51
|
Stokes NL, Patil A, Adeyi O, Bhalla A, Brown I, Byrnes K, Calderaro J, Chen D, Chen W, Cooper C, Dhall D, Frankel W, Gooch GG, Gonzalez RS, Hammer S, Hale G, Lagana S, McKenzie C, Allende DS, Moreira RK, Nakhleh R, Nalbantoglu ILK, Pai RK, Salomao M, Schaeffer DF, Shih A, Shin JS, Simoes CC, Vij M, Rela M, Xue Y, Yantiss RK, Sabatto BZ, Graham RP. Validation of Metallothionein Immunohistochemistry as a Highly Sensitive Screening Test for Wilson Disease. Mod Pathol 2025; 38:100628. [PMID: 39384020 DOI: 10.1016/j.modpat.2024.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/23/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
Wilson disease (WD) is a rare autosomal recessive condition with protean clinical manifestations that result from biallelic ATP7B mutations. However, nondestructive tissue tests to be applied clinically to tissue specimens are not widely available to effectively assess patients for possible WD. Previously, we showed that metallothionein (MTH) immunohistochemistry (IHC) has a high sensitivity and specificity for WD diagnosis and, thus, represents a potentially powerful diagnostic tool that can be used in routine histologic sections. This study aimed to validate this finding in a large cohort of bona fide patients with WD and to correlate metallothionein expression with other histologic features. We identified 91 cases of WD, which included 28 needle biopsies and 64 explants from 14 centers worldwide. Histologic features were evaluated, and a histopathological pattern was assigned to each case. All cases were evaluated with Masson trichrome and MTH IHC (clone UC1MT, Abcam) using a previously published technique. Liver tissues from chronic cholestatic diseases (n = 42) were used as controls. The median age of the cohort was 28.5 years. Of the 91 total cases, 83 were positive for MTH immunostain. In the controls, all 42 cases were negative for MTH immunostain. The sensitivity and specificity of MTH immunostain for WD were 91.20% and 100%, respectively. MTH IHC is a highly sensitive and specific cost-effective screening tool for WD. It can be used for patients across age groups, varied histologic patterns, and fibrosis stages. This marker could prove to be a valuable tool in the evaluation of patients with possible WD.
Collapse
Affiliation(s)
- Nadarra L Stokes
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ameya Patil
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Oyedele Adeyi
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Amarpreet Bhalla
- Department of Pathology, Montefiore Medical Center, Bronx, New York
| | - Ian Brown
- Envoi Specialist Pathologists, Queensland, Australia
| | - Kathleen Byrnes
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri
| | - Julien Calderaro
- Department of Pathology, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Diane Chen
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Wei Chen
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Caroline Cooper
- Pathology Queensland, Princess Alexandra Hospital and Faculty of Medicine, The University of Queensland, Queensland, Australia
| | - Deepti Dhall
- Department of Pathology, University of Alabama Medicine, Birmingham, Alabama
| | - Wendy Frankel
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | - Raul S Gonzalez
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Suntrea Hammer
- Pathology, University of Texas Southwestern, Dallas, Texas
| | - Gillian Hale
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Stephen Lagana
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Catriona McKenzie
- Tissue Pathology and Diagnostic Oncology, New South Wales Health Pathology, New South Wales, Australia
| | | | - Roger K Moreira
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Raouf Nakhleh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida
| | - ILKe Nalbantoglu
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, Arizona
| | - Marcela Salomao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, Arizona
| | - David F Schaeffer
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Angela Shih
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Joo-Shik Shin
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, and Central Clinical School, University of Sydney, Sydney, Australia
| | - Camila C Simoes
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arizona
| | - Mukul Vij
- Department of Pathology, Dr Rela Institute and Medical Center, Chennai, Tamil Nadu
| | - Mohamed Rela
- Department of Pathology, Dr Rela Institute and Medical Center, Chennai, Tamil Nadu
| | - Yue Xue
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Rhonda K Yantiss
- Department of Pathology and Laboratory Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | | | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
52
|
Patil L, Mehta G, Aggarwal A. Elderly-onset severe parkinsonism in Wilson disease: Expert commentary. Parkinsonism Relat Disord 2025; 130:106945. [PMID: 38565478 DOI: 10.1016/j.parkreldis.2024.106945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Affiliation(s)
- Laxmi Patil
- Wilson Disease Clinic and Movement Disorders Clinic, Center for Neurosciences, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, India.
| | - Gaurav Mehta
- Wilson Disease Clinic, Center for Hepatology and Liver Transplant, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, India.
| | - Annu Aggarwal
- Wilson Disease Clinic and Movement Disorders Clinic, Center for Neurosciences, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, India.
| |
Collapse
|
53
|
Pang J, Chen S, Zeng Y, Chong Y, Gan W, Li X. Insights into the coexistence of Wilson’s disease and chronic hepatitis B: A retrospective propensity score matched study for improving clinical practice. LIVER RESEARCH 2025. [DOI: 10.1016/j.livres.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
|
54
|
Lutsenko S, Roy S, Tsvetkov P. Mammalian copper homeostasis: physiological roles and molecular mechanisms. Physiol Rev 2025; 105:441-491. [PMID: 39172219 PMCID: PMC11918410 DOI: 10.1152/physrev.00011.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024] Open
Abstract
In the past decade, evidence for the numerous roles of copper (Cu) in mammalian physiology has grown exponentially. The discoveries of Cu involvement in cell signaling, autophagy, cell motility, differentiation, and regulated cell death (cuproptosis) have markedly extended the list of already known functions of Cu, such as a cofactor of essential metabolic enzymes, a protein structural component, and a regulator of protein trafficking. Novel and unexpected functions of Cu transporting proteins and enzymes have been identified, and new disorders of Cu homeostasis have been described. Significant progress has been made in the mechanistic studies of two classic disorders of Cu metabolism, Menkes disease and Wilson's disease, which paved the way for novel approaches to their treatment. The discovery of cuproptosis and the role of Cu in cell metastatic growth have markedly increased interest in targeting Cu homeostatic pathways to treat cancer. In this review, we summarize the established concepts in the field of mammalian Cu physiology and discuss how new discoveries of the past decade expand and modify these concepts. The roles of Cu in brain metabolism and in cell functional speciation and a recently discovered regulated cell death have attracted significant attention and are highlighted in this review.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Peter Tsvetkov
- Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
55
|
Govindan S, Santhanam J, S N MS, U J, Shanmukha Sai B. The Importance of Genetic Testing: A Case Report of Wilson's Disease in Two Siblings of a Three-Sibling Family. Cureus 2025; 17:e77891. [PMID: 39996228 PMCID: PMC11848242 DOI: 10.7759/cureus.77891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/15/2024] [Indexed: 02/26/2025] Open
Abstract
Mutations in the adenosine triphosphatase (ATPase) copper transporting beta (ATP7B) gene result in Wilson's disease (WD), a rare autosomal recessive condition that affects copper metabolism, leading to its accumulation in multiple tissues, including the liver and the brain. This case report details the clinical presentation of three siblings born out of a consanguineous marriage, each displaying different manifestations. The youngest sibling exhibited significant hepatic and neurological symptoms, the middle sibling experienced neuropsychiatric issues, and the eldest one initially showed psychological distress without classic symptoms of WD. Genetic testing confirmed WD in the symptomatic siblings and ruled it out in the eldest, guiding their personalized treatment plans and reducing psychological stress. This case emphasizes the critical role of genetic testing in the early diagnosis, management, and familial risk assessment of WD. Additionally, it highlights the necessity of a comprehensive approach that includes medical, psychological, and social support to enhance the prognosis of the illness.
Collapse
Affiliation(s)
- Siva Govindan
- General Medicine, Sri Ramaswamy Memorial Medical College Hospital and Research Centre, Kattankulathur, IND
| | - Jennie Santhanam
- General Medicine, Sri Ramaswamy Memorial Medical College Hospital and Research Centre, Kattankulathur, IND
| | - Meenakshi Sundari S N
- General Medicine, Sri Ramaswamy Memorial Medical College Hospital and Research Centre, Kattankulathur, IND
| | - Jeyapriya U
- General Medicine, Sri Ramaswamy Memorial Medical College Hospital and Research Centre, Kattankulathur, IND
| | - Bolisetty Shanmukha Sai
- General Medicine, Sri Ramaswamy Memorial Medical College Hospital and Research Centre, Kattankulathur, IND
| |
Collapse
|
56
|
Li KF, Li J, Liao YP, Zhu SH, Chhetri JK, Chen HZ, Yang WM. Elderly-onset severe parkinsonism in Wilson disease: A case report. Parkinsonism Relat Disord 2025; 130:105924. [PMID: 37945393 DOI: 10.1016/j.parkreldis.2023.105924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Affiliation(s)
- Ke-Fan Li
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jun Li
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China; Anhui Branch Center of National Clinical Research Center for Geriatric Disorders, Hefei, China.
| | - Ya-Ping Liao
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Si-Huan Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | | | - Huai-Zhen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China; Anhui Branch Center of National Clinical Research Center for Geriatric Disorders, Hefei, China
| | - Wen-Ming Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China; Anhui Branch Center of National Clinical Research Center for Geriatric Disorders, Hefei, China
| |
Collapse
|
57
|
Jin Y, Xing J, Dai C, Jin L, Zhang W, Tao Q, Hou M, Li Z, Yang W, Feng Q, Wang H, Yu Q. NK cell exhaustion in Wilson's disease revealed by single-cell RNA sequencing predicts the prognosis of cholecystitis. eLife 2024; 13:RP98867. [PMID: 39854622 PMCID: PMC11684787 DOI: 10.7554/elife.98867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson's disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism. Our retrospective clinical study found that WD patients have a significantly higher incidence of cholecystitis and a poorer prognosis. The hepatic immune cell landscape using single-cell RNA sequencing showed that the tissue immune microenvironment is altered in WD, mainly a major change in the constitution and function of the innate immune system. Exhaustion of natural killer (NK) cells is the fundamental factor, supported by the upregulated expression of inhibitory receptors and the downregulated expression of cytotoxic molecules, which was verified in clinical samples. Further bioinformatic analysis confirmed a positive correlation between NK cell exhaustion and poor prognosis in cholecystitis and other inflammatory diseases. The study demonstrated dysfunction of liver immune cells triggered by specific metabolic abnormalities in WD, with a focus on the correlation between NK cell exhaustion and poor healing of cholecystitis, providing new insights into the improvement of inflammatory diseases by assessing immune cell function.
Collapse
Affiliation(s)
- Yong Jin
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Jiayu Xing
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Chenyu Dai
- Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Lei Jin
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese MedicineHefeiChina
| | - Wanying Zhang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Qianqian Tao
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese MedicineHefeiChina
| | - Mei Hou
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Ziyi Li
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese MedicineHefeiChina
| | - Wen Yang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghaiChina
- National Center for Liver Cancer, Second Military Medical UniversityShanghaiChina
| | - Qiyu Feng
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Hongyang Wang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghaiChina
- National Center for Liver Cancer, Second Military Medical UniversityShanghaiChina
| | - Qingsheng Yu
- Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| |
Collapse
|
58
|
Yang W, Yang Y, Wang H, Wang J, Zhang S. Clinical and genetic characterization of patients with late onset Wilson's disease. NPJ Genom Med 2024; 9:71. [PMID: 39719440 DOI: 10.1038/s41525-024-00459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024] Open
Abstract
Wilson's disease (WD) typically manifests in children and young adults, with little knowledge of its late-onset forms. In this study, we performed a retrospective cohort study of 105 WD patients (99 index cases, 6 siblings) with an onset age ≥35 years. We compared 99 index late-onset patients with 1237 early-onset patients and analyzed the ATP7B variant penetrance referring to the Genome Aggregation Database (gnomAD). Sixty-two ATP7B variants were identified in the late-onset patients, among which A874V, V1106I, R919G, and T935M were correlated with late presentation of WD. Regarding gnomAD, V1106I and T935M exhibited significantly low penetrance, and there is a lack of patients carrying a genotype of V1106I/V1106I, R919G/R919G, T935M/T935M, V1106I/T935M, V1106I/R919G, or T935M/R919G. Our data revealed that patients carrying a combination of two late-onset variants may be overlooked due to atypical or lack of WD symptoms, which may provide valuable insights into the genetic basis and diagnosis of WD.
Collapse
Affiliation(s)
- Wenming Yang
- Department of Neurology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Yue Yang
- Department of Neurology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Han Wang
- Department of Neurology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jiuxiang Wang
- Experimental Center of Clinical Research, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Shijie Zhang
- Experimental Center of Clinical Research, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
59
|
Jiang Q, Tong F, Xu Y, Liu C, Xu Q. Cuproptosis: a promising new target for breast cancer therapy. Cancer Cell Int 2024; 24:414. [PMID: 39702350 DOI: 10.1186/s12935-024-03572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/10/2024] [Indexed: 12/21/2024] Open
Abstract
Breast cancer (BC) is the leading cause of cancer-related mortality among women globally, affecting approximately one-quarter of all female cancer patients and accounting for one-sixth of cancer-related deaths in women. Despite significant advancements in diagnostic and therapeutic approaches, breast cancer treatment remains challenging due to issues such as recurrence and metastasis. Recently, a novel form of regulated cell death, termed cuproptosis, has been identified. This process disrupts mitochondrial respiration by targeting the copper-dependent cellular pathways. The role of cuproptosis has been extensively investigated in various therapeutic contexts, including chemotherapy, immunotherapy, radiotherapy, and nanotherapy, with the development of novel drugs significantly improving clinical outcomes. This article aims to further elucidate the connection between cuproptosis and breast cancer, focusing on its therapeutic targets, signaling pathways, and potential biomarkers that could enhance treatment strategies. These insights may offer new opportunities for improved patient care and outcomes in breast cancer therapy.
Collapse
Affiliation(s)
- Qianqian Jiang
- Department of Pharmacy, Traditional Chinese Medicine Hospital of Changshan, Quzhou, 324200, P.R. China
| | - Fei Tong
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P.R. China
| | - Yun Xu
- Department of Pharmacy, Zhejiang Medical&Health Group Hangzhou Hospital, Hangzhou, Zhejiang, 310022, China
| | - Cheng Liu
- Department of Pharmacy, The Secend People's Hospital Of Jiande, Hangzhou, 311604, P.R. China
| | - Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Afliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
60
|
Aschner M, Skalny AV, Lu R, Martins AC, Tizabi Y, Nekhoroshev SV, Santamaria A, Sinitskiy AI, Tinkov AA. Mitochondrial pathways of copper neurotoxicity: focus on mitochondrial dynamics and mitophagy. Front Mol Neurosci 2024; 17:1504802. [PMID: 39703721 PMCID: PMC11655512 DOI: 10.3389/fnmol.2024.1504802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Copper (Cu) is essential for brain development and function, yet its overload induces neuronal damage and contributes to neurodegeneration and other neurological disorders. Multiple studies demonstrated that Cu neurotoxicity is associated with mitochondrial dysfunction, routinely assessed by reduction of mitochondrial membrane potential. Nonetheless, the role of alterations of mitochondrial dynamics in brain mitochondrial dysfunction induced by Cu exposure is still debatable. Therefore, the objective of the present narrative review was to discuss the role of mitochondrial dysfunction in Cu-induced neurotoxicity with special emphasis on its influence on brain mitochondrial fusion and fission, as well as mitochondrial clearance by mitophagy. Existing data demonstrate that, in addition to mitochondrial electron transport chain inhibition, membrane damage, and mitochondrial reactive oxygen species (ROS) overproduction, Cu overexposure inhibits mitochondrial fusion by down-regulation of Opa1, Mfn1, and Mfn2 expression, while promoting mitochondrial fission through up-regulation of Drp1. It has been also demonstrated that Cu exposure induces PINK1/Parkin-dependent mitophagy in brain cells, that is considered a compensatory response to Cu-induced mitochondrial dysfunction. However, long-term high-dose Cu exposure impairs mitophagy, resulting in accumulation of dysfunctional mitochondria. Cu-induced inhibition of mitochondrial biogenesis due to down-regulation of PGC-1α further aggravates mitochondrial dysfunction in brain. Studies from non-brain cells corroborate these findings, also offering additional evidence that dysregulation of mitochondrial dynamics and mitophagy may be involved in Cu-induced damage in brain. Finally, Cu exposure induces cuproptosis in brain cells due mitochondrial proteotoxic stress, that may also contribute to neuronal damage and pathogenesis of certain brain diseases. Based on these findings, it is assumed that development of mitoprotective agents, specifically targeting mechanisms of mitochondrial quality control, would be useful for prevention of neurotoxic effects of Cu overload.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Anatoly V. Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Sergey V. Nekhoroshev
- Problem Research Laboratory, Khanty-Mansiysk State Medical Academy, Khanty-Mansiysk, Russia
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Anton I. Sinitskiy
- Department of Biochemistry, South Ural State Medical University, Chelyabinsk, Russia
| | - Alexey A. Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Laboratory of Ecobiomonitoring and Quality Control and Department of Physical Education, Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
61
|
Kamlin COF, M Jenkins T, L Heise J, S Amin N. Trientine Tetrahydrochloride, From Bench to Bedside: A Narrative Review. Drugs 2024; 84:1509-1518. [PMID: 39420162 PMCID: PMC11652397 DOI: 10.1007/s40265-024-02099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Trientine tetrahydrochloride (TETA-4HCl, Cuvrior®) is a copper chelating agent with the active moiety triethylenetetramine (trientine), developed by Orphalan, Inc. to address the unmet needs in the treatment of Wilson disease. The journey from bench to bedside builds upon the documented safety profile of trientine hydrochloride capsules developed initially to meet the needs of individuals intolerant to D-penicillamine (DPA). Trientine hydrochloride capsules are inherently unstable requiring strict cold chain storage conditions from production, transportation, and use at home by the patient. Trientine tetrahydrochloride has a distinctive, patent-protected unique polymorphic form, which permits the production at scale of film-coated scored tablets deemed room temperature stable for 36 months. Trientine tetrahydrochloride is supported by a well-characterized pharmacodynamic, pharmacokinetic, and metabolic profile demonstrating reliable and predictable dose linearity and dose proportionality kinetics. Trientine tetrahydrochloride is the only trientine formulation that has been compared with DPA in a prospective randomized clinical trial, demonstrating non-inferiority to DPA in adults with stable Wilson disease. On 28 April, 2022, the US Food and Drug Administration approved TETA-4HCl for use in adult patients with Wilson disease who are de-coppered and tolerant to DPA. Health authorities in multiple countries worldwide have approved TETA-4HCl for the treatment of adults and children aged 5 years or more who are intolerant to DPA including the European Union, UK, Saudi Arabia, Switzerland, Colombia, Australia, New Zealand, and China. This article aims to provide a comprehensive narrative review of the key milestones in the development of TETA-4HCl.
Collapse
Affiliation(s)
- C Omar F Kamlin
- Orphalan, Inc, 294 Washington Street Suite 701, Boston, MA, 02108, USA
| | - Timothy M Jenkins
- Orphalan, Inc, 294 Washington Street Suite 701, Boston, MA, 02108, USA
| | - Jamie L Heise
- Orphalan, Inc, 294 Washington Street Suite 701, Boston, MA, 02108, USA.
| | - Naseem S Amin
- Orphalan, Inc, 294 Washington Street Suite 701, Boston, MA, 02108, USA
| |
Collapse
|
62
|
Mohamed Ibrahim N, Lin CH. Early Onset Parkinsonism: Differential diagnosis and what not to miss. Parkinsonism Relat Disord 2024; 129:107100. [PMID: 39183141 DOI: 10.1016/j.parkreldis.2024.107100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
Early Onset Parkinsonism (EOP) refers to parkinsonism occurring before the age of 50 years. The causes are diverse and include secondary and genetic causes. Secondary causes related to medications, inflammatory and infective disorders are mostly treatable and well recognized as they usually present with a relatively more rapid clinical course compared to idiopathic Parkinson's disease. Genetic causes of EOP are more challenging to diagnose especially as more of the non-PARK genes are recognized to present with typical and atypical parkinsonism. Some of the genetic disorders such as Spinocerebellar ataxia 2 (SCA2) and Spinocerebellar ataxia 3 (SCA3) may present with levodopa-responsive parkinsonism, indistinguishable from idiopathic Parkinson's disease. Additionally, some of the genetic disorders, including Wilson's disease and cerebrotendinous xanthomatosis (CTX), are potentially treatable and should not be missed. Due to the advent of next generating sequencing techniques, genetic analyses facilitate early identification and proper treatment of diverse causes of EOP. In this review, we outline the clinical approach of EOP highlighting the key clinical features of some of the non-PARK genetic causes of EOP and related investigations, which could assist in clinical diagnosis. This review also encompass genetic diagnostic approaches, emphasizing the significance of pretest counseling and the principles of bioinformatics analysis strategies.
Collapse
Affiliation(s)
- Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Chin Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
63
|
Sun Z, Chen G. Impact of heterogeneity in liver matrix and intrahepatic cells on the progression of hepatic fibrosis. Tissue Cell 2024; 91:102559. [PMID: 39293139 DOI: 10.1016/j.tice.2024.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Liver fibrosis is a disease with a high prevalence worldwide. The development of hepatic fibrosis results from a combination of factors within the liver, such as extracellular matrix (ECM) deposition, hepatic stellate cells (HSCs) activation, collagen cross-linking, and inflammatory response. Heterogeneity in fibrotic liver is the result of a combination of heterogeneity in the intrahepatic microenvironment as well as heterogeneous expression of fibrosis-associated enzymes and cells, complicating the study of the mechanisms underlying the progression of liver fibrosis. The role of this heterogeneity on the crosstalk between cells and matrix and on the fibrotic process is worth exploring. In this paper, we will describe the phenomenon and mechanism of heterogeneity of liver matrix and intrahepatic cells in the process of hepatic fibrosis and discuss the crosstalk between heterogeneous factors on the development of fibrosis. The elucidation of heterogeneity is important for a deeper understanding of the pathological mechanisms of liver fibrosis as well as for clinical diagnosis and targeted therapies.
Collapse
Affiliation(s)
- Zhongtao Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
64
|
Xiong X, Gao C, Meng X, Liu A, Gong X, Sun Y. Research progress in stem cell therapy for Wilson disease. Regen Ther 2024; 27:73-82. [PMID: 38525238 PMCID: PMC10959646 DOI: 10.1016/j.reth.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/27/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024] Open
Abstract
Wilson disease (WD), also known as hepatolenticular degeneration, is an autosomal recessive disorder characterized by disorganized copper metabolism caused by mutations in the ATP7B gene. Currently, the main treatment options for WD involve medications such as d-penicillamine, trientine hydrochloride, zinc acetate, and liver transplantation. However, there are challenges that encompass issues of poor compliance, adverse effects, and limited availability of liver sources that persist. Stem cell therapy for WD is currently a promising area of research. Due to the advancement in stem cell directed differentiation technology in vitro and the availability of sufficient stem cell donors, it is expected to be a potential treatment option for the permanent correction of abnormal copper metabolism. This article discusses the research progress of stem cell therapy for WD from various sources, as well as the challenges and future prospects of the clinical application of stem cell therapy for WD.
Collapse
Affiliation(s)
- Xianlang Xiong
- Hospital of Hunan Guangxiu, Hunan Normal University, Changsha, 410205, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410205, China
| | - Ce Gao
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410205, China
| | - Xiangying Meng
- Hospital of Hunan Guangxiu, Hunan Normal University, Changsha, 410205, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410205, China
| | - Aihui Liu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410205, China
| | - Xin Gong
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410205, China
| | - Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Hospital of Hunan Guangxiu, Hunan Normal University, Changsha, 410205, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410205, China
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China
| |
Collapse
|
65
|
Ferrarese A, Cazzagon N, Burra P. Liver transplantation for Wilson disease: Current knowledge and future perspectives. Liver Transpl 2024; 30:1289-1303. [PMID: 38899966 DOI: 10.1097/lvt.0000000000000422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Liver transplantation currently represents a therapeutic option for patients with Wilson disease presenting with end-stage liver disease or acute liver failure. Indeed, it has been associated with excellent postoperative survival curves in view of young age at transplant and absence of recurrence. Attention has shifted over the past decades to a wise expansion of indications for liver transplantation. Evidence has emerged supporting the transplantation of carefully selected patients with primarily neuropsychiatric symptoms and compensated cirrhosis. The rationale behind this approach is the potential for surgery to improve copper homeostasis and consequently ameliorate neuropsychiatric symptoms. However, several questions remain unanswered, such as how to establish thresholds for assessing pretransplant neuropsychiatric impairment, how to standardize preoperative neurological assessments, and how to define postoperative outcomes for patients meeting these specific criteria. Furthermore, a disease-specific approach will be proposed both for the liver transplant evaluation of candidates with Wilson disease and for patient care during the transplant waiting period, highlighting the peculiarities of this systemic disease.
Collapse
Affiliation(s)
- Alberto Ferrarese
- Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Nora Cazzagon
- Gastroenterology, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Patrizia Burra
- Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
- Gastroenterology, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| |
Collapse
|
66
|
Gromadzka G, Antos A, Sorysz Z, Litwin T. Psychiatric Symptoms in Wilson's Disease-Consequence of ATP7B Gene Mutations or Just Coincidence?-Possible Causal Cascades and Molecular Pathways. Int J Mol Sci 2024; 25:12354. [PMID: 39596417 PMCID: PMC11595239 DOI: 10.3390/ijms252212354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism. The genetic defect in WD affects the ATP7B gene, which encodes the ATP7B transmembrane protein, which is essential for maintaining normal copper homeostasis in the body. It is primarily expressed in the liver and acts by incorporating copper into ceruloplasmin (Cp), the major copper transport protein in the blood. In conditions of excess copper, ATP7B transports it to bile for excretion. Mutations in ATP7B lead to impaired ATP7B function, resulting in copper accumulation in hepatocytes leading to their damage. The toxic "free"-unbound to Cp-copper released from hepatocytes then accumulates in various organs, contributing to their damage and clinical manifestations of WD, including hepatic, neurological, hematological, renal, musculoskeletal, ophthalmological, psychiatric, and other effects. While most clinical manifestations of WD correspond to identifiable organic or cellular damage, the pathophysiology underlying its psychiatric manifestations remains less clearly understood. A search for relevant articles was conducted in PubMed/Medline, Science Direct, Scopus, Willy Online Library, and Google Scholar, combining free text and MeSH terms using a wide range of synonyms and related terms, including "Wilson's disease", "hepatolenticular degeneration", "psychiatric manifestations", "molecular mechanisms", "pathomechanism", and others, as well as their combinations. Psychiatric symptoms of WD include cognitive disorders, personality and behavioral disorders, mood disorders, psychosis, and other mental disorders. They are not strictly related to the location of brain damage, therefore, the question arises whether these symptoms are caused by WD or are simply a coincidence or a reaction to the diagnosis of a genetic disease. Hypotheses regarding the etiology of psychiatric symptoms of WD suggest a variety of molecular mechanisms, including copper-induced CNS toxicity, oxidative stress, mitochondrial dysfunction, mitophagy, cuproptosis, ferroptosis, dysregulation of neurotransmission, deficiencies of neurotrophic factors, or immune dysregulation. New studies on the expression of noncoding RNA in WD are beginning to shed light on potential molecular pathways involved in psychiatric symptomatology. However, current evidence is still insufficient to definitively establish the cause of psychiatric symptoms in WD. It is possible that the etiology of psychiatric symptoms varies among individuals, with multiple biological and psychological mechanisms contributing to them simultaneously. Future studies with larger samples and comprehensive analyses are necessary to elucidate the mechanisms underlying the psychiatric manifestations of WD and to optimize diagnostics and therapeutic approaches.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego Street 1/3, 01-938 Warsaw, Poland
| | - Agnieszka Antos
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| | - Zofia Sorysz
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| |
Collapse
|
67
|
Jing XZ, Li GY, Wu YP, Yuan XZ, Chen JL, Wang SH, Wang XP, Li JQ. Neuroimaging Correlates with Clinical Severity in Wilson Disease: A Multiparametric Quantitative Brain MRI. AJNR Am J Neuroradiol 2024; 45:1745-1754. [PMID: 39419533 PMCID: PMC11543078 DOI: 10.3174/ajnr.a8479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/12/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND AND PURPOSE Previous studies have reported metal accumulation and microstructure changes in deep gray nuclei (DGN) in Wilson disease (WD). However, there are limited studies that investigate whether there is metal accumulation and microstructure changes in DGN of patients with WD with normal-appearing routine MRI. This study aimed to evaluate multiparametric changes in DGN of WD and whether the findings correlate with clinical severity in patients with WD. MATERIALS AND METHODS The study enrolled 28 patients with WD (19 with neurologic symptoms) and 25 controls. Fractional anisotropy (FA), mean diffusivity (MD), and magnetic susceptibility in globus pallidus, pontine tegmentum, dentate nucleus, red nucleus, head of caudate nucleus, putamen, substantia nigra, and thalamus were extracted. Correlations between imaging data and the Unified Wilson's Disease Rating Scale (UWDRS) neurologic subitems were explored. RESULTS FA, MD, and susceptibility values were higher in multiple DGN of patients with WD than controls (P < .05). Patients with WD without abnormal signals in DGN on routine MRI also had higher FA, MD, and susceptibility values than controls (P < .017). We found that UWDRS neurologic subscores correlated with FA and susceptibility values of DGN (P < .05). In addition, we also found that FA and susceptibility values in specific structures correlated with specific neurologic symptoms of WD (ie, tremor, parkinsonism, dysarthria, dystonia, and ataxia) (P < .05). CONCLUSIONS Patients with WD have increased FA, MD, and susceptibility values even before the lesion is morphologically apparent on routine MRI. The increased FA and susceptibility values correlate with clinical severity of WD.
Collapse
Affiliation(s)
- Xiao-Zhong Jing
- From the Department of Neurology (X.-Z.J.), The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Neurology (X.-Z.J.), Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gai-Ying Li
- Shanghai Key Laboratory of Magnetic Resonance (G.-Y.L., Y-P.W., J-L.C., J-Q.L.), School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Yu-Peng Wu
- Shanghai Key Laboratory of Magnetic Resonance (G.-Y.L., Y-P.W., J-L.C., J-Q.L.), School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Xiang-Zhen Yuan
- Department of Neurology (X.-Z.Y.), Weifang People's Hospital, Weifang, China
| | - Jia-Lin Chen
- Shanghai Key Laboratory of Magnetic Resonance (G.-Y.L., Y-P.W., J-L.C., J-Q.L.), School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Shu-Hong Wang
- Department of Neurology (S.-H.W.), Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao-Ping Wang
- Department of Neurology (X.-P.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Qi Li
- Shanghai Key Laboratory of Magnetic Resonance (G.-Y.L., Y-P.W., J-L.C., J-Q.L.), School of Physics and Electronic Science, East China Normal University, Shanghai, China
| |
Collapse
|
68
|
Pullen LC, Bott N, McCanless C, Revana A, Sevinc G, Gorman C, Duncan A, Poliquin S, Pfalzer AC, Schmidt KQ, Wassman ER, Chapman C, Picone M. Use of Basket Trials to Solve Sleep Problems in Patients with Rare Diseases. Clocks Sleep 2024; 6:656-667. [PMID: 39584973 PMCID: PMC11586945 DOI: 10.3390/clockssleep6040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
The need for sleep is universal, and the ability to meet this need impacts the quality of life for patients, families, and caregivers. Although substantial progress has been made in treating rare diseases, many patients have unmet medical sleep needs, and current regulatory policy makes it prohibitively difficult to address those needs medically. This opinion reviews the rare disease experience with sleep disorders and explores potential solutions. First, we provide case profiles for the rare diseases Wilson's Disease, Angelman Syndrome, and Prader-Willi Syndrome. These profiles highlight challenges in rare disease diagnosis and barriers to pinpointing disease pathophysiology, including biomarkers that intersect with sleep disorders. Second, we transition to a bird's eye view of sleep disorders and rare diseases by reporting input from a stakeholder discussion with the U.S. Food and Drug Administration regarding abnormal sleep patterns in various rare diseases. Last, in response to the profound unmet medical needs of patients with rare diseases and sleep disorders, we propose adapting and using the clinical trial design known as a "basket trial". In this case, a basket trial would include patients with different rare diseases but the same debilitating symptoms. This research approach has the potential to benefit many rare disease patients who are otherwise left with profound unmet medical needs.
Collapse
Affiliation(s)
| | - Nick Bott
- Takeda Pharmaceuticals, Cambridge, MA 02139, USA;
| | | | - Amee Revana
- Texas Children’s Hospital, Houston, TX 77001, USA;
| | - Gunes Sevinc
- Ardea Outcomes, Halifax, NS B3J 0J2, Canada; (G.S.); (C.C.)
| | - Casey Gorman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Alexandra Duncan
- COMBINEDBrain, Brentwood, TN 37027, USA; (A.D.); (S.P.); (A.C.P.); (K.Q.S.)
| | - Sarah Poliquin
- COMBINEDBrain, Brentwood, TN 37027, USA; (A.D.); (S.P.); (A.C.P.); (K.Q.S.)
| | - Anna C. Pfalzer
- COMBINEDBrain, Brentwood, TN 37027, USA; (A.D.); (S.P.); (A.C.P.); (K.Q.S.)
- Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Katie Q. Schmidt
- COMBINEDBrain, Brentwood, TN 37027, USA; (A.D.); (S.P.); (A.C.P.); (K.Q.S.)
| | | | - Chère Chapman
- Ardea Outcomes, Halifax, NS B3J 0J2, Canada; (G.S.); (C.C.)
| | - Maria Picone
- TREND Community, Philadelphia, PA 19102, USA; (E.R.W.); (M.P.)
| |
Collapse
|
69
|
Lao TD, Le TAH. Systematic Analysis and Insights Into the Mutation Spectrum and Ethnic Differences in ATP7B Mutations Associated With Wilson Disease. Biomark Insights 2024; 19:11772719241297169. [PMID: 39502306 PMCID: PMC11536366 DOI: 10.1177/11772719241297169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
Background ATP7B (ATPase copper transporting beta gene) is constituted of 21 exons, and codes for a 1465 amino acid. The protein of ATP7B plays an key role of copper metabolism. Many previous reports indicated that mutations in ATP7B are well known to cause defective copper transporting copper-transporting ATPase 2 protein leading to the accumulation of copper, resulting the Wilson disease. Objectives The meta-analysis was performed to comprehensive gain a thorough grasp of the spectrum of genetic variations. Design A meta-analysis was conducted according to the guiding of PRISMA. aiming to assess the diversity and frequency of mutations in the ATP7B gene, with an emphasis on mutations located within specific exons. Data sources and methods The dataset of detected mutations within their positions, types as well as nomenclature, were recorded from previous studies (spanning the year from 2013 to 2023). The analysis focused on exon-specific variations and their prevalence across different populations. Results A total of 40 studies were enrolled into current data analysis. Our comprehensive study revealed a variety of mutations, most notably over 50% of single nucleotide changes described, distributed over the 21 exons of the gene. Focusing on the exon 8, itisplayed the most diversity of mutations, with 18 studies identifying 53 unique variants, the majority of which were missense mutations (81.13%). Additionally, the variations c.2333G>A/T (p.R778Q/L), c.2305A>G (p.M769V), c.2336G>A (p.W779*), and c.2304dupC (p.M769HfsX26) are reported in many populations. The weighted mean of variants' proportion was used to calculate the pooled estimate of these percentages, which were 14.19% for c.2333G>A/T (p.R778Q/L), 2.70% for c.2305A>G (p.M769V), 1.42% for c.2336G>A (p.W779*), and 2.33% for c.2304dupC (p.M769HfsX26). Conclusion This design demonstrate to identify the spectrum of ATP7B gene's mutations, especially exon 8, offering important insights into the prevalence and significance of exon 8 mutations. Understanding the mutation in the ATP7B gene offers insights into the mechanisms behind WD and guides strategies for diagnosis and treatment.
Collapse
Affiliation(s)
- Thuan Duc Lao
- Center for Life Science Research, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| | - Thuy Ai Huyen Le
- Center for Life Science Research, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| |
Collapse
|
70
|
Liu YT, Chen L, Li SJ, Wang WY, Wang YY, Yang QC, Song A, Zhang MJ, Mo WT, Li H, Hu CY, Sun ZJ. Dysregulated Wnt/β-catenin signaling confers resistance to cuproptosis in cancer cells. Cell Death Differ 2024; 31:1452-1466. [PMID: 38987382 PMCID: PMC11520902 DOI: 10.1038/s41418-024-01341-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Cuproptosis is characterized by the aggregation of lipoylated enzymes of the tricarboxylic acid cycle and subsequent loss of iron-sulfur cluster proteins as a unique copper-dependent form of regulated cell death. As dysregulation of copper homeostasis can induce cuproptosis, there is emerging interest in exploiting cuproptosis for cancer therapy. However, the molecular drivers of cancer cell evasion of cuproptosis were previously undefined. Here, we found that cuproptosis activates the Wnt/β-catenin pathway. Mechanistically, copper binds PDK1 and promotes its interaction with AKT, resulting in activation of the Wnt/β-catenin pathway and cancer stem cell (CSC) properties. Notably, aberrant activation of Wnt/β-catenin signaling conferred resistance of CSCs to cuproptosis. Further studies showed the β-catenin/TCF4 transcriptional complex directly binds the ATP7B promoter, inducing its expression. ATP7B effluxes copper ions, reducing intracellular copper and inhibiting cuproptosis. Knockdown of TCF4 or pharmacological Wnt/β-catenin blockade increased the sensitivity of CSCs to elesclomol-Cu-induced cuproptosis. These findings reveal a link between copper homeostasis regulated by the Wnt/β-catenin pathway and cuproptosis sensitivity, and suggest a precision medicine strategy for cancer treatment through selective cuproptosis induction.
Collapse
Affiliation(s)
- Yuan-Tong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lei Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Shu-Jin Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Wu-Yin Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yuan-Yuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Qi-Chao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - An Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Meng-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Wen-Tao Mo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chuan-Yu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
71
|
Członkowska A, Niewada M, Litwin T, Kraiński Ł, Skowrońska M, Piechal A, Antos A, Misztal M, Khanna I, Kurkowska‐Jastrzębska I. Seven decades of clinical experience with Wilson's disease: Report from the national reference centre in Poland. Eur J Neurol 2024; 31:e15646. [PMID: 36427277 PMCID: PMC11464408 DOI: 10.1111/ene.15646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/28/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE Wilson's disease (WD) is a rare autosomal recessive disorder causing excessive copper deposition and a spectrum of manifestations, particularly neurological and hepatic symptoms. We analysed the clinical characteristics of patients with WD admitted to the country's only reference centre, which provided long-term care to most adult patients in Poland over seven decades (pre-1959 to 2019). METHODS Electronic prospective data collection began in the 2000s and, for prior years, medical records were analysed retrospectively. Demographic and clinical characteristics, treatment and outcomes were analysed by decade of diagnosis. Life-years lost were estimated in patients with WD compared with the general population. Kaplan-Meier curves were used for a time-to-death analysis using 2000-2009 as a reference. RESULTS In total, 929 patients were analysed. The number of patients increased from 21 before 1959 to 315 for 2000 to 2009 period. Mostly males were diagnosed before the 1990s, but the numbers of female patients diagnosed increased thereafter. Initially, most patients presented with neurological manifestations; however, the incidence of hepatic manifestations and asymptomatic presentations increased over time as patients were diagnosed early and consequently were more independent at diagnosis. Fewer Kayser-Fleischer rings were detected recently. Prior to 1970, patients were treated with D-penicillamine (DP); however, since the introduction of zinc, both therapies have been used as often. Since the 1990s, switches between DP and zinc were recorded in 6%-7% of patients. Consistent improvement in survival has been observed over the years. CONCLUSIONS This is the largest cohort of patients with WD reported in Poland, with the longest follow-up. Earlier diagnosis and prognosis have improved over seven decades.
Collapse
Affiliation(s)
- Anna Członkowska
- Second Department of NeurologyInstitute of Psychiatry and NeurologyWarsawPoland
| | - Maciej Niewada
- Department of Experimental and Clinical PharmacologyMedical University of WarsawWarsawPoland
| | - Tomasz Litwin
- Second Department of NeurologyInstitute of Psychiatry and NeurologyWarsawPoland
| | - Łukasz Kraiński
- Decision Analysis and Support UnitWarsaw School of EconomicsWarsawPoland
| | - Marta Skowrońska
- Second Department of NeurologyInstitute of Psychiatry and NeurologyWarsawPoland
| | - Agnieszka Piechal
- Second Department of NeurologyInstitute of Psychiatry and NeurologyWarsawPoland
- Department of Experimental and Clinical PharmacologyMedical University of WarsawWarsawPoland
| | - Agnieszka Antos
- Second Department of NeurologyInstitute of Psychiatry and NeurologyWarsawPoland
| | - Monika Misztal
- Second Department of NeurologyInstitute of Psychiatry and NeurologyWarsawPoland
| | - Ishani Khanna
- Department of Experimental and Clinical PharmacologyMedical University of WarsawWarsawPoland
| | | |
Collapse
|
72
|
Wang V, Chew H, Niu K. Electroconvulsive Therapy in Managing Intractable Psychosis in Hereditary Aceruloplasminemia-Associated Neurodegeneration: A Case Report. J Acad Consult Liaison Psychiatry 2024; 65:581-583. [PMID: 39074778 DOI: 10.1016/j.jaclp.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Affiliation(s)
- Vicky Wang
- School of Medicine, Vanderbilt University, Nashville, TN
| | - Hannah Chew
- School of Medicine, Vanderbilt University, Nashville, TN.
| | - Kathy Niu
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
73
|
Zhang X, Zhou L, Peng Y, He S, Mao Z, Cai J, Geng A, Yang H, Huang P. Melatonin alleviates brain injury in copper-laden rats: Underlying benefits for Wilson's disease. Biochem Pharmacol 2024; 229:116490. [PMID: 39147330 DOI: 10.1016/j.bcp.2024.116490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Copper serves as an indispensable cofactor for all living organisms, and its excessive accumulation has been associated with a variety of diseases. Wilson's disease (WD) serves as an illustrative example of copper toxicity in humans, frequently presenting with liver and/or neuropsychiatric symptoms. The current therapeutic drugs, penicillamine (PA) and zinc gluconate (ZnG), have constraints, and research on their combination efficacy remains insufficient. It has been reported that melatonin (MLT) plays a vital role in binding to transition metals and exhibits strong antioxidant capacity. To investigate the therapeutic efficacy of MLT and combined treatment, rats were randomly divided into the following seven groups: the control (Con) group, copper-laden model rat (Mod) group, PA-treated group, ZnG-treated group, MLT- treated group, PA-ZnG-treated group, and PA-MLT-treated group. Then potential mechanisms and targets were investigated using a combination of metabolomics and network pharmacology and verified by molecular docking and qPCR. The findings revealed that MLT and the combination significantly improved behavior, pathology and copper levels in copper-laden rats. The results of the metabolomics study showed that profoundly altered metabolites were identified, and alanine, aspartate and glutamate metabolism, pyruvate metabolism, citrate cycle (TCA cycle), and glycolysis/gluconeogenesis were explored. In addition, molecular docking showed that MLT had high binding affinity with key targets, and qPCR results revealed that MLT could reverse the mRNA expression of targets GOT2 and PKM2. It was concluded that MLT effectively improves brain injury in copper-laden rats, and this effect was linked with the altered features of the metabolite profiles.
Collapse
Affiliation(s)
- Xiaodan Zhang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lihong Zhou
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yulong Peng
- Yanjing Medical College, Capital Medical University, Beijing 101300, China
| | - Shiyu He
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhen Mao
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jin Cai
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Aobo Geng
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Hong Yang
- Yanjing Medical College, Capital Medical University, Beijing 101300, China
| | - Peili Huang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
74
|
Astaneh ME, Fereydouni N. Advancing diabetic wound care: The role of copper-containing hydrogels. Heliyon 2024; 10:e38481. [PMID: 39640763 PMCID: PMC11619988 DOI: 10.1016/j.heliyon.2024.e38481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024] Open
Abstract
Diabetic wounds pose a significant challenge in healthcare due to their complex nature and the difficulties they present in treatment and healing. Impaired healing processes in individuals with diabetes can lead to complications and prolonged recovery times. However, recent advancements in wound healing provide reasons for optimism. Researchers are actively developing innovative strategies and therapies specifically tailored to address the unique challenges of diabetic wounds. One focus area is biomimetic hydrogel scaffolds that mimic the natural extracellular matrix, promoting angiogenesis, collagen deposition, and the healing process while also reducing infection risk. Copper nanoparticles and copper compounds incorporated into hydrogels release copper ions with antimicrobial, anti-inflammatory, and angiogenic properties. Copper reduces infection risk, modulates inflammatory response, and promotes tissue regeneration through cell adhesion, proliferation, and differentiation. Utilizing copper nanoparticles has transformative potential for expediting diabetic wound healing and improving patient outcomes while enhancing overall well-being by preventing severe complications associated with untreated wounds. It is crucial to write a review highlighting the importance of investigating the use of copper nanoparticles and compounds in diabetic wound healing and tissue engineering. These groundbreaking strategies hold the potential to transform the treatment of diabetic wounds, accelerating the healing process and enhancing patient outcomes.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
75
|
Zhang M, Zheng Z, Wu Z, Dong Y. A clinical study of gynecologic manifestations of Wilson's disease in a cohort of Chinese women. Asian J Surg 2024:S1015-9584(24)02318-2. [PMID: 39448304 DOI: 10.1016/j.asjsur.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Affiliation(s)
- Meiyan Zhang
- Department of Neurology, Dongyang People's Hospital, Jinhua, China
| | - Ziwei Zheng
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory of Rare Diseases for Precision Medicine and Clinical Translation, Hangzhou, China
| | - Zhiying Wu
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory of Rare Diseases for Precision Medicine and Clinical Translation, Hangzhou, China
| | - Yi Dong
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory of Rare Diseases for Precision Medicine and Clinical Translation, Hangzhou, China.
| |
Collapse
|
76
|
Hemilä H, Chalker E. Shortcomings in the Cochrane review on zinc for the common cold (2024). Front Med (Lausanne) 2024; 11:1470004. [PMID: 39478818 PMCID: PMC11521859 DOI: 10.3389/fmed.2024.1470004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/13/2024] [Indexed: 11/02/2024] Open
Affiliation(s)
- Harri Hemilä
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Elizabeth Chalker
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
77
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
78
|
Zhao J, Liu L, Cao YY, Gao X, Targher G, Byrne CD, Sun DQ, Zheng MH. MAFLD as part of systemic metabolic dysregulation. Hepatol Int 2024; 18:834-847. [PMID: 38594474 DOI: 10.1007/s12072-024-10660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/11/2024] [Indexed: 04/11/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. In recent years, a new terminology and definition of metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed. Compared to the NAFLD definition, MAFLD better emphasizes the pathogenic role of metabolic dysfunction in the development and progression of this highly prevalent condition. Metabolic disorders, including overweight/obesity, type 2 diabetes mellitus (T2DM), atherogenic dyslipidemia and hypertension, are often associated with systemic organ dysfunctions, thereby suggesting that multiple organ damage can occur in MAFLD. Substantial epidemiological evidence indicates that MAFLD is not only associated with an increased risk of liver-related complications, but also increases the risk of developing several extra-hepatic diseases, including new-onset T2DM, adverse cardiovascular and renal outcomes, and some common endocrine diseases. We have summarized the current literature on the adverse effect of MAFLD on the development of multiple extrahepatic (cardiometabolic and endocrine) complications and examined the role of different metabolic pathways and organ systems in the progression of MAFLD, thus providing new insights into the role of MAFLD as a multisystem metabolic disorder. Our narrative review aimed to provide insights into potential mechanisms underlying the known associations between MAFLD and extrahepatic diseases, as part of MAFLD as a multisystem disease, in order to help focus areas for future drug development targeting not only liver disease but also the risk of extrahepatic complications.
Collapse
Affiliation(s)
- Jing Zhao
- Urologic Nephrology Center, Jiangnan University Medical Center, Wuxi, China
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
- Wuxi No. 2 People's Hospital, Wuxi, China
| | - Lu Liu
- Urologic Nephrology Center, Jiangnan University Medical Center, Wuxi, China
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
- Wuxi No. 2 People's Hospital, Wuxi, China
| | - Ying-Ying Cao
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton, and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Dan-Qin Sun
- Urologic Nephrology Center, Jiangnan University Medical Center, Wuxi, China.
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China.
- Wuxi No. 2 People's Hospital, Wuxi, China.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
79
|
Zhong HJ, Liu AQ, Huang DN, Zhou ZH, Xu SP, Wu L, Yang XP, Chen Y, Hong MF, Zhan YQ. Exploring the impact of gut microbiota on liver health in mice and patients with Wilson disease. Liver Int 2024; 44:2700-2713. [PMID: 39037193 DOI: 10.1111/liv.16046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND AND AIMS Distinctive gut microbial profiles have been observed between patients with Wilson disease (WD) and healthy individuals. Despite this, the exact relationship and influence of gut microbiota on the advancement of WD-related liver damage remain ambiguous. This research seeks to clarify the gut microbiota characteristics in both human patients and mouse models of WD, as well as their impact on liver injury. METHODS Gut microbial features in healthy individuals, patients with WD, healthy mice and mice with early- and late-stage WD were analysed using 16S rRNA gene sequencing. Additionally, WD-afflicted mice underwent treatment with either an antibiotic cocktail (with normal saline as a control) or healthy microbiota (using disease microbiota as a control). The study assessed gut microbiota composition, hepatic transcriptome profiles, liver copper concentrations and hepatic pathological injuries. RESULTS Patients with hepatic WD and mice with WD-related liver injury displayed altered gut microbiota composition, notably with a significant reduction in Lactobacillus abundance. Additionally, the abundances of several gut genera, including Lactobacillus, Veillonella and Eubacterium coprostanoligenes, showed significant correlations with the severity of liver injury in patients with WD. In WD mice, antibiotic treatment or transplantation of healthy microbiota altered the gut microbial structure, increased Lactobacillus abundance and modified the hepatic transcriptional profile. These interventions resulted in reduced hepatic copper concentration and alleviation of WD-related liver injury. CONCLUSIONS Individuals and mice with pronounced WD-related liver injury exhibited shifts in gut microbial composition. Regulating gut microbiota through healthy microbiota transplantation emerges as a promising therapeutic approach for treating WD-related liver injury.
Collapse
Affiliation(s)
- Hao-Jie Zhong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ai-Qun Liu
- Department of Neurology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Dong-Ni Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-Hua Zhou
- Department of Neurology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Shun-Peng Xu
- Department of Neurology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Wu
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin-Ping Yang
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming-Fan Hong
- Department of Neurology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yong-Qiang Zhan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
80
|
Duggal S, Meza-Rodriguez S, Shahid S, Zuckerman M, Borges JC. Unusual Confluence: Exploring the Association of Biliary Atresia, Wilson Disease, and Iron Overload. ACG Case Rep J 2024; 11:e01500. [PMID: 39440108 PMCID: PMC11495795 DOI: 10.14309/crj.0000000000001500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/09/2024] [Indexed: 10/25/2024] Open
Abstract
The case involves a 33-year-old man with biliary atresia, Wilson disease (WD), and iron overload. Biliary atresia, a cholangiodestructive disease, leads to cirrhosis if untreated. WD, caused by ATP7B gene mutations, results in copper accumulation affecting the liver and brain. Iron overload can be seen in cases of WD and with hereditary hemochromatosis gene mutations. The patient's concurrent presentation of these conditions poses a unique clinical challenge. Elevated iron levels may worsen WD outcomes. A detailed history and physical examination, genetic testing, and close follow-up are crucial. The case highlights the need for increased awareness and vigilant monitoring of patients with overlapping liver diseases.
Collapse
Affiliation(s)
- Shivangini Duggal
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX
| | | | - Saqib Shahid
- Texas Tech University Health Sciences Center, El Paso, Paul L. Foster School of Medicine, El Paso, TX
| | - Marc Zuckerman
- Division of Gastroenterology, Texas Tech University Health Sciences Center, El Paso, TX
| | - Jorge Chiquie Borges
- Division of Cardiology, Texas Tech University Health Sciences Center, El Paso, TX
| |
Collapse
|
81
|
Yang Y, Wu J, Wang L, Ji G, Dang Y. Copper homeostasis and cuproptosis in health and disease. MedComm (Beijing) 2024; 5:e724. [PMID: 39290254 PMCID: PMC11406047 DOI: 10.1002/mco2.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Copper is a vital trace element in human physiology, essential for the synthesis of numerous crucial metabolic enzymes and facilitation of various biological processes. Regulation of copper levels within a narrow range is imperative for maintaining metabolic homeostasis. Numerous studies have demonstrated the significant roles of copper homeostasis and cuproptosis in health and disease pathogenesis. However, a comprehensive and up-to-date systematic review in this domain remains absent. This review aims to consolidate recent advancements in understanding the roles of cuproptosis and copper homeostasis in health and disease, focusing on the underlying mechanisms and potential therapeutic interventions. Dysregulation of copper homeostasis, manifesting as either copper excess or deficiency, is implicated in the etiology of various diseases. Cuproptosis, a recently identified form of cell death, is characterized by intracellular copper overload. This phenomenon mediates a diverse array of evolutionary processes in organisms, spanning from health to disease, and is implicated in genetic disorders, liver diseases, neurodegenerative disorders, and various cancers. This review provides a comprehensive summary of the pathogenic mechanisms underlying cuproptosis and copper homeostasis, along with associated targeted therapeutic agents. Furthermore, it explores future research directions with the potential to yield significant advancements in disease treatment, health management, and disease prevention.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiaxuan Wu
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- China‐Canada Centre of Research for Digestive DiseasesUniversity of OttawaOttawaOntarioCanada
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
82
|
Yang Y, Cheng T, Yang W, Wang Y, Yang Y, Xi H, Zhu Q. Serum ceruloplasmin oxidase activity: A neglected diagnostic biomarker for Wilson disease. Parkinsonism Relat Disord 2024; 127:107105. [PMID: 39178787 DOI: 10.1016/j.parkreldis.2024.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/19/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Low serum ceruloplasmin concentration is considered robust marker for Wilson disease (WD) screening, measuring serum ceruloplasmin oxidase activity might be an even more valuable diagnostic tool, but it has not been sufficiently studied. METHODS All patients who were assessed for serum ceruloplasmin oxidase activity between January 1, 2016, and September 2, 2019, were enrolled in this study. The diagnostic performance of serum ceruloplasmin oxidase activity was analyzed using receiver operating characteristic curve analysis (ROC), Spearman's rank correlation, and Mann-Whitney U test. RESULTS Serum ceruloplasmin oxidase activity was significantly decreased in WD patients (0.87 U/L, IQR 0.61-1.54). The optimal cut-off of serum ceruloplasmin oxidase activity to identified WD is 7 U/L, with sensitivity and specificity of 97.03 % and 98.19 %, respectively. Furthermore, this study revealed a positive correlation between enzymatic and immunoreactive serum ceruloplasmin tests. As primary diagnostic methods, serum ceruloplasmin levels below the diagnostic cut-offs for either the enzymatic or immunoreactive tests were observed in 818 out of 842 WD patients (97.15 %). Compared with the presence of K-F rings in asymptomatic patients, the accuracy of serum ceruloplasmin tests was significantly higher (56.12 % VS 95.08 %). Moreover, the positive rate of cranial MRI in neurological patients was similar to the tests of serum ceruloplasmin (92.91 % VS 97.40 %). Moreover, 71 patients had ambiguous genetic results, complicating the diagnosis. However, serum ceruloplasmin tests successfully identified 65 out of these 71 patients (91.55 %). CONCLUSION Serum ceruloplasmin oxidase activity has excellent performance in diagnosing WD, which should be widely used as preferred test in WD patients.
Collapse
Affiliation(s)
- Yue Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Ting Cheng
- Department of Graduate, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenming Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China; Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China.
| | - Yu Wang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Yulong Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Hu Xi
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Qianqian Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
83
|
Basan NM, Sheikh Hassan M, Gökhan Z, Nur Alper S, Yaşar SŞ, Gür T, Köksal A. Usefulness of the Leipzig Score in the Diagnosis of Wilson's Disease - A Diagnostically Challenging Case Report. Int Med Case Rep J 2024; 17:819-822. [PMID: 39364335 PMCID: PMC11448466 DOI: 10.2147/imcrj.s491888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Wilson's disease (WD) is a genetic disorder of copper metabolism that is inherited as an autosomal recessive (AR) due to mutations in the ATP7B gene, which is involved in intracellular copper transport. Approximately 40% to 50% of the patients present with neurological symptoms as their first symptom. The most common neurological symptoms are dysarthria, gait abnormalities, ataxia, dystonia, tremor, parkinsonism, and drooling. This case report aims to present a diagnostically challenging case of WD presenting with neurological symptoms. The 38-year-old male patient was admitted with complaints of imbalance, gait disturbance, weakness in the legs, speech impairment, tremors in the hands, syncope, and drooling. The MRI primarily revealed FLAIR, T1, and T hyperintensities in the bilateral globus pallidus of the basal ganglias. At first, the patient was evaluated according to the Leipzig scoring and received one point from the serum ceruloplasmin level and two points from the neurological symptoms and was evaluated as "possible WD" with a total of three points. 24-hour urine copper was collected during and after the D-Penicillamine challenge. After the test, there was an increase of more than 5 times the upper limit. The Leipzig score was recalculated, and a diagnosis of WD was made with a score of five. Even cases without important diagnostic findings such as Kayser-Fleischer ring or high 24-hour urine copper should be evaluated according to the Leipzig score. It is vital to distinguish WD in patients with young-onset movement disorder and neurological symptoms.
Collapse
Affiliation(s)
- Nuri Mehmet Basan
- Department of Neurology, University of Health Science, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey
| | - Mohamed Sheikh Hassan
- Department of Neurology, Mogadishu Somalia Turkey Training and Research Hospital, Mogadishu, Somalia
| | - Zeynep Gökhan
- Department of Neurology, University of Health Science, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey
| | - Sena Nur Alper
- Department of Neurology, University of Health Science, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey
| | - Sümeyye Şevval Yaşar
- Department of Neurology, University of Health Science, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey
| | - Tuğçe Gür
- Department of Neurology, University of Health Science, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey
| | - Ayhan Köksal
- Department of Neurology, University of Health Science, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey
| |
Collapse
|
84
|
Dong J, Xiang G, Xia X, Xu L, Wen P, Xu C, Xu Y, Su Y, Song Y, Tong H, Zhu Q, Han Y, Han Y, Cheng N, Wang H, Zhou H. Aberrant copper metabolism and hepatic inflammation cause neurological manifestations in a mouse model of Wilson's disease. J Neuroinflammation 2024; 21:235. [PMID: 39334421 PMCID: PMC11437830 DOI: 10.1186/s12974-024-03178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/16/2024] [Indexed: 09/30/2024] Open
Abstract
Pathogenic germline mutations in the P-type copper-transporting ATPase (ATP7B) gene cause Wilson's disease (WD), a hereditary disorder characterized by disrupted copper metabolism. The Arg778Leu (R778L) mutation in exon 8 is prevalent among individuals with WD in East Asia and is associated with more severe phenotypes. In this study, we generated a WD mouse model harboring R778L mutation (R778L mice) using CRISPR/Cas9. R778L mice exhibit a range of pathological characteristics resembling those of patients with WD and the same point mutations, including aberrant copper metabolism, pathological cellular injury, inflammation, and severe hepatic fibrosis. At 3-5 months of age, these mice started to display neurological deficits in motor coordination and cognitive dysfunction, accompanied by increased expression of inflammatory cytokines in the central nervous system. Microglia in the striatum and cortex exhibit significant activation, shorter processes, and decreased branch points. However, the Cu2+ levels in the brain tissue of R778L mice did not differ significantly from those of wild-type mice. Notably, inhibition of hepatic inflammation with PJ34 or siNfkb markedly alleviated the deficiencies in cognitive performance and improved locomotor activity in R778L mice. Thus, this study establishes a novel murine model to investigate the pathophysiology of WD, highlights the liver-brain crosstalk responsible for neurological manifestations in individuals with WD caused by the R778L point mutation, and demonstrates the potential of modulating liver inflammation as a therapeutic strategy for alleviating the neurological manifestations of WD.
Collapse
Affiliation(s)
- Jianjian Dong
- Institute of Neurology, Anhui University of Chinese Medicine, 357, Changjiang Rd. Middle, Hefei, Anhui, 230061, China
- Center for Xin-An Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Guanghai Xiang
- Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China
| | - Xiaoxue Xia
- Institute of Neurology, Anhui University of Chinese Medicine, 357, Changjiang Rd. Middle, Hefei, Anhui, 230061, China
| | - Lewen Xu
- Institute of Neurology, Anhui University of Chinese Medicine, 357, Changjiang Rd. Middle, Hefei, Anhui, 230061, China
| | - Peihua Wen
- Institute of Neurology, Anhui University of Chinese Medicine, 357, Changjiang Rd. Middle, Hefei, Anhui, 230061, China
| | - Chenchen Xu
- Institute of Neurology, Anhui University of Chinese Medicine, 357, Changjiang Rd. Middle, Hefei, Anhui, 230061, China
| | - Yin Xu
- Institute of Neurology, Anhui University of Chinese Medicine, 357, Changjiang Rd. Middle, Hefei, Anhui, 230061, China
| | - Yushuang Su
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yanze Song
- Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 1 Beichen West Rd, Beijing, 100101, China
| | - Haiyang Tong
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Qingjun Zhu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yongzhu Han
- Institute of Neurology, Anhui University of Chinese Medicine, 357, Changjiang Rd. Middle, Hefei, Anhui, 230061, China
- Center for Xin-An Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yongsheng Han
- Institute of Neurology, Anhui University of Chinese Medicine, 357, Changjiang Rd. Middle, Hefei, Anhui, 230061, China
- Center for Xin-An Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Nan Cheng
- Institute of Neurology, Anhui University of Chinese Medicine, 357, Changjiang Rd. Middle, Hefei, Anhui, 230061, China.
- Center for Xin-An Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Haoyi Wang
- Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 1 Beichen West Rd, Beijing, 100101, China.
| | - Hong Zhou
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China.
- School of Basic Medical Science, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
85
|
Wu YC, Xiang XL, Yong JK, Li M, Li LM, Lv ZC, Zhou Y, Sun XC, Zhang ZJ, Tong H, He XY, Xia Q, Feng H. Immune remodulation in pediatric inherited metabolic liver diseases. World J Hepatol 2024; 16:1258-1268. [PMID: 39351516 PMCID: PMC11438594 DOI: 10.4254/wjh.v16.i9.1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/28/2024] [Accepted: 08/19/2024] [Indexed: 09/23/2024] Open
Abstract
Inherited metabolic liver diseases arise from genetic mutations that lead to disruptions in liver metabolic pathways and are predominantly observed in pediatric populations. The spectrum of genetic metabolic liver disorders is diverse, encompassing a range of conditions associated with aberrations in iron, copper, carbohydrate, lipid, protein, and amino acid metabolism. Historically, research in the domain of genetic metabolic liver diseases has predominantly concentrated on hepatic parenchymal cell alterations. Nevertheless, emerging studies suggest that inherited metabolic liver diseases exert significant influences on the immune microenvironment, both within the liver and systemically. This review endeavors to encapsulate the immunological features of genetic metabolic liver diseases, aiming to expand the horizons of researchers in this discipline, and to elucidate the underlying pathophysiological mechanisms pertinent to hereditary metabolic liver diseases and to propose innovative therapeutic approaches.
Collapse
Affiliation(s)
- Yi-Chi Wu
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xue-Lin Xiang
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - June-Kong Yong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Meng Li
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China
| | - Lin-Man Li
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zi-Cheng Lv
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi Zhou
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xi-Cheng Sun
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zi-Jie Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huan Tong
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Shanghai 200012, China
| | - Xiao-Ying He
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Shanghai 200012, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China
| | - Hao Feng
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China.
| |
Collapse
|
86
|
Hu S, Li C, Wang Y, Wei T, Wang X, Dong T, Yang Y, Ding Y, Qiu B, Yang W. Structural lesions and transcriptomic specializations shape gradient perturbations in Wilson disease. Brain Commun 2024; 6:fcae329. [PMID: 39372139 PMCID: PMC11450269 DOI: 10.1093/braincomms/fcae329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/27/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
Functional dysregulations in multiple regions are caused by excessive copper deposition in the brain in Wilson disease (WD) patients. The genetic mechanism of WD is thought to involve the abnormal expression of ATP7B in the liver, whereas the biological and molecular processes involved in functional dysregulation within the brain remain unexplored. The objective of this study was to unravel the underpinnings of functional gradient perturbations underlying structural lesions and transcriptomic specializations in WD. In this study, we included 105 WD patients and 93 healthy controls who underwent structural and functional MRI assessments. We used the diffusion mapping embedding model to derive the functional connectome gradient and further employed gray matter volume to uncover structure-function decoupling for WD. Then, we used Neurosynth, clinical data, and whole-brain gene expression data to examine the meta-analytic cognitive function, clinical phenotypes, and transcriptomic specializations related to WD gradient alterations. Compared with controls, WD patients exhibited global topographic changes in the principal pramary-to-transmodal gradient. Meta-analytic terms and clinical characteristics were correlated with these gradient alterations in motor-related processing, higher-order cognition, neurological symptoms, and age. Spatial correlations revealed structure-function decoupling in multiple networks, especially in subcortical and visual networks. Within the cortex, the spatial association between gradient alterations and gene expression profiles has revealed transcriptomic specilizations in WD that display properties indicative of ion homeostasis, neural development, and motor control. Furthermore, for the first time, we characterized the role of the ATP7B gene in impacting subcortical function. The transcriptomic specializations of WD were also associated with other neurological and psychiatric disorders. Finally, we revealed that structural lesions and gradient perturbations may share similar transcriptomic specializations in WD. In conclusion, these findings bridged functional gradient perturbations to structural lesions and gene expression profiles in WD patients, possibly promoting our understanding of the neurobiological mechanisms underlying the emergence of complex neurological and psychiatric phenotypes.
Collapse
Affiliation(s)
- Sheng Hu
- Department of Electronic Engineering and Information Science, Medical Imaging Center, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui, 230094, China
- School of Medical Information Engineering, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230012, China
| | - Chuanfu Li
- Medical Imaging Center, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Yanming Wang
- Department of Electronic Engineering and Information Science, Medical Imaging Center, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Taohua Wei
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
- Key Laboratory of Xinan Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Xiaoxiao Wang
- Department of Electronic Engineering and Information Science, Medical Imaging Center, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ting Dong
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
- Key Laboratory of Xinan Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Yulong Yang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
- Key Laboratory of Xinan Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Yufeng Ding
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
- Key Laboratory of Xinan Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Bensheng Qiu
- Department of Electronic Engineering and Information Science, Medical Imaging Center, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui, 230094, China
| | - Wenming Yang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
- Key Laboratory of Xinan Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| |
Collapse
|
87
|
Lonardo A, Weiskirchen R. Copper and liver fibrosis in MASLD: the two-edged sword of copper deficiency and toxicity. METABOLISM AND TARGET ORGAN DAMAGE 2024. [DOI: 10.20517/mtod.2024.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Copper is a trace metal whose absence or deficiency can cause structural and functional alterations that can be corrected by copper administration. Copper excess is associated with significant liver toxicity, such as that seen in Wilson’s disease, which often exhibits liver steatosis and can be managed by copper sequestrants. Copper, due to its ability to either accept or donate electrons, is a cofactor in many physiological redox reactions, playing an essential role in cell energy homeostasis, detoxification of reactive oxygen species, and hepatic immunometabolism. Given these facts, it is reasonable to speculate that copper might be involved in the pathogenesis of liver fibrosis in the setting of metabolic dysfunction-associated fatty liver disease (MASLD). To address this research question, a narrative review of published studies was conducted, spanning from the needs, sources, and toxicity of copper to Menkes and Wilson’s disease. Most epidemiological studies have demonstrated that MASLD is associated with copper deficiency. However, several studies show that MASLD is associated with copper excess and very few conclude that copper is not associated with MASLD. Therefore, the putative pathomechanisms associating both copper excess and deficiency with MASLD development and progression are reviewed. In conclusion, epidemiological and pathogenic data support the notion that well-balanced copper homeostasis is a prerequisite for liver health. Accordingly, both copper excess and deficiency may potentially predispose to liver fibrosis via the development of MASLD. Therefore, studies aimed at restoring normal bodily stores of copper should be tailored according to precision medicine approaches based on the specific features of copper metabolism in individual MASLD patients.
Collapse
|
88
|
Zhang S, Cao S, Chen Y, Zhang B, Yang J. Discussion on the relationship between the distribution characteristics of TCM syndrome types and related objective indicators in hepatolenticular degeneration. Medicine (Baltimore) 2024; 103:e39747. [PMID: 39312351 PMCID: PMC11419496 DOI: 10.1097/md.0000000000039747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Hepatolenticular degeneration is a rare treatable autosomal recessive inherited copper metabolism disorder with a diverse clinical phenotype and an exceptionally complex pathogenesis. Early definitive phenotypic diagnosis and targeted treatment are major challenges worldwide. In this study, we strictly followed the "National Standards of the People's Republic of China - Terminology of Traditional Chinese Medicine Clinical Diagnosis and Treatment (Syndrome Part)," "Chinese Medicine Nomenclature," and the clinical investigation-determined traditional Chinese medicine syndrome differentiation standards at Anhui University of Chinese Medicine to select 6 of the most common traditional Chinese medicine syndrome differentiations. This study retrospectively analyzed 107 patients admitted between 2019 and 2023 with Wilson's disease based on real-world data. After testing for normal distribution and homogeneity of variance, corresponding analysis of variance was selected, followed by post hoc multiple comparisons. Of the selected 25 objective influencing factors, 22 exhibited normal distribution, while red blood cells, hemoglobin, and type IV collagen did not pass the homogeneity of variance test. After analysis of variance, the factors ceruloplasmin (CP) and copper oxidase (SCO) showed significant differences among patients with different traditional Chinese medicine syndromes (P < .05), with partial η2 for CP being 0.13 > 0.06 and for SCO being 0.143 > 0.14. Post hoc multiple comparison results indicated significant differences in CP and SCO among patients with certain traditional Chinese medicine syndromes (P < .05). There were significant differences in the factors CP and SCO among patients with different traditional Chinese medicine syndromes. Significant differences were observed in the copper blue protein factor between damp-heat syndrome and liver and kidney deficiency syndrome, liver and kidney deficiency syndrome and liver and kidney yin deficiency syndrome, liver and kidney deficiency syndrome and phlegm heat and wind syndrome, as well as liver and kidney deficiency syndrome and syndrome of phlegm and blood stasis (P < .05). Significant differences were also found in the SCO factor between damp-heat syndrome and liver and kidney deficiency syndrome, liver and kidney deficiency syndrome and liver and kidney yin deficiency syndrome, liver and kidney deficiency syndrome and phlegm heat and wind syndrome, and liver and kidney deficiency syndrome and syndrome of phlegm and blood stasis (P < .05).
Collapse
Affiliation(s)
- Shuning Zhang
- Department of Brain Diseases, Geriatric Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Shijian Cao
- Department of Brain Diseases, Geriatric Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Yonghua Chen
- Department of Brain Diseases, Geriatric Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Bo Zhang
- Department of Brain Diseases, Geriatric Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Ji Yang
- Department of Brain Diseases, Geriatric Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
89
|
Fang S, Hedera P, Borchert J, Schultze M, Weiss KH. Epidemiology of Wilson disease in Germany - real-world insights from a claims data study. Orphanet J Rare Dis 2024; 19:335. [PMID: 39261850 PMCID: PMC11391731 DOI: 10.1186/s13023-024-03351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Wilson disease (WD) is a rare disorder of copper metabolism, causing copper accumulation mainly in the liver and the brain. The prevalence of WD was previously estimated around 20 to 33.3 patients per million for the United States, Europe, and Asia, but data on the prevalence of WD in Germany are limited. OBJECTIVES To describe patient characteristics and to assess prevalence of WD in Germany using a representative claims database. METHODS WD patients were identified in the WIG2 (Wissenschaftliches Institut für Gesundheitsökonomie und Gesundheitssystemforschung; Scientific Institute for Health Economics and Health Systems Research) benchmark database of 4.5 million insured Germans by combining ICD-10-coding with WD-specific lab tests and treatments. The study period ranged from 2013 to 2016 for assessing patient characteristics, and to 2018 for prevalence, respectively. RESULTS Seventy unique patients were identified. Most patients (86%) were between 18 and 64 years of age and more often male (60%) than female. Two patients (3%) younger than 18 years were included, as well as 8 patients (11%) older than 64 years. Most common WD subtypes were hepatic (57%), psychiatric (49%), and neurologic (44%). Average prevalence was 20.3 patients per million (range: 17.8-24.4), with similar results for two-year prevalence. Generally, prevalence increased steadily over the study period. Observed mortality was low, with only one death during the study period. CONCLUSIONS This study adds valuable real-world data on the prevalence and patient characteristics of WD in Germany. Generally, our findings align with other reports and contribute to the global understanding of WD epidemiology. Still, regional and temporal trends remain to be investigated more thoroughly to further the understanding of the natural history and epidemiology of this rare disease.
Collapse
Affiliation(s)
- Shona Fang
- Alexion, AstraZeneca Rare Disease, 121 Seaport Avenue, Boston, 02210, MA, USA.
| | | | - Julia Borchert
- Scientific Institute for Health Economics and Health System Research (WIG2 GmbH), Leipzig, Germany
| | - Michael Schultze
- Berlin Center for Epidemiology and Health Research, ZEG Berlin GmbH, Berlin, Germany
| | | |
Collapse
|
90
|
Han X, Gao Y, Chen X, Bian C, Chen W, Yan F. Mitochondria UPR stimulation by pelargonidin-3-glucoside contributes to ameliorating lipid accumulation under copper exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173603. [PMID: 38821275 DOI: 10.1016/j.scitotenv.2024.173603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Intensification of copper pollution in the environment has led to its excessive accumulation in humans, causing oxidative stress and lipid metabolism disorders. It is necessary to look for effective targets and safe methods to alleviate copper toxicity. Pelargonidin-3-glucoside (Pg3G) is a natural anthocyanin with metal ion chelating ability and multiple physiological activities. In this study, lipid accumulation was investigated under copper exposure in Caenorhabditis elegans which can be improved by Pg3G. Transcriptome analysis revealed that differentially expressed genes are enriched in lipid metabolism and protein folding/degradation. Pg3G activated mitochondrial unfold protein response (UPRmt) to mitigate mitochondrial damage caused by copper and regulated the expression of genes involved in lipid absorption, transport, and synthesis, thereby reducing lipid levels in C. elegans. This improvement disappeared in the ubl-5 knockout strain, indicating that ubl-5 is one target of Pg3G. Meanwhile, in HepG2 cells, Pg3G enhanced the cellular antioxidant capacity by activating UPRmt for maintaining mitochondrial homeostasis, followed by inhibition of excessive lipid accumulation. Overall, these results suggested that UPRmt activation can be a strategy for mitigating lipid disorders induced by copper and Pg3G with excellent ability to resist oxidative stress specially targeted for ubl-5 has a promising application in controlling copper contamination.
Collapse
Affiliation(s)
- Xiao Han
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yufang Gao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Cheng Bian
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
91
|
Wang Y, Zang F, Shao B, Gao Y, Yang H, Guo Y, Ding T, Sun B. From bioinformatics to clinical applications: a novel prognostic model of cuproptosis-related genes based on single-cell RNA sequencing data in hepatocellular carcinoma. BMC Immunol 2024; 25:59. [PMID: 39251909 PMCID: PMC11382408 DOI: 10.1186/s12865-024-00649-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
OBJECTIVE AND METHODS To ascertain the connection between cuproptosis-related genes (CRGs) and the prognosis of hepatocellular carcinoma (HCC) via single-cell RNA sequencing (scRNA-seq) and RNA sequencing (RNA-seq) data, relevant data were downloaded from the GEO and TCGA databases. The differentially expressed CRGs (DE-CRGs) were filtered by the overlaps in differentially expressed genes (DEGs) between HCC patients and normal controls (NCs) in the scRNA-seq database, DE-CRGs between high- and low-CRG-activity cells, and DEGs between HCC patients and NCs in the TCGA database. RESULTS Thirty-three DE-CRGs in HCC were identified. A prognostic model (PM) was created employing six survival-related genes (SRGs) (NDRG2, CYB5A, SOX4, MYC, TM4SF1, and IFI27) via univariate Cox regression analysis and LASSO. The predictive ability of the model was validated via a nomogram and receiver operating characteristic curves. Research has employed tumor immune dysfunction and exclusion as a means to examine the influence of PM on immunological heterogeneity. Macrophage M0 levels were significantly different between the high-risk group (HRG) and the low-risk group (LRG), and a greater macrophage level was linked to a more unfavorable prognosis. The drug sensitivity data indicated a substantial difference in the half-maximal drug-suppressive concentrations of idarubicin and rapamycin between the HRG and the LRG. The model was verified by employing public datasets and our cohort at both the protein and mRNA levels. CONCLUSION A PM using 6 SRGs (NDRG2, CYB5A, SOX4, MYC, TM4SF1, and IFI27) was developed via bioinformatics research. This model might provide a fresh perspective for assessing and managing HCC.
Collapse
Affiliation(s)
- Yong Wang
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, Tianjin, 300060, China.
| | - Fenglin Zang
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, Tianjin, 300060, China
| | - Bing Shao
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, Tianjin, 300060, China
| | - Yanan Gao
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, Tianjin, 300060, China
| | - Haicui Yang
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, Tianjin, 300060, China
| | - Yuhong Guo
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, Tianjin, 300060, China
| | - Tingting Ding
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, Tianjin, 300060, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, Tianjin, 300060, China
| |
Collapse
|
92
|
Li S, Lin Y, Chen S, Zhang W, Chen YM, Lu X, Shao Y, Lu Z, Sheng H, Guan Z, Zheng R, Liang C, Chen Y, Liu L, Zeng C. Clinical characteristics and prognosis of early diagnosed Wilson's disease: A large cohort study. Liver Int 2024; 44:2424-2433. [PMID: 38847512 DOI: 10.1111/liv.16009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 08/30/2024]
Abstract
BACKGROUND AND AIMS Few studies have focused on the outcomes of Wilson's disease (WD) diagnosed before age of 5 years. This study aimed to summarize the clinical features of early diagnosed WD and analyse treatment outcomes and the risk factors associated with treatment failure. METHODS A total of 139 children confirmed with WD before 5 years were enrolled in this study. Only patients with follow-up over 1 year were analysed with Kaplan-Meier survival analysis. The composite outcomes included death, progression to liver failure or acute hepatitis, development of renal or neurological symptoms and persistent elevation of alanine aminotransferase (ALT). The treatment failure was defined as occurrence of at least one of above outcomes. RESULTS Among 139 WD patients at diagnosis, two (1.4%) WD patients presented with symptomatic liver disease, whereas 137 (98.6%) were phenotypically asymptomatic, including 135 with elevated ALT and 2 with normal liver function. Median serum ceruloplasmin (Cp) was 3.1 mg/dL, and urinary copper excretion was 87.4 μg/24-h. There were 71 variants identified in the the copper-transporting ATPase beta gene, and 29 were loss of function (LOF). 51 patients with LOF variant were younger at diagnosis and had lower Cp than 88 patients without LOF. Among 93 patients with over 1 year of follow-up, 19 (20.4%) received zinc monotherapy, and 74 (79.6%) received a zinc/D-penicillamine combination therapy. 14 (15.1%) patients underwent treatment failure, and its occurrence was associated with poor compliance (p < .01). CONCLUSIONS Cp is a reliable biomarker for early diagnosis, and zinc monotherapy is an effective treatment for WD during early childhood. Good treatment compliance is critical to achieve a favourable outcome.
Collapse
Affiliation(s)
- Simin Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Shehong Chen
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wen Zhang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xinshuo Lu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Yongxian Shao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Zhikun Lu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Huiying Sheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Zhihong Guan
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Ruidan Zheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Cuili Liang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Yaoyong Chen
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Chunhua Zeng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| |
Collapse
|
93
|
Lamačová LJ, Trnka J. Chelating mitochondrial iron and copper: Recipes, pitfalls and promise. Mitochondrion 2024; 78:101903. [PMID: 38777220 DOI: 10.1016/j.mito.2024.101903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Iron and copper chelation therapy plays a crucial role in treating conditions associated with metal overload, such as hemochromatosis or Wilson's disease. However, conventional chelators face challenges in reaching the core of iron and copper metabolism - the mitochondria. Mitochondria-targeted chelators can specifically target and remove metal ions from mitochondria, showing promise in treating diseases linked to mitochondrial dysfunction, including neurodegenerative diseases and cancer. Additionally, they serve as specific mitochondrial metal sensors. However, designing these new molecules presents its own set of challenges. Depending on the chelator's intended use to prevent or to promote redox cycling of the metals, the chelating moiety must possess different donor atoms and an optimal value of the electrode potential of the chelator-metal complex. Various targeting moieties can be employed for selective delivery into the mitochondria. This review also provides an overview of the current progress in the design of mitochondria-targeted chelators and their biological activity investigation.
Collapse
Affiliation(s)
- Lucie J Lamačová
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Praha, Czech Republic
| | - Jan Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Praha, Czech Republic.
| |
Collapse
|
94
|
Du K, Luo Y, Zhang L, Zeng Y, Dai Y, Ren M, Pan W, Liu Y, Tian F, Zhou L, Gu C. m 6A modification of lipoyltransferase 1 inhibits bladder cancer progression by activating cuproptosis. Oncogene 2024; 43:2971-2985. [PMID: 39198615 DOI: 10.1038/s41388-024-03139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Cuproptosis, a cell death process caused by copper ions, is mediated by protein lipidation related to lipoic acid metabolism. There is a close connection between cuproptosis and the progression and prognosis of various tumors. Here, we identified lipoyltransferase 1 (LIPT1), a key gene related to cuproptosis, was downregulated in bladder cancer (BLCA) and was associated with unfavorable patient prognosis. Restoring the LIPT1 expression in BLCA cells suppressed the proliferation and promoted cuproptosis. Moreover, the consequences of RNA sequencing and Bodipy staining showed that the metabolic pathway mediated by LIPT1 inhibited the accumulation of lipid droplets in cells, disrupted endoplasmic reticulum (ER) homeostasis, and promoted cell apoptosis. Additionally, overexpression of LIPT1 not only repressed the proliferation rate of BLCA cells in vitro but also in vivo. Mechanistically, YTH N6-Methyladenosine RNA Binding Protein F2 (YTHDF2) promoted the degradation of LIPT1 mRNA in a m6A-dependent manner. In summary, these conclusions reveal that LIPT1 promotes cuprotosis and ER stress to inhibit the progression of BLCA, indicating that LIPT1 will provide a powerful treatment direction and drug target for treating BLCA.
Collapse
Affiliation(s)
- Kaixuan Du
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yongbo Luo
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Lei Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Youmiao Zeng
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yiheng Dai
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mengda Ren
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wenbang Pan
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuanhao Liu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Fengyan Tian
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Lijie Zhou
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Chaohui Gu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
95
|
Pan C, Ji Z, Wang Q, Zhang Z, Wang Z, Li C, Lu S, Ge P. Cuproptosis: Mechanisms, biological significance, and advances in disease treatment-A systematic review. CNS Neurosci Ther 2024; 30:e70039. [PMID: 39267265 PMCID: PMC11392831 DOI: 10.1111/cns.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Copper is an essential trace element for biological systems, as it plays a critical role in the activity of various enzymes and metabolic processes. However, the dysregulation of copper homeostasis is closely associated with the onset and progression of numerous diseases. In recent years, copper-induced cell death, a novel form of cellular demise, has garnered significant attention. This process is characterized by the abnormal accumulation of intracellular copper ions, leading to cellular dysfunction and eventual cell death. Copper toxicity occurs through the interaction of copper with acylated enzymes in the tricarboxylic acid (TCA) cycle. This interaction results in subsequent protein aggregation, causing proteotoxic stress and ultimately resulting in cell death. Despite the promise of these findings, the detailed mechanisms and broader implications of cuproptosis remain underexplored. Therefore, our study aimed to investigate the role of copper in cell death and autophagy, focusing on the molecular mechanisms of cuproptosis. We also aimed to discuss recent advancements in copper-related research across various diseases and tumors, providing insights for future studies and potential therapeutic applications. MAIN BODY This review delves into the biological significance of copper metabolism and the molecular mechanisms underlying copper-induced cell death. Furthermore, we discuss the role of copper toxicity in the pathogenesis of various diseases, emphasizing recent advancements in the field of oncology. Additionally, we explore the therapeutic potential of targeting copper toxicity. CONCLUSION The study highlights the need for further research to explore alternative pathways of copper-induced cell death, detailed mechanisms of cuproptosis, and biomarkers for copper poisoning. Future research should focus on exploring the molecular mechanisms of cuproptosis, developing new therapeutic strategies, and verifying their safety and efficacy in clinical trials.
Collapse
Affiliation(s)
- Chengliang Pan
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Zhilin Ji
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Qingxuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Zhao Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Zhenchuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
96
|
Sailer J, Nagel J, Akdogan B, Jauch AT, Engler J, Knolle PA, Zischka H. Deadly excess copper. Redox Biol 2024; 75:103256. [PMID: 38959622 PMCID: PMC11269798 DOI: 10.1016/j.redox.2024.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024] Open
Abstract
Higher eukaryotes' life is impossible without copper redox activity and, literally, every breath we take biochemically demonstrates this. However, this dependence comes at a considerable price to ensure target-oriented copper action. Thereto its uptake, distribution but also excretion are executed by specialized proteins with high affinity for the transition metal. Consequently, malfunction of copper enzymes/transporters, as is the case in hereditary Wilson disease that affects the intracellular copper transporter ATP7B, comes with serious cellular damage. One hallmark of this disease is the progressive copper accumulation, primarily in liver but also brain that becomes deadly if left untreated. Such excess copper toxicity may also result from accidental ingestion or attempted suicide. Recent research has shed new light into the cell-toxic mechanisms and primarily affected intracellular targets and processes of such excess copper that may even be exploited with respect to cancer therapy. Moreover, new therapies are currently under development to fight against deadly toxic copper.
Collapse
Affiliation(s)
- Judith Sailer
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Judith Nagel
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Banu Akdogan
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Adrian T Jauch
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Jonas Engler
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany; Institute of Molecular Toxicology and Pharmacology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
97
|
Bekyarova AI, Kobakova I, Spasova S. A Rare Case of Untreated Wilson's Disease in a Teen With Lethal Exit: Morphological Findings From an Autopsy Study. Cureus 2024; 16:e68838. [PMID: 39376842 PMCID: PMC11457893 DOI: 10.7759/cureus.68838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Wilson's disease (WD) is an autosomal recessive genetic disorder caused by more than 50 different mutations in the APT7B gene. A defect in the gene product results in copper accumulation mainly in the liver, basal ganglia in the brain, cornea, kidneys, and heart, leading to dysfunction and eventually organ failure. We present a case of a 15-year-old male with a minority background who did not receive any form of treatment and ultimately succumbed to the disease. He was previously hospitalized due to suspected autoimmune-mediated acute liver failure (ALF) with positive antinuclear autoantibodies. Abdominal ultrasound revealed uneven contours and diffusely abnormal structure of the liver, interpreted as liver cirrhosis (LC), and splenomegaly. In view of WD as a potential differential diagnosis, a genetic consultation recommended the performance of genetic testing. The patient received symptomatic and corticosteroid therapy and was discharged from the hospital with improved general status. Three days later, the teen experienced deterioration and was readmitted to the hospital in a critical state. Reanimation measures had a temporary effect and ultimately exitus letalis was registered. The autopsy study revealed mixed micronodular and macronodular LC, chronic steatohepatitis, hepatosplenomegaly, ascites, icterus, gynecomastia, telangiectasias, subcutaneous hemorrhages, absence of male pattern body hair, hypogonadism, and chronic calculous cholecystitis as a result of untreated WD. Complications of the main disease appeared to be hepatorenal syndrome, severe bilateral purulent-hemorrhagic pneumonia probably with mixed etiology, acute cardiac failure with congestive changes in all internal organs, pleural and pericardial effusions, pulmonary edema, and cerebral edema with tonsillar herniation. The ATP7B gene sequencing supported the clinical diagnosis and the autopsy suspicion of WD, showing that the boy was homozygous for an H1069Q mutation.
Collapse
Affiliation(s)
- Anastasia I Bekyarova
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| | - Ina Kobakova
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Dr. Marko Markov Specialized Hospital for Treatment of Oncological Diseases, Varna, BGR
| | - Snejana Spasova
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Dr. Marko Markov Specialized Hospital for Treatment of Oncological Diseases, Varna, BGR
| |
Collapse
|
98
|
Fontes A, Pierson H, Bierła JB, Eberhagen C, Kinschel J, Akdogan B, Rieder T, Sailer J, Reinold Q, Cielecka-Kuszyk J, Szymańska S, Neff F, Steiger K, Seelbach O, Zibert A, Schmidt HH, Hauck SM, von Toerne C, Michalke B, Semrau JD, DiSpirito AM, Ramalho-Santos J, Kroemer G, Polishchuk R, Azul AM, DiSpirito A, Socha P, Lutsenko S, Zischka H. Copper impairs the intestinal barrier integrity in Wilson disease. Metabolism 2024; 158:155973. [PMID: 38986805 DOI: 10.1016/j.metabol.2024.155973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
In Wilson disease (WD), liver copper (Cu) excess, caused by mutations in the ATPase Cu transporting beta (ATP7B), has been extensively studied. In contrast, in the gastrointestinal tract, responsible for dietary Cu uptake, ATP7B malfunction is poorly explored. We therefore investigated gut biopsies from WD patients and compared intestines from two rodent WD models and from human ATP7B knock-out intestinal cells to their respective wild-type controls. We observed gastrointestinal (GI) inflammation in patients, rats and mice lacking ATP7B. Mitochondrial alterations and increased intestinal leakage were observed in WD rats, Atp7b-/- mice and human ATP7B KO Caco-2 cells. Proteome analyses of intestinal WD homogenates revealed profound alterations of energy and lipid metabolism. The intestinal damage in WD animals and human ATP7B KO cells did not correlate with absolute Cu elevations, but likely reflects intracellular Cu mislocalization. Importantly, Cu depletion by the high-affinity Cu chelator methanobactin (MB) restored enterocyte mitochondria, epithelial integrity, and resolved gut inflammation in WD rats and human WD enterocytes, plausibly via autophagy-related mechanisms. Thus, we report here before largely unrecognized intestinal damage in WD, occurring early on and comprising metabolic and structural tissue damage, mitochondrial dysfunction, and compromised intestinal barrier integrity and inflammation, that can be resolved by high-affinity Cu chelation treatment.
Collapse
Affiliation(s)
- Adriana Fontes
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; DCV-Department of Life Sciences, Faculty of Sciences and Technology of the University of Coimbra, Coimbra, Portugal
| | - Hannah Pierson
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, USA
| | - Joanna B Bierła
- Department of Pathomorphology, Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jennifer Kinschel
- Technical University Munich, Institute of Toxicology and Environmental Hygiene, Munich, Germany
| | - Banu Akdogan
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tamara Rieder
- Technical University Munich, Institute of Toxicology and Environmental Hygiene, Munich, Germany
| | - Judith Sailer
- Technical University Munich, Institute of Toxicology and Environmental Hygiene, Munich, Germany
| | - Quirin Reinold
- Technical University Munich, Institute of Toxicology and Environmental Hygiene, Munich, Germany
| | - Joanna Cielecka-Kuszyk
- Department of Pathomorphology, Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Sylwia Szymańska
- Department of Pathomorphology, Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | | | - Katja Steiger
- Comparative Experimental Pathology Department, Institute for General Pathology and Pathological Anatomy, Technical University of Munich (TUM), Germany
| | - Olga Seelbach
- Comparative Experimental Pathology Department, Institute for General Pathology and Pathological Anatomy, Technical University of Munich (TUM), Germany
| | - Andree Zibert
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Germany
| | - Hartmut H Schmidt
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109-2125, USA
| | - Ana M DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, USA
| | - João Ramalho-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; DCV-Department of Life Sciences, Faculty of Sciences and Technology of the University of Coimbra, Coimbra, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-, HP, Paris, France
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Anabela Marisa Azul
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Alan DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, USA
| | - Piotr Socha
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, USA
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Technical University Munich, Institute of Toxicology and Environmental Hygiene, Munich, Germany.
| |
Collapse
|
99
|
Zhao C, Chen J, Tian L, Wen Y, Wu M, Tang L, Zhou A, Xie W, Dong T. Gandouling ameliorates liver injury in Wilson's disease through the inhibition of ferroptosis by regulating the HSF1/HSPB1 pathway. J Cell Mol Med 2024; 28:e70018. [PMID: 39223962 PMCID: PMC11369335 DOI: 10.1111/jcmm.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/18/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Ferroptosis, an iron-dependent form of cell death, plays a crucial role in the progression of liver injury in Wilson's disease (WD). Gandouling (GDL) has emerged as a potential therapeutic agent for preventing and treating liver injury in WD. However, the precise mechanisms by which GDL mitigates ferroptosis in WD liver injury remain unclear. In this study, we discovered that treating Toxic Milk (TX) mice with GDL effectively decreased liver copper content, corrected iron homeostasis imbalances, and lowered lipid peroxidation levels, thereby preventing ferroptosis and improving liver injury. Bioinformatics analysis and machine learning algorithms identified Hspb1 as a pivotal regulator of ferroptosis. GDL treatment significantly upregulated the expression of HSPB1 and its upstream regulatory factor HSF1, thereby activating the HSF1/HSPB1 pathway. Importantly, inhibition of this pathway by NXP800 reversed the protective effects of GDL on ferroptosis in the liver of TX mice. In conclusion, GDL shows promise in alleviating liver injury in WD by inhibiting ferroptosis through modulation of the HSF1/HSPB1 pathway, suggesting its potential as a novel therapeutic agent for treating liver ferroptosis in WD.
Collapse
Affiliation(s)
- Chenling Zhao
- Department of NeurologyThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Jie Chen
- Department of NeurologyThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Liwei Tian
- Department of NeurologyThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Yuya Wen
- Department of NeurologyThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Mingcai Wu
- School of Basic Medical SciencesWannan Medical CollegeWuhuChina
| | - Lulu Tang
- Department of NeurologyThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Key Laboratory of Xin'An MedicineMinistry of EducationHefeiChina
| | - An Zhou
- The Experimental Research CenterAnhui University of Chinese MedicineHefeiChina
| | - Wenting Xie
- Department of NeurologyThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Key Laboratory of Xin'An MedicineMinistry of EducationHefeiChina
| | - Ting Dong
- Department of NeurologyThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Key Laboratory of Xin'An MedicineMinistry of EducationHefeiChina
| |
Collapse
|
100
|
Yu D, Zi M, Dou Y, Tashpulatov K, Zeng JB, Wen CY. An Fe 3O 4-Au heterodimer nanoparticle-based lateral flow assay for rapid and simultaneous detection of multiple influenza virus nucleic acids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5777-5784. [PMID: 39145405 DOI: 10.1039/d4ay01010h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Sensitive, convenient and rapid detection and subtyping of influenza viruses are crucial for timely treatment and management of infected people. Compared with antigen detection, nucleic acid detection has higher specificity and can shorten the detection window. Hence, in this work, we improved the lateral flow assay (LFA, one of the most promising user-friendly and on-site methods) to achieve detection and subtyping of H1N1, H3N2 and H9N2 influenza virus nucleic acids. Firstly, the antigen-antibody recognition mode was transformed into a nucleic acid hybridization reaction. Secondly, Fe3O4-Au heterodimer nanoparticles were prepared to replace frequently used Au nanoparticles to obtain better coloration. Thirdly, four lines were arranged on the LFA strip, which were three test (T) lines and one control (C) line. Three T lines were respectively sprayed by the DNA sequences complementary to one end of H1N1, H3N2 and H9N2 influenza virus nucleic acids, while Fe3O4-Au nanoparticles were respectively coupled with the DNA sequences complementary to the other end of H1N1, H3N2 and H9N2 nucleic acids to construct three kinds of probes. The C line was sprayed by the complementary sequences to the DNAs on all three kinds of probes. In the detection, by hybridization reaction, the probes were combined with their target nucleic acids which were captured by the corresponding T lines to form color bands. Finally, according to the position of the color bands and their grey intensity, simultaneous qualitative and semi-quantitative detection of the three influenza virus nucleic acids was realized. The detection results showed that this multi-channel LFA had good specificity, and there was no significant cross reactivity among the three subtypes of influenza viruses. The simultaneous detection achieved comparable detection limits with individual detections. Therefore, this multi-channel LFA had good application potential for sensitive and rapid detection and subtyping of influenza viruses.
Collapse
Affiliation(s)
- Dong Yu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, P. R. China.
| | - Min Zi
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, P. R. China.
| | - Yue Dou
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, P. R. China.
| | | | - Jing-Bin Zeng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, P. R. China.
| | - Cong-Ying Wen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, P. R. China.
| |
Collapse
|