence genes, which further cements the infestation and increases the invasiveness of the infection. These facts stress the necessity of continuously updating our information and understanding of the etiology, pathogenesis, and eradication methods of this growing public health concern. This review seeks to understand the role of biofilm formation in recurrent urinary tact infections by outlining the mechanisms underlying biofilm formation in different uropathogens, in addition to shedding light on some biofilm eradication strategies.
Collapse
Affiliation(s)
- Amr S. Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| | - Azza A. H. Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| |
Collapse
|
52
|
Powell LC, Adams JYM, Quoraishi S, Py C, Oger A, Gazze SA, Francis LW, von Ruhland C, Owens D, Rye PD, Hill KE, Pritchard MF, Thomas DW. Alginate oligosaccharides enhance the antifungal activity of nystatin against candidal biofilms. Front Cell Infect Microbiol 2023; 13:1122340. [PMID: 36798083 PMCID: PMC9927220 DOI: 10.3389/fcimb.2023.1122340] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
Background The increasing prevalence of invasive fungal infections in immuno-compromised patients is a considerable cause of morbidity and mortality. With the rapid emergence of antifungal resistance and an inadequate pipeline of new therapies, novel treatment strategies are now urgently required. Methods The antifungal activity of the alginate oligosaccharide OligoG in conjunction with nystatin was tested against a range of Candida spp. (C. albicans, C. glabrata, C. parapsilosis, C. auris, C. tropicalis and C. dubliniensis), in both planktonic and biofilm assays, to determine its potential clinical utility to enhance the treatment of candidal infections. The effect of OligoG (0-6%) ± nystatin on Candida spp. was examined in minimum inhibitory concentration (MIC) and growth curve assays. Antifungal effects of OligoG and nystatin treatment on biofilm formation and disruption were characterized using confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM) and ATP cellular viability assays. Effects on the cell membrane were determined using permeability assays and transmission electron microscopy (TEM). Results MIC and growth curve assays demonstrated the synergistic effects of OligoG (0-6%) with nystatin, resulting in an up to 32-fold reduction in MIC, and a significant reduction in the growth of C. parapsilosis and C. auris (minimum significant difference = 0.2 and 0.12 respectively). CLSM and SEM imaging demonstrated that the combination treatment of OligoG (4%) with nystatin (1 µg/ml) resulted in significant inhibition of candidal biofilm formation on glass and clinical grade silicone surfaces (p < 0.001), with increased cell death (p < 0.0001). The ATP biofilm disruption assay demonstrated a significant reduction in cell viability with OligoG (4%) alone and the combined OligoG/nystatin (MIC value) treatment (p < 0.04) for all Candida strains tested. TEM studies revealed the combined OligoG/nystatin treatment induced structural reorganization of the Candida cell membrane, with increased permeability when compared to the untreated control (p < 0.001). Conclusions Antimicrobial synergy between OligoG and nystatin against Candida spp. highlights the potential utility of this combination therapy in the prevention and topical treatment of candidal biofilm infections, to overcome the inherent tolerance of biofilm structures to antifungal agents.
Collapse
Affiliation(s)
- Lydia C. Powell
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, United Kingdom
- Microbiology and Infectious Disease group, Swansea University Medical School, Swansea, United Kingdom
- *Correspondence: Lydia C. Powell,
| | - Jennifer Y. M. Adams
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, United Kingdom
| | - Sadik Quoraishi
- Otolaryngology Department, New Cross Hospital, Wolverhampton, United Kingdom
| | - Charlène Py
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, United Kingdom
- School of Engineering, University of Angers, Angers, France
| | - Anaϊs Oger
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, United Kingdom
- School of Engineering, University of Angers, Angers, France
| | - Salvatore A. Gazze
- Centre for Nanohealth, Swansea University Medical School, Swansea, United Kingdom
| | - Lewis W. Francis
- Centre for Nanohealth, Swansea University Medical School, Swansea, United Kingdom
| | - Christopher von Ruhland
- Central Biotechnology Services, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David Owens
- Head and Neck Directorate, University Hospital of Wales, Cardiff, United Kingdom
| | | | - Katja E. Hill
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, United Kingdom
| | - Manon F. Pritchard
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, United Kingdom
| | - David W. Thomas
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, United Kingdom
| |
Collapse
|
53
|
Stoitsova S, Paunova-Krasteva T, Dimitrova PD, Damyanova T. The concept for the antivirulence therapeutics approach as alternative to antibiotics: hope or still a fiction? BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2106887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Stoyanka Stoitsova
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tsvetelina Paunova-Krasteva
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Petya D. Dimitrova
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tsvetozara Damyanova
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
54
|
Antibiofilm Action of Plant Terpenes in Salmonella Strains: Potential Inhibitors of the Synthesis of Extracellular Polymeric Substances. Pathogens 2022; 12:pathogens12010035. [PMID: 36678383 PMCID: PMC9864247 DOI: 10.3390/pathogens12010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Salmonella can form biofilms that contribute to its resistance in food processing environments. Biofilms are a dense population of cells that adhere to the surface, creating a matrix composed of extracellular polymeric substances (EPS) consisting mainly of polysaccharides, proteins, and eDNA. Remarkably, the secreted substances, including cellulose, curli, and colanic acid, act as protective barriers for Salmonella and contribute to its resistance and persistence when exposed to disinfectants. Conventional treatments are mostly ineffective in controlling this problem; therefore, exploring anti-biofilm molecules that minimize and eradicate Salmonella biofilms is required. The evidence indicated that terpenes effectively reduce biofilms and affect their three-dimensional structure due to the decrease in the content of EPS. Specifically, in the case of Salmonella, cellulose is an essential component in their biofilms, and its control could be through the inhibition of glycosyltransferase, the enzyme that synthesizes this polymer. The inhibition of polymeric substances secreted by Salmonella during biofilm development could be considered a target to reduce its resistance to disinfectants, and terpenes can be regarded as inhibitors of this process. However, more studies are needed to evaluate the effectiveness of these compounds against Salmonella enzymes that produce extracellular polymeric substances.
Collapse
|
55
|
Identification and Characterization of a New Cold-Adapted and Alkaline Alginate Lyase TsAly7A from Thalassomonas sp. LD5 Produces Alginate Oligosaccharides with High Degree of Polymerization. Mar Drugs 2022; 21:md21010006. [PMID: 36662179 PMCID: PMC9864975 DOI: 10.3390/md21010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Alginate oligosaccharides (AOS) and their derivatives become popular due to their favorable biological activity, and the key to producing functional AOS is to find efficient alginate lyases. This study showed one alginate lyase TsAly7A found in Thalassomonas sp. LD5, which was predicted to have excellent industrial properties. Bioinformatics analysis and enzymatic properties of recombinant TsAly7A (rTsAly7A) were investigated. TsAly7A belonged to the fifth subfamily of polysaccharide lyase family 7 (PL7). The optimal temperature and pH of rTsAly7A was 30 °C and 9.1 in Glycine-NaOH buffer, respectively. The pH stability of rTsAly7A under alkaline conditions was pretty good and it can remain at above 90% of the initial activity at pH 8.9 in Glycine-NaOH buffer for 12 h. In the presence of 100 mM NaCl, rTsAly7A showed the highest activity, while in the absence of NaCl, 50% of the highest activity was observed. The rTsAly7A was an endo-type alginate lyase, and its end-products of alginate degradation were unsaturated oligosaccharides (degree of polymerization 2-6). Collectively, the rTsAly7A may be a good industrial production tool for producing AOS with high degree of polymerization.
Collapse
|
56
|
Antimicrobial and Antibiofilm Effects of Combinatorial Treatment Formulations of Anti-Inflammatory Drugs-Common Antibiotics against Pathogenic Bacteria. Pharmaceutics 2022; 15:pharmaceutics15010004. [PMID: 36678634 PMCID: PMC9864814 DOI: 10.3390/pharmaceutics15010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
With the spread of multi-drug-resistant (MDR) bacteria and the lack of effective antibiotics to treat them, developing new therapeutic methods and strategies is essential. In this study, we evaluated the antibacterial and antibiofilm activity of different formulations composed of ibuprofen (IBP), acetylsalicylic acid (ASA), and dexamethasone sodium phosphate (DXP) in combination with ciprofloxacin (CIP), gentamicin (GEN), cefepime (FEP), imipenem (IPM), and meropenem (MEM) on clinical isolates of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) as well as the transcription levels of biofilm-associated genes in the presence of sub-MICs of IBP, ASA, and DXP. The minimal inhibitory concentrations (MICs), minimal biofilm inhibitory concentrations (MBICs), and minimum biofilm eradication concentrations (MBECs) of CIP, GEN, FEP, IPM, and MEM with/without sub-MICs of IBP (200 µg/mL), ASA (200 µg/mL), and DXP (500 µg/mL) for the clinical isolates were determined by the microbroth dilution method. Quantitative real-time-PCR (qPCR) was used to determine the expression levels of biofilm-related genes, including icaA in S. aureus and algD in P. aeruginosa at sub-MICs of IBP, ASA, and DXP. All S. aureus isolates were methicillin-resistant S. aureus (MRSA), and all P. aeruginosa were resistant to carbapenems. IBP decreased the levels of MIC, MBIC, and MBEC for all antibiotic agents in both clinical isolates, except for FEP among P. aeruginosa isolates. In MRSA isolates, ASA decreased the MICs of GEN, FEP, and IPM and the MBICs of IPM and MEM. In P. aeruginosa, ASA decreased the MICs of FEP, IPM, and MEM, the MBICs of FEP and MEM, and the MBEC of FEP. DXP increased the MICs of CIP, GEN, and FEP, and the MBICs of CIP, GEN, and FEP among both clinical isolates. The MBECs of CIP and FEP for MRSA isolates and the MBECs of CIP, GEN, and MEM among P. aeruginosa isolates increased in the presence of DXP. IBP and ASA at 200 µg/mL significantly decreased the transcription level of algD in P. aeruginosa, and IBP significantly decreased the transcription level of icaA in S. aureus. DXP at 500 µg/mL significantly increased the expression levels of algD and icaA genes in S. aureus and P. aeruginosa isolates, respectively. Our findings showed that the formulations containing ASA and IBP have significant effects on decreasing the MIC, MBIC, and MBEC levels of some antibiotics and can down-regulate the expression of biofilm-related genes such as icaA and algD. Therefore, NSAIDs represent appropriate candidates for the design of new antibacterial and antibiofilm therapeutic formulations.
Collapse
|
57
|
Celiksoy V, Moses RL, Sloan AJ, Moseley R, Heard CM. Synergistic activity of pomegranate rind extract and Zn (II) against Candida albicans under planktonic and biofilm conditions, and a mechanistic insight based upon intracellular ROS induction. Sci Rep 2022; 12:19560. [PMID: 36379967 PMCID: PMC9666354 DOI: 10.1038/s41598-022-21995-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Candida albicans (C. albicans) is an opportunistic pathogen, which causes superficial infection and can lead to mortal systemic infections, especially in immunocompromised patients. The incidence of C. albicans infections is increasing and there are a limited number of antifungal drugs used in treatment. Therefore, there is an urgent need for new and alternative antifungal drugs. Pomegranate rind extract (PRE) is known for its broad-spectrum antimicrobial activities, including against C. albicans and recently, PRE and Zn (II) have been shown to induce synergistic antimicrobial activity against various microbes. In this study, the inhibitory activities of PRE, Zn (II) and PRE in combination with Zn (II) were evaluated against C. albicans. Antifungal activities of PRE and Zn (II) were evaluated using conventional microdilution methods and the interaction between these compounds was assessed by in vitro checkerboard and time kill assays in planktonic cultures. The anti-biofilm activities of PRE, Zn (II) and PRE in combination with Zn (II) were assessed using confocal laser scanning microscopy, with quantitative analysis of biofilm biomass and mean thickness analysed using COMSTAT2 analysis. In addition, antimicrobial interactions between PRE and Zn (II) were assayed in terms reactive oxygen species (ROS) production by C. albicans. PRE and Zn (II) showed a potent antifungal activity against C. albicans, with MIC values of 4 mg/mL and 1.8 mg/mL, respectively. PRE and Zn (II) in combination exerted a synergistic antifungal effect, as confirmed by the checkerboard and time kill assays. PRE, Zn (II) and PRE and Zn (II) in combination gave rise to significant reductions in biofilm biomass, although only PRE caused a significant reduction in mean biofilm thickness. The PRE and Zn (II) in combination caused the highest levels of ROS production by C. albicans, in both planktonic and biofilm forms. The induction of excess ROS accumulation in C. albicans may help explain the synergistic activity of PRE and Zn (II) in combination against C. albicans in both planktonic and biofilm forms. Moreover, the data support the potential of the PRE and Zn (II) combination as a novel potential anti-Candida therapeutic system.
Collapse
Affiliation(s)
- Vildan Celiksoy
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
- School of Dentistry, Cardiff University, Cardiff, UK
| | - Rachael L Moses
- Faculty of Medicine, Dentistry and Health Sciences, Melbourne Dental School, University of Melbourne, Parkville, VIC, Australia
| | - Alastair J Sloan
- Faculty of Medicine, Dentistry and Health Sciences, Melbourne Dental School, University of Melbourne, Parkville, VIC, Australia
| | - Ryan Moseley
- School of Dentistry, Cardiff University, Cardiff, UK
| | - Charles M Heard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
58
|
Guillaume O, Butnarasu C, Visentin S, Reimhult E. Interplay between biofilm microenvironment and pathogenicity of Pseudomonas aeruginosa in cystic fibrosis lung chronic infection. Biofilm 2022; 4:100089. [PMID: 36324525 PMCID: PMC9618985 DOI: 10.1016/j.bioflm.2022.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is a highly, if not the most, versatile microorganism capable of colonizing diverse environments. One of the niches in which PA is able to thrive is the lung of cystic fibrosis (CF) patients. Due to a genetic aberration, the lungs of CF-affected patients exhibit impaired functions, rendering them highly susceptible to bacterial colonization. Once PA attaches to the epithelial surface and transitions to a mucoid phenotype, the infection becomes chronic, and antibiotic treatments become inefficient. Due to the high number of affected people and the severity of this infection, CF-chronic infection is a well-documented disease. Still, numerous aspects of PA CF infection remain unclear. The scientific reports published over the last decades have stressed how PA can adapt to CF microenvironmental conditions and how its surrounding matrix of extracellular polymeric substances (EPS) plays a key role in its pathogenicity. In this context, it is of paramount interest to present the nature of the EPS together with the local CF-biofilm microenvironment. We review how the PA biofilm microenvironment interacts with drugs to contribute to the pathogenicity of CF-lung infection. Understanding why so many drugs are inefficient in treating CF chronic infection while effectively treating planktonic PA is essential to devising better therapeutic targets and drug formulations.
Collapse
Affiliation(s)
- Olivier Guillaume
- 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria,Austrian Cluster for Tissue Regeneration, Austria,Corresponding author. 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria.
| | - Cosmin Butnarasu
- Department of Molecular Biotechnology and Health Science, University of Turin, Turin, 10135, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Science, University of Turin, Turin, 10135, Italy
| | - Erik Reimhult
- Institute of Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria
| |
Collapse
|
59
|
Doolan JA, Williams GT, Hilton KLF, Chaudhari R, Fossey JS, Goult BT, Hiscock JR. Advancements in antimicrobial nanoscale materials and self-assembling systems. Chem Soc Rev 2022; 51:8696-8755. [PMID: 36190355 PMCID: PMC9575517 DOI: 10.1039/d1cs00915j] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/21/2022]
Abstract
Antimicrobial resistance is directly responsible for more deaths per year than either HIV/AIDS or malaria and is predicted to incur a cumulative societal financial burden of at least $100 trillion between 2014 and 2050. Already heralded as one of the greatest threats to human health, the onset of the coronavirus pandemic has accelerated the prevalence of antimicrobial resistant bacterial infections due to factors including increased global antibiotic/antimicrobial use. Thus an urgent need for novel therapeutics to combat what some have termed the 'silent pandemic' is evident. This review acts as a repository of research and an overview of the novel therapeutic strategies being developed to overcome antimicrobial resistance, with a focus on self-assembling systems and nanoscale materials. The fundamental mechanisms of action, as well as the key advantages and disadvantages of each system are discussed, and attention is drawn to key examples within each field. As a result, this review provides a guide to the further design and development of antimicrobial systems, and outlines the interdisciplinary techniques required to translate this fundamental research towards the clinic.
Collapse
Affiliation(s)
- Jack A Doolan
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - George T Williams
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Kira L F Hilton
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - Rajas Chaudhari
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - John S Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Jennifer R Hiscock
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| |
Collapse
|
60
|
Hills OJ, Yong CW, Scott AJ, Smith J, Chappell HF. Polyguluronate simulations shed light onto the therapeutic action of OligoG CF-5/20. Bioorg Med Chem 2022; 72:116945. [PMID: 36037625 DOI: 10.1016/j.bmc.2022.116945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022]
Abstract
Chronic mucoid P. aeruginosa cystic fibrosis (CF) lung infections are associated with the development of a biofilm composed of anionic acetylated exopolysaccharide (EPS) alginate, electrostatically stabilised by extracellular Ca2+ ions. OligoG CF-5/20, a low molecular weight guluronate rich oligomer, is emerging as a novel therapeutic capable of disrupting mature P. aeruginosa biofilms. However, its method of therapeutic action on the mucoid biofilm EPS is not definitively known at a molecular level. This work, utilising molecular dynamics (MD) and Density-Functional Theory (DFT), has revealed that OligoG CF-5/20 interaction with the EPS is facilitated solely through bridging Ca2+ ions, which are not liberated from their native EPS binding sites upon OligoG CF-5/20 dispersal, suggesting that OligoG CF-5/20 does not cause disruptions to mature P. aeruginosa biofilms through breaking EPS-Ca2+-EPS ionic cross-links. Rather it is likely that the therapeutic activity arises from sequestering free Ca2+ ions and preventing further Ca2+ induced EPS aggregation.
Collapse
Affiliation(s)
- Oliver J Hills
- School of Food Science & Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Chin W Yong
- Scientific Computing Department, Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK; Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Andrew J Scott
- School of Chemical & Process Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - James Smith
- School of Food Science & Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Helen F Chappell
- School of Food Science & Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| |
Collapse
|
61
|
Powell LC, Cullen JK, Boyle GM, De Ridder T, Yap PY, Xue W, Pierce CJ, Pritchard MF, Menzies GE, Abdulkarim M, Adams JYM, Stokniene J, Francis LW, Gumbleton M, Johns J, Hill KE, Jones AV, Parsons PG, Reddell P, Thomas DW. Topical, immunomodulatory epoxy-tiglianes induce biofilm disruption and healing in acute and chronic skin wounds. Sci Transl Med 2022; 14:eabn3758. [DOI: 10.1126/scitranslmed.abn3758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The management of antibiotic-resistant, bacterial biofilm infections in chronic skin wounds is an increasing clinical challenge. Despite advances in diagnosis, many patients do not derive benefit from current anti-infective/antibiotic therapies. Here, we report a novel class of naturally occurring and semisynthetic epoxy-tiglianes, derived from the Queensland blushwood tree (
Fontainea picrosperma)
, and demonstrate their antimicrobial activity (modifying bacterial growth and inducing biofilm disruption), with structure/activity relationships established against important human pathogens. In vitro, the lead candidate EBC-1013 stimulated protein kinase C (PKC)–dependent neutrophil reactive oxygen species (ROS) induction and NETosis and increased expression of wound healing–associated cytokines, chemokines, and antimicrobial peptides in keratinocytes and fibroblasts. In vivo, topical EBC-1013 induced rapid resolution of infection with increased matrix remodeling in acute thermal injuries in calves. In chronically infected diabetic mouse wounds, treatment induced cytokine/chemokine production, inflammatory cell recruitment, and complete healing (in six of seven wounds) with ordered keratinocyte differentiation. These results highlight a nonantibiotic approach involving contrasting, orthogonal mechanisms of action combining targeted biofilm disruption and innate immune induction in the treatment of chronic wounds.
Collapse
Affiliation(s)
- Lydia C. Powell
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff CF14 4XY, UK
- Centre for Nanohealth, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Jason K. Cullen
- Drug Discovery Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Glen M. Boyle
- Drug Discovery Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tom De Ridder
- QBiotics Group Limited Yungaburra, Queensland 4884, Australia
| | - Pei-Yi Yap
- Drug Discovery Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Wenya Xue
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff CF14 4XY, UK
| | - Carly J. Pierce
- Drug Discovery Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Manon F. Pritchard
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff CF14 4XY, UK
| | | | - Muthanna Abdulkarim
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Jennifer Y. M. Adams
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff CF14 4XY, UK
| | - Joana Stokniene
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff CF14 4XY, UK
| | - Lewis W. Francis
- Centre for Nanohealth, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Mark Gumbleton
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Jenny Johns
- Drug Discovery Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Katja E. Hill
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff CF14 4XY, UK
| | - Adam V. Jones
- Oral Pathology, Cardiff and Vale University Health Board , Cardiff CF14 4XY, UK
| | - Peter G. Parsons
- Drug Discovery Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Paul Reddell
- QBiotics Group Limited Yungaburra, Queensland 4884, Australia
| | - David W. Thomas
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff CF14 4XY, UK
| |
Collapse
|
62
|
In Vitro Synergistic Inhibitory Activity of Natural Alkaloid Berberine Combined with Azithromycin against Alginate Production by Pseudomonas aeruginosa PAO1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3858500. [PMID: 36124086 PMCID: PMC9482538 DOI: 10.1155/2022/3858500] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/11/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
Background. Berberine (BER) is a natural isoquinoline alkaloid which extensively been applied to treat bacterial infection in TCM for a long time. Alginate is an important component of Pseudomonas aeruginosa biofilm. Herein, we investigated the effects of berberine and azithromycin (AZM) on alginate in the biofilm of P. aeruginosa PAO1. Methods. The MIC and synergistic activity of BER and AZM against PAO1 were determined using the micro broth dilution and checkerboard titration methods, respectively. The effect of BER on PAO1 growth was evaluated using a time-kill assay. Moreover, the effects of BER, AZM, and a combination of both on PAO1 biofilm formation, kinesis, and virulence factor expression were evaluated at subinhibitory concentrations. The alginate content in the biofilm was detected using ELISA, and the relative expression of alginate formation-related genes algD, algR, and algG was detected by qRT-PCR. Results. Simultaneous administration of berberine significantly reduced the MIC of azithromycin, and berberine at a certain concentration inhibited PAO1 growth. Moreover, combined berberine and azithromycin had synergistic effects against PAO1, significantly reducing biofilm formation, swarming, and twitching motility, and the production of virulence factors. The relative expression of alginate-related regulatory genes algG, algD, and algR of the combined treatment group was significantly lower than that of the control group. Conclusion. In summary, berberine and azithromycin in combination had a significant synergistic effect on the inhibition of alginate production by P. aeruginosa. Further molecular studies are in great need to reveal the mechanisms underlying the synergistic activity between berberine and azithromycin.
Collapse
|
63
|
Uddin Mahamud AGMS, Nahar S, Ashrafudoulla M, Park SH, Ha SD. Insights into antibiofilm mechanisms of phytochemicals: Prospects in the food industry. Crit Rev Food Sci Nutr 2022; 64:1736-1763. [PMID: 36066482 DOI: 10.1080/10408398.2022.2119201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The recalcitrance of microbial aggregation or biofilm in the food industry underpins the emerging antimicrobial resistance among foodborne pathogens, exacerbating the phenomena of food spoilage, processing and safety management failure, and the prevalence of foodborne illnesses. The challenges of growing tolerance to current chemical and disinfectant-based antibiofilm strategies have driven the urgency in finding a less vulnerable to bacterial resistance, effective alternative antibiofilm agent. To address these issues, various novel strategies are suggested in current days to combat bacterial biofilm. Among the innovative approaches, phytochemicals have already demonstrated their excellent performance in preventing biofilm formation and bactericidal actions against resident bacteria within biofilms. However, the diverse group of phytochemicals and their different modes of action become a barrier to applying them against specific pathogenic biofilm-formers. This phenomenon mandates the need to elucidate the multi-mechanistic actions of phytochemicals to design an effective novel antibiofilm strategy. Therefore, this review critically illustrates the structure - activity relationship, functional sites of actions, and target molecules of diverse phytochemicals regarding multiple major antibiofilm mechanisms and reversal mechanisms of antimicrobial resistance. The implementation of the in-depth knowledge will hopefully aid future studies for developing phytochemical-based next-generation antimicrobials.
Collapse
Affiliation(s)
- A G M Sofi Uddin Mahamud
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Shamsun Nahar
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Md Ashrafudoulla
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
64
|
Reig S, Le Gouellec A, Bleves S. What Is New in the Anti–Pseudomonas aeruginosa Clinical Development Pipeline Since the 2017 WHO Alert? Front Cell Infect Microbiol 2022; 12:909731. [PMID: 35880080 PMCID: PMC9308001 DOI: 10.3389/fcimb.2022.909731] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
The spread of antibiotic-resistant bacteria poses a substantial threat to morbidity and mortality worldwide. Carbapenem-resistant Pseudomonas aeruginosa (CRPA) are considered “critical-priority” bacteria by the World Health Organization (WHO) since 2017 taking into account criteria such as patient mortality, global burden disease, and worldwide trend of multi-drug resistance (MDR). Indeed P. aeruginosa can be particularly difficult to eliminate from patients due to its combinatory antibiotic resistance, multifactorial virulence, and ability to over-adapt in a dynamic way. Research is active, but the course to a validated efficacy of a new treatment is still long and uncertain. What is new in the anti–P. aeruginosa clinical development pipeline since the 2017 WHO alert? This review focuses on new solutions for P. aeruginosa infections that are in active clinical development, i.e., currently being tested in humans and may be approved for patients in the coming years. Among 18 drugs of interest in December 2021 anti–P. aeruginosa development pipeline described here, only one new combination of β-lactam/β-lactamase inhibitor is in phase III trial. Derivatives of existing antibiotics considered as “traditional agents” are over-represented. Diverse “non-traditional agents” including bacteriophages, iron mimetic/chelator, and anti-virulence factors are significantly represented but unfortunately still in early clinical stages. Despite decade of efforts, there is no vaccine currently in clinical development to prevent P. aeruginosa infections. Studying pipeline anti–P. aeruginosa since 2017 up to now shows how to provide a new treatment for patients can be a difficult task. Given the process duration, the clinical pipeline remains unsatisfactory leading best case to the approval of new antibacterial drugs that treat CRPA in several years. Beyond investment needed to build a robust pipeline, the Community needs to reinvent medicine with new strategies of development to avoid the disaster. Among “non-traditional agents”, anti-virulence strategy may have the potential through novel and non-killing modes of action to reduce the selective pressure responsible of MDR.
Collapse
Affiliation(s)
- Sébastien Reig
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université-CNRS, UMR7255, Marseille, France
- *Correspondence: Sébastien Reig, ; Sophie Bleves,
| | - Audrey Le Gouellec
- Laboratoire Techniques de l’Ingénierie Médicale et de la Complexité (UMR5525), Centre National de la Recherche Scientifique, Université Grenoble Alpes, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, Grenoble, France
| | - Sophie Bleves
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université-CNRS, UMR7255, Marseille, France
- *Correspondence: Sébastien Reig, ; Sophie Bleves,
| |
Collapse
|
65
|
Liao C, Huang X, Wang Q, Yao D, Lu W. Virulence Factors of Pseudomonas Aeruginosa and Antivirulence Strategies to Combat Its Drug Resistance. Front Cell Infect Microbiol 2022; 12:926758. [PMID: 35873152 PMCID: PMC9299443 DOI: 10.3389/fcimb.2022.926758] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial infections in severely ill and immunocompromised patients. Ubiquitously disseminated in the environment, especially in hospitals, it has become a major threat to human health due to the constant emergence of drug-resistant strains. Multiple resistance mechanisms are exploited by P. aeruginosa, which usually result in chronic infections difficult to eradicate. Diverse virulence factors responsible for bacterial adhesion and colonization, host immune suppression, and immune escape, play important roles in the pathogenic process of P. aeruginosa. As such, antivirulence treatment that aims at reducing virulence while sparing the bacterium for its eventual elimination by the immune system, or combination therapies, has significant advantages over traditional antibiotic therapy, as the former imposes minimal selective pressure on P. aeruginosa, thus less likely to induce drug resistance. In this review, we will discuss the virulence factors of P. aeruginosa, their pathogenic roles, and recent advances in antivirulence drug discovery for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Chongbing Liao
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Xin Huang
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qingxia Wang
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Dan Yao
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
66
|
Bi D, Yang X, Lu J, Xu X. Preparation and potential applications of alginate oligosaccharides. Crit Rev Food Sci Nutr 2022; 63:10130-10147. [PMID: 35471191 DOI: 10.1080/10408398.2022.2067832] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alginate, a linear polymer consisting of β-D-mannuronic acid (M) and α-L-guluronic acid (G) with 1,4-glycosidic linkages and comprising 40% of the dry weight of algae, possesses various applications in the food and nutraceutical industries. However, the potential applications of alginate are restricted in some fields because of its low water solubility and high solution viscosity. Alginate oligosaccharides (AOS) on the other hand, have low molecular weight which result in better water solubility. Hence, it becomes a more popular target to be researched in recent years for its use in foods and nutraceuticals. AOS can be obtained by multiple degradation methods, including enzymatic degradation, from alginate or alginate-derived poly G and poly M. AOS have unique bioactivity and can bring human health benefits, which render them potentials to be developed/incorporated into functional food. This review comprehensively covers methods of the preparation and analysis of AOS, and discussed the potential applications of AOS in foods and nutraceuticals.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Xu Yang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
| |
Collapse
|
67
|
Alginate oligosaccharides enhance diffusion and activity of colistin in a mucin-rich environment. Sci Rep 2022; 12:4986. [PMID: 35322119 PMCID: PMC8943044 DOI: 10.1038/s41598-022-08927-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
In a number of chronic respiratory diseases e.g. cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD), the production of viscous mucin reduces pulmonary function and represents an effective barrier to diffusion of inhaled therapies e.g. antibiotics. Here, a 2-compartment Transwell model was developed to study impaired diffusion of the antibiotic colistin across an artificial sputum (AS) matrix/medium and to quantify its antimicrobial activity against Pseudomonas aeruginosa NH57388A biofilms (alone and in combination with mucolytic therapy). High-performance liquid chromatography coupled with fluorescence detection (HPLC-FLD) revealed that the presence of AS medium significantly reduced the rate of colistin diffusion (> 85% at 48 h; p < 0.05). Addition of alginate oligosaccharide (OligoG CF-5/20) significantly improved colistin diffusion by 3.7 times through mucin-rich AS medium (at 48 h; p < 0.05). Increased diffusion of colistin with OligoG CF-5/20 was shown (using confocal laser scanning microscopy and COMSTAT image analysis) to be associated with significantly increased bacterial killing (p < 0.05). These data support the use of this model to study drug and small molecule delivery across clinically-relevant diffusion barriers. The findings indicate the significant loss of colistin and reduced effectiveness that occurs with mucin binding, and support the use of mucolytics to improve antimicrobial efficacy and lower antibiotic exposure.
Collapse
|
68
|
Combination and nanotechnology based pharmaceutical strategies for combating respiratory bacterial biofilm infections. Int J Pharm 2022; 616:121507. [PMID: 35085729 DOI: 10.1016/j.ijpharm.2022.121507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/31/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022]
Abstract
Respiratory infections are one of the major global health problems. Among them, chronic respiratory infections caused by biofilm formation are difficult to treat because of both drug tolerance and poor drug penetration into the complex biofilm structure. A major part of the current research on combating respiratory biofilm infections have been focused on destroying the matrix of extracellular polymeric substance and eDNA of the biofilm or promoting the penetration of antibiotics through the extracellular polymeric substance via delivery technologies in order to kill the bacteria inside. There are also experimental data showing that certain inhaled antibiotics with simple formulations can effectively penetrate EPS to kill surficially located bacteria and centrally located dormant bacteria or persisters. This article aims to review recent advances in the pharmaceutical strategies for combating respiratory biofilm infections with a focus on nanotechnology-based drug delivery approaches. The formation and characteristics of bacterial biofilm infections in the airway mucus are presented, which is followed by a brief review on the current clinical approaches to treat respiratory biofilm infections by surgical removal and antimicrobial therapy, and also the emerging clinical treatment approaches. The current combination of antibiotics and non-antibiotic adjuvants to combat respiratory biofilm infections are also discussed.
Collapse
|
69
|
Rima M, Trognon J, Latapie L, Chbani A, Roques C, El Garah F. Seaweed Extracts: A Promising Source of Antibiofilm Agents with Distinct Mechanisms of Action against Pseudomonas aeruginosa. Mar Drugs 2022; 20:92. [PMID: 35200622 PMCID: PMC8877608 DOI: 10.3390/md20020092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The organization of bacteria in biofilms is one of the adaptive resistance mechanisms providing increased protection against conventional treatments. Thus, the search for new antibiofilm agents for medical purposes, especially of natural origin, is currently the object of much attention. The objective of the study presented here was to explore the potential of extracts derived from three seaweeds: the green Ulva lactuca, the brown Stypocaulon scoparium, and the red Pterocladiella capillacea, in terms of their antibiofilm activity against P. aeruginosa. After preparation of extracts by successive maceration in various solvents, their antibiofilm activity was evaluated on biofilm formation and on mature biofilms. Their inhibition and eradication abilities were determined using two complementary methods: crystal violet staining and quantification of adherent bacteria. The effect of active extracts on biofilm morphology was also investigated by epifluorescence microscopy. Results revealed a promising antibiofilm activity of two extracts (cyclohexane and ethyl acetate) derived from the green alga by exhibiting a distinct mechanism of action, which was supported by microscopic analyses. The ethyl acetate extract was further explored for its interaction with tobramycin and colistin. Interestingly, this extract showed a promising synergistic effect with tobramycin. First analyses of the chemical composition of extracts by GC-MS allowed for the identification of several molecules. Their implication in the interesting antibiofilm activity is discussed. These findings suggest the ability of the green alga U. lactuca to offer a promising source of bioactive candidates that could have both a preventive and a curative effect in the treatment of biofilms.
Collapse
Affiliation(s)
- Maya Rima
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France; (M.R.); (J.T.); (L.L.)
- Laboratory of Applied Biotechnology, AZM Center for Research in Biotechnology and Its Applications, Doctoral School of Science and Technology, Lebanese University, El Mittein Street, Tripoli 1300, Lebanon;
| | - Jeanne Trognon
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France; (M.R.); (J.T.); (L.L.)
| | - Laure Latapie
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France; (M.R.); (J.T.); (L.L.)
| | - Asma Chbani
- Laboratory of Applied Biotechnology, AZM Center for Research in Biotechnology and Its Applications, Doctoral School of Science and Technology, Lebanese University, El Mittein Street, Tripoli 1300, Lebanon;
- Faculty of Public Health III, Lebanese University, Tripoli 1300, Lebanon
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France; (M.R.); (J.T.); (L.L.)
- Bacteriology-Hygiene Department, Centre Hospitalier Universitaire, Hôpital Purpan, 31300 Toulouse, France
| | - Fatima El Garah
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France; (M.R.); (J.T.); (L.L.)
| |
Collapse
|
70
|
Evaluating the alginate oligosaccharide (OligoG) as a therapy for Burkholderia cepacia complex cystic fibrosis lung infection. J Cyst Fibros 2022; 21:821-829. [DOI: 10.1016/j.jcf.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/15/2021] [Accepted: 01/09/2022] [Indexed: 11/15/2022]
|
71
|
Characterizations of the viability and gene expression of dispersal cells from Pseudomonas aeruginosa biofilms released by alginate lyase and tobramycin. PLoS One 2021; 16:e0258950. [PMID: 34695148 PMCID: PMC8544826 DOI: 10.1371/journal.pone.0258950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
Biofilm infections are hard to manage using conventional antibiotic treatment regimens because biofilm structures discourage antibiotics from reaching the entire bacterial community and allow pathogen cells to persistently colonize and develop a plethora of tolerance mechanisms towards antibiotics. Moreover, the dispersed cells from biofilms can cause further complications by colonizing different sites and establishing new cycles of biofilms. Previously, we showed that alginate lyase enzyme (AlyP1400), purified from a marine Pseudoalteromonas bacterium, reduced Pseudomonas aeruginosa biofilm biomass and boosted bactericidal activity of tobramycin by degrading alginate within the biofilm extracellular polymeric substances matrix. In this work, we used a flow cytometry-based assay to analyze collected dispersal cells and demonstrated the synergy between tobramycin with AlyP1400 in enhancing the release of both live and dead biofilm cells from a mucoid P. aeruginosa strain CF27, which is a clinical isolate from cystic fibrosis (CF) patients. Interestingly, this enhanced dispersal was only observed when AlyP1400 was combined with tobramycin and administered simultaneously but not when AlyP1400 was added in advance of tobramycin in a sequential manner. Moreover, neither the combined nor sequential treatment altered the dispersal of the biofilms from a non-mucoid P. aeruginosa laboratory strain PAK. We then carried out the gene expression and tobramycin survival analyses to further characterize the impacts of the combined treatment on the CF27 dispersal cells. Gene expression analysis indicated that CF27 dispersal cells had increased expression in virulence- and antibiotic resistance-related genes, including algR, bdlA, lasB, mexF, mexY, and ndvB. In the CF27 dispersal cell population, the combinational treatment of AlyP1400 with tobramycin further induced bdlA, mexF, mexY, and ndvB genes more than non-treated and tobramycin-treated dispersal cells, suggesting an exacerbated bacterial stress response to the combinational treatment. Simultaneous to the gene expression analysis, the survival ability of the same batch of biofilm dispersal cells to a subsequent tobramycin challenge displayed a significantly higher tobramycin tolerant fraction of cells (~60%) upon the combinational treatment of AlyP1400 and tobramycin than non-treated and tobramycin-treated dispersal cells, as well as the planktonic cells (all below 10%). These results generate new knowledge about the gene expression and antibiotic resistance profiles of dispersed cells from biofilm. This information can guide the design of safer and more efficient therapeutic strategies for the combinational use of alginate lyase and tobramycin to treat P. aeruginosa biofilm-related infections in CF lungs.
Collapse
|
72
|
Yakovlieva L, Fülleborn JA, Walvoort MTC. Opportunities and Challenges of Bacterial Glycosylation for the Development of Novel Antibacterial Strategies. Front Microbiol 2021; 12:745702. [PMID: 34630370 PMCID: PMC8498110 DOI: 10.3389/fmicb.2021.745702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022] Open
Abstract
Glycosylation is a ubiquitous process that is universally conserved in nature. The various products of glycosylation, such as polysaccharides, glycoproteins, and glycolipids, perform a myriad of intra- and extracellular functions. The multitude of roles performed by these molecules is reflected in the significant diversity of glycan structures and linkages found in eukaryotes and prokaryotes. Importantly, glycosylation is highly relevant for the virulence of many bacterial pathogens. Various surface-associated glycoconjugates have been identified in bacteria that promote infectious behavior and survival in the host through motility, adhesion, molecular mimicry, and immune system manipulation. Interestingly, bacterial glycosylation systems that produce these virulence factors frequently feature rare monosaccharides and unusual glycosylation mechanisms. Owing to their marked difference from human glycosylation, bacterial glycosylation systems constitute promising antibacterial targets. With the rise of antibiotic resistance and depletion of the antibiotic pipeline, novel drug targets are urgently needed. Bacteria-specific glycosylation systems are especially promising for antivirulence therapies that do not eliminate a bacterial population, but rather alleviate its pathogenesis. In this review, we describe a selection of unique glycosylation systems in bacterial pathogens and their role in bacterial homeostasis and infection, with a focus on virulence factors. In addition, recent advances to inhibit the enzymes involved in these glycosylation systems and target the bacterial glycan structures directly will be highlighted. Together, this review provides an overview of the current status and promise for the future of using bacterial glycosylation to develop novel antibacterial strategies.
Collapse
Affiliation(s)
- Liubov Yakovlieva
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Julius A Fülleborn
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Marthe T C Walvoort
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| |
Collapse
|
73
|
Lin Q, Chen H, Cao J, Zhang J. Facile Synthesis Strategy from Sludge-Derived Extracellular Polymeric Substances to Nitrogen-Doped Graphene Oxide-Like Material and Quantum Dots. ACS OMEGA 2021; 6:24940-24948. [PMID: 34604675 PMCID: PMC8482497 DOI: 10.1021/acsomega.1c03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Extracellular polymeric substances (EPS) are microbial aggregates derived from waste sewage sludge accumulated in sewage treatment plants, which provides natural, renewable, and abundant carbon, nitrogen, oxygen sources for the development of carbon materials to achieve the value-added utilization of waste sewage sludge resources. In this work, a nitrogen-doped graphene oxide (GO)-like material (N-GO) was simply produced using EPS as starting materials. A facile H2O2 oxidation-assisted method (room temperature) was developed to synthesize nitrogen-doped GO-like quantum dots (N-GOQDs) with strong tunable fluorescence from N-GO for the first time. This approach eliminates the conventional use of toxic chemicals, concentrated acids as well as expensive equipment, and strict condition requirements, which provides new insights into the synthesis of N-GO and N-GOQDs. In addition, this H2O2-assisted method was further demonstrated to prepare yellow fluorescent GO quantum dots (GOQDs) from GO successfully. The as-prepared N-GO shows excellent adsorption capacity for removing organic matters (malachite green, rhodamine B, and methylene blue) from water in 10 min. The water-soluble N-GOQDs were demonstrated to be a low toxicity and good biocompatibility fluorescence probe for bioimaging.
Collapse
Affiliation(s)
- Qiuyuan Lin
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Hui Chen
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Jianglin Cao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Junxi Zhang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, P. R. China
| |
Collapse
|
74
|
Immink JN, Maris JJE, Capellmann RF, Egelhaaf SU, Schurtenberger P, Stenhammar J. ArGSLab: a tool for analyzing experimental or simulated particle networks. SOFT MATTER 2021; 17:8354-8362. [PMID: 34550148 PMCID: PMC8457054 DOI: 10.1039/d1sm00692d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Microscopy and particle-based simulations are both powerful techniques to study aggregated particulate matter such as colloidal gels. The data provided by these techniques often contains information on a wide array of length scales, but structural analysis methods typically focus on the local particle arrangement, even though the data also contains information about the particle network on the mesoscopic length scale. In this paper, we present a MATLAB software package for quantifying mesoscopic network structures in colloidal samples. ArGSLab (Arrested and Gelated Structures Laboratory) extracts a network backbone from the input data, which is in turn transformed into a set of nodes and links for graph theory-based analysis. The routines can process both image stacks from microscopy as well as explicit coordinate data, and thus allows quantitative comparison between simulations and experiments. ArGSLab furthermore enables the accurate analysis of microscopy data where, e.g., an extended point spread function prohibits the resolution of individual particles. We demonstrate the resulting output for example datasets from both microscopy and simulation of colloidal gels, in order to showcase the capability of ArGSLab to quantitatively analyze data from various sources. The freely available software package can be used either with a provided graphical user interface or directly as a MATLAB script.
Collapse
Affiliation(s)
- Jasper N Immink
- Condensed Matter Physics Laboratory, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- Division of Physical Chemistry, Lund University, Lund, Sweden
| | - J J Erik Maris
- Inorganic Chemistry and Catalysis Group, Utrecht University, Utrecht, The Netherlands
| | - Ronja F Capellmann
- Condensed Matter Physics Laboratory, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | - Peter Schurtenberger
- Division of Physical Chemistry, Lund University, Lund, Sweden
- Lund Institute of advanced Neutron and X-ray Science (LINXS), Lund University, Lund, Sweden
| | | |
Collapse
|
75
|
Asadpoor M, Ithakisiou GN, van Putten JPM, Pieters RJ, Folkerts G, Braber S. Antimicrobial Activities of Alginate and Chitosan Oligosaccharides Against Staphylococcus aureus and Group B Streptococcus. Front Microbiol 2021; 12:700605. [PMID: 34589067 PMCID: PMC8473942 DOI: 10.3389/fmicb.2021.700605] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022] Open
Abstract
The bacterial pathogens Streptococcus agalactiae (GBS) and Staphylococcus aureus (S. aureus) cause serious infections in humans and animals. The emergence of antibiotic-resistant isolates and bacterial biofilm formation entails the urge of novel treatment strategies. Recently, there is a profound scientific interest in the capabilities of non-digestible oligosaccharides as antimicrobial and anti-biofilm agents as well as adjuvants in antibiotic combination therapies. In this study, we investigated the potential of alginate oligosaccharides (AOS) and chitosan oligosaccharides (COS) as alternative for, or in combination with antibiotic treatment. AOS (2-16%) significantly decreased GBS V growth by determining the minimum inhibitory concentration. Both AOS (8 and 16%) and COS (2-16%) were able to prevent biofilm formation by S. aureus wood 46. A checkerboard biofilm formation assay demonstrated a synergistic effect of COS and clindamycin on the S. aureus biofilm formation, while AOS (2 and 4%) were found to sensitize GBS V to trimethoprim. In conclusion, AOS and COS affect the growth of GBS V and S. aureus wood 46 and can function as anti-biofilm agents. The promising effects of AOS and COS in combination with different antibiotics may offer new opportunities to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Mostafa Asadpoor
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Georgia-Nefeli Ithakisiou
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Jos P. M. van Putten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Roland J. Pieters
- Division of Medicinal Chemistry and Chemical Biology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Saskia Braber
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
76
|
Cation complexation by mucoid Pseudomonas aeruginosa extracellular polysaccharide. PLoS One 2021; 16:e0257026. [PMID: 34473773 PMCID: PMC8412252 DOI: 10.1371/journal.pone.0257026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
Mucoid Pseudomonas aeruginosa is a prevalent cystic fibrosis (CF) lung colonizer, producing an extracellular matrix (ECM) composed predominantly of the extracellular polysaccharide (EPS) alginate. The ECM limits antimicrobial penetration and, consequently, CF sufferers are prone to chronic mucoid P. aeruginosa lung infections. Interactions between cations with elevated concentrations in the CF lung and the anionic EPS, enhance the structural rigidity of the biofilm and exacerbates virulence. In this work, two large mucoid P. aeruginosa EPS models, based on β-D-mannuronate (M) and β-D-mannuronate-α-L-guluronate systems (M-G), and encompassing thermodynamically stable acetylation configurations–a structural motif unique to mucoid P. aeruginosa–were created. Using highly accurate first principles calculations, stable coordination environments adopted by the cations have been identified and thermodynamic stability quantified. These models show the weak cross-linking capability of Na+ and Mg2+ ions relative to Ca2+ ions and indicate a preference for cation binding within M-G blocks due to the smaller torsional rearrangements needed to reveal stable binding sites. The geometry of the chelation site influences the stability of the resulting complexes more than electrostatic interactions, and the results show nuanced chemical insight into previous experimental observations.
Collapse
|
77
|
Berninger T, Dietz N, González López Ó. Water-soluble polymers in agriculture: xanthan gum as eco-friendly alternative to synthetics. Microb Biotechnol 2021; 14:1881-1896. [PMID: 34196103 PMCID: PMC8449660 DOI: 10.1111/1751-7915.13867] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022] Open
Abstract
Water-soluble polymers (WSPs) are a versatile group of chemicals used across industries for different purposes such as thickening, stabilizing, adhesion and gelation. Synthetic polymers have tailored characteristics and are chemically homogeneous, whereas plant-derived biopolymers vary more widely in their specifications and are chemically heterogeneous. Between both sources, microbial polysaccharides are an advantageous compromise. They combine naturalness with defined material properties, precisely controlled by optimizing strain selection, fermentation operational parameters and downstream processes. The relevance of such bio-based and biodegradable materials is rising due to increasing environmental awareness of consumers and a tightening regulatory framework, causing both solid and water-soluble synthetic polymers, also termed 'microplastics', to have come under scrutiny. Xanthan gum is the most important microbial polysaccharide in terms of production volume and diversity of applications, and available as different grades with specific properties. In this review, we will focus on the applicability of xanthan gum in agriculture (drift control, encapsulation and soil improvement), considering its potential to replace traditionally used synthetic WSPs. As a spray adjuvant, xanthan gum prevents the formation of driftable fine droplets and shows particular resistance to mechanical shear. Xanthan gum as a component in encapsulated formulations modifies release properties or provides additional protection to encapsulated agents. In geotechnical engineering, soil amended with xanthan gum has proven to increase water retention, reduce water evaporation, percolation and soil erosion - topics of high relevance in the agriculture of the 21st century. Finally, hands-on formulation tips are provided to facilitate exploiting the full potential of xanthan gum in diverse agricultural applications and thus providing sustainable solutions.
Collapse
Affiliation(s)
- Teresa Berninger
- Jungbunzlauer Ladenburg GmbHDr.‐Albert‐Reimann‐Str. 18Ladenburg68526Germany
| | - Natalie Dietz
- Jungbunzlauer Ladenburg GmbHDr.‐Albert‐Reimann‐Str. 18Ladenburg68526Germany
| | - Óscar González López
- Department of Agriculture and FoodUniversidad de la RiojaC/Madre de Dios 53Logroño26006Spain
| |
Collapse
|
78
|
Zhang C, Li M, Rauf A, Khalil AA, Shan Z, Chen C, Rengasamy KRR, Wan C. Process and applications of alginate oligosaccharides with emphasis on health beneficial perspectives. Crit Rev Food Sci Nutr 2021; 63:303-329. [PMID: 34254536 DOI: 10.1080/10408398.2021.1946008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alginates are linear polymers comprising 40% of the dry weight of algae possess various applications in food and biomedical industries. Alginate oligosaccharides (AOS), a degradation product of alginate, is now gaining much attention for their beneficial role in food, pharmaceutical and agricultural industries. Hence this review was aimed to compile the information on alginate and AOS (prepared from seaweeds) during 1994-2020. As per our knowledge, this is the first review on the potential use of alginate oligosaccharides in different fields. The alginate derivatives are grouped according to their applications. They are involved in the isolation process and show antimicrobial, antioxidant, anti-inflammatory, antihypertension, anticancer, and immunostimulatory properties. AOS also have significant applications in prebiotics, nutritional supplements, plant growth development and others products.
Collapse
Affiliation(s)
- Chunhua Zhang
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa (KP), Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Zhiguo Shan
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Chuying Chen
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
79
|
Jiang Z, Nero T, Mukherjee S, Olson R, Yan J. Searching for the Secret of Stickiness: How Biofilms Adhere to Surfaces. Front Microbiol 2021; 12:686793. [PMID: 34305846 PMCID: PMC8295476 DOI: 10.3389/fmicb.2021.686793] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023] Open
Abstract
Bacterial biofilms are communities of cells enclosed in an extracellular polymeric matrix in which cells adhere to each other and to foreign surfaces. The development of a biofilm is a dynamic process that involves multiple steps, including cell-surface attachment, matrix production, and population expansion. Increasing evidence indicates that biofilm adhesion is one of the main factors contributing to biofilm-associated infections in clinics and biofouling in industrial settings. This review focuses on describing biofilm adhesion strategies among different bacteria, including Vibrio cholerae, Pseudomonas aeruginosa, and Staphylococcus aureus. Techniques used to characterize biofilm adhesion are also reviewed. An understanding of biofilm adhesion strategies can guide the development of novel approaches to inhibit or manipulate biofilm adhesion and growth.
Collapse
Affiliation(s)
- Zhaowei Jiang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Thomas Nero
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Sampriti Mukherjee
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States
| | - Rich Olson
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT, United States
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States.,Quantitative Biology Institute, Yale University, New Haven, CT, United States
| |
Collapse
|
80
|
Wang M, Chen L, Zhang Z. Potential applications of alginate oligosaccharides for biomedicine - A mini review. Carbohydr Polym 2021; 271:118408. [PMID: 34364551 DOI: 10.1016/j.carbpol.2021.118408] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/23/2021] [Accepted: 07/03/2021] [Indexed: 01/02/2023]
Abstract
Extensive research on marine algae, especially on their health-promoting properties, has been conducted. Various ingredients with potential biomedical applications have been discovered and extracted from marine algae. Alginate oligosaccharides are low molecular weight alginate polysaccharides present in cell walls of brown algae. They exhibit various health benefits such as anti-inflammatory, anti-microbial, anti-oxidant, anti-tumor and immunomodulation. Their low-toxicity, non-immunogenicity, and biodegradability make them an excellent material in biomedicine. Alginate oligosaccharides can be chemically or biochemically modified to enhance their biological activity and potential in pharmaceutical applications. This paper provides a brief overview on alginate oligosaccharides characteristics, modification patterns and highlights their vital health promoting properties.
Collapse
Affiliation(s)
- Mingpeng Wang
- College of Life Science, Qufu Normal University, Qufu 273100, China
| | - Lei Chen
- College of Life Science, Qufu Normal University, Qufu 273100, China.
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
81
|
Synergistic In Vitro Antimicrobial Activity of Pomegranate Rind Extract and Zinc (II) against Micrococcus luteus under Planktonic and Biofilm Conditions. Pharmaceutics 2021; 13:pharmaceutics13060851. [PMID: 34201223 PMCID: PMC8230037 DOI: 10.3390/pharmaceutics13060851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 01/02/2023] Open
Abstract
Infectious diseases caused by microbial biofilms are a major clinical problem, and new antimicrobial agents that can inhibit biofilm formation and eradicate pre-formed biofilms are urgently needed. Pomegranate extracts are a well-established folkloric medicine and have been used in the treatment of infectious diseases since ancient times, whilst the addition of metal ions, including zinc (II), has enhanced the antimicrobial activity of pomegranate. Micrococcus luteus is generally a non-pathogenic skin commensal bacterium, although it can act as an opportunistic pathogen and cause serious infections, particularly involving catheterization and comorbidities. The aims of this study were to evaluate the holistic activity of pomegranate rind extract (PRE), Zn (II), and PRE/Zn (II) individually and in combination against M. luteus under both planktonic and biofilm conditions. Antimicrobial activity was detected in vitro using the broth dilution method, and synergistic activity was determined using checkerboard and time-kill assays. Effects on biofilm formation and eradication were determined by crystal violet and BacLightTM Live/Dead staining. PRE and Zn (II) exerted antimicrobial activity against M. luteus under both planktonic and biofilm conditions. After 4 h, potent synergistic bactericidal activity was also found when PRE and Zn (II) were co-administered under planktonic conditions (log reductions: PRE 1.83 ± 0.24, Zn (II) 3.4 ± 0.08, and PRE/Zn (II) 6.88 ± 1.02; p < 0.0001). In addition, greater heterogeneity was induced in the structure of M. luteus biofilm using the PRE/Zn (II) combination compared to when PRE and Zn (II) were applied individually. The activity of PRE and the PRE/Zn (II) combination could offer a novel antimicrobial therapy for the treatment of disease-associated infections caused by M. luteus and potentially other bacteria.
Collapse
|
82
|
Asadpoor M, Varasteh S, Pieters RJ, Folkerts G, Braber S. Differential effects of oligosaccharides on the effectiveness of ampicillin against Escherichia coli in vitro. PHARMANUTRITION 2021. [DOI: 10.1016/j.phanu.2021.100264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
83
|
Burgoyne ED, Molina-Osorio AF, Moshrefi R, Shanahan R, McGlacken GP, Stockmann TJ, Scanlon MD. Detection of Pseudomonas aeruginosa quorum sensing molecules at an electrified liquid|liquid micro-interface through facilitated proton transfer. Analyst 2021; 145:7000-7008. [PMID: 32869782 DOI: 10.1039/d0an01245a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Miniaturization of electrochemical detection methods for point-of-care-devices is ideal for their integration and use within healthcare environments. Simultaneously, the prolific pathogenic bacteria Pseudomonas aeruginosa poses a serious health risk to patients with compromised immune systems. Recognizing these two factors, a proof-of-concept electrochemical method employing a micro-interface between water and oil (w/o) held at the tip of a pulled borosilicate glass capillary is presented. This method targets small molecules produced by P. aeruginosa colonies as signalling factors that control colony growth in a pseudo-multicellular process known as quorum sensing (QS). The QS molecules of interest are 4-hydroxy-2-heptylquinoline (HHQ) and 2-heptyl-3,4-dihydroxyquinoline (PQS, Pseudomonas quinolone signal). Hydrophobic HHQ and PQS molecules, dissolved in the oil phase, were observed electrochemically to facilitate proton transfer across the w/o interface. This interfacial complexation can be exploited as a facile electrochemical detection method for P. aeruginosa and is advantageous as it does not depend on the redox activity of HHQ/PQS. Interestingly, the limit-of-linearity is reached as [H+] ≈ [ligand]. Density functional theory calculations were performed to determine the proton affinities and gas-phase basicities of HHQ/PQS, as well as elucidate the likely site of stepwise protonation within each molecule.
Collapse
Affiliation(s)
- Edward D Burgoyne
- The Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland.
| | | | | | | | | | | | | |
Collapse
|
84
|
Srinivasan R, Santhakumari S, Poonguzhali P, Geetha M, Dyavaiah M, Xiangmin L. Bacterial Biofilm Inhibition: A Focused Review on Recent Therapeutic Strategies for Combating the Biofilm Mediated Infections. Front Microbiol 2021; 12:676458. [PMID: 34054785 PMCID: PMC8149761 DOI: 10.3389/fmicb.2021.676458] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Biofilm formation is a major concern in various sectors and cause severe problems to public health, medicine, and industry. Bacterial biofilm formation is a major persistent threat, as it increases morbidity and mortality, thereby imposing heavy economic pressure on the healthcare sector. Bacterial biofilms also strengthen biofouling, affecting shipping functions, and the offshore industries in their natural environment. Besides, they accomplish harsh roles in the corrosion of pipelines in industries. At biofilm state, bacterial pathogens are significantly resistant to external attack like antibiotics, chemicals, disinfectants, etc. Within a cell, they are insensitive to drugs and host immune responses. The development of intact biofilms is very critical for the spreading and persistence of bacterial infections in the host. Further, bacteria form biofilms on every probable substratum, and their infections have been found in plants, livestock, and humans. The advent of novel strategies for treating and preventing biofilm formation has gained a great deal of attention. To prevent the development of resistant mutants, a feasible technique that may target adhesive properties without affecting the bacterial vitality is needed. This stimulated research is a rapidly growing field for applicable control measures to prevent biofilm formation. Therefore, this review discusses the current understanding of antibiotic resistance mechanisms in bacterial biofilm and intensely emphasized the novel therapeutic strategies for combating biofilm mediated infections. The forthcoming experimental studies will focus on these recent therapeutic strategies that may lead to the development of effective biofilm inhibitors than conventional treatments.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fujian, China
| | - Sivasubramanian Santhakumari
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | | | - Mani Geetha
- PG Research and Department of Microbiology, St. Joseph's College of Arts and Science (Autonomous), Tamil Nadu, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Lin Xiangmin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fujian, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fujian, China
| |
Collapse
|
85
|
Mrudulakumari Vasudevan U, Lee OK, Lee EY. Alginate derived functional oligosaccharides: Recent developments, barriers, and future outlooks. Carbohydr Polym 2021; 267:118158. [PMID: 34119132 DOI: 10.1016/j.carbpol.2021.118158] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Alginate is a biopolymer used extensively in the food, pharmaceutical, and chemical industries. Alginate oligosaccharides (AOS) derived from alginate exhibit superior biological activities and therapeutic potential. Alginate lyases with characteristic substrate specificity can facilitate the production of a broad array of AOS with precise structure and functionality. By adopting innovative analytical tools in conjunction with focused clinical studies, the structure-bioactivity relationship of a number of AOS has been brought to light. This review covers fundamental aspects and recent developments in AOS research. Enzymatic and microbial processes involved in AOS production from brown algae and sequential steps involved in AOS structure elucidation are outlined. Biological mechanisms underlying the health benefits of AOS and their potential industrial and therapeutic applications are elaborated. Withal, various challenges in AOS research are traced out, and future directions, specifically on recombinant systems for AOS preparation, are delineated to further widen the horizon of these exceptional oligosaccharides.
Collapse
Affiliation(s)
- Ushasree Mrudulakumari Vasudevan
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ok Kyung Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
86
|
Barros CHN, Hiebner DW, Fulaz S, Vitale S, Quinn L, Casey E. Synthesis and self-assembly of curcumin-modified amphiphilic polymeric micelles with antibacterial activity. J Nanobiotechnology 2021; 19:104. [PMID: 33849570 PMCID: PMC8045376 DOI: 10.1186/s12951-021-00851-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The ubiquitous nature of bacterial biofilms combined with the enhanced resistance towards antimicrobials has led to the development of an increasing number of strategies for biofilm eradication. Such strategies must take into account the existence of extracellular polymeric substances, which obstruct the diffusion of antibiofilm agents and assists in the maintenance of a well-defended microbial community. Within this context, nanoparticles have been studied for their drug delivery efficacy and easily customised surface. Nevertheless, there usually is a requirement for nanocarriers to be used in association with an antimicrobial agent; the intrinsically antimicrobial nanoparticles are most often made of metals or metal oxides, which is not ideal from ecological and biomedical perspectives. Based on this, the use of polymeric micelles as nanocarriers is appealing as they can be easily prepared using biodegradable organic materials. RESULTS In the present work, micelles comprised of poly(lactic-co-glycolic acid) and dextran are prepared and then functionalised with curcumin. The effect of the functionalisation in the micelle's physical properties was elucidated, and the antibacterial and antibiofilm activities were assessed for the prepared polymeric nanoparticles against Pseudomonas spp. cells and biofilms. It was found that the nanoparticles have good penetration into the biofilms, which resulted in enhanced antibacterial activity of the conjugated micelles when compared to free curcumin. Furthermore, the curcumin-functionalised micelles were efficient at disrupting mature biofilms and demonstrated antibacterial activity towards biofilm-embedded cells. CONCLUSION Curcumin-functionalised poly(lactic-co-glycolic acid)-dextran micelles are novel nanostructures with an intrinsic antibacterial activity tested against two Pseudomonas spp. strains that have the potential to be further exploited to deliver a secondary bioactive molecule within its core.
Collapse
Affiliation(s)
- Caio H N Barros
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
- National Institute for Bioprocessing Research and Training (NIBRT), Dublin, Ireland
| | - Dishon W Hiebner
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Stephanie Fulaz
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
| | - Stefania Vitale
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Laura Quinn
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
| | - Eoin Casey
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland.
| |
Collapse
|
87
|
Chen P, Lang J, Franklin T, Yu Z, Yang R. Reduced Biofilm Formation at the Air-Liquid-Solid Interface via Introduction of Surfactants. ACS Biomater Sci Eng 2021. [PMID: 33821617 DOI: 10.1021/acsbiomaterials.0c01691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reduced biofilm formation is highly desirable in applications ranging from transportation to separations and healthcare. Biofilms often form at the three-phase interface where air, liquid, and solid coexist due to the close proximity to nutrients and oxygen. Reducing biofilm formation at the triple interface presents challenges because of the conflicting requirements for hydrophobicity at the air-solid interface (for self-cleaning properties) and for hydrophilicity at the liquid-solid interface (for reduced foulant adhesion). Meeting those needs simultaneously likely entails a dynamic surface, capable of shifting the surface energy landscape in response to wetting conditions and thus enabling hydrophobicity in air and hydrophilicity in water. Here, we designed a facile approach to render existing surfaces resistant to biofilm formation at the triple interface. By adding trace amounts (∼0.1 mM) of surfactants, biofilm formation of Pseudomonas aeruginosa (known to form biofilm at the triple interface) was reduced on all surfaces tested, ranging from hydrophilic to hydrophobic, polar to nonpolar. That reduced fouling was not a result of the known antimicrobial effects. Instead, it was attributed to the surface-adsorbed surfactants that dynamically control surface energy at the triple interface. To further understand the effect of surfactant-surface interactions on biofilm reduction, we systematically varied the surfactant charge type and surface properties (surface energy and charge). Electrostatic interactions between surfactants and surfaces were identified as an influential factor when predicting the relative fouling reduction upon introduction of surfactants. Nevertheless, biofilm formation was reduced even on the charge-neutral, fluorinated surface made of poly(1H, 1H, 2H, 2H-perfluorodecyl acrylate) by more than 2-fold simply via adding 0.2 mM dodecyl trimethylammonium chloride or 0.3 mM sodium dodecyl sulfate. Given its robustness, this strategy is broadly applicable for reducing fouling on existing surfaces, which in turn improves the cost-effectiveness of membrane separations and mitigates contaminations and nosocomial infections in healthcare.
Collapse
Affiliation(s)
- Pengyu Chen
- Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jiayan Lang
- Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Trevor Franklin
- Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zichen Yu
- Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rong Yang
- Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
88
|
Stuart-Walker W, Mahon CS. Glycomacromolecules: Addressing challenges in drug delivery and therapeutic development. Adv Drug Deliv Rev 2021; 171:77-93. [PMID: 33539854 DOI: 10.1016/j.addr.2021.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
Carbohydrate-based materials offer exciting opportunities for drug delivery. They present readily available, biocompatible components for the construction of macromolecular systems which can be loaded with cargo, and can enable targeting of a payload to particular cell types through carbohydrate recognition events established in biological systems. These systems can additionally be engineered to respond to environmental stimuli, enabling triggered release of payload, to encompass multiple modes of therapeutic action, or to simultaneously fulfil a secondary function such as enabling imaging of target tissue. Here, we will explore the use of glycomacromolecules to deliver therapeutic benefits to address key health challenges, and suggest future directions for development of next-generation systems.
Collapse
|
89
|
Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct Target Ther 2021; 6:122. [PMID: 33737507 PMCID: PMC7973744 DOI: 10.1038/s41392-021-00512-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Biomaterials have had an increasingly important role in recent decades, in biomedical device design and the development of tissue engineering solutions for cell delivery, drug delivery, device integration, tissue replacement, and more. There is an increasing trend in tissue engineering to use natural substrates, such as macromolecules native to plants and animals to improve the biocompatibility and biodegradability of delivered materials. At the same time, these materials have favourable mechanical properties and often considered to be biologically inert. More importantly, these macromolecules possess innate functions and properties due to their unique chemical composition and structure, which increase their bioactivity and therapeutic potential in a wide range of applications. While much focus has been on integrating these materials into these devices via a spectrum of cross-linking mechanisms, little attention is drawn to residual bioactivity that is often hampered during isolation, purification, and production processes. Herein, we discuss methods of initial material characterisation to determine innate bioactivity, means of material processing including cross-linking, decellularisation, and purification techniques and finally, a biological assessment of retained bioactivity of a final product. This review aims to address considerations for biomaterials design from natural polymers, through the optimisation and preservation of bioactive components that maximise the inherent bioactive potency of the substrate to promote tissue regeneration.
Collapse
Affiliation(s)
- Kieran Joyce
- School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Georgina Targa Fabra
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Yagmur Bozkurt
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
90
|
Sanchez MF, Guzman ML, Apas AL, Alovero FDL, Olivera ME. Sustained dual release of ciprofloxacin and lidocaine from ionic exchange responding film based on alginate and hyaluronate for wound healing. Eur J Pharm Sci 2021; 161:105789. [PMID: 33684487 DOI: 10.1016/j.ejps.2021.105789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
This study presents a new antibiotic-anesthetic film (AA-film) based on natural polyelectrolytes ionically complexed with lidocaine and ciprofloxacin to manage pain associated with infected wounds. The rational selection of the components resulted in the AA-films being transparent, compatible with wound skin pH and highly water vapor permeable. The drug release properties evaluated in saline solution and water revealed an ionic exchange mechanism for the release of both drugs and showed that ciprofloxacin acts as a cross-linker, as was confirmed by rheological evaluation. The in vitro antimicrobial efficacy against S. aureus and P. aeruginosa was demonstrated. Furthermore, AA-films exhibit a high fluid absorption capacity and act as a physical barrier for microorganisms. This work highlights the great potential of this smart system as an attractive dressing for skin wounds, surpassing currently available treatments.
Collapse
Affiliation(s)
- María Florencia Sanchez
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - María Laura Guzman
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Ana Lidia Apas
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Fabiana Del Lujan Alovero
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - María Eugenia Olivera
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
91
|
Martin I, Waters V, Grasemann H. Approaches to Targeting Bacterial Biofilms in Cystic Fibrosis Airways. Int J Mol Sci 2021; 22:ijms22042155. [PMID: 33671516 PMCID: PMC7926955 DOI: 10.3390/ijms22042155] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of lung infection in the context of cystic fibrosis (CF) is limited by a biofilm mode of growth of pathogenic organisms. When compared to planktonically grown bacteria, bacterial biofilms can survive extremely high levels of antimicrobials. Within the lung, bacterial biofilms are aggregates of microorganisms suspended in a matrix of self-secreted proteins within the sputum. These structures offer both physical protection from antibiotics as well as a heterogeneous population of metabolically and phenotypically distinct bacteria. The bacteria themselves and the components of the extracellular matrix, in addition to the signaling pathways that direct their behaviour, are all potential targets for therapeutic intervention discussed in this review. This review touches on the successes and failures of current anti-biofilm strategies, before looking at emerging therapies and the mechanisms by which it is hoped they will overcome current limitations.
Collapse
Affiliation(s)
- Isaac Martin
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
- Correspondence:
| | - Valerie Waters
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
- Department of Paediatrics and Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Hartmut Grasemann
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
- Department of Paediatrics and Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
92
|
Powell LC, Abdulkarim M, Stokniene J, Yang QE, Walsh TR, Hill KE, Gumbleton M, Thomas DW. Quantifying the effects of antibiotic treatment on the extracellular polymer network of antimicrobial resistant and sensitive biofilms using multiple particle tracking. NPJ Biofilms Microbiomes 2021; 7:13. [PMID: 33547326 PMCID: PMC7864955 DOI: 10.1038/s41522-020-00172-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/24/2020] [Indexed: 01/30/2023] Open
Abstract
Novel therapeutics designed to target the polymeric matrix of biofilms requires innovative techniques to accurately assess their efficacy. Here, multiple particle tracking (MPT) was developed to characterize the physical and mechanical properties of antimicrobial resistant (AMR) bacterial biofilms and to quantify the effects of antibiotic treatment. Studies employed nanoparticles (NPs) of varying charge and size (40-500 nm) in Pseudomonas aeruginosa PAO1 and methicillin-resistant Staphylococcus aureus (MRSA) biofilms and also in polymyxin B (PMB) treated Escherichia coli biofilms of PMB-sensitive (PMBSens) IR57 and PMB-resistant (PMBR) PN47 strains. NP size-dependent and strain-related differences in the diffusion coefficient values of biofilms were evident between PAO1 and MRSA. Dose-dependent treatment effects induced by PMB in PMBSens E. coli biofilms included increases in diffusion and creep compliance (P < 0.05), not evident in PMB treatment of PMBR E. coli biofilms. Our results highlight the ability of MPT to quantify the diffusion and mechanical effects of antibiotic therapies within the AMR biofilm matrix, offering a valuable tool for the pre-clinical screening of anti-biofilm therapies.
Collapse
Affiliation(s)
- Lydia C Powell
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, UK.
- Centre of Nanohealth, Swansea University Medical School, Swansea University, Swansea, UK.
| | - Muthanna Abdulkarim
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| | - Joana Stokniene
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, UK
| | - Qiu E Yang
- Medical Microbiology and Infectious Disease, School of Medicine, Cardiff University, Cardiff, UK
| | - Timothy R Walsh
- Medical Microbiology and Infectious Disease, School of Medicine, Cardiff University, Cardiff, UK
| | - Katja E Hill
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, UK
| | - Mark Gumbleton
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - David W Thomas
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, UK
| |
Collapse
|
93
|
Phenotypic and Genotypic Adaptations in Pseudomonas aeruginosa Biofilms following Long-Term Exposure to an Alginate Oligomer Therapy. mSphere 2021; 6:6/1/e01216-20. [PMID: 33472983 PMCID: PMC7845618 DOI: 10.1128/msphere.01216-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) evolve to generate environmentally adapted biofilm communities, leading to increased patient morbidity and mortality. OligoG CF-5/20, a low-molecular-weight inhaled alginate oligomer therapy, is currently in phase IIb/III clinical trials in CF patients. Experimental evolution of P. aeruginosa in response to OligoG CF-5/20 was assessed using a bead biofilm model allowing continuous passage (45 days; ∼245 generations). Mutants isolated after OligoG CF-5/20 treatment typically had a reduced biofilm-forming ability and altered motility profile. Genotypically, OligoG CF-5/20 provided no selective pressure on genomic mutations within morphotypes. Chronic exposure to azithromycin, a commonly prescribed antibiotic in CF patients, with or without OligoG CF-5/20 in the biofilm evolution model also had no effect on rates of resistance acquisition. Interestingly, however, cross-resistance to other antibiotics (e.g., aztreonam) was reduced in the presence of OligoG CF-5/20. Collectively, these findings show no apparent adverse effects from long-term exposure to OligoG CF-5/20, instead resulting in both fewer colonies with multidrug resistance (MDR)-associated phenotypes and improved antibiotic susceptibility of P. aeruginosa IMPORTANCE The emergence of multidrug-resistant (MDR) pathogens within biofilms in the cystic fibrosis lung results in increased morbidity. An inhalation therapy derived from alginate, OligoG CF-5/20, is currently in clinical trials for cystic fibrosis patients. OligoG CF-5/20 has been shown to alter sputum viscoelasticity, disrupt mucin polymer networks, and disrupt MDR pseudomonal biofilms. Long-term exposure to inhaled therapeutics may induce selective evolutionary pressures on bacteria within the lung biofilm. Here, a bead biofilm model with repeated exposure of P. aeruginosa to OligoG CF-5/20 (alone and in combination with azithromycin) was conducted to study these long-term effects and characterize the phenotypic and genotypic adaptations which result. These findings, over 6 weeks, show that long-term use of OligoG CF-5/20 does not lead to extensive mutational changes and may potentially decrease the pathogenicity of the bacterial biofilm and improve the susceptibility of P. aeruginosa to other classes of antibiotics.
Collapse
|
94
|
Weiser R, Rye PD, Mahenthiralingam E. Implementation of microbiota analysis in clinical trials for cystic fibrosis lung infection: Experience from the OligoG phase 2b clinical trials. J Microbiol Methods 2021; 181:106133. [PMID: 33421446 DOI: 10.1016/j.mimet.2021.106133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 11/28/2022]
Abstract
Culture-independent microbiota analysis is widely used in research and being increasingly used in translational studies. However, methods for standardisation and application of these analyses in clinical trials are limited. Here we report the microbiota analysis that accompanied two phase 2b clinical trials of the novel, non-antibiotic therapy OligoG CF-5/20 for cystic fibrosis (CF) lung infection. Standardised protocols (DNA extraction, PCR, qPCR and 16S rRNA gene sequencing analysis) were developed for application to the Pseudomonas aeruginosa (NCT02157922) and Burkholderia cepacia complex (NCT02453789) clinical trials involving 45 and 13 adult trial participants, respectively. Microbiota analysis identified that paired sputum samples from an individual participant, taken within 2 h of each other, had reproducible bacterial diversity profiles. Although culture microbiology had identified patients as either colonised by P. aeruginosa or B. cepacia complex species at recruitment, microbiota analysis revealed patient lung infection communities were not always dominated by these key CF pathogens. Microbiota profiles were patient-specific and remained stable over the course of both clinical trials (6 sampling points over the course of 140 days). Within the Burkholderia trial, participants were infected with B. cenocepacia (n = 4), B. multivorans (n = 6), or an undetermined species (n = 3). Colonisation with either B. cenocepacia or B. multivorans influenced the overall bacterial community structure in sputum. Overall, we have shown that sputum microbiota in adults with CF is stable over a 2 h time-frame, suggesting collection of a single sample on a collection day is sufficient to capture the microbiota diversity. Despite the uniform pathogen culture-positivity status at recruitment, trial participants were highly heterogeneous in their lung microbiota. Understanding the microbiota profiles of individuals with CF ahead of future clinical trials would be beneficial in the context of patient stratification and trial design.
Collapse
Affiliation(s)
- Rebecca Weiser
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, Wales, CF10 3AX, UK.
| | - Philip D Rye
- AlgiPharma AS, Industriveien 33, N-1337, Sandvika, Norway.
| | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, Wales, CF10 3AX, UK.
| |
Collapse
|
95
|
Targeting bioenergetics is key to counteracting the drug-tolerant state of biofilm-grown bacteria. PLoS Pathog 2020; 16:e1009126. [PMID: 33351859 PMCID: PMC7787680 DOI: 10.1371/journal.ppat.1009126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/06/2021] [Accepted: 11/05/2020] [Indexed: 12/30/2022] Open
Abstract
Embedded in an extracellular matrix, biofilm-residing bacteria are protected from diverse physicochemical insults. In accordance, in the human host the general recalcitrance of biofilm-grown bacteria hinders successful eradication of chronic, biofilm-associated infections. In this study, we demonstrate that upon addition of promethazine, an FDA approved drug, antibiotic tolerance of in vitro biofilm-grown bacteria can be abolished. We show that following the addition of promethazine, diverse antibiotics are capable of efficiently killing biofilm-residing cells at minimal inhibitory concentrations. Synergistic effects could also be observed in a murine in vivo model system. PMZ was shown to increase membrane potential and interfere with bacterial respiration. Of note, antibiotic killing activity was elevated when PMZ was added to cells grown under environmental conditions that induce low intracellular proton levels. Our results imply that biofilm-grown bacteria avoid antibiotic killing and become tolerant by counteracting intracellular alkalization through the adaptation of metabolic and transport functions. Abrogation of antibiotic tolerance by interfering with the cell’s bioenergetics promises to pave the way for successful eradication of biofilm-associated infections. Repurposing promethazine as a biofilm-sensitizing drug has the potential to accelerate the introduction of new treatments for recalcitrant, biofilm-associated infections into the clinic. At sub-minimal inhibitory concentrations, phenothiazines have been shown to inhibit virulence as well as the formation of biofilms in a wide range of different bacterial pathogens. In this study, we analyzed the anti-bacterial effect of the FDA-approved drug, promethazine, on biofilm-grown Pseudomonas aeruginosa. We demonstrate that PMZ interferes with bacterial bioenergetics and sensitizes biofilm-grown P. aeruginosa cells to bactericidal activity of several different classes of antibiotics by several orders of magnitude. This effect was most pronounced when cells were grown under environmental conditions that induce low intracellular proton levels. Thus, it seems that a reduced proton efflux in cells that exhibit decreased respiratory activity due to their biofilm mode of growth might explain their general antimicrobial tolerance. The use of PMZ as an antibiotic sensitizer holds promise that targeting tolerance mechanisms of biofilm-grown bacteria could become a practicable way to change the way physicians treat biofilm-associated infections.
Collapse
|
96
|
Kaneko H, Nakaminami H, Ozawa K, Wajima T, Noguchi N. In vitro anti-biofilm effect of anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) agents against the USA300 clone. J Glob Antimicrob Resist 2020; 24:63-71. [PMID: 33307275 DOI: 10.1016/j.jgar.2020.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/10/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Infection with a typical community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA), the USA300 clone, has become a worldwide epidemic. Biofilm formation at the site of infection is one of the reasons for the development of intractable infectious diseases resulting from this clone. Here we evaluated the in vitro antibiofilm effects of anti-MRSA agents to identify the most effective agent against the USA300 clone embedded in biofilms. METHODS Vancomycin, linezolid, teicoplanin, daptomycin, arbekacin and tigecycline were used as anti-MRSA agents. The biofilm permeability of the anti-MRSA agents was assessed using a biofilm-coated Transwell®. Morphological and compositional effects of anti-MRSA agents against biofilms were analysed based on the distribution of fluorescence intensity using confocal laser microscopy. Bactericidal activities of the anti-MRSA agents against biofilm-embedded S. aureus were compared. RESULTS The permeability rates of linezolid (93.1%), daptomycin (91.3%), arbekacin (87.1%) and tigecycline (99.7%) for biofilms formed by the USA300 clone were found to be significantly higher than those of vancomycin (64.9%) and teicoplanin (62.3%) (P < 0.01). Confocal microscopic analysis showed that daptomycin greatly altered the biofilm morphology (decreased thickness and increased roughness) and markedly reduced the area occupied by the biofilm. Furthermore, daptomycin effectively reduced the extracellular DNA of biofilms and showed the highest bactericidal activity against biofilm-embedded USA300 clone among the anti-MRSA agents. CONCLUSION The findings from this study demonstrate that, of the tested anti-MRSA agents, daptomycin is the most effective against biofilm-embedded USA300 clone in vitro.
Collapse
Affiliation(s)
- Hiroshi Kaneko
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hidemasa Nakaminami
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Kosuke Ozawa
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Takeaki Wajima
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Norihisa Noguchi
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
97
|
Tøndervik A, Aarstad OA, Aune R, Maleki S, Rye PD, Dessen A, Skjåk-Bræk G, Sletta H. Exploiting Mannuronan C-5 Epimerases in Commercial Alginate Production. Mar Drugs 2020; 18:E565. [PMID: 33218095 PMCID: PMC7698916 DOI: 10.3390/md18110565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Alginates are one of the major polysaccharide constituents of marine brown algae in commercial manufacturing. However, the content and composition of alginates differ according to the distinct parts of these macroalgae and have a direct impact on the concentration of guluronate and subsequent commercial value of the final product. The Azotobacter vinelandii mannuronan C-5 epimerases AlgE1 and AlgE4 were used to determine their potential value in tailoring the production of high guluronate low-molecular-weight alginates from two sources of high mannuronic acid alginates, the naturally occurring harvested brown algae (Ascophyllum nodosum, Durvillea potatorum, Laminaria hyperborea and Lessonia nigrescens) and a pure mannuronic acid alginate derived from fermented production of the mutant strain of Pseudomonas fluorescens NCIMB 10,525. The mannuronan C-5 epimerases used in this study increased the content of guluronate from 32% up to 81% in both the harvested seaweed and bacterial fermented alginate sources. The guluronate-rich alginate oligomers subsequently derived from these two different sources showed structural identity as determined by proton nuclear magnetic resonance (1H NMR), high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and size-exclusion chromatography with online multi-angle static laser light scattering (SEC-MALS). Functional identity was determined by minimum inhibitory concentration (MIC) assays with selected bacteria and antibiotics using the previously documented low-molecular-weight guluronate enriched alginate OligoG CF-5/20 as a comparator. The alginates produced using either source showed similar antibiotic potentiation effects to the drug candidate OligoG CF-5/20 currently in development as a mucolytic and anti-biofilm agent. These findings clearly illustrate the value of using epimerases to provide an alternative production route for novel low-molecular-weight alginates.
Collapse
Affiliation(s)
- Anne Tøndervik
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3B, N-7034 Trondheim, Norway; (R.A.); (S.M.); (H.S.)
| | - Olav A. Aarstad
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, NTNU, Sem Sælands vei 6-8, N-7491 Trondheim, Norway; (O.A.A.); (G.S.-B.)
| | - Randi Aune
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3B, N-7034 Trondheim, Norway; (R.A.); (S.M.); (H.S.)
| | - Susan Maleki
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3B, N-7034 Trondheim, Norway; (R.A.); (S.M.); (H.S.)
| | - Philip D. Rye
- AlgiPharma AS, Industriveien 33, N-1337 Sandvika, Norway; (P.D.R.); (A.D.)
| | - Arne Dessen
- AlgiPharma AS, Industriveien 33, N-1337 Sandvika, Norway; (P.D.R.); (A.D.)
| | - Gudmund Skjåk-Bræk
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, NTNU, Sem Sælands vei 6-8, N-7491 Trondheim, Norway; (O.A.A.); (G.S.-B.)
| | - Håvard Sletta
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3B, N-7034 Trondheim, Norway; (R.A.); (S.M.); (H.S.)
| |
Collapse
|
98
|
Thi MTT, Wibowo D, Rehm BH. Pseudomonas aeruginosa Biofilms. Int J Mol Sci 2020; 21:ijms21228671. [PMID: 33212950 PMCID: PMC7698413 DOI: 10.3390/ijms21228671] [Citation(s) in RCA: 413] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen causing devastating acute and chronic infections in individuals with compromised immune systems. Its highly notorious persistence in clinical settings is attributed to its ability to form antibiotic-resistant biofilms. Biofilm is an architecture built mostly by autogenic extracellular polymeric substances which function as a scaffold to encase the bacteria together on surfaces, and to protect them from environmental stresses, impedes phagocytosis and thereby conferring the capacity for colonization and long-term persistence. Here we review the current knowledge on P. aeruginosa biofilms, its development stages, and molecular mechanisms of invasion and persistence conferred by biofilms. Explosive cell lysis within bacterial biofilm to produce essential communal materials, and interspecies biofilms of P. aeruginosa and commensal Streptococcus which impedes P. aeruginosa virulence and possibly improves disease conditions will also be discussed. Recent research on diagnostics of P. aeruginosa infections will be investigated. Finally, therapeutic strategies for the treatment of P. aeruginosa biofilms along with their advantages and limitations will be compiled.
Collapse
|
99
|
Bi-Functional Alginate Oligosaccharide-Polymyxin Conjugates for Improved Treatment of Multidrug-Resistant Gram-Negative Bacterial Infections. Pharmaceutics 2020; 12:pharmaceutics12111080. [PMID: 33187332 PMCID: PMC7696216 DOI: 10.3390/pharmaceutics12111080] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The recent emergence of resistance to colistin, an antibiotic of last resort with dose-limiting toxicity, has highlighted the need for alternative approaches to combat infection. This study aimed to generate and characterise alginate oligosaccharide (“OligoG”)–polymyxin (polymyxin B and E (colistin)) conjugates to improve the effectiveness of these antibiotics. OligoG–polymyxin conjugates (amide- or ester-linked), with molecular weights of 5200–12,800 g/mol and antibiotic loading of 6.1–12.9% w/w, were reproducibly synthesised. In vitro inflammatory cytokine production (tumour necrosis factor alpha (TNFα) ELISA) and cytotoxicity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) of colistin (2.2–9.3-fold) and polymyxin B (2.9–27.2-fold) were significantly decreased by OligoG conjugation. Antimicrobial susceptibility tests (minimum inhibitory concentration (MIC), growth curves) demonstrated similar antimicrobial efficacy of ester- and amide-linked conjugates to that of the parent antibiotic but with more sustained inhibition of bacterial growth. OligoG–polymyxin conjugates exhibited improved selectivity for Gram-negative bacteria in comparison to mammalian cells (approximately 2–4-fold). Both OligoG–colistin conjugates caused significant disruption of Pseudomonas aeruginosa biofilm formation and induced bacterial death (confocal laser scanning microscopy). When conjugates were tested in an in vitro “time-to-kill” (TTK) model using Acinetobacter baumannii, only ester-linked conjugates reduced viable bacterial counts (~2-fold) after 4 h. Bi-functional OligoG–polymyxin conjugates have potential therapeutic benefits in the treatment of multidrug-resistant (MDR) Gram-negative bacterial infections, directly reducing toxicity whilst retaining antimicrobial and antibiofilm activities.
Collapse
|
100
|
van Koningsbruggen-Rietschel S, Davies JC, Pressler T, Fischer R, MacGregor G, Donaldson SH, Smerud K, Meland N, Mortensen J, Fosbøl MØ, Downey DG, Myrset AH, Flaten H, Rye PD. Inhaled dry powder alginate oligosaccharide in cystic fibrosis: a randomised, double-blind, placebo-controlled, crossover phase 2b study. ERJ Open Res 2020; 6:00132-2020. [PMID: 33123558 PMCID: PMC7569163 DOI: 10.1183/23120541.00132-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/25/2020] [Indexed: 11/21/2022] Open
Abstract
Background OligoG is a low molecular-weight alginate oligosaccharide that improves the viscoelastic properties of cystic fibrosis (CF) mucus and disrupts biofilms, thereby potentiating the activity of antimicrobial agents. The efficacy of inhaled OligoG was evaluated in adult patients with CF. Methods A randomised, double-blind, placebo-controlled multicentre crossover study was used to demonstrate safety and efficacy of inhaled dry powder OligoG. Subjects were randomly allocated to receive OligoG 1050 mg per day (10 capsules three times daily) or matching placebo for 28 days, with 28-day washout periods following each treatment period. The primary end-point was absolute change in percentage predicted forced expiratory volume in 1 s (FEV1) at the end of 28-day treatment. The intention-to-treat (ITT) population (n=65) was defined as randomised to treatment with at least one administration of study medication and post-dosing evaluation. Results In this study, 90 adult subjects were screened and 65 were randomised. Statistically significant improvement in FEV1 was not observed in the ITT population. Adverse events included nasopharyngitis, cough and pulmonary exacerbation. The number and proportions of patients with adverse events and serious adverse events were similar between OligoG and placebo group. Conclusions Inhalation of OligoG-dry powder over 28 days was safe in adult CF subjects. Statistically significant improvement of FEV1 was not reached. The planned analyses did not indicate a significant treatment benefit with OligoG compared to placebo. Post hoc exploratory analyses showed subgroup results that indicate that further studies of OligoG in this patient population are justified. Inhalation of OligoG-DPI over 28 days was shown to be safe in adult CF subjects. Statistically significant improvement of FEV1 was not reached. Post hoc subgroup analyses support mechanism of action for OligoG and warrant further prospective studies.https://bit.ly/2PHq6Z0
Collapse
Affiliation(s)
| | - Jane C Davies
- Dept of Paediatric Respiratory Medicine, National Heart and Lung Institute, Imperial College London, and Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | | | | | - Gordon MacGregor
- Dept of Respiratory Medicine, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Knut Smerud
- SMERUD Medical Research International AS, Oslo, Norway
| | - Nils Meland
- SMERUD Medical Research International AS, Oslo, Norway
| | - Jann Mortensen
- Copenhagen CF Centre, Rigshospitalet, Copenhagen, Denmark
| | - Marie Ø Fosbøl
- Copenhagen CF Centre, Rigshospitalet, Copenhagen, Denmark
| | - Damian G Downey
- Centre for Experimental Medicine, Queen's University, Belfast, UK
| | | | | | | |
Collapse
|