51
|
Lam JY, Wong WM, Yuen CK, Ng YY, San CH, Yuen KY, Kok KH. An RNA-Scaffold Protein Subunit Vaccine for Nasal Immunization. Vaccines (Basel) 2023; 11:1550. [PMID: 37896953 PMCID: PMC10610892 DOI: 10.3390/vaccines11101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Developing recombinant proteins as nasal vaccines for inducing systemic and mucosal immunity against respiratory viruses is promising. However, additional adjuvants are required to overcome the low immunogenicity of protein antigens. Here, a self-adjuvanted protein-RNA ribonucleoprotein vaccine was developed and found to be an effective nasal vaccine in mice and the SARS-CoV-2 infection model. The vaccine consisted of spike RBD (as an antigen), nucleoprotein (as an adaptor), and ssRNA (as an adjuvant and RNA scaffold). This combination robustly induced mucosal IgA, neutralizing antibodies and activated multifunctional T-cells, while also providing sterilizing immunity against live virus challenge. In addition, high-resolution scRNA-seq analysis highlighted airway-resident immune cells profile during prime-boost immunization. The vaccine also possesses modularity (antigen/adaptor/RNA scaffold) and can be made to target other viruses. This protein-RNA ribonucleoprotein vaccine is a novel and promising approach for developing safe and potent nasal vaccines to combat respiratory virus infections.
Collapse
Affiliation(s)
- Joy-Yan Lam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Wan-Man Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Chun-Kit Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Yau-Yee Ng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chun-Hin San
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Kin-Hang Kok
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
52
|
Rosen Y, Brbić M, Roohani Y, Swanson K, Li Z, Leskovec J. Towards Universal Cell Embeddings: Integrating Single-cell RNA-seq Datasets across Species with SATURN. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526939. [PMID: 36778387 PMCID: PMC9915700 DOI: 10.1101/2023.02.03.526939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Analysis of single-cell datasets generated from diverse organisms offers unprecedented opportunities to unravel fundamental evolutionary processes of conservation and diversification of cell types. However, inter-species genomic differences limit the joint analysis of cross-species datasets to homologous genes. Here, we present SATURN, a deep learning method for learning universal cell embeddings that encodes genes' biological properties using protein language models. By coupling protein embeddings from language models with RNA expression, SATURN integrates datasets profiled from different species regardless of their genomic similarity. SATURN has a unique ability to detect functionally related genes co-expressed across species, redefining differential expression for cross-species analysis. We apply SATURN to three species whole-organism atlases and frog and zebrafish embryogenesis datasets. We show that cell embeddings learnt in SATURN can be effectively used to transfer annotations across species and identify both homologous and species-specific cell types, even across evolutionarily remote species. Finally, we use SATURN to reannotate the five species Cell Atlas of Human Trabecular Meshwork and Aqueous Outflow Structures and find evidence of potentially divergent functions between glaucoma associated genes in humans and other species.
Collapse
Affiliation(s)
- Yanay Rosen
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Maria Brbić
- School of Computer and Communication Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Yusuf Roohani
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Kyle Swanson
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Ziang Li
- Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Jure Leskovec
- Department of Computer Science, Stanford University, Stanford, CA, USA
| |
Collapse
|
53
|
Satitsuksanoa P, Iwasaki S, Boersma J, Bel Imam M, Schneider SR, Chang I, van de Veen W, Akdis M. B cells: The many facets of B cells in allergic diseases. J Allergy Clin Immunol 2023; 152:567-581. [PMID: 37247640 DOI: 10.1016/j.jaci.2023.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
B cells play a key role in our immune system through their ability to produce antibodies, suppress a proinflammatory state, and contribute to central immune tolerance. We aim to provide an in-depth knowledge of the molecular biology of B cells, including their origin, developmental process, types and subsets, and functions. In allergic diseases, B cells are well known to induce and maintain immune tolerance through the production of suppressor cytokines such as IL-10. Similarly, B cells protect against viral infections such as severe acute respiratory syndrome coronavirus 2 that caused the recent coronavirus disease 2019 pandemic. Considering the unique and multifaceted functions of B cells, we hereby provide a comprehensive overview of the current knowledge of B-cell biology and its clinical applications in allergic diseases, organ transplantation, and cancer.
Collapse
Affiliation(s)
- Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| | - Sayuri Iwasaki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Jolien Boersma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Iris Chang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Sean N. Parker Centre for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, Calif
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| |
Collapse
|
54
|
Guo Z, Zhou J, Yu Y, Krishnan N, Noh I, Zhu AT, Borum RM, Gao W, Fang RH, Zhang L. Immunostimulatory DNA Hydrogel Enhances Protective Efficacy of Nanotoxoids against Bacterial Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211717. [PMID: 37097076 PMCID: PMC10528024 DOI: 10.1002/adma.202211717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/25/2023] [Indexed: 05/03/2023]
Abstract
While vaccines have been highly successful in protecting against various infections, there are still many high-priority pathogens for which there are no clinically approved formulations. To overcome this challenge, researchers have explored the use of nanoparticulate strategies for more effective antigen delivery to the immune system. Along these lines, nanotoxoids are a promising biomimetic platform that leverages cell membrane coating technology to safely deliver otherwise toxic bacterial antigens in their native form for antivirulence vaccination. Here, in order to further boost their immunogenicity, nanotoxoids formulated against staphylococcal α-hemolysin are embedded into a DNA-based hydrogel with immunostimulatory CpG motifs. The resulting nanoparticle-hydrogel composite is injectable and improves the in vivo delivery of vaccine antigens while simultaneously stimulating nearby immune cells. This leads to elevated antibody production and stronger antigen-specific cellular immune responses. In murine models of pneumonia and skin infection caused by methicillin-resistant Staphylococcus aureus, mice vaccinated with the hybrid vaccine formulation are well-protected. This work highlights the benefits of combining nanoparticulate antigen delivery systems with immunostimulatory hydrogels into a single platform, and the approach can be readily generalized to a wide range of infectious diseases.
Collapse
Affiliation(s)
- Zhongyuan Guo
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yiyan Yu
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ilkoo Noh
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Audrey Ting Zhu
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Raina M Borum
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
55
|
Matsumoto R, Gray J, Rybkina K, Oppenheimer H, Levy L, Friedman LM, Khamaisi M, Meng W, Rosenfeld AM, Guyer RS, Bradley MC, Chen D, Atkinson MA, Brusko TM, Brusko M, Connors TJ, Luning Prak ET, Hershberg U, Sims PA, Hertz T, Farber DL. Induction of bronchus-associated lymphoid tissue is an early life adaptation for promoting human B cell immunity. Nat Immunol 2023; 24:1370-1381. [PMID: 37460638 PMCID: PMC10529876 DOI: 10.1038/s41590-023-01557-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023]
Abstract
Infants and young children are more susceptible to common respiratory pathogens than adults but can fare better against novel pathogens like severe acute respiratory syndrome coronavirus 2. The mechanisms by which infants and young children mount effective immune responses to respiratory pathogens are unknown. Through investigation of lungs and lung-associated lymph nodes from infant and pediatric organ donors aged 0-13 years, we show that bronchus-associated lymphoid tissue (BALT), containing B cell follicles, CD4+ T cells and functionally active germinal centers, develop during infancy. BALT structures are prevalent around lung airways during the first 3 years of life, and their numbers decline through childhood coincident with the accumulation of memory T cells. Single-cell profiling and repertoire analysis reveals that early life lung B cells undergo differentiation, somatic hypermutation and immunoglobulin class switching and exhibit a more activated profile than lymph node B cells. Moreover, B cells in the lung and lung-associated lymph nodes generate biased antibody responses to multiple respiratory pathogens compared to circulating antibodies, which are mostly specific for vaccine antigens in the early years of life. Together, our findings provide evidence for BALT as an early life adaptation for mobilizing localized immune protection to the diverse respiratory challenges during this formative life stage.
Collapse
Affiliation(s)
- Rei Matsumoto
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Joshua Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ksenia Rybkina
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hanna Oppenheimer
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of Negev, Be'er-Sheva, Israel
| | - Lior Levy
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of Negev, Be'er-Sheva, Israel
| | - Lilach M Friedman
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of Negev, Be'er-Sheva, Israel
| | | | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca S Guyer
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Marissa C Bradley
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Chen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Maigan Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Thomas J Connors
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Uri Hershberg
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Tomer Hertz
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of Negev, Be'er-Sheva, Israel
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Donna L Farber
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
56
|
Grimsholm O. CD27 on human memory B cells-more than just a surface marker. Clin Exp Immunol 2023; 213:164-172. [PMID: 36508329 PMCID: PMC10361737 DOI: 10.1093/cei/uxac114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 07/23/2023] Open
Abstract
Immunological memory protects the human body from re-infection with an earlier recognized pathogen. This memory comprises the durable serum antibody titres provided by long-lived plasma cells and the memory T and B cells with help from other cells. Memory B cells are the main precursor cells for new plasma cells during a secondary infection. Their formation starts very early in life, and they continue to form and undergo refinements throughout our lifetime. While the heterogeneity of the human memory B-cell pool is still poorly understood, specific cellular surface markers define most of the cell subpopulations. CD27 is one of the most commonly used markers to define human memory B cells. In addition, there are molecular markers, such as somatic mutations in the immunoglobulin heavy and light chains and isotype switching to, for example, IgG. Although not every memory B cell undergoes somatic hypermutation or isotype switching, most of them express these molecular traits in adulthood. In this review, I will focus on the most recent knowledge regarding CD27+ human memory B cells in health and disease, and describe how Ig sequencing can be used as a tool to decipher the evolutionary pathways of these cells.
Collapse
Affiliation(s)
- Ola Grimsholm
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, AT-1090 Vienna, Austria
| |
Collapse
|
57
|
Onodera T, Sax N, Sato T, Adachi Y, Kotaki R, Inoue T, Shinnakasu R, Nakagawa T, Fukushi S, Terooatea T, Yoshikawa M, Tonouchi K, Nagakura T, Moriyama S, Matsumura T, Isogawa M, Terahara K, Takano T, Sun L, Nishiyama A, Omoto S, Shinkai M, Kurosaki T, Yamashita K, Takahashi Y. CD62L expression marks SARS-CoV-2 memory B cell subset with preference for neutralizing epitopes. SCIENCE ADVANCES 2023; 9:eadf0661. [PMID: 37315144 DOI: 10.1126/sciadv.adf0661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/09/2023] [Indexed: 06/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2-neutralizing antibodies primarily target the spike receptor binding domain (RBD). However, B cell antigen receptors (BCRs) on RBD-binding memory B (Bmem) cells have variation in the neutralizing activities. Here, by combining single Bmem cell profiling with antibody functional assessment, we dissected the phenotype of Bmem cell harboring the potently neutralizing antibodies in coronavirus disease 2019 (COVID-19)-convalescent individuals. The neutralizing subset was marked by an elevated CD62L expression and characterized by distinct epitope preference and usage of convergent VH (variable region of immunoglobulin heavy chain) genes, accounting for the neutralizing activities. Concordantly, the correlation was observed between neutralizing antibody titers in blood and CD62L+ subset, despite the equivalent RBD binding of CD62L+ and CD62L- subset. Furthermore, the kinetics of CD62L+ subset differed between the patients who recovered from different COVID-19 severities. Our Bmem cell profiling reveals the unique phenotype of Bmem cell subset that harbors potently neutralizing BCRs, advancing our understanding of humoral protection.
Collapse
Affiliation(s)
- Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryutaro Kotaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | | | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Keisuke Tonouchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Takaki Nagakura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Laboratory of Viral Infection, Ōmura Satoshi Memorial Institute Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takayuki Matsumura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masanori Isogawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazutaka Terahara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomohiro Takano
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Lin Sun
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ayae Nishiyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan
| | | | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
58
|
Care MA, Stephenson S, Owen R, Doody GM, Tooze RM. Spontaneous EBV-Reactivation during B Cell Differentiation as a Model for Polymorphic EBV-Driven Lymphoproliferation. Cancers (Basel) 2023; 15:3083. [PMID: 37370694 PMCID: PMC10296496 DOI: 10.3390/cancers15123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Epstein-Barr virus (EBV)-driven B cell neoplasms arise from the reactivation of latently infected B cells. In a subset of patients, EBV was seen to drive a polymorphous lymphoproliferative disorder (LPD) in which B cell differentiation was retained. In this work, spontaneous EBV reactivation following B cell mitogen stimulation was shown to provide a potential model of polymorphic EBV-driven LPD. Here, we developed an in vitro model of plasma cell (PC) differentiation from peripheral blood memory B cells. To assess the frequency and phenotypes of EBV-associated populations derived during differentiation, we analysed eight differentiations during the PC stage with a targeted single-cell gene expression panel. We identified subpopulations of EBV-gene expressing cells with PC and/or B cell expression features in differentiations from all tested donors. EBV-associated cells varied in frequency, ranging from 3-28% of cells. Most EBV-associated cells expressed PC genes such as XBP1 or MZB1, and in all samples these included a quiescent PC fraction that lacked cell a cycle gene expression. With increasing EBV-associated cells, populations with B cell features became prominent, co-expressing a germinal centre (GC) and activating B cell gene patterns. The presence of highly proliferative EBV-associated cells was linked to retained MS4A1/CD20 expression and IGHM and IGHD co-expression, while IGHM class-switched cells were enriched in quiescent PC fractions. Thus, patterns of gene expression in primary EBV reactivation were shown to include features related to GC B cells, which was also observed in EBV-transformed lymphoblastoid cell lines. This suggests a particular association between spontaneously developing EBV-expansions and IgM+ IgD+ non-switched B cells.
Collapse
Affiliation(s)
- Matthew A. Care
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds LS9 7TF, UK; (M.A.C.); (S.S.)
- Bioinformatics Group, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sophie Stephenson
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds LS9 7TF, UK; (M.A.C.); (S.S.)
| | - Roger Owen
- Haematological Malignancy Diagnostic Service, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK;
| | - Gina M. Doody
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds LS9 7TF, UK; (M.A.C.); (S.S.)
| | - Reuben M. Tooze
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds LS9 7TF, UK; (M.A.C.); (S.S.)
- Haematological Malignancy Diagnostic Service, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK;
| |
Collapse
|
59
|
Kibler A, Seifert M, Budeus B. Age-related changes of the human splenic marginal zone B cell compartment. Immunol Lett 2023; 256-257:59-65. [PMID: 37044264 DOI: 10.1016/j.imlet.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
In this review, we will summarize the growing body of knowledge on the age-related changes of human splenic B cell composition and molecular evidence of immune maturation and discuss the contribution of these changes on splenic protective function. From birth on, the splenic marginal zone (sMZ) contains a specialized B cell subpopulation, which recruits and archives memory B cells from immune responses throughout the organism. The quality of sMZ B cell responses is augmented by germinal center (GC)-dependent maturation of memory B cells during childhood, however, in old age, these mechanisms likely contribute to waning of splenic protective function.
Collapse
Affiliation(s)
- Artur Kibler
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Marc Seifert
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany; Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, Düsseldorf, Germany.
| | - Bettina Budeus
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
60
|
T-cell-B-cell collaboration in the lung. Curr Opin Immunol 2023; 81:102284. [PMID: 36753826 DOI: 10.1016/j.coi.2023.102284] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Collaboration between T and B cells in secondary lymphoid organs is a crucial component of adaptive immunity, but lymphocytes also persist in other tissues. Recent studies have examined T-cell-B-cell interactions in nonlymphoid tissues such as the lung. CD4+ T- resident helper cells (TRH) remain in the lung after influenza infection and support both resident CD8 T cells and B cells. Multiple lung-resident B-cell subsets (B-resident memory (BRM)) that exhibit spatial and phenotypic diversity have also been described. Though not generated by all types of infection, inducible bronchus-associated lymphoid tissue offers a logical place for T and B cells to interact. Perturbations to BRM and TRH cells elicit effects specific to Immunoglobulin A (IgA) production, an antibody isotype with privileged access to mucosa. Understanding the interplay of lymphocytes in mucosal tissues, which can be insulated from systemic immune responses, may improve the design of future vaccines and therapies.
Collapse
|
61
|
Jing J, Zhu C, Gong R, Qi X, Zhang Y, Zhang Z. Research progress on the active ingredients of traditional Chinese medicine in the intervention of atherosclerosis: A promising natural immunotherapeutic adjuvant. Biomed Pharmacother 2023; 159:114201. [PMID: 36610225 DOI: 10.1016/j.biopha.2022.114201] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease caused by disorders of lipid metabolism. Abnormal deposition of low-density lipoproteins in the arterial wall stimulates the activation of immune cells, including the adhesion and infiltration of monocytes, the proliferation and differentiation of macrophages and lymphocytes, and the activation of their functions. The complex interplay between immune cells coordinates the balance between pro- and anti-inflammation and plays a key role in the progression of AS. Therefore, targeting immune cell activity may lead to the development of more selective drugs with fewer side effects to treat AS without compromising host defense mechanisms. At present, an increasing number of studies have found that the active ingredients of traditional Chinese medicine (TCM) can regulate the function of immune cells in multiple ways to against AS, showing great potential for the treatment of AS and promising clinical applications. In this paper, we review the mechanisms of immune cell action in AS lesions and the potential targets and/or pathways for immune cell regulation by the active ingredients of TCM to promote the understanding of the immune system interactions of AS and provide a relevant basis for the use of active ingredients of TCM as natural adjuvants for AS immunotherapy.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Chaojun Zhu
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Rui Gong
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xue Qi
- Department of General Surgery, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China.
| | - Yue Zhang
- Peripheral Vascular Disease Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhaohui Zhang
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
62
|
Lowe MM, Cohen JN, Moss MI, Clancy S, Adler J, Yates A, Naik HB, Pauli M, Taylor I, McKay A, Harris H, Kim E, Hansen SL, Rosenblum MD, Moreau JM. Tertiary Lymphoid Structures Sustain Cutaneous B cell Activity in Hidradenitis Suppurativa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528504. [PMID: 36824918 PMCID: PMC9949072 DOI: 10.1101/2023.02.14.528504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Background Hidradenitis suppurativa (HS) skin lesions are highly inflammatory and characterized by a large immune infiltrate. While B cells and plasma cells comprise a major component of this immune milieu the biology and contribution of these cells in HS pathogenesis is unclear. Objective We aimed to investigate the dynamics and microenvironmental interactions of B cells within cutaneous HS lesions. Methods We combined histological analysis, single-cell RNA-sequencing (scRNAseq), and spatial transcriptomic profiling of HS lesions to define the tissue microenvironment relative to B cell activity within this disease. Results Our findings identify tertiary lymphoid structures (TLS) within HS lesions and describe organized interactions between T cells, B cells, antigen presenting cells and skin stroma. We find evidence that B cells within HS TLS actively undergo maturation, including participation in germinal center reactions and class switch recombination. Moreover, skin stroma and accumulating T cells are primed to support the formation of TLS and facilitate B cell recruitment during HS. Conclusion Our data definitively demonstrate the presence of TLS in lesional HS skin and point to ongoing cutaneous B cell maturation through class switch recombination and affinity maturation during disease progression in this inflamed non-lymphoid tissue.
Collapse
|
63
|
Henry B, Laidlaw BJ. Functional heterogeneity in the memory B-cell response. Curr Opin Immunol 2023; 80:102281. [PMID: 36652774 DOI: 10.1016/j.coi.2022.102281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023]
Abstract
Most vaccines induce robust antibody and memory B-cell (MBC) responses that are capable of mediating protective immunity. However, antibody titers wane following vaccination necessitating the administration of booster vaccines to maintain a protective antibody titer. MBCs are stably maintained following vaccination and can rapidly give rise to antibody-secreting cells or undergo further affinity maturation upon antigen re-encounter. Repeated antigen encounter results in the development of MBCs that encode antibodies capable of mediating broadly protective immunity against viruses such as SARS-CoV-2 and influenza. Here, we summarize emerging evidence that MBCs are a heterogeneous population composed of transcriptionally and phenotypically distinct subsets that have discrete roles in mediating protective immunity upon antigen re-encounter and examine the implications of these findings for the development of vaccines capable of eliciting broadly protective immunity.
Collapse
Affiliation(s)
- Brittany Henry
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
64
|
Aranburu A, Engström E, Gerasimcik N, Alsén S, Camponeschi A, Yrlid U, Grimsholm O, Mårtensson IL. Clonal relationships of memory B cell subsets in autoimmune mice. Front Immunol 2023; 14:1129234. [PMID: 36936947 PMCID: PMC10015592 DOI: 10.3389/fimmu.2023.1129234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Immunological memory protects our body from re-infection and it is composed of a cellular and a humoral arm. The B-cell branch with its memory B cells (MBCs), plasma cells and antibodies, formed either in a germinal centre (GC) -dependent or -independent manner, ensure that we can rapidly mount a recall immune response. Previous work in immunised wildtype (WT) mice have identified several subsets of MBCs whereas less is known under autoimmune conditions. Here, we have investigated the heterogeneity of the MBC compartment in autoimmune mouse models and examined the clonal relationships between MBC subsets and GC B cells in one of the models. We demonstrate the presence of at least four different MBC subsets based on their differential expression pattern of CD73, CD80 and PD-L2 in surrogate light chain-deficient (SLC-/-), MRL+/+ and MRLlpr/lpr mice, where most of the MBCs express IgM. Likewise, four MBC subsets could be identified in WT immunised mice. In SLC-/- mice, high-throughput sequencing of Ig heavy chains demonstrates that the two CD73-positive subsets are generally more mutated. Lineage tree analyses on expanded clones show overlaps between all MBC subsets and GC B cells primarily in the IgM sequences. Moreover, each of the three IgM MBC subsets could be found both as ancestor and progeny to GC B cells. This was also observed in the IgG sequences except for the CD73-negative subset. Thus, our findings demonstrate that several MBC subsets are present in autoimmune and WT mice. In SLC-/- mice, these MBC subsets are clonally related to each other and to GC B cells. Our results also indicate that different MBC subsets can seed the GC reaction.
Collapse
Affiliation(s)
- Alaitz Aranburu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Engström
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Natalija Gerasimcik
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Samuel Alsén
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Cancer Center, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ola Grimsholm
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Inga-Lill Mårtensson,
| |
Collapse
|
65
|
Velounias RL, Tull TJ. Human B-cell subset identification and changes in inflammatory diseases. Clin Exp Immunol 2022; 210:201-216. [PMID: 36617261 PMCID: PMC9985170 DOI: 10.1093/cei/uxac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 01/09/2023] Open
Abstract
Our understanding of the B-cell subsets found in human blood and their functional significance has advanced greatly in the past decade. This has been aided by the evolution of high dimensional phenotypic tools such as mass cytometry and single-cell RNA sequencing which have revealed heterogeneity in populations that were previously considered homogenous. Despite this, there is still uncertainty and variation between studies as to how B-cell subsets are identified and named. This review will focus on the most commonly encountered subsets of B cells in human blood and will describe gating strategies for their identification by flow and mass cytometry. Important changes to population frequencies and function in common inflammatory and autoimmune diseases will also be described.
Collapse
Affiliation(s)
- Rebekah L Velounias
- Department of Immunobiology, King’s College London, Guy’s Hospital Campus, London, UK
| | - Thomas J Tull
- St John’s Institute of Dermatology, King’s College London, Guy’s Hospital Campus, London, UK
| |
Collapse
|
66
|
Montorsi L, Siu JHY, Spencer J. B cells in human lymphoid structures. Clin Exp Immunol 2022; 210:240-252. [PMID: 36370126 PMCID: PMC9985168 DOI: 10.1093/cei/uxac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/30/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022] Open
Abstract
Most B cells in the human body are present in tissues where they support immune responses to pathogens, vaccines, autoantigens, and tumours. Despite their clear importance, they are very difficult to study and there are many areas of uncertainty that are difficult to resolve because of limited tissue access. In this review, we consider the zonal structure of lymphoid tissues, the B cell subsets they contain, and how these are regulated. We also discuss the impact that methods of deep interrogation have made on our current knowledge base, especially with respect to studies of cells from dissociated tissues. We discuss in some detail the controversial B cells with marginal zone distribution that some consider being archived memory B cells. We anticipate that more we understand of B cells in tissues and the niches they create, the more opportunities will be identified to harness their potential for therapeutic benefit.
Collapse
Affiliation(s)
- Lucia Montorsi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - Jacqueline H Y Siu
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - Jo Spencer
- Correspondence: Jo Spencer, Peter Gorer Department of Immunobiology, King’s College London, Second Floor Borough Wing, Guy’s Hospital Campus, St Thomas’ St, London SE1 9RT, UK.
| |
Collapse
|
67
|
Kardava L, Buckner CM, Moir S. B-Cell Responses to Sars-Cov-2 mRNA Vaccines. Pathog Immun 2022; 7:93-119. [PMID: 36655200 PMCID: PMC9836209 DOI: 10.20411/pai.v7i2.550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022] Open
Abstract
Most vaccines against viral pathogens protect through the acquisition of immunological memory from long-lived plasma cells that produce antibodies and memory B cells that can rapidly respond upon an encounter with the pathogen or its variants. The COVID-19 pandemic and rapid deployment of effective vaccines have provided an unprecedented opportunity to study the immune response to a new yet rapidly evolving pathogen. Here we review the scientific literature and our efforts to understand antibody and B-cell responses to SARS-CoV-2 vaccines, the effect of SARSCoV-2 infection on both primary and secondary immune responses, and how repeated exposures may impact outcomes.
Collapse
Affiliation(s)
- Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Clarisa M. Buckner
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
68
|
Haase P, Schäfer S, Gerlach RG, Winkler TH, Voehringer D. B cell fate mapping reveals their contribution to the memory immune response against helminths. Front Immunol 2022; 13:1016142. [PMID: 36505408 PMCID: PMC9730276 DOI: 10.3389/fimmu.2022.1016142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
An estimated quarter of the human world population is infected with gastrointestinal helminths causing major socioeconomic problems in endemic countries. A better understanding of humoral immune responses against helminths is urgently needed to develop effective vaccination strategies. Here, we used a fate mapping (FM) approach to mark germinal center (GC) B cells and their developmental fates by induced expression of a fluorescent protein during infection of mice with the helminth Nippostrongylus brasiliensis. We could show that FM+ cells persist weeks after clearance of the primary infection mainly as CD80+CD73+PD-L2+ memory B cells. A secondary infection elicited expansion of helminth-specific memory B cells and plasma cells (PCs). Adoptive transfers and analysis of somatic mutations in immunoglobulin genes further revealed that FM+ B cells rapidly convert to PCs rather than participating again in a GC reaction. These results provide new insights in the population dynamics of the humoral immune response against helminths.
Collapse
Affiliation(s)
- Paul Haase
- Department of Infection Biology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simon Schäfer
- Department of Genetics, Faculty of Sciences, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Roman G. Gerlach
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Thomas H. Winkler
- Department of Genetics, Faculty of Sciences, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen, Erlangen, Germany,Faculty of Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany,*Correspondence: David Voehringer,
| |
Collapse
|
69
|
Huang A, Kurhade SE, Ross P, Apley KD, Griffin JD, Berkland CJ, Farrell MP. Disrupting N-Glycosylation Using Type I Mannosidase Inhibitors Alters B-Cell Receptor Signaling. ACS Pharmacol Transl Sci 2022; 5:1062-1069. [PMID: 36407961 PMCID: PMC9667535 DOI: 10.1021/acsptsci.2c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 11/29/2022]
Abstract
Kifunensine is a known inhibitor of type I α-mannosidase enzymes and has been shown to have therapeutic potential for a variety of diseases and application in the expression of high-mannose N-glycan bearing glycoproteins; however, the compound's hydrophilic nature limits its efficacy. We previously synthesized two hydrophobic acylated derivatives of kifunensine, namely, JDW-II-004 and JDW-II-010, and found that these compounds were over 75-fold more potent than kifunensine. Here we explored the effects of these compounds on different mice and human B cells, and we demonstrate that they affected the cells in a similar fashion to kifunensine, further demonstrating their functional equivalence to kifunensine in assays utilizing primary cells. Specifically, a dose-dependent increase in the formation of high-mannose N-glycans decorated glycoproteins were observed upon treatment with kifunensine, JDW-II-004, and JDW-II-010, but greater potency was observed with the acylated derivatives. Treatment with kifunensine or the acylated derivatives also resulted in impaired B-cell receptor (BCR) signaling of the primary mouse B cells; however, primary human B cells treated with kifunensine or JDW-II-004 did not affect BCR signaling, while a modest increase in BCR signaling was observed upon treatment with JDW-010. Nevertheless, these findings demonstrate that the hydrophobic acylated derivatives of kifunensine can help overcome the mass-transfer limitations of the parent compound, and they may have applications for the treatment of ERAD-related diseases or prove to be more cost-effective alternatives for the generation and production of high-mannose N-glycan bearing glycoproteins.
Collapse
Affiliation(s)
- Aric Huang
- Department
of Pharmaceutical Chemistry, The University
of Kansas, Lawrence, Kansas 66047, United States
| | - Suresh E. Kurhade
- Department
of Medicinal Chemistry, The University of
Kansas, Lawrence, Kansas 66047, United
States
| | - Patrick Ross
- Department
of Medicinal Chemistry, The University of
Kansas, Lawrence, Kansas 66047, United
States
| | - Kyle D. Apley
- Department
of Pharmaceutical Chemistry, The University
of Kansas, Lawrence, Kansas 66047, United States
| | | | - Cory J. Berkland
- Department
of Pharmaceutical Chemistry, The University
of Kansas, Lawrence, Kansas 66047, United States
- Bioengineering
Program, The University of Kansas, Lawrence, Kansas 66045, United States
- Department
of Chemical and Petroleum Engineering, University
of Kansas, Lawrence, Kansas 66045, United
States
| | - Mark P. Farrell
- Department
of Medicinal Chemistry, The University of
Kansas, Lawrence, Kansas 66047, United
States
| |
Collapse
|
70
|
Wellford SA, Moseman AP, Dao K, Wright KE, Chen A, Plevin JE, Liao TC, Mehta N, Moseman EA. Mucosal plasma cells are required to protect the upper airway and brain from infection. Immunity 2022; 55:2118-2134.e6. [PMID: 36137543 PMCID: PMC9649878 DOI: 10.1016/j.immuni.2022.08.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
While blood antibodies mediate protective immunity in most organs, whether they protect nasal surfaces in the upper airway is unclear. Using multiple viral infection models in mice, we found that blood-borne antibodies could not defend the olfactory epithelium. Despite high serum antibody titers, pathogens infected nasal turbinates, and neurotropic microbes invaded the brain. Using passive antibody transfers and parabiosis, we identified a restrictive blood-endothelial barrier that excluded circulating antibodies from the olfactory mucosa. Plasma cell depletions demonstrated that plasma cells must reside within olfactory tissue to achieve sterilizing immunity. Antibody blockade and genetically deficient models revealed that this local immunity required CD4+ T cells and CXCR3. Many vaccine adjuvants failed to generate olfactory plasma cells, but mucosal immunizations established humoral protection of the olfactory surface. Our identification of a blood-olfactory barrier and the requirement for tissue-derived antibody has implications for vaccinology, respiratory and CNS pathogen transmission, and B cell fate decisions.
Collapse
Affiliation(s)
| | - Annie Park Moseman
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Kianna Dao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Katherine E Wright
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Allison Chen
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Jona E Plevin
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Tzu-Chieh Liao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Naren Mehta
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
71
|
Brown SL, Bauer JJ, Lee J, Ntirandekura E, Stumhofer JS. IgM + and IgM - memory B cells represent heterogeneous populations capable of producing class-switched antibodies and germinal center B cells upon rechallenge with P. yoelii. J Leukoc Biol 2022; 112:1115-1135. [PMID: 35657097 PMCID: PMC9613510 DOI: 10.1002/jlb.4a0921-523r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/29/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
Memory B cells (MBCs) are essential for maintaining long-term humoral immunity to infectious organisms, including Plasmodium. MBCs are a heterogeneous population whose function can be dictated by isotype or expression of particular surface proteins. Here, aided by antigen-specific B-cell tetramers, MBC populations were evaluated to discern their phenotype and function in response to infection with a nonlethal strain of P. yoelii. Infection of mice with P. yoelii 17X resulted in 2 predominant MBC populations: somatically hypermutated isotype-switched (IgM- ) and IgM+ MBCs that coexpressed CD73 and CD80 that produced antigen-specific antibodies in response to secondary infection. Rechallenge experiments indicated that IgG-producing cells dominated the recall response over the induction of IgM-secreting cells, with both populations expanding with similar timing during the secondary response. Furthermore, using ZsGreen1 expression as a surrogate for activation-induced cytidine deaminase expression alongside CD73 and CD80 coexpression, ZsGreen1+ CD73+ CD80+ IgM+ , and IgM- MBCs gave rise to plasmablasts that secreted Ag-specific Abs after adoptive transfer and infection with P. yoelii. Moreover, ZsGreen1+ CD73+ CD80+ IgM+ and IgM- MBCs could differentiate into B cells with a germinal center phenotype after adoptive transfer. A third population of B cells (ZsGreen1- CD73- CD80- IgM- ) that is apparent after infection responded poorly to reactivation in vitro and in vivo, indicating that these cells do not represent a canonical population of MBCs. Together these data indicated that MBC function is not defined by immunoglobulin isotype, nor does coexpression of key surface markers limit the potential fate of MBCs after recall.
Collapse
Affiliation(s)
- Susie L Brown
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jonathan J Bauer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Juhyung Lee
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Enatha Ntirandekura
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
72
|
Abstract
Barrier tissues are the primary site of infection for pathogens likely to cause future pandemics. Tissue-resident lymphocytes can rapidly detect pathogens upon infection of barrier tissues and are critical in preventing viral spread. However, most vaccines fail to induce tissue-resident lymphocytes and are instead reliant on circulating antibodies to mediate protective immunity. Circulating antibody titers wane over time following vaccination leaving individuals susceptible to breakthrough infections by variant viral strains that evade antibody neutralization. Memory B cells were recently found to establish tissue residence following infection of barrier tissues. Here, we summarize emerging evidence for the importance of tissue-resident memory B cells in the establishment of protective immunity against viral and bacterial challenge. We also discuss the role of tissue-resident memory B cells in regulating the progression of non-infectious diseases. Finally, we examine new approaches to develop vaccines capable of eliciting barrier immunity.
Collapse
Affiliation(s)
- Changfeng Chen
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
73
|
Chappert P, Huetz F, Espinasse MA, Chatonnet F, Pannetier L, Da Silva L, Goetz C, Mégret J, Sokal A, Crickx E, Nemazanyy I, Jung V, Guerrera C, Storck S, Mahévas M, Cosma A, Revy P, Fest T, Reynaud CA, Weill JC. Human anti-smallpox long-lived memory B cells are defined by dynamic interactions in the splenic niche and long-lasting germinal center imprinting. Immunity 2022; 55:1872-1890.e9. [PMID: 36130603 PMCID: PMC7613742 DOI: 10.1016/j.immuni.2022.08.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/22/2022] [Accepted: 08/26/2022] [Indexed: 12/31/2022]
Abstract
Memory B cells (MBCs) can persist for a lifetime, but the mechanisms that allow their long-term survival remain poorly understood. Here, we isolated and analyzed human splenic smallpox/vaccinia protein B5-specific MBCs in individuals who were vaccinated more than 40 years ago. Only a handful of clones persisted over such an extended period, and they displayed limited intra-clonal diversity with signs of extensive affinity-based selection. These long-lived MBCs appeared enriched in a CD21hiCD20hi IgG+ splenic B cell subset displaying a marginal-zone-like NOTCH/MYC-driven signature, but they did not harbor a unique longevity-associated transcriptional or metabolic profile. Finally, the telomeres of B5-specific, long-lived MBCs were longer than those in patient-paired naive B cells in all the samples analyzed. Overall, these results imply that separate mechanisms such as early telomere elongation, affinity selection during the contraction phase, and access to a specific niche contribute to ensuring the functional longevity of MBCs.
Collapse
Affiliation(s)
- Pascal Chappert
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France; Inovarion, Paris, France; Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, équipe 2, Université Paris-Est Créteil (UPEC), Créteil, France.
| | - François Huetz
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France; Institut Pasteur, Université Paris Cité, Unité Anticorps en thérapie et pathologie, UMR 1222 INSERM, Paris, France
| | - Marie-Alix Espinasse
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Fabrice Chatonnet
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, UMR_S1236, Rennes, France; Laboratoire d'Hématologie, Pôle de Biologie, Centre Hospitalier Universitaire, Rennes, France
| | - Louise Pannetier
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Lucie Da Silva
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Clara Goetz
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Jérome Mégret
- Structure Fédérative de Recherche Necker, INSERM US24-CNRS UAR3633, Paris, France
| | - Aurélien Sokal
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Etienne Crickx
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France; Service de Médecine Interne, Centre Hospitalier Universitaire Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Ivan Nemazanyy
- Structure Fédérative de Recherche Necker, INSERM US24-CNRS UAR3633, Paris, France
| | - Vincent Jung
- Structure Fédérative de Recherche Necker, INSERM US24-CNRS UAR3633, Paris, France
| | - Chiara Guerrera
- Structure Fédérative de Recherche Necker, INSERM US24-CNRS UAR3633, Paris, France
| | - Sébastien Storck
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Matthieu Mahévas
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France; Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, équipe 2, Université Paris-Est Créteil (UPEC), Créteil, France; Service de Médecine Interne, Centre Hospitalier Universitaire Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Antonio Cosma
- Translational Medicine Operations Hub, National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Labellisé Ligue Nationale contre le Cancer, Imagine Institute, Université Paris Cité, Paris, France
| | - Thierry Fest
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, UMR_S1236, Rennes, France; Laboratoire d'Hématologie, Pôle de Biologie, Centre Hospitalier Universitaire, Rennes, France
| | - Claude-Agnès Reynaud
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France.
| | - Jean-Claude Weill
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France.
| |
Collapse
|
74
|
Koers J, Pollastro S, Tol S, Niewold ITG, van Schouwenburg PA, de Vries N, Rispens T. Improving naive B cell isolation by absence of CD45RB glycosylation and CD27 expression in combination with BCR isotype. Eur J Immunol 2022; 52:1630-1639. [PMID: 35862268 DOI: 10.1002/eji.202250013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022]
Abstract
In past years ex vivo and in vivo experimental approaches involving human naive B cells have proven fundamental for elucidation of mechanisms promoting B cell differentiation in both health and disease. For such studies, it is paramount that isolation strategies yield a population of bona fide naive B cells, i.e., B cells that are phenotypically and functionally naive, clonally non-expanded, and have non-mutated BCR variable regions. In this study different combinations of common as well as recently identified B cell markers were compared to isolate naive B cells from human peripheral blood. High-throughput BCR sequencing was performed to analyze levels of somatic hypermutation and clonal expansion. Additionally, contamination from mature mutated B cells intrinsic to each cell-sorting strategy was evaluated and how this impacts the purity of obtained populations. Our results show that current naive B cell isolation strategies harbor contamination from non-naive B cells, and use of CD27-IgD+ is adequate but can be improved by including markers for CD45RB glycosylation and IgM. The finetuning of naive B cell classification provided herein will harmonize research lines using naive B cells, and will improve B cell profiling during health and disease, e.g. during diagnosis, treatment, and vaccination strategies.
Collapse
Affiliation(s)
- Jana Koers
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University medical centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Sabrina Pollastro
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University medical centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Simon Tol
- Sanquin Research, Department of Research facilities, and Landsteiner Laboratory, Amsterdam University medical centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Ilse T G Niewold
- Department of Rheumatology and Clinical Immunology, ARC, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Pauline A van Schouwenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Niek de Vries
- Department of Rheumatology and Clinical Immunology, ARC, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Theo Rispens
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University medical centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
75
|
Zhou J, Ventura CJ, Yu Y, Gao W, Fang RH, Zhang L. Biomimetic Neutrophil Nanotoxoids Elicit Potent Immunity against Acinetobacter baumannii in Multiple Models of Infection. NANO LETTERS 2022; 22:7057-7065. [PMID: 35998891 PMCID: PMC9971251 DOI: 10.1021/acs.nanolett.2c01948] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acinetobacter baumannii is a leading cause of antibiotic-resistant nosocomial infections with high mortality rates, yet there is currently no clinically approved vaccine formulation. During the onset of A. baumannii infection, neutrophils are the primary responders and play a major role in resisting the pathogen. Here, we design a biomimetic nanotoxoid for antivirulence vaccination by using neutrophil membrane-coated nanoparticles to safely capture secreted A. baumannii factors. Vaccination with the nanotoxoid formulation rapidly mobilizes innate immune cells and promotes pathogen-specific adaptive immunity. In murine models of pneumonia, septicemia, and superficial wound infection, immunization with the nanovaccine offers significant protection, improving survival and reducing signs of acute inflammation. Lower bacterial burdens are observed in vaccinated animals regardless of the infection route. Altogether, neutrophil nanotoxoids represent an effective platform for eliciting multivalent immunity to protect against multidrug-resistant A. baumannii in a wide range of disease conditions.
Collapse
Affiliation(s)
- Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Christian J. Ventura
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Yiyan Yu
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
76
|
McGrath JJC, Li L, Wilson PC. Memory B cell diversity: insights for optimized vaccine design. Trends Immunol 2022; 43:343-354. [PMID: 35393268 PMCID: PMC8977948 DOI: 10.1016/j.it.2022.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/02/2023]
Abstract
The overarching logos of mammalian memory B cells (MBCs) is to cache the potential for enhanced antibody production upon secondary exposure to cognate antigenic determinants. However, substantial phenotypic diversity has been identified across MBCs, hinting at the existence of unique origins or subfunctions within this compartment. Herein, we discuss recent advancements in human circulatory MBC subphenotyping as driven by high-throughput cell surface marker analysis and other approaches, as well as speculated and substantiated subfunctions. With this in mind, we hypothesize that the relative induction of specific circulatory MBC subsets might be used as a biomarker for optimally durable vaccines and inform vaccination strategies to subvert antigenic imprinting in the context of highly mutable pathogens such as influenza virus or SARS-CoV-2.
Collapse
Affiliation(s)
- Joshua J C McGrath
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Lei Li
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Patrick C Wilson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
77
|
Graney PL, Zhong Z, Post S, Brito I, Singh A. Engineering early memory B-cell-like phenotype in hydrogel-based immune organoids. J Biomed Mater Res A 2022; 110:1435-1447. [PMID: 35388946 PMCID: PMC9214626 DOI: 10.1002/jbm.a.37388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/11/2022]
Abstract
Memory B cells originate in response to antigenic stimulation in B-cell follicles of secondary lymphoid organs where naive B cells undergo maturation within a subanatomical microenvironment, the germinal centers. The understanding of memory B-cell immunology and its regulation is based primarily on sophisticated experiments that involve mouse models. To date, limited evidence exists on whether memory B cells can be successfully engineered ex vivo, specifically using biomaterials-based platforms that support the growth and differentiation of B cells. Here, we report the characterization of a recently reported maleimide-functionalized poly(ethylene glycol) (PEG) hydrogels as immune organoids towards the development of early memory B-cell phenotype and germinal center-like B cells. We demonstrate that the use of interleukin 9 (IL9), IL21, and bacterial antigen presentation as outer membrane-bound fragments drives the conversion of naive, primary murine B cells to early memory phenotype in ex vivo immune organoids. These findings describe the induction of early memory B-cell-like phenotype in immune organoids and highlight the potential of synthetic organoids as a platform for the future development of antigen-specific bona fide memory B cells for the study of the immune system and generation of therapeutic antibodies.
Collapse
Affiliation(s)
- Pamela L Graney
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Zhe Zhong
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarah Post
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Ilana Brito
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Ankur Singh
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|