51
|
Heteromerization of Dopamine D2 and Oxytocin Receptor in Adult Striatal Astrocytes. Int J Mol Sci 2023; 24:ijms24054677. [PMID: 36902106 PMCID: PMC10002782 DOI: 10.3390/ijms24054677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The ability of oxytocin (OT) to interact with the dopaminergic system through facilitatory D2-OT receptor (OTR) receptor-receptor interaction in the limbic system is increasingly considered to play roles in social or emotional behavior, and suggested to serve as a potential therapeutic target. Although roles of astrocytes in the modulatory effects of OT and dopamine in the central nervous system are well recognized, the possibility of D2-OTR receptor-receptor interaction in astrocytes has been neglected. In purified astrocyte processes from adult rat striatum, we assessed OTR and dopamine D2 receptor expression by confocal analysis. The effects of activation of these receptors were evaluated in the processes through a neurochemical study of glutamate release evoked by 4-aminopyridine; D2-OTR heteromerization was assessed by co-immunoprecipitation and proximity ligation assay (PLA). The structure of the possible D2-OTR heterodimer was estimated by a bioinformatic approach. We found that both D2 and OTR were expressed on the same astrocyte processes and controlled the release of glutamate, showing a facilitatory receptor-receptor interaction in the D2-OTR heteromers. Biochemical and biophysical evidence confirmed D2-OTR heterodimers on striatal astrocytes. The residues in the transmembrane domains four and five of both receptors are predicted to be mainly involved in the heteromerization. In conclusion, roles for astrocytic D2-OTR in the control of glutamatergic synapse functioning through modulation of astrocytic glutamate release should be taken into consideration when considering interactions between oxytocinergic and dopaminergic systems in striatum.
Collapse
|
52
|
Ezkurdia A, Ramírez MJ, Solas M. Metabolic Syndrome as a Risk Factor for Alzheimer's Disease: A Focus on Insulin Resistance. Int J Mol Sci 2023; 24:ijms24054354. [PMID: 36901787 PMCID: PMC10001958 DOI: 10.3390/ijms24054354] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Alzheimer's disease (AD) is the main type of dementia and is a disease with a profound socioeconomic burden due to the lack of effective treatment. In addition to genetics and environmental factors, AD is highly associated with metabolic syndrome, defined as the combination of hypertension, hyperlipidemia, obesity and type 2 diabetes mellitus (T2DM). Among these risk factors, the connection between AD and T2DM has been deeply studied. It has been suggested that the mechanism linking both conditions is insulin resistance. Insulin is an important hormone that regulates not only peripheral energy homeostasis but also brain functions, such as cognition. Insulin desensitization, therefore, could impact normal brain function increasing the risk of developing neurodegenerative disorders in later life. Paradoxically, it has been demonstrated that decreased neuronal insulin signalling can also have a protective role in aging and protein-aggregation-associated diseases, as is the case in AD. This controversy is fed by studies focused on neuronal insulin signalling. However, the role of insulin action on other brain cell types, such as astrocytes, is still unexplored. Therefore, it is worthwhile exploring the involvement of the astrocytic insulin receptor in cognition, as well as in the onset and/or development of AD.
Collapse
Affiliation(s)
- Amaia Ezkurdia
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - María J. Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence:
| |
Collapse
|
53
|
Bustos LM, Sattler R. The Fault in Our Astrocytes - cause or casualties of proteinopathies of ALS/FTD and other neurodegenerative diseases? FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1075805. [PMID: 39165755 PMCID: PMC11334001 DOI: 10.3389/fmmed.2023.1075805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/08/2023] [Indexed: 08/22/2024]
Abstract
Many neurodegenerative diseases fall under the class of diseases known as proteinopathies, whereby the structure and localization of specific proteins become abnormal. These aberrant proteins often aggregate within cells which disrupts vital homeostatic and physiological cellular functions, ultimately contributing to cell death. Although neurodegenerative disease research is typically neurocentric, there is evidence supporting the role of non-neuronal cells in the pathogenesis of these diseases. Specifically, the role of astrocytes in neurodegenerative diseases has been an ever-growing area of research. Astrocytes are one of the most abundant cell types in the central nervous system (CNS) and provide an array of essential homeostatic functions that are disrupted in neurodegenerative diseases. Astrocytes can exhibit a reactive phenotype that is characterized by molecular changes, as well as changes in morphology and function. In neurodegenerative diseases, there is potential for reactive astrocytes to assume a loss-of-function phenotype in homeostatic operations such as synapse maintenance, neuronal metabolic support, and facilitating cell-cell communication between glia and neurons. They are also able to concurrently exhibit gain-of-function phenotypes that can be destructive to neural networks and the astrocytes themselves. Additionally, astrocytes have been shown to internalize disease related proteins and reflect similar or exacerbated pathology that has been observed in neurons. Here, we review several major neurodegenerative disease-specific proteinopathies and what is known about their presence in astrocytes and the potential consequences regarding cell and non-cell autonomous neurodegeneration.
Collapse
Affiliation(s)
- Lynette M. Bustos
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Barrow Neurological Institute, Phoenix, AZ, United States
| | - Rita Sattler
- Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
54
|
Abstract
Amyloid fibers of the protein α-synuclein, found in Lewy body deposits, are hallmarks of Parkinson's disease. We here show that α-synuclein amyloids catalyze biologically relevant chemical reactions in vitro. Amyloid fibers, but not monomers, of α-synuclein catalyzed hydrolysis of the model ester para-nitrophenyl acetate and dephosphorylation of the model phosphoester para-nitrophenyl-orthophosphate. When His50 was replaced with Ala in α-synuclein, dephosphorylation but not esterase activity of amyloids was diminished. Truncation of the protein's C-terminus had no effect on fiber catalytic efficiency. Catalytic activity of α-synuclein fibers may be a new gain-of-function that plays a role in Parkinson's disease.
Collapse
|
55
|
Filippini A, Salvi V, Dattilo V, Magri C, Castrezzati S, Veerhuis R, Bosisio D, Gennarelli M, Russo I. LRRK2 Kinase Inhibition Attenuates Astrocytic Activation in Response to Amyloid β 1-42 Fibrils. Biomolecules 2023; 13:biom13020307. [PMID: 36830676 PMCID: PMC9953366 DOI: 10.3390/biom13020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Intracerebral accumulation of amyloid-β in the extracellular plaques of Alzheimer's disease (AD) brains represents the main cause of reactive astrogliosis and neuroinflammatory response. Of relevance, leucine-rich repeat kinase 2 (LRRK2), a kinase linked to genetic and sporadic Parkinson's disease (PD), has been identified as a positive mediator of neuroinflammation upon different inflammatory stimuli, however its pathogenicity in AD remains mainly unexplored. In this study, by using pharmacological inhibition of LRRK2 and murine primary astrocytes, we explored whether LRRK2 regulates astrocytic activation in response to amyloid-β1-42 (Aβ1-42). Our results showed that murine primary astrocytes become reactive and recruit serine 935 phosphorylated LRRK2 upon Aβ1-42 fibril exposure. Moreover, we found that pharmacological inhibition of LRRK2, with two different kinase inhibitors, can attenuate Aβ1-42-mediated inflammation and favor the clearance of Aβ1-42 fibrils in astrocytes. Overall, our findings report that LRRK2 kinase activity modulates astrocytic reactivity and functions in the presence of Aβ1-42 deposits and indicate that PD-linked LRRK2 might contribute to AD-related neuroinflammation and pathogenesis.
Collapse
Affiliation(s)
- Alice Filippini
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Valentina Salvi
- Oncology and Experimental Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Vincenzo Dattilo
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Chiara Magri
- Biology and Genetics Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Stefania Castrezzati
- Human Anatomy Unit, Department of Biomedical Sciences and Biotechnologies, University of Brescia, 25123 Brescia, Italy
| | - Robert Veerhuis
- Amsterdam UMC, Psychiatry, Amsterdam Public Health Research Institute and Neuroscience Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam UMC, Department of Clinical Chemistry, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Daniela Bosisio
- Oncology and Experimental Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Massimo Gennarelli
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Biology and Genetics Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Isabella Russo
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Biology and Genetics Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-030-371-7461; Fax: +39-030-370-1157
| |
Collapse
|
56
|
Gerasimova T, Stepanenko E, Novosadova L, Arsenyeva E, Shimchenko D, Tarantul V, Grivennikov I, Nenasheva V, Novosadova E. Glial Cultures Differentiated from iPSCs of Patients with PARK2-Associated Parkinson's Disease Demonstrate a Pro-Inflammatory Shift and Reduced Response to TNFα Stimulation. Int J Mol Sci 2023; 24:ijms24032000. [PMID: 36768317 PMCID: PMC9916517 DOI: 10.3390/ijms24032000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative diseases characterized by progressive loss of midbrain dopaminergic neurons in the substantia nigra. Mutations in the PARK2 gene are a frequent cause of familial forms of PD. Sustained chronic neuroinflammation in the central nervous system makes a significant contribution to neurodegeneration events. In response to inflammatory factors produced by activated microglia, astrocytes change their transcriptional programs and secretion profiles, thus acting as immunocompetent cells. Here, we investigated iPSC-derived glial cell cultures obtained from healthy donors (HD) and from PD patients with PARK2 mutations in resting state and upon stimulation by TNFα. The non-stimulated glia of PD patients demonstrated higher IL1B and IL6 expression levels and increased IL6 protein synthesis, while BDNF and GDNF expression was down-regulated when compared to that of the glial cells of HDs. In the presence of TNFα, all of the glial cultures displayed a multiplied expression of genes encoding inflammatory cytokines: TNFA, IL1B, and IL6, as well as IL6 protein synthesis, although PD glia responded to TNFα stimulation less strongly than HD glia. Our results demonstrated a pro-inflammatory shift, a suppression of the neuroprotective gene program, and some depletion of reactivity to TNFα in PARK2-deficient glia compared to glial cells of HDs.
Collapse
Affiliation(s)
- Tatiana Gerasimova
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Correspondence:
| | - Ekaterina Stepanenko
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Lyudmila Novosadova
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Elena Arsenyeva
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Darya Shimchenko
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Vyacheslav Tarantul
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Igor Grivennikov
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Valentina Nenasheva
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Ekaterina Novosadova
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| |
Collapse
|
57
|
de Siqueira EA, Magalhães EP, de Menezes RRPPB, Sampaio TL, Lima DB, da Silva Martins C, Neves KRT, de Castro Brito GA, Martins AMC, de Barros Viana GS. Vitamin D3 actions on astrocyte cells: A target for therapeutic strategy in Parkinson's disease? Neurosci Lett 2023; 793:136997. [PMID: 36470505 DOI: 10.1016/j.neulet.2022.136997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic cells in the substantia nigra pars compacta. PD patients' brains show neuroinflammation, oxidative stress, and mitochondrial dysfunction. The present study aims to evaluate the neuroprotective activity of VD3 on astrocytes after their exposure to rotenone (ROT) a natural pesticide known to exhibit neurotoxic potential via the inhibition of mitochondrial complex I. Cell viability parameters were evaluated by the MTT test and staining with 7-AAD in cultures of astrocytes treated and untreated with VD3 (0.1, 0.5, and 1.0 ng/mL) and/or ROT (10 µg/mL or 5 µg/mL), and the cytoplasmic production of ROS and the cell death profile were measured by flow cytometry. Glutathione accumulation and ultrastructural changes were evaluated and immunocytochemistry assays for NF-kB and Nrf2 were also carried out. The results showed that VD3 improved the viability of cells previously treated with VD3 and then exposed to ROT, reducing the occurrence of necrotic and apoptotic events. Furthermore, cells exposed to ROT showed increased production of ROS, which decreased significantly with previous treatment with VD3. Importantly, the decrease by ROT in the mitochondrial transmembrane potential was significantly prevented after treating cells with VD3, especially at a concentration of 1 ng/mL. Therefore, treatment with VD3 protected astrocytes from damage caused by ROT, decreasing oxidative stress, decreasing NF-kB and Nrf2 expressions, and improving mitochondrial function. However, further investigation is needed regarding the participation and mechanism of action of VD3 in this cellular model of PD focusing on the crosstalk between Nrf2 and NF-kB.
Collapse
|
58
|
Ozoran H, Srinivasan R. Astrocytes and Alpha-Synuclein: Friend or Foe? JOURNAL OF PARKINSON'S DISEASE 2023; 13:1289-1301. [PMID: 38007674 PMCID: PMC10741342 DOI: 10.3233/jpd-230284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/21/2023] [Indexed: 11/27/2023]
Abstract
Despite its devastating disease burden and alarming prevalence, the etiology of Parkinson's disease (PD) remains to be completely elucidated. PD is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta and this correlates with the accumulation of misfolded α-synuclein. While the aggregation of α-synuclein in the form of Lewy bodies or Lewy neurites is a well-established intraneuronal hallmark of the disease process, our understanding of the glial contribution to aberrant α-synuclein proteostasis is lacking. In this regard, restoring astrocyte function during early PD could offer a promising therapeutic avenue and understanding the involvement of astrocytes in handling/mishandling of α-synuclein is of particular interest. Here, we explore the growing body of scientific literature implicating aberrant astrocytic α-synuclein proteostasis with the seemingly inexorable pathological sequelae typifying PD. We also provide a perspective on how heterogeneity in the morphological relationship between astrocytes and neurons will need to be considered in the context of PD pathogenesis.
Collapse
Affiliation(s)
- Hakan Ozoran
- Clinical Medical School, University of Oxford, Oxford, UK
- Green Templeton College, University of Oxford, Oxford, UK
| | - Rahul Srinivasan
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, USA
- Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| |
Collapse
|
59
|
The complex role of inflammation and gliotransmitters in Parkinson's disease. Neurobiol Dis 2023; 176:105940. [PMID: 36470499 PMCID: PMC10372760 DOI: 10.1016/j.nbd.2022.105940] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Our understanding of the role of innate and adaptive immune cell function in brain health and how it goes awry during aging and neurodegenerative diseases is still in its infancy. Inflammation and immunological dysfunction are common components of Parkinson's disease (PD), both in terms of motor and non-motor components of PD. In recent decades, the antiquated notion that the central nervous system (CNS) in disease states is an immune-privileged organ, has been debunked. The immune landscape in the CNS influences peripheral systems, and peripheral immunological changes can alter the CNS in health and disease. Identifying immune and inflammatory pathways that compromise neuronal health and survival is critical in designing innovative and effective strategies to limit their untoward effects on neuronal health.
Collapse
|
60
|
Brandebura AN, Paumier A, Onur TS, Allen NJ. Astrocyte contribution to dysfunction, risk and progression in neurodegenerative disorders. Nat Rev Neurosci 2023; 24:23-39. [PMID: 36316501 DOI: 10.1038/s41583-022-00641-1] [Citation(s) in RCA: 185] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
There is increasing appreciation that non-neuronal cells contribute to the initiation, progression and pathology of diverse neurodegenerative disorders. This Review focuses on the role of astrocytes in disorders including Alzheimer disease, Parkinson disease, Huntington disease and amyotrophic lateral sclerosis. The important roles astrocytes have in supporting neuronal function in the healthy brain are considered, along with studies that have demonstrated how the physiological properties of astrocytes are altered in neurodegenerative disorders and may explain their contribution to neurodegeneration. Further, the question of whether in neurodegenerative disorders with specific genetic mutations these mutations directly impact on astrocyte function, and may suggest a driving role for astrocytes in disease initiation, is discussed. A summary of how astrocyte transcriptomic and proteomic signatures are altered during the progression of neurodegenerative disorders and may relate to functional changes is provided. Given the central role of astrocytes in neurodegenerative disorders, potential strategies to target these cells for future therapeutic avenues are discussed.
Collapse
Affiliation(s)
- Ashley N Brandebura
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Adrien Paumier
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tarik S Onur
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
61
|
Cell Biology of Parkin: Clues to the Development of New Therapeutics for Parkinson's Disease. CNS Drugs 2022; 36:1249-1267. [PMID: 36378485 DOI: 10.1007/s40263-022-00973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
Parkinson's disease is the second most prevalent neurodegenerative disease and contributes significantly to morbidity globally. Currently, no disease-modifying therapies exist to combat this disorder. Insights from the molecular and cellular pathobiology of the disease seems to indicate promising therapeutic targets. The parkin protein has been extensively studied for its role in autosomal recessive Parkinson's disease and, more recently, its role in sporadic Parkinson's disease. Parkin is an E3 ubiquitin ligase that plays a prominent role in mitochondrial quality control, mitochondrial-dependent cell death pathways, and other diverse functions. Understanding the numerous roles of parkin has introduced many new possibilities for therapeutic modalities in treating both autosomal recessive Parkinson's disease and sporadic Parkinson's disease. In this article, we review parkin biology with an emphasis on mitochondrial-related functions and propose novel, potentially disease-modifying therapeutic approaches for treating this debilitating condition.
Collapse
|
62
|
Minchev D, Kazakova M, Sarafian V. Neuroinflammation and Autophagy in Parkinson's Disease-Novel Perspectives. Int J Mol Sci 2022; 23:ijms232314997. [PMID: 36499325 PMCID: PMC9735607 DOI: 10.3390/ijms232314997] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. It is characterized by the accumulation of α-Synuclein aggregates and the degeneration of dopaminergic neurons in substantia nigra in the midbrain. Although the exact mechanisms of neuronal degeneration in PD remain largely elusive, various pathogenic factors, such as α-Synuclein cytotoxicity, mitochondrial dysfunction, oxidative stress, and pro-inflammatory factors, may significantly impair normal neuronal function and promote apoptosis. In this context, neuroinflammation and autophagy have emerged as crucial processes in PD that contribute to neuronal loss and disease development. They are regulated in a complex interconnected manner involving most of the known PD-associated genes. This review summarizes evidence of the implication of neuroinflammation and autophagy in PD and delineates the role of inflammatory factors and autophagy-related proteins in this complex condition. It also illustrates the particular significance of plasma and serum immune markers in PD and their potential to provide a personalized approach to diagnosis and treatment.
Collapse
Affiliation(s)
- Danail Minchev
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Correspondence:
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
63
|
Prunell G, Olivera-Bravo S. A Focus on Astrocyte Contribution to Parkinson's Disease Etiology. Biomolecules 2022; 12:biom12121745. [PMID: 36551173 PMCID: PMC9775515 DOI: 10.3390/biom12121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative disease of high prevalence, characterized by the prominent death of dopaminergic neurons in the substantia nigra pars compacta, which produces dopamine deficiency, leading to classic motor symptoms. Although PD has traditionally been considered as a neuronal cell autonomous pathology, in which the damage of vulnerable neurons is responsible for the disease, growing evidence strongly suggests that astrocytes might have an active role in the neurodegeneration observed. In the present review, we discuss several studies evidencing astrocyte implications in PD, highlighting the consequences of both the loss of normal homeostatic functions and the gain in toxic functions for the wellbeing of dopaminergic neurons. The revised information provides significant evidence that allows astrocytes to be positioned as crucial players in PD etiology, a factor that needs to be taken into account when considering therapeutic targets for the treatment of the disease.
Collapse
Affiliation(s)
- Giselle Prunell
- Laboratorio de Neurodegeneración y Neuroprotección, Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay
- Correspondence: (G.P.); (S.O.-B.); Tel.: +598-24871616 (ext. 121 or 123 or 171) (G.P. & S.O.-B.)
| | - Silvia Olivera-Bravo
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay
- Correspondence: (G.P.); (S.O.-B.); Tel.: +598-24871616 (ext. 121 or 123 or 171) (G.P. & S.O.-B.)
| |
Collapse
|
64
|
Kim J, Daadi EW, Oh T, Daadi ES, Daadi MM. Human Induced Pluripotent Stem Cell Phenotyping and Preclinical Modeling of Familial Parkinson's Disease. Genes (Basel) 2022; 13:1937. [PMID: 36360174 PMCID: PMC9689743 DOI: 10.3390/genes13111937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Parkinson's disease (PD) is primarily idiopathic and a highly heterogenous neurodegenerative disease with patients experiencing a wide array of motor and non-motor symptoms. A major challenge for understanding susceptibility to PD is to determine the genetic and environmental factors that influence the mechanisms underlying the variations in disease-associated traits. The pathological hallmark of PD is the degeneration of dopaminergic neurons in the substantia nigra pars compacta region of the brain and post-mortem Lewy pathology, which leads to the loss of projecting axons innervating the striatum and to impaired motor and cognitive functions. While the cause of PD is still largely unknown, genome-wide association studies provide evidence that numerous polymorphic variants in various genes contribute to sporadic PD, and 10 to 15% of all cases are linked to some form of hereditary mutations, either autosomal dominant or recessive. Among the most common mutations observed in PD patients are in the genes LRRK2, SNCA, GBA1, PINK1, PRKN, and PARK7/DJ-1. In this review, we cover these PD-related mutations, the use of induced pluripotent stem cells as a disease in a dish model, and genetic animal models to better understand the diversity in the pathogenesis and long-term outcomes seen in PD patients.
Collapse
Affiliation(s)
- Jeffrey Kim
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
| | - Etienne W. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Thomas Oh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Elyas S. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Marcel M. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
- Department of Radiology, Long School of Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
65
|
Ravinther AI, Dewadas HD, Tong SR, Foo CN, Lin YE, Chien CT, Lim YM. Molecular Pathways Involved in LRRK2-Linked Parkinson’s Disease: A Systematic Review. Int J Mol Sci 2022; 23:ijms231911744. [PMID: 36233046 PMCID: PMC9569706 DOI: 10.3390/ijms231911744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Parkinson’s disease is one of the most common neurodegenerative diseases affecting the ageing population, with a prevalence that has doubled over the last 30 years. As the mechanism of the disease is not fully elucidated, the current treatments are unable to effectively prevent neurodegeneration. Studies have found that mutations in Leucine-rich-repeat-kinase 2 (LRRK2) are the most common cause of familial Parkinson’s disease (PD). Moreover, aberrant (higher) LRRK2 kinase activity has an influence in idiopathic PD as well. Hence, the aim of this review is to categorize and synthesize current information related to LRRK2-linked PD and present the factors associated with LRRK2 that can be targeted therapeutically. A systematic review was conducted using the databases PubMed, Medline, SCOPUS, SAGE, and Cochrane (January 2016 to July 2021). Search terms included “Parkinson’s disease”, “mechanism”, “LRRK2”, and synonyms in various combinations. The search yielded a total of 988 abstracts for initial review, 80 of which met the inclusion criteria. Here, we emphasize molecular mechanisms revealed in recent in vivo and in vitro studies. By consolidating the recent updates in the field of LRRK2-linked PD, researchers can further evaluate targets for therapeutic application.
Collapse
Affiliation(s)
- Ailyn Irvita Ravinther
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hemaniswarri Dewi Dewadas
- Centre for Biomedical and Nutrition Research, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Perak, Malaysia
| | - Shi Ruo Tong
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
| | - Chai Nien Foo
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Department of Population Medicine, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
| | - Yu-En Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Ting Chien
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yang Mooi Lim
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Department of Pre-Clinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
66
|
Barberis E, Khoso S, Sica A, Falasca M, Gennari A, Dondero F, Afantitis A, Manfredi M. Precision Medicine Approaches with Metabolomics and Artificial Intelligence. Int J Mol Sci 2022; 23:11269. [PMID: 36232571 PMCID: PMC9569627 DOI: 10.3390/ijms231911269] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Recent technological innovations in the field of mass spectrometry have supported the use of metabolomics analysis for precision medicine. This growth has been allowed also by the application of algorithms to data analysis, including multivariate and machine learning methods, which are fundamental to managing large number of variables and samples. In the present review, we reported and discussed the application of artificial intelligence (AI) strategies for metabolomics data analysis. Particularly, we focused on widely used non-linear machine learning classifiers, such as ANN, random forest, and support vector machine (SVM) algorithms. A discussion of recent studies and research focused on disease classification, biomarker identification and early diagnosis is presented. Challenges in the implementation of metabolomics-AI systems, limitations thereof and recent tools were also discussed.
Collapse
Affiliation(s)
- Elettra Barberis
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Shahzaib Khoso
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
- Humanitas Clinical and Research Center, IRCCS, 20089 Rozzano, Italy
| | - Marco Falasca
- Metabolic Signaling Group, Curtin Medical School, Curtin University, Perth 6845, Australia
| | - Alessandra Gennari
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Francesco Dondero
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, 15100 Alessandria, Italy
| | | | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
67
|
Afridi R, Rahman MH, Suk K. Implications of glial metabolic dysregulation in the pathophysiology of neurodegenerative diseases. Neurobiol Dis 2022; 174:105874. [PMID: 36154877 DOI: 10.1016/j.nbd.2022.105874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/28/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Glial cells are the most abundant cells of the brain, outnumbering neurons. These multifunctional cells are crucial for maintaining brain homeostasis by providing trophic and nutritional support to neurons, sculpting synapses, and providing an immune defense. Glia are highly plastic and undergo both structural and functional alterations in response to changes in the brain microenvironment. Glial phenotypes are intimately regulated by underlying metabolic machinery, which dictates the effector functions of these cells. Altered brain energy metabolism and chronic neuroinflammation are common features of several neurodegenerative diseases. Microglia and astrocytes are the major glial cells fueling the ongoing neuroinflammatory process, exacerbating neurodegeneration. Distinct metabolic perturbations in microglia and astrocytes, including altered carbohydrate, lipid, and amino acid metabolism have been documented in neurodegenerative diseases. These disturbances aggravate the neurodegenerative process by potentiating the inflammatory activation of glial cells. This review covers the recent advances in the molecular aspects of glial metabolic changes in the pathophysiology of neurodegenerative diseases. Finally, we discuss studies exploiting glial metabolism as a potential therapeutic avenue in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruqayya Afridi
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
68
|
Araújo B, Caridade-Silva R, Soares-Guedes C, Martins-Macedo J, Gomes ED, Monteiro S, Teixeira FG. Neuroinflammation and Parkinson's Disease-From Neurodegeneration to Therapeutic Opportunities. Cells 2022; 11:cells11182908. [PMID: 36139483 PMCID: PMC9497016 DOI: 10.3390/cells11182908] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder worldwide. Clinically, it is characterized by a progressive degeneration of dopaminergic neurons (DAn), resulting in severe motor complications. Preclinical and clinical studies have indicated that neuroinflammation can play a role in PD pathophysiology, being associated with its onset and progression. Nevertheless, several key points concerning the neuroinflammatory process in PD remain to be answered. Bearing this in mind, in the present review, we cover the impact of neuroinflammation on PD by exploring the role of inflammatory cells (i.e., microglia and astrocytes) and the interconnections between the brain and the peripheral system. Furthermore, we discuss both the innate and adaptive immune responses regarding PD pathology and explore the gut–brain axis communication and its influence on the progression of the disease.
Collapse
Affiliation(s)
- Bruna Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rita Caridade-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carla Soares-Guedes
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Martins-Macedo
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Eduardo D. Gomes
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Fábio G. Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
69
|
Sen T, Thummer RP. CRISPR and iPSCs: Recent Developments and Future Perspectives in Neurodegenerative Disease Modelling, Research, and Therapeutics. Neurotox Res 2022; 40:1597-1623. [PMID: 36044181 PMCID: PMC9428373 DOI: 10.1007/s12640-022-00564-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/17/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022]
Abstract
Neurodegenerative diseases are prominent causes of pain, suffering, and death worldwide. Traditional approaches modelling neurodegenerative diseases are deficient, and therefore, improved strategies that effectively recapitulate the pathophysiological conditions of neurodegenerative diseases are the need of the hour. The generation of human-induced pluripotent stem cells (iPSCs) has transformed our ability to model neurodegenerative diseases in vitro and provide an unlimited source of cells (including desired neuronal cell types) for cell replacement therapy. Recently, CRISPR/Cas9-based genome editing has also been gaining popularity because of the flexibility they provide to generate and ablate disease phenotypes. In addition, the recent advancements in CRISPR/Cas9 technology enables researchers to seamlessly target and introduce precise modifications in the genomic DNA of different human cell lines, including iPSCs. CRISPR-iPSC-based disease modelling, therefore, allows scientists to recapitulate the pathological aspects of most neurodegenerative processes and investigate the role of pathological gene variants in healthy non-patient cell lines. This review outlines how iPSCs, CRISPR/Cas9, and CRISPR-iPSC-based approaches accelerate research on neurodegenerative diseases and take us closer to a cure for neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic Lateral Sclerosis, and so forth.
Collapse
Affiliation(s)
- Tirthankar Sen
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| |
Collapse
|
70
|
Distinct and Dynamic Transcriptome Adaptations of iPSC-Generated Astrocytes after Cytokine Stimulation. Cells 2022; 11:cells11172644. [PMID: 36078052 PMCID: PMC9455058 DOI: 10.3390/cells11172644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Astrocytes (ACs) do not only play a role in normal neurogenesis and brain homeostasis, but also in inflammatory and neurodevelopmental disorders. We studied here the different patterns of inflammatory activation triggered by cytokines in human induced pluripotent stem cell (iPSC)-derived ACs. An optimized differentiation protocol provided non-inflamed ACs. These cells reacted to TNFα with a rapid translocation of NFκB, while AC precursors showed little response. Transcriptome changes were quantified at seven time points (2–72 h) after stimulation with TNFα, IFNγ or TNFα plus IFNγ. TNFα triggered a strong response within 2 h. It peaked from 12–24 h and reverted towards the ground state after 72 h. Activation by IFNγ was also rapid, but the response pattern differed from that of TNFα. For instance, several chemokines up-regulated by TNFα were not affected by IFNγ. Instead, MHC-II-related antigen presentation was drastically enhanced. The combination of the two cytokines led to a stronger and more persistent response. For instance, TRIB3 up-regulation by the combination of TNFα plus IFNγ may have slowed NFκB inactivation. Additionally, highly synergistic regulation was observed for inflammation modifiers, such as CASP4, and for STAT1-controlled genes. The combination of the cytokines also increased oxidative stress markers (e.g., CHAC1), led to phenotypic changes in ACs and triggered markers related to cell death. In summary, these data demonstrate that there is a large bandwidth of pro-inflammatory AC states, and that single markers are not suitable to describe AC activation or their modulation in disease, development and therapy.
Collapse
|
71
|
Oun A, Sabogal-Guaqueta AM, Galuh S, Alexander A, Kortholt A, Dolga AM. The multifaceted role of LRRK2 in Parkinson's disease: From human iPSC to organoids. Neurobiol Dis 2022; 173:105837. [PMID: 35963526 DOI: 10.1016/j.nbd.2022.105837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease affecting elderly people. Pathogenic mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) are the most common cause of autosomal dominant PD. LRRK2 activity is enhanced in both familial and idiopathic PD, thereby studies on LRRK2-related PD research are essential for understanding PD pathology. Finding an appropriate model to mimic PD pathology is crucial for revealing the molecular mechanisms underlying disease progression, and aiding drug discovery. In the last few years, the use of human-induced pluripotent stem cells (hiPSCs) grew exponentially, especially in studying neurodegenerative diseases like PD, where working with brain neurons and glial cells was mainly possible using postmortem samples. In this review, we will discuss the use of hiPSCs as a model for PD pathology and research on the LRRK2 function in both neuronal and immune cells, together with reviewing the recent advances in 3D organoid models and microfluidics.
Collapse
Affiliation(s)
- Asmaa Oun
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands; Department of Cell Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology (GBB), University of Groningen, Groningen, the Netherlands; Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Angelica Maria Sabogal-Guaqueta
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands
| | - Sekar Galuh
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands
| | - Anastasia Alexander
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology (GBB), University of Groningen, Groningen, the Netherlands; YETEM-Innovative Technologies Application and Research Centre Suleyman Demirel University, Isparta, Turkey.
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
72
|
Sanz FJ, Solana-Manrique C, Lilao-Garzón J, Brito-Casillas Y, Muñoz-Descalzo S, Paricio N. Exploring the link between Parkinson's disease and type 2 diabetes mellitus in Drosophila. FASEB J 2022; 36:e22432. [PMID: 35766235 DOI: 10.1096/fj.202200286r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Diabetes mellitus (DM) is a metabolic disease characterized by high levels of glucose in blood. Recent epidemiological studies have highlighted the link between both diseases; it is even considered that DM might be a risk factor for PD. To further investigate the likely relation of these diseases, we have used a Drosophila PD model based on inactivation of the DJ-1β gene (ortholog of human DJ-1), and diet-induced Drosophila and mouse type 2 DM (T2DM) models, together with human neuron-like cells. T2DM models were obtained by feeding flies with a high sugar-containing medium, and mice with a high fat diet. Our results showed that both fly models exhibit common phenotypes such as alterations in carbohydrate homeostasis, mitochondrial dysfunction or motor defects, among others. In addition, we demonstrated that T2DM might be a risk factor of developing PD since our diet-induced fly and mouse T2DM models present DA neuron dysfunction, a hallmark of PD. We also confirmed that neurodegeneration is caused by increased glucose levels, which has detrimental effects in human neuron-like cells by triggering apoptosis and leading to cell death. Besides, the observed phenotypes were exacerbated in DJ-1β mutants cultured in the high sugar medium, indicating that DJ-1 might have a role in carbohydrate homeostasis. Finally, we have confirmed that metformin, an antidiabetic drug, is a potential candidate for PD treatment and that it could prevent PD onset in T2DM model flies. This result supports antidiabetic compounds as promising PD therapeutics.
Collapse
Affiliation(s)
- Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjassot, Spain.,Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot, Spain
| | - Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjassot, Spain.,Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot, Spain
| | - Joaquín Lilao-Garzón
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Yeray Brito-Casillas
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Silvia Muñoz-Descalzo
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjassot, Spain.,Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot, Spain
| |
Collapse
|
73
|
Tran VTA, Lee LP, Cho H. Neuroinflammation in neurodegeneration via microbial infections. Front Immunol 2022; 13:907804. [PMID: 36052093 PMCID: PMC9425114 DOI: 10.3389/fimmu.2022.907804] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Recent epidemiological studies show a noticeable correlation between chronic microbial infections and neurological disorders. However, the underlying mechanisms are still not clear due to the biological complexity of multicellular and multiorgan interactions upon microbial infections. In this review, we show the infection leading to neurodegeneration mediated by multiorgan interconnections and neuroinflammation. Firstly, we highlight three inter-organ communications as possible routes from infection sites to the brain: nose-brain axis, lung-brain axis, and gut-brain axis. Next, we described the biological crosstalk between microglia and astrocytes upon pathogenic infection. Finally, our study indicates how neuroinflammation is a critical player in pathogen-mediated neurodegeneration. Taken together, we envision that antibiotics targeting neuro-pathogens could be a potential therapeutic strategy for neurodegeneration.
Collapse
Affiliation(s)
- Van Thi Ai Tran
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
| | - Luke P. Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Harvard Institute of Medicine, Harvard University, Boston, MA, United States
- *Correspondence: Hansang Cho, ; Luke P. Lee,
| | - Hansang Cho
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- *Correspondence: Hansang Cho, ; Luke P. Lee,
| |
Collapse
|
74
|
Kwon S, Jung SY, Han KD, Jung JH, Yeo Y, Cho EB, Ahn JH, Shin DW, Min JH. Risk of Parkinson's disease in multiple sclerosis and neuromyelitis optica spectrum disorder: a nationwide cohort study in South Korea. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-329389. [PMID: 35902226 DOI: 10.1136/jnnp-2022-329389] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/11/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Neurodegeneration is associated with pathogenesis of both multiple sclerosis (MS) and neuromyelitis optica (NMOSD). Parkinson's disease (PD) is a representative neurodegenerative disease, however, whether MS or NMOSD is associated with risk of PD is not known. METHODS MS and NMOSD cohorts were collected from the Korean National Health Insurance Service between 1 January 2010 and 31 December 2017, using International Classification of Diseases 10th revision diagnosis codes and information in the Rare Intractable Disease management programme. The PD incidence rate that occurred after a 1-year lag period was calculated and compared with that of a control cohort matched for age, sex, hypertension, diabetes and dyslipidaemia in a 1:5 ratio. RESULTS The incidence rates of PD in patients with MS and NMOSD were 3.38 and 1.27 per 1000 person-years, respectively, and were higher than that of their matched control groups. The adjusted HR of PD was 7.73 (95% CI, 3.87 to 15.47) in patients with MS and 2.61 (95% CI, 1.13 to 6.02) in patients with NMOSD compared with matched controls. In both patients with MS and NMOSD, there were no significant differences in relative risk when stratified by sex, age, diabetes, hypertension and dyslipidaemia. CONCLUSION The PD risk was higher in patients with MS and NMOSD compared with healthy controls and was particularly high in patients with MS. Further investigations should be performed to determine the pathophysiology and occurrence of PD in patients with MS and NMOSD.
Collapse
Affiliation(s)
- Soonwook Kwon
- Neurology, Inha University Hospital, Incheon, South Korea
| | - Se Young Jung
- Family Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Digital Healthcare, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyung-do Han
- Statistics and Actuarial Science, Soongsil University, Seoul, South Korea
| | - Jin Hyung Jung
- Biostatistics, The Catholic University of Korea, Seoul, South Korea
| | - Yohwan Yeo
- Family Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea
| | - Eun Bin Cho
- Neurology, Gyeongsang Institute of Health Sciences, Jinju, South Korea
- Neurology, Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | | | - Dong Wook Shin
- Family Medicine, Samsung Medical Center, Gangnam-gu, South Korea
- Clinical Research Design and Evaluation/Department of Digital Health, SAIHST, Seoul, South Korea
- Center for Wireless and Population Health Systems, University of California, San Diego, California, USA
| | - Ju-Hong Min
- Neurology, Samsung Medical Center, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Gangnam-gu, South Korea
- Health Sciences and Technology, SAIHST, Seoul, South Korea
| |
Collapse
|
75
|
Bowles KR, Pugh DA, Liu Y, Patel T, Renton AE, Bandres-Ciga S, Gan-Or Z, Heutink P, Siitonen A, Bertelsen S, Cherry JD, Karch CM, Frucht SJ, Kopell BH, Peter I, Park YJ, Charney A, Raj T, Crary JF, Goate AM. 17q21.31 sub-haplotypes underlying H1-associated risk for Parkinson's disease are associated with LRRC37A/2 expression in astrocytes. Mol Neurodegener 2022; 17:48. [PMID: 35841044 PMCID: PMC9284779 DOI: 10.1186/s13024-022-00551-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/21/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is genetically associated with the H1 haplotype of the MAPT 17q.21.31 locus, although the causal gene and variants underlying this association have not been identified. METHODS To better understand the genetic contribution of this region to PD and to identify novel mechanisms conferring risk for the disease, we fine-mapped the 17q21.31 locus by constructing discrete haplotype blocks from genetic data. We used digital PCR to assess copy number variation associated with PD-associated blocks, and used human brain postmortem RNA-seq data to identify candidate genes that were then further investigated using in vitro models and human brain tissue. RESULTS We identified three novel H1 sub-haplotype blocks across the 17q21.31 locus associated with PD risk. Protective sub-haplotypes were associated with increased LRRC37A/2 copy number and expression in human brain tissue. We found that LRRC37A/2 is a membrane-associated protein that plays a role in cellular migration, chemotaxis and astroglial inflammation. In human substantia nigra, LRRC37A/2 was primarily expressed in astrocytes, interacted directly with soluble α-synuclein, and co-localized with Lewy bodies in PD brain tissue. CONCLUSION These data indicate that a novel candidate gene, LRRC37A/2, contributes to the association between the 17q21.31 locus and PD via its interaction with α-synuclein and its effects on astrocytic function and inflammatory response. These data are the first to associate the genetic association at the 17q21.31 locus with PD pathology, and highlight the importance of variation at the 17q21.31 locus in the regulation of multiple genes other than MAPT and KANSL1, as well as its relevance to non-neuronal cell types.
Collapse
Affiliation(s)
- Kathryn R. Bowles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Derian A. Pugh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Yiyuan Liu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Tulsi Patel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Alan E. Renton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute On Aging, National Institutes of Health, Bethesda, MD USA
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, Québec Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec Canada
| | - Peter Heutink
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ari Siitonen
- Institute of Clinical Medicine, Department of Neurology, University of Oulu, Oulu, Finland
- Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Sarah Bertelsen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Jonathan D. Cherry
- Alzheimer’s Disease and CTE Center, Boston University, Boston University School of Medicine, Boston, MA USA
- Department of Neurology, Boston University School of Medicine, Boston, MA USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA USA
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St Louis, St. Louis, MO USA
| | - Steven J. Frucht
- Department of Neurology, Fresco Institute for Parkinson’s and Movement Disorders, New York University Langone, New York, NY USA
| | - Brian H. Kopell
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Center for Neuromodulation, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Inga Peter
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Y. J. Park
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | - Alexander Charney
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Towfique Raj
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - John F. Crary
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - A. M. Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
76
|
Deretic V, Lazarou M. A guide to membrane atg8ylation and autophagy with reflections on immunity. J Cell Biol 2022; 221:e202203083. [PMID: 35699692 PMCID: PMC9202678 DOI: 10.1083/jcb.202203083] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 12/11/2022] Open
Abstract
The process of membrane atg8ylation, defined herein as the conjugation of the ATG8 family of ubiquitin-like proteins to membrane lipids, is beginning to be appreciated in its broader manifestations, mechanisms, and functions. Classically, membrane atg8ylation with LC3B, one of six mammalian ATG8 family proteins, has been viewed as the hallmark of canonical autophagy, entailing the formation of characteristic double membranes in the cytoplasm. However, ATG8s are now well described as being conjugated to single membranes and, most recently, proteins. Here we propose that the atg8ylation is coopted by multiple downstream processes, one of which is canonical autophagy. We elaborate on these biological outputs, which impact metabolism, quality control, and immunity, emphasizing the context of inflammation and immunological effects. In conclusion, we propose that atg8ylation is a modification akin to ubiquitylation, and that it is utilized by different systems participating in membrane stress responses and membrane remodeling activities encompassing autophagy and beyond.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
77
|
Huang J, Li C, Shang H. Astrocytes in Neurodegeneration: Inspiration From Genetics. Front Neurosci 2022; 16:882316. [PMID: 35812232 PMCID: PMC9268899 DOI: 10.3389/fnins.2022.882316] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/06/2022] [Indexed: 12/19/2022] Open
Abstract
Despite the discovery of numerous molecules and pathologies, the pathophysiology of various neurodegenerative diseases remains unknown. Genetics participates in the pathogenesis of neurodegeneration. Neural dysfunction, which is thought to be a cell-autonomous mechanism, is insufficient to explain the development of neurodegenerative disease, implying that other cells surrounding or related to neurons, such as glial cells, are involved in the pathogenesis. As the primary component of glial cells, astrocytes play a variety of roles in the maintenance of physiological functions in neurons and other glial cells. The pathophysiology of neurodegeneration is also influenced by reactive astrogliosis in response to central nervous system (CNS) injuries. Furthermore, those risk-gene variants identified in neurodegenerations are involved in astrocyte activation and senescence. In this review, we summarized the relationships between gene variants and astrocytes in four neurodegenerative diseases, including Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Parkinson’s disease (PD), and provided insights into the implications of astrocytes in the neurodegenerations.
Collapse
|
78
|
Rauschenberger L, Behnke J, Grotemeyer A, Knorr S, Volkmann J, Ip CW. Age-dependent neurodegeneration and neuroinflammation in a genetic A30P/A53T double-mutated α-synuclein mouse model of Parkinson's disease. Neurobiol Dis 2022; 171:105798. [PMID: 35750147 DOI: 10.1016/j.nbd.2022.105798] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/31/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
The pathogenesis of Parkinson's disease (PD) is closely interwoven with the process of aging. Moreover, increasing evidence from human postmortem studies and from animal models for PD point towards inflammation as an additional factor in disease development. We here assessed the impact of aging and inflammation on dopaminergic neurodegeneration in the hm2α-SYN-39 mouse model of PD that carries the human, A30P/A53T double-mutated α-synuclein gene. At 2-3 months of age, no significant differences were observed comparing dopaminergic neuron numbers of the substantia nigra (SN) pars compacta of hm2α-SYN-39 mice with wildtype controls. At an age of 16-17 months, however, hm2α-SYN-39 mice revealed a significant loss of dopaminergic SN neurons, of dopaminergic terminals in the striatum as well as a reduction of striatal dopamine levels compared to young, 2-3 months transgenic mice and compared to 16-17 months old wildtype littermates. A significant age-related correlation of infiltrating CD4+ and CD8+ T cell numbers with dopaminergic terminal loss of the striatum was found in hm2α-SYN-39 mice, but not in wildtype controls. In the striatum of 16-17 months old wildtype mice a slightly elevated CD8+ T cell count and CD11b+ microglia cell count was observed compared to younger aged mice. Additional analyses of neuroinflammation in the nigrostriatal tract of wildtype mice did not yield any significant age-dependent changes of CD4+, CD8+ T cell and B220+ B cell numbers, respectively. In contrast, a significant age-dependent increase of CD8+ T cells, GFAP+ astrocytes as well as a pronounced increase of CD11b+ microglia numbers were observed in the SN of hm2α-SYN-39 mice pointing towards a neuroinflammatory processes in this genetic mouse model for PD. The findings in the hm2α-SYN-39 mouse model strengthen the evidence that T cell and glial cell responses are involved in the age-related neurodegeneration in PD. The slow and age-dependent progression of neurodegeneration and neuroinflammation in the hm2α-SYN-39 PD rodent model underlines its translational value and makes it suitable for studying anti-inflammatory therapies.
Collapse
Affiliation(s)
- Lisa Rauschenberger
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Jennifer Behnke
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Alexander Grotemeyer
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Susanne Knorr
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| |
Collapse
|
79
|
Gopinath A, Mackie P, Hashimi B, Buchanan AM, Smith AR, Bouchard R, Shaw G, Badov M, Saadatpour L, Gittis A, Ramirez-Zamora A, Okun MS, Streit WJ, Hashemi P, Khoshbouei H. DAT and TH expression marks human Parkinson's disease in peripheral immune cells. NPJ Parkinsons Dis 2022; 8:72. [PMID: 35672374 PMCID: PMC9174333 DOI: 10.1038/s41531-022-00333-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/11/2022] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is marked by a loss of dopamine neurons, decreased dopamine transporter (DAT) and tyrosine hydroxylase (TH) expression. However, this validation approach cannot be used for diagnostic, drug effectiveness or investigational purposes in human patients because midbrain tissue is accessible postmortem. PD pathology affects both the central nervous and peripheral immune systems. Therefore, we immunophenotyped blood samples of PD patients for the presence of myeloid derived suppressor cells (MDSCs) and discovered that DAT+/TH+ monocytic MDSCs, but not granulocytic MDSCs are increased, suggesting a targeted immune response to PD. Because in peripheral immune cells DAT activity underlies an immune suppressive mechanism, we investigated whether expression levels of DAT and TH in the peripheral immune cells marks PD. We found drug naïve PD patients exhibit differential DAT+/TH+ expression in peripheral blood mononuclear cells (PBMCs) compared to aged/sex matched healthy subjects. While total PBMCs are not different between the groups, the percentage of DAT+/TH+ PBMCs was significantly higher in drug naïve PD patients compared to healthy controls irrespective of age, gender, disease duration, disease severity or treatment type. Importantly, treatment for PD negatively modulates DAT+/TH+ expressing PBMCs. Neither total nor the percentage of DAT+/TH+ PBMCs were altered in the Alzheimer's disease cohort. The mechanistic underpinning of this discovery in human PD was revealed when these findings were recapitulated in animal models of PD. The reverse translational experimental strategy revealed that alterations in dopaminergic markers in peripheral immune cells are due to the disease associated changes in the CNS. Our study demonstrates that the dopaminergic machinery on peripheral immune cells displays an association with human PD, with exciting implications in facilitating diagnosis and investigation of human PD pathophysiology.
Collapse
Affiliation(s)
- Adithya Gopinath
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| | - Phillip Mackie
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Basil Hashimi
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Aidan R Smith
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Gerry Shaw
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- EnCor Biotechnology, Inc, Gainesville, FL, USA
| | - Martin Badov
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Leila Saadatpour
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Aryn Gittis
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, UF Health, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, UF Health, Gainesville, FL, USA
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Parastoo Hashemi
- University of South Carolina, Columbia, SC, USA
- Department of Bioengineering, Imperial College, London, UK
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
80
|
Zhang M, Li C, Ren J, Wang H, Yi F, Wu J, Tang Y. The Double-Faceted Role of Leucine-Rich Repeat Kinase 2 in the Immunopathogenesis of Parkinson's Disease. Front Aging Neurosci 2022; 14:909303. [PMID: 35645775 PMCID: PMC9131027 DOI: 10.3389/fnagi.2022.909303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 12/17/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is one of the most common causative genes in Parkinson's disease (PD). The complex structure of this multiple domains' protein determines its versatile functions in multiple physiological processes, including migration, autophagy, phagocytosis, and mitochondrial function, among others. Mounting studies have also demonstrated the role of LRRK2 in mediating neuroinflammation, the prominent hallmark of PD, and intricate functions in immune cells, such as microglia, macrophages, and astrocytes. Of those, microglia were extensively studied in PD, which serves as the resident immune cell of the central nervous system that is rapidly activated upon neuronal injury and pathogenic insult. Moreover, the activation and function of immune cells can be achieved by modulating their intracellular metabolic profiles, in which LRRK2 plays an emerging role. Here, we provide an updated review focusing on the double-faceted role of LRRK2 in regulating various cellular physiology and immune functions especially in microglia. Moreover, we will summarize the latest discovery of the three-dimensional structure of LRRK2, as well as the function and dysfunction of LRRK2 in immune cell-related pathways.
Collapse
Affiliation(s)
- Mengfei Zhang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaoyi Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Ren
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Huakun Wang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Yi
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Tang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
81
|
Lee HG, Wheeler MA, Quintana FJ. Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov 2022; 21:339-358. [PMID: 35173313 PMCID: PMC9081171 DOI: 10.1038/s41573-022-00390-x] [Citation(s) in RCA: 278] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 12/20/2022]
Abstract
Astrocytes are abundant glial cells in the central nervous system (CNS) that perform diverse functions in health and disease. Astrocyte dysfunction is found in numerous diseases, including multiple sclerosis, Alzheimer disease, Parkinson disease, Huntington disease and neuropsychiatric disorders. Astrocytes regulate glutamate and ion homeostasis, cholesterol and sphingolipid metabolism and respond to environmental factors, all of which have been implicated in neurological diseases. Astrocytes also exhibit significant heterogeneity, driven by developmental programmes and stimulus-specific cellular responses controlled by CNS location, cell-cell interactions and other mechanisms. In this Review, we highlight general mechanisms of astrocyte regulation and their potential as therapeutic targets, including drugs that alter astrocyte metabolism, and therapies that target transporters and receptors on astrocytes. Emerging ideas, such as engineered probiotics and glia-to-neuron conversion therapies, are also discussed. We further propose a concise nomenclature for astrocyte subsets that we use to highlight the roles of astrocytes and specific subsets in neurological diseases.
Collapse
Affiliation(s)
- Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
82
|
Lazic A, Balint V, Stanisavljevic Ninkovic D, Peric M, Stevanovic M. Reactive and Senescent Astroglial Phenotypes as Hallmarks of Brain Pathologies. Int J Mol Sci 2022; 23:ijms23094995. [PMID: 35563385 PMCID: PMC9100382 DOI: 10.3390/ijms23094995] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Astrocytes, as the most abundant glial cells in the central nervous system, are tightly integrated into neural networks and participate in numerous aspects of brain physiology and pathology. They are the main homeostatic cells in the central nervous system, and the loss of astrocyte physiological functions and/or gain of pro-inflammatory functions, due to their reactivation or cellular senescence, can have profound impacts on the surrounding microenvironment with pathological outcomes. Although the importance of astrocytes is generally recognized, and both senescence and reactive astrogliosis have been extensively reviewed independently, there are only a few comparative overviews of these complex processes. In this review, we summarize the latest data regarding astrocyte reactivation and senescence, and outline similarities and differences between these phenotypes from morphological, functional, and molecular points of view. A special focus has been given to neurodegenerative diseases, where these phenotypic alternations of astrocytes are significantly implicated. We also summarize current perspectives regarding new advances in model systems based on astrocytes as well as data pointing to these glial cells as potential therapeutic targets.
Collapse
Affiliation(s)
- Andrijana Lazic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (D.S.N.); (M.P.); (M.S.)
- Correspondence:
| | - Vanda Balint
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (D.S.N.); (M.P.); (M.S.)
| | - Danijela Stanisavljevic Ninkovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (D.S.N.); (M.P.); (M.S.)
| | - Mina Peric
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (D.S.N.); (M.P.); (M.S.)
| | - Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (D.S.N.); (M.P.); (M.S.)
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11001 Belgrade, Serbia
| |
Collapse
|
83
|
Solana-Manrique C, Sanz FJ, Martínez-Carrión G, Paricio N. Antioxidant and Neuroprotective Effects of Carnosine: Therapeutic Implications in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11050848. [PMID: 35624713 PMCID: PMC9137727 DOI: 10.3390/antiox11050848] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Neurodegenerative diseases (NDs) constitute a global challenge to human health and an important social and economic burden worldwide, mainly due to their growing prevalence in an aging population and to their associated disabilities. Despite their differences at the clinical level, NDs share fundamental pathological mechanisms such as abnormal protein deposition, intracellular Ca2+ overload, mitochondrial dysfunction, redox homeostasis imbalance and neuroinflammation. Although important progress is being made in deciphering the mechanisms underlying NDs, the availability of effective therapies is still scarce. Carnosine is a natural endogenous molecule that has been extensively studied during the last years due to its promising beneficial effects for human health. It presents multimodal mechanisms of action, being able to exert antioxidant, anti-inflammatory and anti-aggregate activities, among others. Interestingly, most NDs exhibit oxidative and nitrosative stress, protein aggregation and inflammation as molecular hallmarks. In this review, we discuss the neuroprotective functions of carnosine and its implications as a therapeutic strategy in different NDs. We summarize the existing works that study alterations in carnosine metabolism in Alzheimer’s disease and Parkinson’s disease, the two most common NDs. In addition, we review the beneficial effect that carnosine supplementation presents in models of such diseases as well as in aging-related neurodegeneration.
Collapse
Affiliation(s)
- Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (G.M.-C.)
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (G.M.-C.)
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Guillermo Martínez-Carrión
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (G.M.-C.)
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (G.M.-C.)
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
- Correspondence: ; Tel.: +34-96-354-3005; Fax: +34-96-354-3029
| |
Collapse
|
84
|
Zang X, Chen S, Zhu J, Ma J, Zhai Y. The Emerging Role of Central and Peripheral Immune Systems in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:872134. [PMID: 35547626 PMCID: PMC9082639 DOI: 10.3389/fnagi.2022.872134] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
For decades, it has been widely believed that the blood-brain barrier (BBB) provides an immune privileged environment in the central nervous system (CNS) by blocking peripheral immune cells and humoral immune factors. This view has been revised in recent years, with increasing evidence revealing that the peripheral immune system plays a critical role in regulating CNS homeostasis and disease. Neurodegenerative diseases are characterized by progressive dysfunction and the loss of neurons in the CNS. An increasing number of studies have focused on the role of the connection between the peripheral immune system and the CNS in neurodegenerative diseases. On the one hand, peripherally released cytokines can cross the BBB, cause direct neurotoxicity and contribute to the activation of microglia and astrocytes. On the other hand, peripheral immune cells can also infiltrate the brain and participate in the progression of neuroinflammatory and neurodegenerative diseases. Neurodegenerative diseases have a high morbidity and disability rate, yet there are no effective therapies to stop or reverse their progression. In recent years, neuroinflammation has received much attention as a therapeutic target for many neurodegenerative diseases. In this review, we highlight the emerging role of the peripheral and central immune systems in neurodegenerative diseases, as well as their interactions. A better understanding of the emerging role of the immune systems may improve therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin Zang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Si Chen
- Department of Neurology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - JunYao Zhu
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junwen Ma
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongzhen Zhai
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
85
|
Russo I, Bubacco L, Greggio E. LRRK2 as a target for modulating immune system responses. Neurobiol Dis 2022; 169:105724. [DOI: 10.1016/j.nbd.2022.105724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 01/08/2023] Open
|
86
|
Karthikkeyan G, Behera SK, Upadhyay SS, Pervaje R, Prasad TSK, Modi PK. Metabolomics analysis highlights Yashtimadhu (Glycyrrhiza glabra L.)-mediated neuroprotection in a rotenone-induced cellular model of Parkinson's disease by restoring the mTORC1-AMPK1 axis in autophagic regulation. Phytother Res 2022; 36:2207-2222. [PMID: 35307886 DOI: 10.1002/ptr.7449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 11/07/2022]
Abstract
Parkinson's disease (PD) is an age-associated progressive neurodegenerative movement disorder, and its management strategies are known to cause complications with prolonged usage. We aimed to explore the neuroprotective mechanism of the Indian traditional medicine Yashtimadhu, prepared from the dried roots of Glycyrrhiza glabra L. (licorice) in the rotenone-induced cellular model of PD. Retinoic acid-differentiated IMR-32 cells were treated with rotenone (PD model) and Yashtimadhu extract. Mass spectrometry-based untargeted and targeted metabolomic profiling was carried out to discover altered metabolites. The untargeted metabolomics analysis highlighted the rotenone-induced dysregulation and Yashtimadhu-mediated restoration of metabolites involved in the metabolism of nucleic acids, amino acids, lipids, and citric acid cycle. Targeted validation of citric acid cycle metabolites showed decreased α-ketoglutarate and succinate with rotenone treatment and rescued by Yashtimadhu co-treatment. The dysregulation of the citric acid cycle by rotenone-induced energetic stress via dysregulation of the mTORC1-AMPK1 axis was prevented by Yashtimadhu. Yashtimadhu co-treatment restored rotenone-induced ATG7-dependent autophagy and eventually caspases-mediated cell death. Our analysis links the metabolic alterations modulating energy stress and autophagy, which underlies the Yashtimadhu-mediated neuroprotection in the rotenone-induced cellular model of PD.
Collapse
Affiliation(s)
- Gayathree Karthikkeyan
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Santosh Kumar Behera
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shubham Sukerndeo Upadhyay
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | | | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
87
|
Pereira MCL, Boese AC, Murad R, Yin J, Hamblin MH, Lee JP. Reduced dopaminergic neuron degeneration and global transcriptional changes in Parkinson's disease mouse brains engrafted with human neural stems during the early disease stage. Exp Neurol 2022; 352:114042. [PMID: 35271839 DOI: 10.1016/j.expneurol.2022.114042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Current stem cell therapies for Parkinson's disease (PD) focus on a neurorestorative approach that aims to repair the CNS during the symptomatic phase. However, the pleiotropic and supportive effects of human neural stem cells (hNSCs) may make them effective for PD treatment during the disease's earlier stages. In the current study, we investigated the therapeutic effects of transplanting hNSCs during the early stages of PD development when most dopaminergic neurons are still present and before symptoms appear. Previous studies on hNSCs in Parkinson's disease focus on the substantia nigra and its immediate surroundings, but other brain structures are affected in PD as well. Here, we investigated the therapeutic effects of hNSCs on the entire PD-afflicted brain transcriptome using RNA sequencing (RNA-seq). METHODS PD was induced with a single intranasal infusion of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and hNSCs were transplanted unilaterally into the striatum one week later. The timepoint for hNSC transplantation coincided with upregulation of endogenous proinflammatory cytokines in the CNS, which play a role in stem cell migration. At 3 weeks post-transplantation (4 weeks post-MPTP), we assessed motor symptoms through behavioral tests, quantified dopaminergic neurons in the substantia nigra, and performed global transcriptional profiling to understand the mechanism underlying the effect of hNSCs on dopaminergic neuron degeneration. RESULTS We found that early hNSC engraftment mitigated motor symptoms induced by MPTP, and also reduced MPTP-induced loss of dopaminergic neurons. In this study, we uniquely presented the first comprehensive analysis of the effect of hNSC transplantation on the transcriptional profiling of PD mouse brains showing decreased expression of 249 and increased expression of 200 genes. These include genes implicated in mitochondrial bioenergetics, proteostasis, and other signaling pathways associated with improved PD outcome following hNSC transplantation. CONCLUSION These findings indicate that NSC transplantation during the asymptomatic phase of PD may limit or halt the progression of this neurodegenerative disorder. Transcriptional profiling of hNSC-engrafted PD mouse brains provides mechanistic insight that could lead to novel approaches to ameliorating degeneration of dopaminergic neurons and improving behavioral dysfunction in PD.
Collapse
Affiliation(s)
- Marcia C L Pereira
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Austin C Boese
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rabi Murad
- Bioinformatics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jun Yin
- Bioinformatics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Milton H Hamblin
- Tulane University Health Sciences Center, Tulane University, New Orleans, LA 70112, USA
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
88
|
Weiss F, Labrador-Garrido A, Dzamko N, Halliday G. Immune responses in the Parkrtdinson's disease brain. Neurobiol Dis 2022; 168:105700. [DOI: 10.1016/j.nbd.2022.105700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
|
89
|
Insights into Human-Induced Pluripotent Stem Cell-Derived Astrocytes in Neurodegenerative Disorders. Biomolecules 2022; 12:biom12030344. [PMID: 35327542 PMCID: PMC8945600 DOI: 10.3390/biom12030344] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Most neurodegenerative disorders have complex and still unresolved pathology characterized by progressive neuronal damage and death. Astrocytes, the most-abundant non-neuronal cell population in the central nervous system, play a vital role in these processes. They are involved in various functions in the brain, such as the regulation of synapse formation, neuroinflammation, and lactate and glutamate levels. The development of human-induced pluripotent stem cells (iPSCs) reformed the research in neurodegenerative disorders allowing for the generation of disease-relevant neuronal and non-neuronal cell types that can help in disease modeling, drug screening, and, possibly, cell transplantation strategies. In the last 14 years, the differentiation of human iPSCs into astrocytes allowed for the opportunity to explore the contribution of astrocytes to neurodegenerative diseases. This review discusses the development protocols and applications of human iPSC-derived astrocytes in the most common neurodegenerative conditions.
Collapse
|
90
|
Schumacher-Schuh A, Bieger A, Borelli WV, Portley MK, Awad PS, Bandres-Ciga S. Advances in Proteomic and Metabolomic Profiling of Neurodegenerative Diseases. Front Neurol 2022; 12:792227. [PMID: 35173667 PMCID: PMC8841717 DOI: 10.3389/fneur.2021.792227] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Proteomics and metabolomics are two emerging fields that hold promise to shine light on the molecular mechanisms causing neurodegenerative diseases. Research in this area may reveal and quantify specific metabolites and proteins that can be targeted by therapeutic interventions intended at halting or reversing the neurodegenerative process. This review aims at providing a general overview on the current status of proteomic and metabolomic profiling in neurodegenerative diseases. We focus on the most common neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We discuss the relevance of state-of-the-art metabolomics and proteomics approaches and their potential for biomarker discovery. We critically review advancements made so far, highlighting how metabolomics and proteomics may have a significant impact in future therapeutic and biomarker development. Finally, we further outline technologies used so far as well as challenges and limitations, placing the current information in a future-facing context.
Collapse
Affiliation(s)
- Artur Schumacher-Schuh
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Andrei Bieger
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Wyllians V. Borelli
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Makayla K. Portley
- Neurodegenerative Disorders Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Paula Saffie Awad
- Movement Disorders Clinic, Centro de Trastornos de Movimiento (CETRAM), Santiago, Chile
| | - Sara Bandres-Ciga
- Neurodegenerative Disorders Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Laboratory of Neurogenetics, Molecular Genetics Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Sara Bandres-Ciga
| |
Collapse
|
91
|
Spathopoulou A, Edenhofer F, Fellner L. Targeting α-Synuclein in Parkinson's Disease by Induced Pluripotent Stem Cell Models. Front Neurol 2022; 12:786835. [PMID: 35145469 PMCID: PMC8821105 DOI: 10.3389/fneur.2021.786835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/24/2021] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative disorder characterized by motor and non-motor symptoms. To date, no specific treatment to halt disease progression is available, only medication to alleviate symptoms can be prescribed. The main pathological hallmark of PD is the development of neuronal inclusions, positive for α-synuclein (α-syn), which are termed Lewy bodies (LBs) or Lewy neurites. However, the cause of the inclusion formation and the loss of neurons remain largely elusive. Various genetic determinants were reported to be involved in PD etiology, including SNCA, DJ-1, PRKN, PINK1, LRRK2, and GBA. Comprehensive insights into pathophysiology of PD critically depend on appropriate models. However, conventional model organisms fall short to faithfully recapitulate some features of this complex disease and as a matter-of-fact access to physiological tissue is limiting. The development of disease models replicating PD that are close to human physiology and dynamic enough to analyze the underlying molecular mechanisms of disease initiation and progression, as well as the generation of new treatment options, is an important and overdue step. Recently, the establishment of induced pluripotent stem cell (iPSC)-derived neural models, particularly from genetic PD-variants, developed into a promising strategy to investigate the molecular mechanisms regarding formation of inclusions and neurodegeneration. As these iPSC-derived neurons can be generated from accessible biopsied samples of PD patients, they carry pathological alterations and enable the possibility to analyze the differences compared to healthy neurons. This review focuses on iPSC models carrying genetic PD-variants of α-syn that will be especially helpful in elucidating the pathophysiological mechanisms of PD. Furthermore, we discuss how iPSC models can be instrumental in identifying cellular targets, potentially leading to the development of new therapeutic treatments. We will outline the enormous potential, but also discuss the limitations of iPSC-based α-syn models.
Collapse
|
92
|
Tsai CF, Chen GW, Chen YC, Shen CK, Lu DY, Yang LY, Chen JH, Yeh WL. Regulatory Effects of Quercetin on M1/M2 Macrophage Polarization and Oxidative/Antioxidative Balance. Nutrients 2021; 14:nu14010067. [PMID: 35010945 PMCID: PMC8746507 DOI: 10.3390/nu14010067] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/23/2022] Open
Abstract
Macrophage polarization plays essential and diverse roles in most diseases, such as atherosclerosis, adipose tissue inflammation, and insulin resistance. Homeostasis dysfunction in M1/M2 macrophage polarization causes pathological conditions and inflammation. Neuroinflammation is characterized by microglial activation and the concomitant production of pro-inflammatory cytokines, leading to numerous neurodegenerative diseases and psychiatric disorders. Decreased neuroinflammation can be obtained by using natural compounds, including flavonoids, which are known to ameliorate inflammatory responses. Among flavonoids, quercetin possesses multiple pharmacological applications and regulates several biological activities. In the present study, we found that quercetin effectively inhibited the expression of lipocalin-2 in both macrophages and microglial cells stimulated by lipopolysaccharides (LPS). The production of nitric oxide (NO) and expression levels of the pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, were also attenuated by quercetin treatment. Our results also showed that quercetin significantly reduced the expression levels of the M1 markers, such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β, in the macrophages and microglia. The M1 polarization-associated chemokines, C–C motif chemokine ligand (CCL)-2 and C-X-C motif chemokine ligand (CXCL)-10, were also effectively reduced by the quercetin treatment. In addition, quercetin markedly reduced the production of various reactive oxygen species (ROS) in the microglia. The microglial phagocytic ability induced by the LPS was also effectively reduced by the quercetin treatment. Importantly, the quercetin increased the expression levels of the M2 marker, IL-10, and the endogenous antioxidants, heme oxygenase (HO)-1, glutamate-cysteine ligase catalytic subunit (GCLC), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H quinone oxidoreductase-1 (NQO1). The enhancement of the M2 markers and endogenous antioxidants by quercetin was activated by the AMP-activated protein kinase (AMPK) and Akt signaling pathways. Together, our study reported that the quercetin inhibited the effects of M1 polarization, including neuroinflammatory responses, ROS production, and phagocytosis. Moreover, the quercetin enhanced the M2 macrophage polarization and endogenous antioxidant expression in both macrophages and microglia. Our findings provide valuable information that quercetin may act as a potential drug for the treatment of diseases related to inflammatory disorders in the central nervous system.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413305, Taiwan
- Correspondence: (C.-F.T.); (W.-L.Y.)
| | - Guan-Wei Chen
- Institute of New Drug Development, China Medical University, Taichung 404328, Taiwan; (G.-W.C.); (Y.-C.C.)
| | - Yen-Chang Chen
- Institute of New Drug Development, China Medical University, Taichung 404328, Taiwan; (G.-W.C.); (Y.-C.C.)
| | - Ching-Kai Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404328, Taiwan;
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung 404328, Taiwan;
- Department of Photonics and Communication Engineering, Asia University, Taichung 413305, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung 404328, Taiwan;
- Laboratory for Neural Repair, China Medical University Hospital, Taichung 404327, Taiwan
- Biomedical Technology R&D Center, China Medical University Hospital, Taichung 404327, Taiwan
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan;
| | - Wei-Lan Yeh
- Department of Biochemistry, School of Medicine, China Medical University, Taichung 404328, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung 404328, Taiwan
- Correspondence: (C.-F.T.); (W.-L.Y.)
| |
Collapse
|
93
|
Bellot E, Kauffmann L, Coizet V, Meoni S, Moro E, Dojat M. Effective connectivity in subcortical visual structures in de novo Patients with Parkinson's Disease. Neuroimage Clin 2021; 33:102906. [PMID: 34891045 PMCID: PMC8670854 DOI: 10.1016/j.nicl.2021.102906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/26/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Parkinson's disease (PD) manifests with the appearance of non-motor symptoms before motor symptoms onset. Among these, dysfunctioning visual structures have recently been reported to occur at early disease stages. OBJECTIVE This study addresses effective connectivity in the visual network of PD patients. METHODS Using functional MRI and dynamic causal modeling analysis, we evaluated the connectivity between the superior colliculus, the lateral geniculate nucleus and the primary visual area V1 in de novo untreated PD patients (n = 22). A subset of the PD patients (n = 8) was longitudinally assessed two times at two months and at six months after starting dopaminergic treatment. Results were compared to those of age-matched healthy controls (n = 22). RESULTS Our results indicate that the superior colliculus drives cerebral activity for luminance contrast processing both in healthy controls and untreated PD patients. The same effective connectivity was observed with neuromodulatory differences in terms of neuronal dynamic interactions. Our main findings were that the modulation induced by luminance contrast changes of the superior colliculus connectivity (self-connectivity and connectivity to the lateral geniculate nucleus) was inhibited in PD patients (effect of contrast: p = 0.79 and p = 0.77 respectively). The introduction of dopaminergic medication in a subset (n = 8) of the PD patients failed to restore the effective connectivity modulation observed in the healthy controls. INTERPRETATION The deficits in luminance contrast processing in PD was associated with a deficiency in connectivity adjustment from the superior colliculus to the lateral geniculate nucleus and to V1. No differences in cerebral blood flow were observed between controls and PD patients suggesting that the deficiency was at the neuronal level. Administration of a dopaminergic treatment over six months was not able to normalize the observed alterations in inter-regional coupling. These findings highlight the presence of early dysfunctions in primary visual areas, which might be used as early markers of the disease.
Collapse
Affiliation(s)
- Emmanuelle Bellot
- University Grenoble Alpes, Inserm U1216, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neurosciences, Grenoble, France
| | - Louise Kauffmann
- Laboratory of Psychology and Neurocognition, CNRS UMR 5105, Grenoble, France
| | - Véronique Coizet
- University Grenoble Alpes, Inserm U1216, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neurosciences, Grenoble, France
| | - Sara Meoni
- University Grenoble Alpes, Inserm U1216, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neurosciences, Grenoble, France; Laboratory of Psychology and Neurocognition, CNRS UMR 5105, Grenoble, France; Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France
| | - Elena Moro
- University Grenoble Alpes, Inserm U1216, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neurosciences, Grenoble, France; Laboratory of Psychology and Neurocognition, CNRS UMR 5105, Grenoble, France
| | - Michel Dojat
- University Grenoble Alpes, Inserm U1216, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neurosciences, Grenoble, France.
| |
Collapse
|
94
|
Kovacs G, Reimer L, Jensen PH. Endoplasmic Reticulum-Based Calcium Dysfunctions in Synucleinopathies. Front Neurol 2021; 12:742625. [PMID: 34744980 PMCID: PMC8563702 DOI: 10.3389/fneur.2021.742625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
Neuronal calcium dyshomeostasis has been associated to Parkinson's disease (PD) development based on epidemiological studies on users of calcium channel antagonists and clinical trials are currently conducted exploring the hypothesis of increased calcium influx into neuronal cytosol as basic premise. We reported in 2018 an opposite hypothesis based on the demonstration that α-synuclein aggregates stimulate the endoplasmic reticulum (ER) calcium pump SERCA and demonstrated in cell models the existence of an α-synuclein-aggregate dependent neuronal state wherein cytosolic calcium is decreased due to an increased pumping of calcium into the ER. Inhibiting the SERCA pump protected both neurons and an α-synuclein transgenic C. elegans model. This models two cellular states that could contribute to development of PD. First the prolonged state with reduced cytosolic calcium that could deregulate multiple signaling pathways. Second the disease ER state with increased calcium concentration. We will discuss our hypothesis in the light of recent papers. First, a mechanistic study describing how variation in the Inositol-1,4,5-triphosphate (IP3) kinase B (ITPKB) may explain GWAS studies identifying the ITPKB gene as a protective factor toward PD. Here it was demonstrated that how increased ITPKB activity reduces influx of ER calcium to mitochondria via contact between IP3-receptors and the mitochondrial calcium uniporter complex in ER-mitochondria contact, known as mitochondria-associated membranes (MAMs). Secondly, it was demonstrated that astrocytes derived from PD patients contain α-synuclein accumulations. A recent study has demonstrated how human astrocytes derived from a few PD patients carrying the LRRK2-2019S mutation express more α-synuclein than control astrocytes, release more calcium from ER upon ryanodine receptor (RyR) stimulation, show changes in ER calcium channels and exhibit a decreased maximal and spare respiration indicating altered mitochondrial function in PD astrocytes. Here, we summarize the previous findings focusing the effect of α-synuclein to SERCA, RyR, IP3R, MCU subunits and other MAM-related channels. We also consider how the SOCE-related events could contribute to the development of PD.
Collapse
Affiliation(s)
- Gergo Kovacs
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lasse Reimer
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
95
|
Wang C, Yang T, Liang M, Xie J, Song N. Astrocyte dysfunction in Parkinson's disease: from the perspectives of transmitted α-synuclein and genetic modulation. Transl Neurodegener 2021; 10:39. [PMID: 34657636 PMCID: PMC8522040 DOI: 10.1186/s40035-021-00265-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/05/2021] [Indexed: 01/20/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that primarily affects the elderly. While the etiology of PD is likely multifactorial with the involvement of genetic, environmental, aging and other factors, α-synuclein (α-syn) pathology is a pivotal mechanism underlying the development of PD. In recent years, astrocytes have attracted considerable attention in the field. Although astrocytes perform a variety of physiological functions in the brain, they are pivotal mediators of α-syn toxicity since they internalize α-syn released from damaged neurons, and this triggers an inflammatory response, protein degradation dysfunction, mitochondrial dysfunction and endoplasmic reticulum stress. Astrocytes are indispensable coordinators in the background of several genetic mutations, including PARK7, GBA1, LRRK2, ATP13A2, PINK1, PRKN and PLA2G6. As the most abundant glial cells in the brain, functional astrocytes can be replenished and even converted to functional neurons. In this review, we discuss astrocyte dysfunction in PD with an emphasis on α-syn toxicity and genetic modulation and conclude that astrocyte replenishment is a valuable therapeutic approach in PD.
Collapse
Affiliation(s)
- Changjing Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Tongtong Yang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Meiyu Liang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| | - Ning Song
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
96
|
Klatt S, Doecke JD, Roberts A, Boughton BA, Masters CL, Horne M, Roberts BR. A six-metabolite panel as potential blood-based biomarkers for Parkinson's disease. NPJ Parkinsons Dis 2021; 7:94. [PMID: 34650080 PMCID: PMC8516864 DOI: 10.1038/s41531-021-00239-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Characterisation and diagnosis of idiopathic Parkinson's disease (iPD) is a current challenge that hampers both clinical assessment and clinical trial development with the potential inclusion of non-PD cases. Here, we used a targeted mass spectrometry approach to quantify 38 metabolites extracted from the serum of 231 individuals. This cohort is currently one of the largest metabolomic studies including iPD patients, drug-naïve iPD, healthy controls and patients with Alzheimer's disease as a disease-specific control group. We identified six metabolites (3-hydroxykynurenine, aspartate, beta-alanine, homoserine, ornithine (Orn) and tyrosine) that are significantly altered between iPD patients and control participants. A multivariate model to predict iPD from controls had an area under the curve (AUC) of 0.905, with an accuracy of 86.2%. This panel of metabolites may serve as a potential prognostic or diagnostic assay for clinical trial prescreening, or for aiding in diagnosing pathological disease in the clinic.
Collapse
Affiliation(s)
- Stephan Klatt
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Cooperative Research Centre for Mental Health, Parkville, VIC, 3052, Australia
| | - James D Doecke
- Cooperative Research Centre for Mental Health, Parkville, VIC, 3052, Australia
- Australian e-Health Research Centre, CSIRO, Brisbane, QLD, Australia
| | - Anne Roberts
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Berin A Boughton
- School of Biosciences, The University of Melbourne, Parkville, VIC, 3052, Australia
- Australian National Phenome Centre, Murdoch University, Murdoch, WA, 6150, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Cooperative Research Centre for Mental Health, Parkville, VIC, 3052, Australia
| | - Malcolm Horne
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Blaine R Roberts
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
97
|
Chen A, Kristiansen CK, Hong Y, Kianian A, Fang EF, Sullivan GJ, Wang J, Li X, Bindoff LA, Liang KX. Nicotinamide Riboside and Metformin Ameliorate Mitophagy Defect in Induced Pluripotent Stem Cell-Derived Astrocytes With POLG Mutations. Front Cell Dev Biol 2021; 9:737304. [PMID: 34631714 PMCID: PMC8497894 DOI: 10.3389/fcell.2021.737304] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022] Open
Abstract
Mitophagy specifically recognizes and removes damaged or superfluous mitochondria to maintain mitochondrial homeostasis and proper neuronal function. Defective mitophagy and the resulting accumulation of damaged mitochondria occur in several neurodegenerative diseases. Previously, we showed mitochondrial dysfunction in astrocytes with POLG mutations, and here, we examined how POLG mutations affect mitophagy in astrocytes and how this can be ameliorated pharmacologically. Using induced pluripotent stem cell (iPSC)-derived astrocytes carrying POLG mutations, we found downregulation of mitophagy/autophagy-related genes using RNA sequencing-based KEGG metabolic pathway analysis. We confirmed a deficit in mitochondrial autophagosome formation under exogenous stress conditions and downregulation of the mitophagy receptor p62, reduced lipidation of LC3B-II, and decreased expression of lysosome protein lysosomal-associated membrane protein 2A (LAMP2A). These changes were regulated by the PINK1/Parkin pathway and AKT/mTOR/AMPK/ULK1 signaling pathways. Importantly, we found that double treatment with nicotinamide riboside (NR) and metformin rescued mitophagy defects and mitochondrial dysfunction in POLG-mutant astrocytes. Our findings reveal that impaired mitophagy is involved in the observed mitochondrial dysfunction caused by POLG mutations in astrocytes, potentially contributing to the phenotype in POLG-related diseases. This study also demonstrates the therapeutic potential of NR and metformin in these incurable mitochondrial diseases.
Collapse
Affiliation(s)
- Anbin Chen
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.,Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway.,Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Cecilie Katrin Kristiansen
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway.,Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Yu Hong
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway.,Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Atefeh Kianian
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, Oslo, Norway.,The Norwegian Centre on Healthy Ageing, Oslo, Norway
| | - Gareth John Sullivan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Institute of Immunology, Oslo University Hospital, Oslo, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Laurence A Bindoff
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway.,Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Kristina Xiao Liang
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway.,Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
98
|
Chetia Phukan B, Dutta A, Deb S, Saikia R, Mazumder MK, Paul R, Bhattacharya P, Sandhir R, Borah A. Garcinol blocks motor behavioural deficits by providing dopaminergic neuroprotection in MPTP mouse model of Parkinson's disease: involvement of anti-inflammatory response. Exp Brain Res 2021; 240:113-122. [PMID: 34633467 DOI: 10.1007/s00221-021-06237-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 09/26/2021] [Indexed: 12/21/2022]
Abstract
Although the etiology of Parkinson's disease (PD) is poorly understood, studies in animal models revealed loss of dopamine and the dopaminergic neurons harbouring the neurotransmitter to be the principal cause behind this neuro-motor disorder. Neuroinflammation with glial cell activation is suggested to play a significant role in dopaminergic neurodegeneration. Several biomolecules have been reported to confer dopaminergic neuroprotection in different animal models of PD, owing to their anti-inflammatory potentials. Garcinol is a tri-isoprenylated benzophenone isolated from Garcinia sp. and accumulating evidences suggest that this molecule could provide neuroprotection by modulating oxidative stress and inflammation. However, direct evidence of dopaminergic neuroprotection by garcinol in the pre-clinical model of PD is not yet reported. The present study aims to investigate whether administration of garcinol in the MPTP mouse model of PD may ameliorate the cardinal motor behavioural deficits and prevent the loss of dopaminergic neurons. As expected, garcinol blocked the parkinsonian motor behavioural deficits which include akinesia, catalepsy, and rearing anomalies in the mice model. Most importantly, the degeneration of dopaminergic cell bodies in the substantia nigra region was significantly prevented by garcinol. Furthermore, garcinol reduced the inflammatory marker, glial fibrillary acidic protein, in the substantia nigra region. Since glial hyperactivation-mediated inflammation is inevitably associated with the loss of dopaminergic neurons, our study suggests the anti-inflammatory role of garcinol in facilitating dopaminergic neuroprotection in PD mice. Hence, in the light of the present study, it is suggested that garcinol is an effective anti-parkinsonian agent to block motor behavioural deficits and dopaminergic neurodegeneration in PD.
Collapse
Affiliation(s)
- Banashree Chetia Phukan
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Ankumoni Dutta
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India.,Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Bishwanath Chariali, Assam, India
| | - Satarupa Deb
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Rubul Saikia
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | | | - Rajib Paul
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Eraligool, Karimganj, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
99
|
Sharma A, Muresanu DF, Patnaik R, Menon PK, Tian ZR, Sahib S, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Skaper SD, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Histamine H3 and H4 receptors modulate Parkinson's disease induced brain pathology. Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy. PROGRESS IN BRAIN RESEARCH 2021; 266:1-73. [PMID: 34689857 DOI: 10.1016/bs.pbr.2021.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Military personnel deployed in combat operations are highly prone to develop Parkinson's disease (PD) in later lives. PD largely involves dopaminergic pathways with hallmarks of increased alpha synuclein (ASNC), and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) precipitating brain pathology. However, increased histaminergic nerve fibers in substantia nigra pars Compacta (SNpc), striatum (STr) and caudate putamen (CP) associated with upregulation of Histamine H3 receptors and downregulation of H4 receptors in human cases of PD is observed in postmortem cases. These findings indicate that modulation of histamine H3 and H4 receptors and/or histaminergic transmission may induce neuroprotection in PD induced brain pathology. In this review effects of a potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist, in association with monoclonal anti-histamine antibodies (AHmAb) in PD brain pathology is discussed based on our own observations. Our investigation shows that chronic administration of conventional or TiO2 nanowired BF 2649 (1mg/kg, i.p.) or CLBPT (1mg/kg, i.p.) once daily for 1 week together with nanowired delivery of HAmAb (25μL) significantly thwarted ASNC and p-tau levels in the SNpC and STr and reduced PD induced brain pathology. These observations are the first to show the involvement of histamine receptors in PD and opens new avenues for the development of novel drug strategies in clinical strategies for PD, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Stephen D Skaper
- Anesthesiology & Intensive Care, Department of Pharmacology, University of Padua, Padova, Italy
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
100
|
Chen YH, Xie SY, Chen CW, Lu DY. Electroacupuncture improves repeated social defeat stress-elicited social avoidance and anxiety-like behaviors by reducing Lipocalin-2 in the hippocampus. Mol Brain 2021; 14:150. [PMID: 34565419 PMCID: PMC8474847 DOI: 10.1186/s13041-021-00860-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 12/28/2022] Open
Abstract
Background Post-traumatic stress disorder (PTSD) is a trauma-related disorder that is associated with pro-inflammatory activation and neurobiological impairments in the brain and leads to a series of affective-like behaviors. Electroacupuncture (EA) has been proposed as a clinically useful therapy for several brain diseases. However, the potential role of EA treatment in PTSD and its molecular and cellular mechanisms has rarely been investigated. Methods We used an established preclinical social defeat stress mouse model to study whether EA treatment modulates PTSD-like symptoms and understand its underlying mechanisms. To this end, male C57BL/6 mice were subjected to repeated social defeat stress (RSDS) for 6 consecutive days to induce symptoms of PTSD and treated with EA at Baihui (GV 20) and Dazhui (GV 14) acupoints. Results The stimulation of EA, but not needle insertion at Baihui (GV 20) and Dazhui (GV 14) acupoints effectively improved PTSD-like behaviors such as, social avoidance and anxiety-like behaviors. However, EA stimulation at the bilateral Tianzong (SI11) acupoints did not affect the PTSD-like behaviors obtained by RSDS. EA stimulation also markedly inhibited astrocyte activation in both the dorsal and ventral hippocampi of RSDS-treated mice. Using next-generation sequencing analysis, our results showed that EA stimulation attenuated RSDS-enhanced lipocalin 2 expression in the hippocampus. Importantly, using double-staining immunofluorescence, we observed that the increased lipocalin 2 expression in astrocytes by RSDS was also reduced by EA stimulation. In addition, intracerebroventricular injection of mouse recombinant lipocalin 2 protein in the lateral ventricles provoked social avoidance, anxiety-like behaviors, and the activation of astrocytes in the hippocampus. Interestingly, the overexpression of lipocalin 2 in the brain also altered the expression of stress-related genes, including monoamine oxidase A, monoamine oxidase B, mineralocorticoid receptor, and glucocorticoid receptor in the hippocampus. Conclusions This study suggests that the treatment of EA at Baihui (GV 20) and Dazhui (GV 14) acupoints improves RSDS-induced social avoidance, anxiety-like behaviors, astrocyte activation, and lipocalin 2 expression. Furthermore, our findings also indicate that lipocalin 2 expression in the brain may be an important biomarker for the development of PTSD-related symptoms. Supplementary Information The online version contains supplementary material available at 10.1186/s13041-021-00860-0.
Collapse
Affiliation(s)
- Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Sheng-Yun Xie
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chao-Wei Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan. .,Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|