51
|
The co-chaperone Cdc37 regulates the rabies virus phosphoprotein stability by targeting to Hsp90AA1 machinery. Sci Rep 2016; 6:27123. [PMID: 27251758 PMCID: PMC4890047 DOI: 10.1038/srep27123] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/12/2016] [Indexed: 12/25/2022] Open
Abstract
Cdc37, as a kinase-specific co-chaperone of the chaperone Hsp90AA1 (Hsp90), actively aids with the maturation, stabilization and activation of the cellular or viral kinase/kinase-like targets. Phosphoprotein (P) of rabies virus (RABV) is a multifunctional, non-kinase protein involved in interferon antagonism, viral transcription and replication. Here, we demonstrated that the RABV non-kinase P is chaperoned by Cdc37 and Hsp90 during infection. We found that Cdc37 and Hsp90 affect the RABV life cycle directly. Activity inhibition and knockdown of Cdc37 and Hsp90 increased the instability of the viral P protein. Overexpression of Cdc37 and Hsp90 maintained P's stability but did not increase the yield of infectious RABV virions. We further demonstrated that the non-enzymatic polymerase cofactor P protein of all the genotypes of lyssaviruses is a target of the Cdc37/Hsp90 complex. Cdc37, phosphorylated or unphosphorylated on Ser13, aids the P protein to load onto the Hsp90 machinery, with or without Cdc37 binding to Hsp90. However, the interaction between Cdc37 and Hsp90 appears to have additional allosteric regulation of the conformational switch of Hsp90. Our study highlighted a novel mechanism in which Cdc37/Hsp90 chaperones a non-kinase target, which has significant implications for designing therapeutic targets against Rabies.
Collapse
|
52
|
Simple Separation of Functionally Distinct Populations of Lamin-Binding Proteins. Methods Enzymol 2016. [PMID: 26778555 DOI: 10.1016/bs.mie.2015.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The inner membrane of the nuclear envelope (NE) is home to hundreds of integral membrane proteins (NE transmembrane proteins, "NETs") with conserved or tissue-specific roles in genome organization and nuclear function. Nearly all characterized NETs bind A- or B-type lamins directly. However, hundreds of NETs remain uncharacterized, collectively posing an enormous gap that must be bridged to understand nuclear function and genome biology. We provide technically simple protocols for the separation and recovery of functionally distinct populations of NETs and A-type lamins. This protocol was developed for emerin, an inner nuclear membrane protein that binds lamins and barrier-to-autointegration factor (BANF1) as a component of nuclear lamina structure, and has diverse roles in nuclear assembly, signaling, and gene regulation. This protocol separates easily solubilized ("easy") populations of nuclear lamina proteins (emerin, lamin A, BAF) from "sonication-dependent" populations. Depending on cell type, the "easy" and "sonication-dependent" fractions each contain up to about half the available emerin, A-type lamins, and BAF, whereas B-type lamins and histone H3 are predominantly sonication dependent. The two populations of emerin have distinct posttranslational modifications, and only one population associates with BAF. This method may be useful for functional screening or analysis of other lamin-associated proteins, including novel NETs emerging from proteomic studies.
Collapse
|
53
|
Sugatani J, Noguchi Y, Hattori Y, Yamaguchi M, Yamazaki Y, Ikari A. Threonine-408 Regulates the Stability of Human Pregnane X Receptor through Its Phosphorylation and the CHIP/Chaperone-Autophagy Pathway. Drug Metab Dispos 2016; 44:137-50. [PMID: 26534988 DOI: 10.1124/dmd.115.066308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/02/2015] [Indexed: 11/22/2022] Open
Abstract
The human pregnane X receptor (hPXR) is a xenobiotic-sensing nuclear receptor that transcriptionally regulates drug metabolism-related genes. The aim of the present study was to elucidate the mechanism by which hPXR is regulated through threonine-408. A phosphomimetic mutation at threonine-408 (T408D) reduced the transcriptional activity of hPXR and its protein stability in HepG2 and SW480 cells in vitro and mouse livers in vivo. Proteasome inhibitors (calpain inhibitor I and MG132) and Hsp90 inhibitor geldanamycin, but not Hsp70 inhibitor pifithrin-μ, increased wild-type (WT) hPXR in the nucleus. The translocation of the T408D mutant to the nucleus was significantly reduced even in the presence of proteasome inhibitors, whereas the complex of yellow fluorescent protein (YFP)-hPXR T408D mutant with heat shock cognate protein 70/heat shock protein 70 and carboxy terminus Hsp70-interacting protein (CHIP; E3 ligase) was similar to that of the WT in the cytoplasm. Treatment with pifithrin-μ and transfection with anti-CHIP small-interfering RNA reduced the levels of CYP3A4 mRNA induced by rifampicin, suggesting the contribution of Hsp70 and CHIP to the transactivation of hPXR. Autophagy inhibitor 3-methyladenine accumulated YFP-hPXR T408D mutant more efficiently than the WT in the presence of proteasome inhibitor lactacystin, and the T408D mutant colocalized with the autophagy markers, microtubule-associated protein 1 light chain 3 and p62, which were contained in the autophagic cargo. Lysosomal inhibitor chloroquine caused the marked accumulation of the T408D mutant in the cytoplasm. Protein kinase C (PKC) directly phosphorylated the threonine-408 of hPXR. These results suggest that hPXR is regulated through its phosphorylation at threonine-408 by PKC, CHIP/chaperone-dependent stability check, and autophagic degradation pathway.
Collapse
Affiliation(s)
- Junko Sugatani
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | - Yuji Noguchi
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | - Yoshiki Hattori
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | - Masahiko Yamaguchi
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | - Yasuhiro Yamazaki
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | - Akira Ikari
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| |
Collapse
|
54
|
Jiang Y, Yang N, Zhang H, Sun B, Hou C, Ji C, Zheng J, Liu Y, Zuo P. Enhanced in vivo antitumor efficacy of dual-functional peptide-modified docetaxel nanoparticles through tumor targeting and Hsp90 inhibition. J Control Release 2016; 221:26-36. [DOI: 10.1016/j.jconrel.2015.11.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/27/2015] [Indexed: 01/19/2023]
|
55
|
Zhong J, Martinez M, Sengupta S, Lee A, Wu X, Chaerkady R, Chatterjee A, O'Meally RN, Cole RN, Pandey A, Zachara NE. Quantitative phosphoproteomics reveals crosstalk between phosphorylation and O-GlcNAc in the DNA damage response pathway. Proteomics 2015; 15:591-607. [PMID: 25263469 DOI: 10.1002/pmic.201400339] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/02/2014] [Accepted: 09/24/2014] [Indexed: 11/07/2022]
Abstract
The modification of intracellular proteins by monosaccharides of O-linked β-N-acetylglucosamine (O-GlcNAc) is an essential and dynamic PTM of metazoans. The addition and removal of O-GlcNAc is catalyzed by the O-GlcNAc transferase (OGT) and O-GlcNAcase, respectively. One mechanism by which O-GlcNAc is thought to mediate proteins is by regulating phosphorylation. To provide insight into the pathways regulated by O-GlcNAc, we have utilized SILAC-based quantitative proteomics to carry out comparisons of site-specific phosphorylation in OGT wild-type and Null cells. Quantitation of the phosphoproteome demonstrated that of 5529 phosphoserine, phosphothreonine, and phosphotyrosine sites, 232 phosphosites were upregulated and 133 downregulated in the absence of O-GlcNAc. Collectively, these data suggest that deletion of OGT has a profound effect on the phosphorylation of cell cycle and DNA damage response proteins. Key events were confirmed by biochemical analyses and demonstrate an increase in the activating autophosphorylation event on ATM (Ser1987) and on ATM's downstream targets p53, H2AX, and Chk2. Together, these data support widespread changes in the phosphoproteome upon removal of O-GlcNAc, suggesting that O-GlcNAc regulates processes such as the cell cycle, genomic stability, and lysosomal biogenesis. All MS data have been deposited in the ProteomeXchange with identifier PXD001153 (http://proteomecentral.proteomexchange.org/dataset/PXD001153).
Collapse
Affiliation(s)
- Jun Zhong
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Su Y, Qu Y, Zhao F, Li H, Mu D, Li X. Regulation of autophagy by the nuclear factor κB signaling pathway in the hippocampus of rats with sepsis. J Neuroinflammation 2015; 12:116. [PMID: 26067996 PMCID: PMC4472259 DOI: 10.1186/s12974-015-0336-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/03/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Sepsis with brain dysfunction has contributed to an increase risk of morbidity and mortality. In its pathophysiology, both autophagy and nuclear factor κB (NF-κB) have been suggested to play important roles. Based on the fact that crosstalk between autophagy and NF-κB, two stress-response signaling pathways, has been detected in other pathophysiological processes, this study was undertaken to explore the process of autophagy in the hippocampus of septic rats and the role NF-κB plays in the regulation of autophagy during the process. METHODS Cecal ligation and puncture (CLP) or a sham operation was conducted on male Wistar rats. Pyrrolidine dithiocarbamate (PDTC), an inhibitor of the NF-κB signaling pathway, or a vehicle control, was used to treat with the rats 2 h before the CLP operation. Hematoxylin-eosin staining and biological signal recording was used to measure the morphological and physiological signs of hippocampal dysfunction. An electron microscope was used to observe autophagosome formation and lysosome activation in the hippocampus after CLP. Western blotting and immune histochemistry were used to detect the hippocampus levels of NF-κB and essential proteins involved in formation of the autophagosome (microtubule-associated protein light chain 3 (LC3), Beclin1, Lamp-1, and Rab7). RESULTS Compared with sham-operated rats, the CLP rats showed decreasing mean arterial pressure (MAP), increasing heart rate (HR), and pathological histological changes. CLP rats exhibited not only increased vacuolization through electron micrographs but also increased LC3-II, decreased Beclin1, LAMP-1, and Rab7 through the immunofluorescence and Western blot. However, PDTC + CLP rats revealed that inhibition of the NF-κB signal axis by PDTC increased the levels of LC3-II, Beclin1, LAMP-1, and Rab7 and improved physiological function including blood pressure and heart rate. CONCLUSIONS The autophagy process during the hippocampus of CLP rats might be blocked by the activation of NF-κB signaling pathway. Inhibition of NF-κB signaling pathway could enhance the completion of autophagy with a neuroprotective function in septic brains.
Collapse
Affiliation(s)
- YunJie Su
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China. .,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, 610041, China.
| | - FengYan Zhao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China. .,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, 610041, China.
| | - HuaFeng Li
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, 610041, China. .,Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - DeZhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China. .,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, 610041, China. .,Department of Pediatrics and Neurology, University of California, San Francisco, CA, 94143, USA.
| | - XiHong Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
57
|
Sun LD, Wang F, Dai F, Wang YH, Lin D, Zhou B. Development and mechanism investigation of a new piperlongumine derivative as a potent anti-inflammatory agent. Biochem Pharmacol 2015; 95:156-69. [PMID: 25850000 DOI: 10.1016/j.bcp.2015.03.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
Abstract
Inflammation, especially chronic inflammation, is directly involvement in the pathogenesis of many diseases including cancer. An effective approach for managing inflammation is to employ chemicals to block activation of nuclear factor-κB (NF-κB), a key regulator for inflammatory processes. Piperlongumine (piplartine, PL), an electrophilic molecule isolated from Piper longum L., possesses excellent anti-cancer and anti-inflammatory properties. In this study, a new PL analogue (PL-0N) was designed by replacing nitrogen atom of lactam in PL with carbon atom to increase its electrophilicity and thus anti-inflammatory activity. It was found that PL-0N is more potent than the parent compound in suppressing lipopolysaccharide (LPS)-induced secretion of nitric oxide and prostaglandin E2 as well as expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW264.7 macrophages. Mechanistic investigation implies that PL-0N exerts anti-inflammatory activity through inhibition of LPS-induced NF-κB transduction pathway, down-regulation of LPS-induced MAPKs activation and impairment of proteasomal activity, but also enhancement of LPS-induced autophagy; the inhibition of NF-κB by PL-0N is achieved at various stages by: (i) preventing phosphorylation of IKKα/β, (ii) stabilizing the suppressor protein IκBα, (iii) interfering with the nuclear translocation of NF-κB, and (iv) inhibiting the DNA-binding of NF-κB. These data indicate that nitrogen-atom-lacking pattern is a successful strategy to improve anti-inflammatory property of PL, and that the novel molecule, PL-0N may be served as a promising lead for developing natural product-directed anti-inflammatory agents.
Collapse
Affiliation(s)
- Lan-Di Sun
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Fu Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Yi-Hua Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Dong Lin
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China.
| |
Collapse
|
58
|
Li Z, Wang Y, Newton IP, Zhang L, Ji P, Li Z. GRP78 is implicated in the modulation of tumor aerobic glycolysis by promoting autophagic degradation of IKKβ. Cell Signal 2015; 27:1237-45. [PMID: 25748049 DOI: 10.1016/j.cellsig.2015.02.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/25/2015] [Accepted: 02/16/2015] [Indexed: 01/06/2023]
Abstract
Compared with normal differentiated cells, cancer cells take up much more glucose and metabolize it mainly via aerobic glycolysis. This metabolic phenotype is characterized with high expression of glucose transporters (Gluts) and pyruvate kinase M2 (PKM2). Glucose regulated protein 78 (GRP78) is a glucose-sensing protein and frequently up-regulated in cancer cells, however, whether it is directly implicated in glucose metabolism remains to be elucidated. Here we report that upon glucose deficiency, the induction of GRP78 resulted in enhanced HIF-1α transcription, accompanied by a transient increased expression of Glut-1. In addition, GRP78 was likely to facilitate the membrane translocation of Glut-1 via protein-protein interaction. Glucose starvation-stimulated GRP78 also impaired the expression of PKM2 but promoted the expression of mitochondrial pyruvate dehydrogenase A (PDHA) and B (PDHB), resulting in the metabolic shift from glycolysis to the TCA cycle. Interestingly, the inhibition of PKM2 by GRP78 was abrogated when glucose supply was restored, suggesting that GRP78 and PKM2 expressions are adaptable to the nutritional levels in the microenvironment. Further mechanistic study indicated that GRP78 overexpression activated the Class III PI3K-mediated autophagy pathway and induced autophagic degradation of IKKβ, which caused inactivation of NF-κB pathway and subsequently altered the expression of PKM2 and HIF-1α. Our study establishes GRP78 and PKM2 as the crucial molecular links between cancer cell glucose metabolism and tumor microenvironment alterations.
Collapse
Affiliation(s)
- Zongwei Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yingying Wang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Ian P Newton
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH Scotland, UK
| | - Lichao Zhang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Pengyu Ji
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
59
|
Yan H, Zhou HF, Hu Y, Pham CTN. Suppression of experimental arthritis through AMP-activated protein kinase activation and autophagy modulation. ACTA ACUST UNITED AC 2015; 1:5. [PMID: 26120598 DOI: 10.23937/2469-5726/1510005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Autophagy plays a central role in various disease processes. However, its contribution to inflammatory arthritides such as rheumatoid arthritis (RA) is unclear. We observed that autophagy is engaged in the K/BxN serum transfer model of RA but autophagic flux is severely impaired. Metformin is an anti-diabetic drug that has been shown to stimulate autophagy. Induction of autophagic flux, through metformin-mediated AMP-activated protein kinase (AMPK) activation and interruption of mammalian target of rapamycin (mTOR) signaling mitigated the inflammation in experimental arthritis. Further investigation into the effects of metformin suggest that the drug directly activates AMPK and dose-dependently suppressed the release of TNF-α, IL-6, and MCP-1 by macrophages while enhancing the release of IL-10 in vitro. In vivo, metformin treatment significantly suppressed clinical arthritis and inflammatory cytokine production. Mechanistic studies suggest that metformin exerts its anti-inflammatory effects by correcting the impaired autophagic flux observed in the K/BxN arthritis model and suppressing NF-κB-mediated signaling through selective degradation of IκB kinase (IKK). These findings establish a central role for autophagy in inflammatory arthritis and argue that autophagy modulators such as metformin may represent potential therapeutic agents for the treatment of RA.
Collapse
Affiliation(s)
- Huimin Yan
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, Missouri
| | | | | | | |
Collapse
|
60
|
Baindur-Hudson S, Edkins AL, Blatch GL. Hsp70/Hsp90 organising protein (hop): beyond interactions with chaperones and prion proteins. Subcell Biochem 2015; 78:69-90. [PMID: 25487016 DOI: 10.1007/978-3-319-11731-7_3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Hsp70/Hsp90 organising protein (Hop), also known as stress-inducible protein 1 (STI1), has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins. Consequently, Hop is implicated in a number of key signalling pathways, including aberrant pathways leading to cancer. However, Hop is also secreted and it is now well established that Hop also serves as a receptor for the prion protein, PrP(C). The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrP(C). While Hop has been shown to have various cellular functions, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseases states.
Collapse
Affiliation(s)
- Swati Baindur-Hudson
- College of Health and Biomedicine, Victoria University, VIC 8001, Melbourne, Australia,
| | | | | |
Collapse
|
61
|
Wu X, He L, Chen F, He X, Cai Y, Zhang G, Yi Q, He M, Luo J. Impaired autophagy contributes to adverse cardiac remodeling in acute myocardial infarction. PLoS One 2014; 9:e112891. [PMID: 25409294 PMCID: PMC4237367 DOI: 10.1371/journal.pone.0112891] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 10/16/2014] [Indexed: 11/18/2022] Open
Abstract
Objective Autophagy is activated in ischemic heart diseases, but its dynamics and functional roles remain unclear and controversial. In this study, we investigated the dynamics and role of autophagy and the mechanism(s), if any, during postinfarction cardiac remodeling. Methods and results Acute myocardial infarction (AMI) was induced by ligating left anterior descending (LAD) coronary artery. Autophagy was found to be induced sharply 12–24 hours after surgery by testing LC3 modification and Electron microscopy. P62 degradation in the infarct border zone was increased from day 0.5 to day 3, and however, decreased from day 5 until day 21 after LAD ligation. These results indicated that autophagy was induced in the acute phase of AMI, and however, impaired in the latter phase of AMI. To investigate the significance of the impaired autophagy in the latter phase of AMI, we treated the mice with Rapamycin (an autophagy enhancer, 2.0 mg/kg/day) or 3-methyladenine (3MA, an autophagy inhibitor, 15 mg/kg/day) one day after LAD ligation until the end of experiment. The results showed that Rapamycin attenuated, while 3MA exacerbated, postinfarction cardiac remodeling and dysfunction respectively. In addition, Rapamycin protected the H9C2 cells against oxygen glucose deprivation in vitro. Specifically, we found that Rapamycin attenuated NFκB activation after LAD ligation. And the inflammatory response in the acute stage of AMI was significantly restrained with Rapamycin treatment. In vitro, inhibition of NFκB restored autophagy in a negative reflex. Conclusion Sustained myocardial ischemia impairs cardiomyocyte autophagy, which is an essential mechanism that protects against adverse cardiac remodeling. Augmenting autophagy could be a therapeutic strategy for acute myocardial infarction.
Collapse
Affiliation(s)
- Xiaoqian Wu
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, PR China
- * E-mail: (XW); (JL)
| | - Lishan He
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, PR China
| | - Fajiang Chen
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, PR China
| | - Xiaoen He
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, PR China
| | - Yi Cai
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, PR China
| | - Guiping Zhang
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, PR China
- Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Quan Yi
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, PR China
| | - Meixiang He
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, PR China
| | - Jiandong Luo
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, PR China
- Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
- * E-mail: (XW); (JL)
| |
Collapse
|
62
|
Zhou HF, Yan H, Hu Y, Springer LE, Yang X, Wickline SA, Pan D, Lanza GM, Pham CTN. Fumagillin prodrug nanotherapy suppresses macrophage inflammatory response via endothelial nitric oxide. ACS NANO 2014; 8:7305-17. [PMID: 24941020 PMCID: PMC4108210 DOI: 10.1021/nn502372n] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/18/2014] [Indexed: 05/19/2023]
Abstract
Antiangiogenesis has been extensively explored for the treatment of a variety of cancers and certain inflammatory processes. Fumagillin, a mycotoxin produced by Aspergillus fumigatus that binds methionine aminopeptidase 2 (MetAP-2), is a potent antiangiogenic agent. Native fumagillin, however, is poorly soluble and extremely unstable. We have developed a lipase-labile fumagillin prodrug (Fum-PD) that eliminated the photoinstability of the compound. Using αvβ3-integrin-targeted perfluorocarbon nanocarriers to deliver Fum-PD specifically to angiogenic vessels, we effectively suppressed clinical disease in an experimental model of rheumatoid arthritis (RA). The exact mechanism by which Fum-PD-loaded targeted nanoparticles suppressed inflammation in experimental RA, however, remained unexplained. We herein present evidence that Fum-PD nanotherapy indirectly suppresses inflammation in experimental RA through the local production of endothelial nitric oxide (NO). Fum-PD-induced NO activates AMP-activated protein kinase (AMPK), which subsequently modulates macrophage inflammatory response. In vivo, NO-induced AMPK activation inhibits mammalian target of rapamycin (mTOR) activity and enhances autophagic flux, as evidenced by p62 depletion and increased autolysosome formation. Autophagy in turn mediates the degradation of IkappaB kinase (IKK), suppressing the NF-κB p65 signaling pathway and inflammatory cytokine release. Inhibition of NO production by N(G)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, reverses the suppression of NF-κB-mediated inflammatory response induced by Fum-PD nanotherapy. These unexpected results uncover an activity of Fum-PD nanotherapy that may be further explored in the treatment of angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Hui-fang Zhou
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Huimin Yan
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Ying Hu
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Luke E. Springer
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Xiaoxia Yang
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Samuel A. Wickline
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Dipanjan Pan
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Gregory M. Lanza
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
- Address correspondence to (G. Lanza) , (C. Pham)
| | - Christine T. N. Pham
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
- Address correspondence to (G. Lanza) , (C. Pham)
| |
Collapse
|
63
|
Gamboni F, Escobar GA, Moore EE, Dzieciatkowska M, Hansen KC, Mitra S, Nydam TA, Silliman CC, Banerjee A. Clathrin complexes with the inhibitor kappa B kinase signalosome: imaging the interactome. Physiol Rep 2014; 2:2/7/e12035. [PMID: 24994893 PMCID: PMC4187570 DOI: 10.14814/phy2.12035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Many receptors involved with innate immunity activate the inhibitor kappa B kinase signalosome
(IKK). The active complex appears to be assembled from the two kinase units,
IKKα and IKKβ with the regulatory protein NEMO.
Because we previously found that RNA silencing of clathrin heavy chains (CHC), in transformed human
lung pneumocytes (A549), decreased TNFα‐induced signaling and
phosphorylation of inhibitor kappa B (IκB), we hypothesized that CHC forms
cytoplasmic complexes with members of the IKK signalosome. Widely available antibodies were used to
immunoprecipitate IKKα and NEMO interactomes. Analysis of the affinity
interactomes by mass spectrometry detected clathrin with both baits with high confidence. Using the
same antibodies for indirect digital immunofluorescence microscopy and FRET, the CHC–IKK
complexes were visualized together with NEMO or HSP90. The natural variability of protein amounts in
unsynchronized A549 cells was used to obtain statistical correlation for several complexes, at
natural levels and without invasive labeling. Analyses of voxel numbers indicated that: (i)
CHC–IKK complexes are not part of the IKK signalosome itself but, likely, precursors of
IKK–NEMO complexes. (ii) CHC–IKKβ complexes may arise from
IKKβ–HSP90 complexes. Clathrin forms complexes with IKKa, IKKb, and NEMO, but apparently not the canonical signalosome.
These complexes are identified, for the first time, by affinity proteomics and triple FRET without
altering molecular structure.
Collapse
Affiliation(s)
- Fabia Gamboni
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Guillermo A Escobar
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ernest E Moore
- Department of Surgery, University of Colorado Denver, Aurora, Colorado Department of Surgery, Denver Health Medical Center, Denver, Colorado
| | | | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, UC Denver Mass Spectrometry and Proteomics Facility, Aurora, Colorado
| | - Sanchayita Mitra
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Trevor A Nydam
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Christopher C Silliman
- Department of Surgery, University of Colorado Denver, Aurora, Colorado Belle Bonfils Blood Center, Denver, Colorado
| | - Anirban Banerjee
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
64
|
Mukhopadhyay S, Panda PK, Das DN, Sinha N, Behera B, Maiti TK, Bhutia SK. Abrus agglutinin suppresses human hepatocellular carcinoma in vitro and in vivo by inducing caspase-mediated cell death. Acta Pharmacol Sin 2014; 35:814-24. [PMID: 24793310 DOI: 10.1038/aps.2014.15] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/04/2014] [Indexed: 12/27/2022]
Abstract
AIM Abrus agglutinin (AGG) from the seeds of Indian medicinal plant Abrus precatorius belongs to the class II ribosome inactivating protein family. In this study we investigated the anticancer effects of AGG against human hepatocellular carcinoma in vitro and in vivo. METHODS Cell proliferation, DNA fragmentation, Annexin V binding, immunocytofluorescence, Western blotting, caspase activity assays and luciferase assays were performed to evaluate AGG in human liver cancer cells HepG2. Immunohistochemical staining and TUNEL expression were studied in tumor samples of HepG2-xenografted nude mice. RESULTS AGG induced apoptosis in HepG2 cells in a dose- and time-dependent manner. AGG-treated HepG2 cells demonstrated an increase in caspase 3/7, 8 and 9 activities and a sharp decrease in the Bcl-2/Bax ratio, indicating activation of a caspase cascade. Co-treatment of HepG2 cells with AGG and a caspase inhibitor or treatment of AGG in Bax knockout HepG2 cells decreased the caspase 3/7 activity in comparison to HepG2 cells exposed only to AGG. Moreover, AGG decreased the expression of Hsp90 and suppressed Akt phosphorylation and NF-κB expression in HepG2 cells. Finally, AGG treatment significantly reduced tumor growth in nude mice bearing HepG2 xenografts, increased TUNEL expression and decreased CD-31 and Ki-67 expression compared to levels observed in the untreated control mice bearing HepG2 cells. CONCLUSION AGG inhibits the growth and progression of HepG2 cells by inducing caspase-mediated cell death. The agglutinin could be an alternative natural remedy for the treatment of human hepatocellular carcinomas.
Collapse
|
65
|
Trojandt S, Reske-Kunz AB, Bros M. Geldanamycin-mediated inhibition of heat shock protein 90 partially activates dendritic cells, but interferes with their full maturation, accompanied by impaired upregulation of RelB. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:16. [PMID: 24524692 PMCID: PMC3926270 DOI: 10.1186/1756-9966-33-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/10/2014] [Indexed: 11/10/2022]
Abstract
Background The chaperon heat shock protein 90 (HSP90) constitutes an important target for anti-tumor therapy due to its essential role in the stabilization of oncogenes. However, HSP90 is ubiquitously active to orchestrate protein turnover, chemotherapeutics that target HSP90 may affect immune cells as a significant side effect. Therefore, we asked for potential effects of pharmacological HSP90 inhibition at a therapeutically relevant concentration on human dendritic cells (DCs) as main inducers of both cellular and humoral immune responses, and on human CD4+ T cells as directly activated by DCs and essential to confer B cell help. Methods Unstimulated human monocyte-derived DCs (MO-DCs) were treated with the prototypical HSP90 inhibitor geldanamycin (GA). Based on dose titration studies performed to assess cytotoxic effects, GA was applied at a rather low concentration, comparable to serum levels of clinically used HSP90 inhibitors. The immuno-phenotype (surface markers, cytokines), migratory capacity, allo T cell stimulatory and polarizing properties (proliferation, cytokine pattern) of GA-treated MO-DCs were assessed. Moreover, effects of GA on resting and differentially stimulated CD4+ T cells in terms of cytotoxicity and proliferation were analysed. Results GA induced partial activation of unstimulated MO-DCs. In contrast, when coapplied in the course of MO-DC stimulation, GA prevented the acquisition of a fully mature DC phenotype. Consequently, this MO-DC population exerted lower allo CD4+ T cell stimulation and cytokine production. Furthermore, GA exerted no cytotoxic effect on resting T cells, but abrogated proliferation of T cells stimulated by MO-DCs at either state of activation or by stimulatory antibodies. Conclusion HSP90 inhibitors at clinically relevant concentrations may modulate adaptive immune responses both on the level of DC activation and T cell proliferation. Surprisingly, unstimulated DCs may be partially activated by that agent. However, due to the potent detrimental effects of HSP90 inhibitors on stimulated CD4+ T cells, as an outcome a patients T cell responses might be impaired. Therefore, HSP90 inhibitors most probably are not suitable for treatment in combination with immunotherapeutic approaches aimed to induce DC/T cell activation.
Collapse
Affiliation(s)
| | | | - Matthias Bros
- Department of Dermatology, Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
66
|
Mathews Griner LA, Guha R, Shinn P, Young RM, Keller JM, Liu D, Goldlust IS, Yasgar A, McKnight C, Boxer MB, Duveau DY, Jiang JK, Michael S, Mierzwa T, Huang W, Walsh MJ, Mott BT, Patel P, Leister W, Maloney DJ, Leclair CA, Rai G, Jadhav A, Peyser BD, Austin CP, Martin SE, Simeonov A, Ferrer M, Staudt LM, Thomas CJ. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells. Proc Natl Acad Sci U S A 2014; 111:2349-54. [PMID: 24469833 PMCID: PMC3926026 DOI: 10.1073/pnas.1311846111] [Citation(s) in RCA: 302] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The clinical development of drug combinations is typically achieved through trial-and-error or via insight gained through a detailed molecular understanding of dysregulated signaling pathways in a specific cancer type. Unbiased small-molecule combination (matrix) screening represents a high-throughput means to explore hundreds and even thousands of drug-drug pairs for potential investigation and translation. Here, we describe a high-throughput screening platform capable of testing compounds in pairwise matrix blocks for the rapid and systematic identification of synergistic, additive, and antagonistic drug combinations. We use this platform to define potential therapeutic combinations for the activated B-cell-like subtype (ABC) of diffuse large B-cell lymphoma (DLBCL). We identify drugs with synergy, additivity, and antagonism with the Bruton's tyrosine kinase inhibitor ibrutinib, which targets the chronic active B-cell receptor signaling that characterizes ABC DLBCL. Ibrutinib interacted favorably with a wide range of compounds, including inhibitors of the PI3K-AKT-mammalian target of rapamycin signaling cascade, other B-cell receptor pathway inhibitors, Bcl-2 family inhibitors, and several components of chemotherapy that is the standard of care for DLBCL.
Collapse
Affiliation(s)
- Lesley A. Mathews Griner
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Rajarshi Guha
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Paul Shinn
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | | | - Jonathan M. Keller
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Dongbo Liu
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Ian S. Goldlust
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Adam Yasgar
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Crystal McKnight
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Matthew B. Boxer
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Damien Y. Duveau
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Jian-Kang Jiang
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Sam Michael
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Tim Mierzwa
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Wenwei Huang
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Martin J. Walsh
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Bryan T. Mott
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Paresma Patel
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
- Basic Science Program, SAIC-Frederick, Inc., Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - William Leister
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - David J. Maloney
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Christopher A. Leclair
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Ganesha Rai
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Ajit Jadhav
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Brian D. Peyser
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Christopher P. Austin
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Scott E. Martin
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Anton Simeonov
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | - Marc Ferrer
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| | | | - Craig J. Thomas
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences
| |
Collapse
|
67
|
Fierro-Monti I, Echeverria P, Racle J, Hernandez C, Picard D, Quadroni M. Dynamic impacts of the inhibition of the molecular chaperone Hsp90 on the T-cell proteome have implications for anti-cancer therapy. PLoS One 2013; 8:e80425. [PMID: 24312219 PMCID: PMC3842317 DOI: 10.1371/journal.pone.0080425] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/02/2013] [Indexed: 11/19/2022] Open
Abstract
The molecular chaperone Hsp90-dependent proteome represents a complex protein network of critical biological and medical relevance. Known to associate with proteins with a broad variety of functions termed clients, Hsp90 maintains key essential and oncogenic signalling pathways. Consequently, Hsp90 inhibitors are being tested as anti-cancer drugs. Using an integrated systematic approach to analyse the effects of Hsp90 inhibition in T-cells, we quantified differential changes in the Hsp90-dependent proteome, Hsp90 interactome, and a selection of the transcriptome. Kinetic behaviours in the Hsp90-dependent proteome were assessed using a novel pulse-chase strategy (Fierro-Monti et al., accompanying article), detecting effects on both protein stability and synthesis. Global and specific dynamic impacts, including proteostatic responses, are due to direct inhibition of Hsp90 as well as indirect effects. As a result, a decrease was detected in most proteins that changed their levels, including known Hsp90 clients. Most likely, consequences of the role of Hsp90 in gene expression determined a global reduction in net de novo protein synthesis. This decrease appeared to be greater in magnitude than a concomitantly observed global increase in protein decay rates. Several novel putative Hsp90 clients were validated, and interestingly, protein families with critical functions, particularly the Hsp90 family and cofactors themselves as well as protein kinases, displayed strongly increased decay rates due to Hsp90 inhibitor treatment. Remarkably, an upsurge in survival pathways, involving molecular chaperones and several oncoproteins, and decreased levels of some tumour suppressors, have implications for anti-cancer therapy with Hsp90 inhibitors. The diversity of global effects may represent a paradigm of mechanisms that are operating to shield cells from proteotoxic stress, by promoting pro-survival and anti-proliferative functions. Data are available via ProteomeXchange with identifier PXD000537.
Collapse
Affiliation(s)
- Ivo Fierro-Monti
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Pablo Echeverria
- Département de Biologie Cellulaire, Université de Genève, Genève, Switzerland
| | - Julien Racle
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Vital-IT Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Celine Hernandez
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Vital-IT Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, Genève, Switzerland
| | - Manfredo Quadroni
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
68
|
Belaid A, Ndiaye PD, Cerezo M, Cailleteau L, Brest P, Klionsky DJ, Carle GF, Hofman P, Mograbi B. Autophagy and SQSTM1 on the RHOA(d) again: emerging roles of autophagy in the degradation of signaling proteins. Autophagy 2013; 10:201-8. [PMID: 24300375 DOI: 10.4161/auto.27198] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Degradation of signaling proteins is one of the most powerful tumor-suppressive mechanisms by which a cell can control its own growth, its survival, and its motility. Emerging evidence suggests that autophagy limits several signaling pathways by degrading kinases, downstream components, and transcription factors; however, this often occurs under stressful conditions. Our recent studies revealed that constitutive autophagy temporally and spatially controls the RHOA pathway. Specifically, inhibition of autophagosome degradation induces the accumulation of the GTP-bound form of RHOA. The active RHOA is sequestered via SQSTM1/p62 within autolysosomes, and accordingly fails to localize to the spindle midbody or to the cell surface, as we demonstrate herein. As a result, all RHOA-downstream responses are deregulated, thus driving cytokinesis failure, aneuploidy and motility, three processes that directly have an impact upon cancer progression. We therefore propose that autophagy acts as a degradative brake for RHOA signaling and thereby controls cell proliferation, migration, and genome stability.
Collapse
Affiliation(s)
- Amine Belaid
- Institute of Research on Cancer and Ageing of Nice (IRCAN); INSERM U1081; CNRS UMR7284; Nice, France; Université de Nice-Sophia Antipolis; Faculté de Médecine; Nice, France; Equipe Labellisée par l'ARC; Villejuif, France; Centre Antoine Lacassagne; Nice, France
| | - Papa Diogop Ndiaye
- Institute of Research on Cancer and Ageing of Nice (IRCAN); INSERM U1081; CNRS UMR7284; Nice, France; Université de Nice-Sophia Antipolis; Faculté de Médecine; Nice, France; Equipe Labellisée par l'ARC; Villejuif, France; Centre Antoine Lacassagne; Nice, France
| | - Michaël Cerezo
- Institute of Research on Cancer and Ageing of Nice (IRCAN); INSERM U1081; CNRS UMR7284; Nice, France; Université de Nice-Sophia Antipolis; Faculté de Médecine; Nice, France; INSERM U895/C3M: Centre Méditerranéen de Médecine Moléculaire; Nice, France
| | - Laurence Cailleteau
- Institute of Research on Cancer and Ageing of Nice (IRCAN); INSERM U1081; CNRS UMR7284; Nice, France; Université de Nice-Sophia Antipolis; Faculté de Médecine; Nice, France
| | - Patrick Brest
- Institute of Research on Cancer and Ageing of Nice (IRCAN); INSERM U1081; CNRS UMR7284; Nice, France; Université de Nice-Sophia Antipolis; Faculté de Médecine; Nice, France; Equipe Labellisée par l'ARC; Villejuif, France; Centre Antoine Lacassagne; Nice, France
| | | | - Georges F Carle
- Université de Nice-Sophia Antipolis; Faculté de Médecine; Nice, France; Centre Antoine Lacassagne; Nice, France; Laboratoire TIRO-MATOs UMR E4320; Commissariat à l'Energie Atomique; Nice, France
| | - Paul Hofman
- Institute of Research on Cancer and Ageing of Nice (IRCAN); INSERM U1081; CNRS UMR7284; Nice, France; Université de Nice-Sophia Antipolis; Faculté de Médecine; Nice, France; Equipe Labellisée par l'ARC; Villejuif, France; Centre Antoine Lacassagne; Nice, France; Centre Hospitalier Universitaire de Nice; Pasteur Hospital; Laboratory of Clinical and Experimental Pathology; Nice, France
| | - Baharia Mograbi
- Institute of Research on Cancer and Ageing of Nice (IRCAN); INSERM U1081; CNRS UMR7284; Nice, France; Université de Nice-Sophia Antipolis; Faculté de Médecine; Nice, France; Equipe Labellisée par l'ARC; Villejuif, France; Centre Antoine Lacassagne; Nice, France
| |
Collapse
|
69
|
Troeger A, Chae HD, Senturk M, Wood J, Williams DA. A unique carboxyl-terminal insert domain in the hematopoietic-specific, GTPase-deficient Rho GTPase RhoH regulates post-translational processing. J Biol Chem 2013; 288:36451-62. [PMID: 24189071 DOI: 10.1074/jbc.m113.505727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RhoH is a hematopoietic-specific, GTPase-deficient member of the Rho GTPase family that was first identified as a hypermutable gene in human B lineage lymphomas. RhoH remains in a constitutively active state and thus its effects are regulated by expression levels or post-translational modifications. Similar to other small GTPases, intracellular localization of RhoH is dependent upon the conserved "CAAX" box and surrounding sequences within the carboxyl (C) terminus. However, RhoH also contains a unique C-terminal "insert" domain of yet undetermined function. RhoH serves as adaptor molecule in T cell receptor signaling and RhoH expression correlates with the unfavorable prognostic marker ZAP70 in human chronic lymphocytic leukemia. Disease progression is attenuated in a Rhoh(-/-) mouse model of chronic lymphocytic leukemia and treatment of primary human chronic lymphocytic leukemia cells with Lenalidomide results in reduced RhoH protein levels. Thus, RhoH is a potential therapeutic target in B cell malignancies. In the current studies, we demonstrate that deletion of the insert domain (LFSINE) results in significant cytoplasmic protein accumulation. Using inhibitors of degradation pathways, we show that LFSINE regulates lysosomal RhoH uptake and degradation via chaperone-mediated autophagy. Whereas the C-terminal prenylation site is critical for ZAP70 interaction, subcellular localization and rescue of the Rhoh(-/-) T cell defect in vivo, the insert domain appears dispensable for these functions. Taken together, our findings suggest that the insert domain regulates protein stability and activity without otherwise affecting RhoH function.
Collapse
Affiliation(s)
- Anja Troeger
- From the Division of Hematology/Oncology, Boston Children's Hospital and the Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
70
|
HSP90 protects the human T-cell leukemia virus type 1 (HTLV-1) tax oncoprotein from proteasomal degradation to support NF-κB activation and HTLV-1 replication. J Virol 2013; 87:13640-54. [PMID: 24109220 DOI: 10.1128/jvi.02006-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 genome encodes the Tax protein that plays essential regulatory roles in HTLV-1 replication and oncogenic transformation of T lymphocytes. Despite intensive study of Tax, how Tax interfaces with host signaling pathways to regulate virus replication and drive T-cell proliferation and immortalization remains poorly understood. To gain new insight into the mechanisms of Tax function and regulation, we used tandem affinity purification and mass spectrometry to identify novel cellular Tax-interacting proteins. This screen identified heat shock protein 90 (HSP90) as a new binding partner of Tax. The interaction between HSP90 and Tax was validated by coimmunoprecipitation assays, and colocalization between the two proteins was observed by confocal microscopy. Treatment of HTLV-1-transformed cells with the HSP90 inhibitor 17-DMAG elicited proteasomal degradation of Tax in the nuclear matrix with concomitant inhibition of NF-κB and HTLV-1 long terminal repeat (LTR) activation. Knockdown of HSP90 by lentiviral shRNAs similarly provoked a loss of Tax protein in HTLV-1-transformed cells. Finally, treatment of HTLV-1-transformed cell lines with 17-DMAG suppressed HTLV-1 replication and promoted apoptotic cell death. Taken together, our results reveal that Tax is a novel HSP90 client protein and HSP90 inhibitors may exert therapeutic benefits for ATL and HAM/TSP patients.
Collapse
|
71
|
Berk JM, Maitra S, Dawdy AW, Shabanowitz J, Hunt DF, Wilson KL. O-Linked β-N-acetylglucosamine (O-GlcNAc) regulates emerin binding to barrier to autointegration factor (BAF) in a chromatin- and lamin B-enriched "niche". J Biol Chem 2013; 288:30192-30209. [PMID: 24014020 DOI: 10.1074/jbc.m113.503060] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emerin, a membrane component of nuclear "lamina" networks with lamins and barrier to autointegration factor (BAF), is highly O-GlcNAc-modified ("O-GlcNAcylated") in mammalian cells. Mass spectrometry analysis revealed eight sites of O-GlcNAcylation, including Ser-53, Ser-54, Ser-87, Ser-171, and Ser-173. Emerin O-GlcNAcylation was reduced ~50% by S53A or S54A mutation in vitro and in vivo. O-GlcNAcylation was reduced ~66% by the triple S52A/S53A/S54A mutant, and S173A reduced O-GlcNAcylation of the S52A/S53A/S54A mutant by ~30%, in vivo. We separated two populations of emerin, A-type lamins and BAF; one population solubilized easily, and the other required sonication and included histones and B-type lamins. Emerin and BAF associated only in histone- and lamin-B-containing fractions. The S173D mutation specifically and selectively reduced GFP-emerin association with BAF by 58% and also increased GFP-emerin hyper-phosphorylation. We conclude that β-N-acetylglucosaminyltransferase, an essential enzyme, controls two regions in emerin. The first region, defined by residues Ser-53 and Ser-54, flanks the LEM domain. O-GlcNAc modification at Ser-173, in the second region, is proposed to promote emerin association with BAF in the chromatin/lamin B "niche." These results reveal direct control of a conserved LEM domain nuclear lamina component by β-N-acetylglucosaminyltransferase, a nutrient sensor that regulates cell stress responses, mitosis, and epigenetics.
Collapse
Affiliation(s)
- Jason M Berk
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Sushmit Maitra
- the Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Andrew W Dawdy
- the Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Jeffrey Shabanowitz
- the Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Donald F Hunt
- the Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Katherine L Wilson
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and.
| |
Collapse
|
72
|
Hsp90 inhibitor 17-DMAG decreases expression of conserved herpesvirus protein kinases and reduces virus production in Epstein-Barr virus-infected cells. J Virol 2013; 87:10126-38. [PMID: 23843639 DOI: 10.1128/jvi.01671-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
All eight human herpesviruses have a conserved herpesvirus protein kinase (CHPK) that is important for the lytic phase of the viral life cycle. In this study, we show that heat shock protein 90 (Hsp90) interacts directly with each of the eight CHPKs, and we demonstrate that an Hsp90 inhibitor drug, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), decreases expression of all eight CHPKs in transfected HeLa cells. 17-DMAG also decreases expression the of the endogenous Epstein-Barr virus protein kinase (EBV PK, encoded by the BGLF4 gene) in lytically infected EBV-positive cells and inhibits phosphorylation of several different known EBV PK target proteins. Furthermore, 17-DMAG treatment abrogates expression of the human cytomegalovirus (HCMV) kinase UL97 in HCMV-infected human fibroblasts. Importantly, 17-DMAG treatment decreased the EBV titer approximately 100-fold in lytically infected AGS-Akata cells without causing significant cellular toxicity during the same time frame. Increased EBV PK expression in 17-DMAG-treated AGS-Akata cells did not restore EBV titers, suggesting that 17-DMAG simultaneously targets multiple viral and/or cellular proteins required for efficient viral replication. These results suggest that Hsp90 inhibitors, including 17-DMAG, may be a promising group of drugs that could have profound antiviral effects on herpesviruses.
Collapse
|
73
|
Bachetti T, Chiesa S, Castagnola P, Bani D, Di Zanni E, Omenetti A, D'Osualdo A, Fraldi A, Ballabio A, Ravazzolo R, Martini A, Gattorno M, Ceccherini I. Autophagy contributes to inflammation in patients with TNFR-associated periodic syndrome (TRAPS). Ann Rheum Dis 2013; 72:1044-52. [PMID: 23117241 DOI: 10.1136/annrheumdis-2012-201952] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Tumour necrosis factor (TNF) receptor-associated periodic syndrome (TRAPS) is caused by TNFRSF1A mutations, known to induce intracellular retention of the TNFα receptor 1 (TNFR1) protein, defective TNFα-induced apoptosis, and production of reactive oxygen species. As downregulation of autophagy, the main cellular pathway involved in insoluble aggregate elimination, has been observed to increase the inflammatory response, we investigated whether it plays a role in TRAPS pathogenesis. METHODS The possible link between TNFRSF1A mutations and inflammation in TRAPS was studied in HEK-293T cells, transfected with expression constructs for wild-type and mutant TNFR1 proteins, and in monocytes derived from patients with TRAPS, by investigating autophagy function, NF-κB activation and interleukin (IL)-1β secretion. RESULTS We found that autophagy is responsible for clearance of wild-type TNFR1, but when TNFR1 is mutated, the autophagy process is defective, probably accounting for mutant TNFR1 accumulation as well as TRAPS-associated induction of NF-κB activity and excessive IL-1β secretion, leading to chronic inflammation. Autophagy inhibition due to TNFR1 mutant proteins can be reversed, as demonstrated by the effects of the antibiotic geldanamycin, which was found to rescue the membrane localisation of mutant TNFR1 proteins, reduce their accumulation and counteract the increased inflammation by decreasing IL-1β secretion. CONCLUSIONS Autophagy appears to be an important mechanism in the pathogenesis of TRAPS, an observation that provides a rationale for the most effective therapy in this autoinflammatory disorder. Our findings also suggest that autophagy could be proposed as a novel therapeutic target for TRAPS and possibly other similar diseases.
Collapse
Affiliation(s)
- Tiziana Bachetti
- Laboratory of Molecular Genetics, Giannina Gaslini Institute, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Yang M, Cao L, Xie M, Yu Y, Kang R, Yang L, Zhao M, Tang D. Chloroquine inhibits HMGB1 inflammatory signaling and protects mice from lethal sepsis. Biochem Pharmacol 2013; 86:410-8. [PMID: 23707973 DOI: 10.1016/j.bcp.2013.05.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 12/21/2022]
Abstract
Sepsis is caused by an overwhelming immune response to bacterial infection. The discovery of high mobility group box 1 (HMGB1) as a late mediator of lethal sepsis has prompted investigation into the development of new therapeutics which specifically target this protein. Here, we show that chloroquine, an anti-malarial drug, prevents lethality in mice with established endotoxemia or sepsis. This effect is still observed even if administration of chloroquine is delayed. The protective effects of chloroquine were mediated through inhibition of HMGB1 release in macrophages, monocytes, and endothelial cells, thereby preventing its cytokine-like activities. As an inhibitor of autophagy, chloroquine specifically inhibited HMGB1-induced Iκ-B degradation and NF-κB activation. These findings define a novel mechanism for the anti-inflammatory effects of chloroquine and also suggest a new potential clinical use for this drug in the setting of sepsis.
Collapse
Affiliation(s)
- Minghua Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Faure M, Lafont F. Pathogen-induced autophagy signaling in innate immunity. J Innate Immun 2013; 5:456-70. [PMID: 23652193 PMCID: PMC6741472 DOI: 10.1159/000350918] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/25/2013] [Accepted: 03/25/2013] [Indexed: 12/25/2022] Open
Abstract
Innate immunity induces rapid responses to fight invading pathogens. To eliminate intracellular bacteria or viruses, innate cellular responses lead to the production of nuclear factor-κB-dependent inflammatory cytokines, inflammasome activation, type I interferon synthesis, and/or eventually death of the infected cells. Autophagy emerged as another component of innate immunity, as it offers an immediate autonomous cell defense mechanism by degrading intracellular pathogens. In addition, autophagy participates in the regulation of immune and inflammatory cell responses. Instead of providing a comprehensive status of the art that has already been addressed elsewhere, we chose to highlight some recent issues brought up in the field.
Collapse
Affiliation(s)
- Mathias Faure
- International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon 1, Lyon, France
| | - Frank Lafont
- Cellular Microbiology of Infectious Pathogens, Center for Infection and Immunity of Lille, CNRS UM8204, INSERM U1019, Institut Pasteur de Lille, PRES Université Lille-Nord de France, Lille, France
| |
Collapse
|
76
|
Inhibition of nuclear factor-kappa B activation decreases survival of Mycobacterium tuberculosis in human macrophages. PLoS One 2013; 8:e61925. [PMID: 23634218 PMCID: PMC3636238 DOI: 10.1371/journal.pone.0061925] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/14/2013] [Indexed: 01/30/2023] Open
Abstract
Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy.
Collapse
|
77
|
Klettner A, Kauppinen A, Blasiak J, Roider J, Salminen A, Kaarniranta K. Cellular and molecular mechanisms of age-related macular degeneration: from impaired autophagy to neovascularization. Int J Biochem Cell Biol 2013; 45:1457-67. [PMID: 23603148 DOI: 10.1016/j.biocel.2013.04.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 01/18/2023]
Abstract
Age-related macular degeneration (AMD) is a complex, degenerative and progressive disease involving multiple genetic and environmental factors. It can result in severe visual loss e.g. AMD is the leading cause of blindness in the elderly in the western countries. Although age, genetics, diet, smoking, and many cardiovascular factors are known to be linked with this disease there is increasing evidence that long-term oxidative stress, impaired autophagy clearance and inflammasome mediated inflammation are involved in the pathogenesis. Under certain conditions these may trigger detrimental processes e.g. release of vascular endothelial growth factor (VEGF), causing choroidal neovascularization e.g. in wet AMD. This review ties together these crucial pathological threads in AMD.
Collapse
Affiliation(s)
- Alexa Klettner
- Department of Ophthalmology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
78
|
Tang SW, Ducroux A, Jeang KT, Neuveut C. Impact of cellular autophagy on viruses: Insights from hepatitis B virus and human retroviruses. J Biomed Sci 2012; 19:92. [PMID: 23110561 PMCID: PMC3495035 DOI: 10.1186/1423-0127-19-92] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/12/2012] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a protein degradative process important for normal cellular metabolism. It is apparently used also by cells to eliminate invading pathogens. Interestingly, many pathogens have learned to subvert the cell’s autophagic process. Here, we review the interactions between viruses and cells in regards to cellular autophagy. Using findings from hepatitis B virus and human retroviruses, HIV-1 and HTLV-1, we discuss mechanisms used by viruses to usurp cellular autophagy in ways that benefit viral replication.
Collapse
Affiliation(s)
- Sai-Wen Tang
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892-0460, USA
| | | | | | | |
Collapse
|
79
|
Shen S, Niso-Santano M, Adjemian S, Takehara T, Malik SA, Minoux H, Souquere S, Mariño G, Lachkar S, Senovilla L, Galluzzi L, Kepp O, Pierron G, Maiuri MC, Hikita H, Kroemer R, Kroemer G. Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. Mol Cell 2012; 48:667-80. [PMID: 23084476 DOI: 10.1016/j.molcel.2012.09.013] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 07/25/2012] [Accepted: 09/11/2012] [Indexed: 12/20/2022]
Abstract
In a screen designed to identify novel inducers of autophagy, we discovered that STAT3 inhibitors potently stimulate the autophagic flux. Accordingly, genetic inhibition of STAT3 stimulated autophagy in vitro and in vivo, while overexpression of STAT3 variants, encompassing wild-type, nonphosphorylatable, and extranuclear STAT3, inhibited starvation-induced autophagy. The SH2 domain of STAT3 was found to interact with the catalytic domain of the eIF2α kinase 2 EIF2AK2, best known as protein kinase R (PKR). Pharmacological and genetic inhibition of STAT3 stimulated the activating phosphorylation of PKR and consequent eIF2α hyperphosphorylation. Moreover, PKR depletion inhibited autophagy as initiated by chemical STAT3 inhibitors or free fatty acids like palmitate. STAT3-targeting chemicals and palmitate caused the disruption of inhibitory STAT3-PKR interactions, followed by PKR-dependent eIF2α phosphorylation, which facilitates autophagy induction. These results unravel an unsuspected mechanism of autophagy control that involves STAT3 and PKR as interacting partners.
Collapse
|
80
|
Salminen A, Kaarniranta K, Kauppinen A. Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging (Albany NY) 2012; 4:166-75. [PMID: 22411934 PMCID: PMC3348477 DOI: 10.18632/aging.100444] [Citation(s) in RCA: 335] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammaging refers to a low-grade pro-inflammatory phenotype which accompanies aging in mammals. The aging process is associated with a decline in autophagic capacity which impairs cellular housekeeping, leading to protein aggregation and accumulation of dysfunctional mitochondria which provoke reactive oxygen species (ROS) production and oxidative stress. Recent studies have clearly indicated that the ROS production induced by damaged mitochondria can stimulate intracellular danger-sensing multiprotein platforms called inflammasomes. Nod-like receptor 3 (NLRP3) can be activated by many danger signals, e.g. ROS, cathepsin B released from destabilized lysosomes and aggregated proteins, all of which evoke cellular stress and are involved in the aging process. NLRP3 activation is also enhanced in many age-related diseases, e.g. atherosclerosis, obesity and type 2 diabetes. NLRP3 activates inflammatory caspases, mostly caspase-1, which cleave the inactive precursors of IL-1β and IL-18 and stimulate their secretion. Consequently, these cytokines provoke inflammatory responses and accelerate the aging process by inhibiting autophagy. In conclusion, inhibition of autophagic capacity with aging generates the inflammaging condition via the activation of inflammasomes, in particular NLRP3. We will provide here a perspective on the current research of the ROS-dependent activation of inflammasomes triggered by the decline in autophagic cleansing of dysfunctional mitochondria.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.
| | | | | |
Collapse
|
81
|
Context-Dependent Regulation of Autophagy by IKK-NF-κB Signaling: Impact on the Aging Process. Int J Cell Biol 2012; 2012:849541. [PMID: 22899934 PMCID: PMC3412117 DOI: 10.1155/2012/849541] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/21/2012] [Indexed: 12/19/2022] Open
Abstract
The NF-κB signaling system and the autophagic degradation pathway are crucial cellular survival mechanisms, both being well conserved during evolution. Emerging studies have indicated that the IKK/NF-κB signaling axis regulates autophagy in a context-dependent manner. IKK complex and NF-κB can enhance the expression of Beclin 1 and other autophagy-related proteins and stimulate autophagy whereas as a feedback response, autophagy can degrade IKK components. Moreover, NF-κB signaling activates the expression of autophagy inhibitors (e.g., A20 and Bcl-2/xL) and represses the activators of autophagy (BNIP3, JNK1, and ROS). Several studies have indicated that NF-κB signaling is enhanced both during aging and cellular senescence, inducing a proinflammatory phenotype. The aging process is also associated with a decline in autophagic degradation. It seems that the activity of Beclin 1 initiation complex could be impaired with aging, since the expression of Beclin 1 decreases as does the activity of type III PI3K. On the other hand, the expression of inhibitory Bcl-2/xL proteins increases with aging. We will review the recent literature on the control mechanisms of autophagy through IKK/NF-κB signaling and emphasize that NF-κB signaling could be a potent repressor of autophagy with ageing.
Collapse
|
82
|
Qu Z, Fu J, Ma H, Zhou J, Jin M, Mapara MY, Grusby MJ, Xiao G. PDLIM2 restricts Th1 and Th17 differentiation and prevents autoimmune disease. Cell Biosci 2012; 2:23. [PMID: 22731402 PMCID: PMC3543335 DOI: 10.1186/2045-3701-2-23] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/06/2012] [Indexed: 01/31/2023] Open
Abstract
Background PDLIM2 is essential for the termination of the inflammatory transcription factors NF-κB and STAT but is dispensable for the development of immune cells and immune tissues/organs. Currently, it remains unknown whether and how PDLIM2 is involved in physiologic and pathogenic processes. Results Here we report that naive PDLIM2 deficient CD4+ T cells were prone to differentiate into Th1 and Th17 cells. PDLIM2 deficiency, however, had no obvious effect on lineage commitment towards Th2 or Treg cells. Notably, PDLIM2 deficient mice exhibited increased susceptibility to experimental autoimmune encephalitis (EAE), a Th1 and/or Th17 cell-mediated inflammatory disease model of multiple sclerosis (MS). Mechanistic studies further indicate that PDLIM2 was required for restricting expression of Th1 and Th17 cytokines, which was in accordance with the role of PDLIM2 in the termination of NF-κB and STAT activation. Conclusion These findings suggest that PDLIM2 is a key modulator of T-cell-mediated immune responses that may be targeted for the therapy of human autoimmune diseases.
Collapse
Affiliation(s)
- Zhaoxia Qu
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Modulation of autophagy-like processes by tumor viruses. Cells 2012; 1:204-47. [PMID: 24710474 PMCID: PMC3901111 DOI: 10.3390/cells1030204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an intracellular degradation pathway for long-lived proteins and organelles. This process is activated above basal levels upon cell intrinsic or environmental stress and dysregulation of autophagy has been linked to various human diseases, including those caused by viral infection. Many viruses have evolved strategies to directly interfere with autophagy, presumably to facilitate their replication or to escape immune detection. However, in some cases, modulation of autophagy appears to be a consequence of the virus disturbing the cell’s metabolic signaling networks. Here, we summarize recent advances in research at the interface of autophagy and viral infection, paying special attention to strategies that human tumor viruses have evolved.
Collapse
|
84
|
Khan MA, Gahlot S, Majumdar S. Oxidative stress induced by curcumin promotes the death of cutaneous T-cell lymphoma (HuT-78) by disrupting the function of several molecular targets. Mol Cancer Ther 2012; 11:1873-83. [PMID: 22653966 DOI: 10.1158/1535-7163.mct-12-0141] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Curcumin is known to exert its anticancer effect either by scavenging or by generating reactive oxygen species (ROS). In this study, we report that curcumin-mediated rapid generation of ROS induces apoptosis by modulating different cell survival and cell death pathways in HuT-78 cells. Curcumin induces the activation of caspase-8, -2, and -9, alteration of mitochondrial membrane potential, release of cytochrome c, and activation of caspase-3 and concomitant PARP cleavage, but the addition of caspase inhibitors only partially blocked the curcumin-mediated apoptosis. Curcumin also downregulates the expression of antiapoptotic proteins c-FLIP, Bcl-xL, cellular inhibitor of apoptosis protein, and X-linked IAP in a ROS-dependent manner. Curcumin disrupts the integrity of IKK and beclin-1 by degrading Hsp90. Degradation of IKK leads to the inhibition of constitutive NF-κB. Degradation of beclin-1 by curcumin leads to the accumulation of autophagy-specific marker, microtubule-associated protein-I light chain 3 (LC3), LC3-I. Our findings indicate that HuT-78 cells are vulnerable to oxidative stress induced by curcumin and as a result eventually undergo cell death.
Collapse
Affiliation(s)
- Mohammad Aslam Khan
- Division of Cell Biology and Immunology, Institute of Microbial Technology, CSIR, Chandigarh, India
| | | | | |
Collapse
|
85
|
Inoue J, Nishiumi S, Fujishima Y, Masuda A, Shiomi H, Yamamoto K, Nishida M, Azuma T, Yoshida M. Autophagy in the intestinal epithelium regulates Citrobacter rodentium infection. Arch Biochem Biophys 2012; 521:95-101. [PMID: 22475450 DOI: 10.1016/j.abb.2012.03.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
Abstract
Autophagy, a ubiquitous degradation pathway, is important for the survival and homeostasis of cells. Previous studies have demonstrated the role of autophagy in host defense against bacterial infection, but the importance of autophagy in the intestinal epithelium for the regulation of bacterial infection has not been fully elucidated. In this study, we showed that the essential autophagy protein Atg7 is required for resistance to Citrobacter rodentium infection in the intestinal epithelium. Infected mice in which Atg7 had been conditionally deleted from the intestinal epithelium exhibited greater clinical evidence of disease and higher expression levels of pro-inflammatory cytokine mRNA in the large intestine. Moreover, C. rodentium clearance was reduced in the Atg7 conditional knockout mice. These results demonstrate that autophagy in intestinal epithelial cells plays an important role in host defense against C. rodentium infection and the regulation of C. rodentium infectious colitis.
Collapse
Affiliation(s)
- Jun Inoue
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chu-o-ku, Kobe, Hyogo 650-0017, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATL), whereas the highly related HTLV-2 is not associated with ATL or other cancers. In addition to ATL leukemogenesis, studies of the HTLV viruses also provide an exceptional model for understanding basic pathogenic mechanisms of virus-host interactions and human oncogenesis. Accumulating evidence suggests that the viral regulatory protein Tax and host inflammatory transcription factor NF-κB are largely responsible for the different pathogenic potentials of HTLV-1 and HTLV-2. Here, we discuss the molecular mechanisms of HTLV-1 oncogenic pathogenesis with a focus on the interplay between the Tax oncoprotein and NF-κB pro-oncogenic signaling. We also outline some of the most intriguing and outstanding questions in the fields of HTLV and NF-κB. Answers to those questions will greatly advance our understanding of ATL leukemogenesis and other NF-κB-associated tumorigenesis and will help us design personalized cancer therapies.
Collapse
|
87
|
Qu X, Du J, Zhang C, Fu W, Xi H, Zou J, Hou J. Arsenic trioxide exerts antimyeloma effects by inhibiting activity in the cytoplasmic substrates of histone deacetylase 6. PLoS One 2012; 7:e32215. [PMID: 22384180 PMCID: PMC3284565 DOI: 10.1371/journal.pone.0032215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/25/2012] [Indexed: 11/19/2022] Open
Abstract
Arsenic trioxide (As(2)O(3)) has shown remarkable efficacy for the treatment of multiple myeloma (MM). Histone deacetylases (HDAC) play an important role in the control of gene expression, and their dysregulation has been linked to myeloma. Especially, HDAC6, a unique cytoplasmic member of class II, which mainly functions as α-tubulin deacetylase and Hsp90 deacetylase, has become a target for drug development to treat cancer due to its major contribution in oncogenic cell transformation. However, the mechanisms of action for As(2)O(3) have not yet been defined. In this study, we investigated the effect of As(2)O(3) on proliferation and apoptosis in human myeloma cell line and primary myeloma cells, and then we studied that As(2)O(3) exerts antimyeloma effects by inhibiting activity in the α-tubulin and Hsp90 through western blot analysis and immunoprecipitation. We found that As(2)O(3) acts directly on MM cells at relatively low concentrations of 0.5~2.5 µM, which effects survival and apoptosis of MM cells. However, As(2)O(3) inhibited HDAC activity at the relatively high concentration and dose-dependent manner (great than 4 µM). Subsequently, we found that As(2)O(3) treatment in a dose- and time-dependent fashion markedly increased the level of acetylated α-tubulin and acetylated Hsp90, and inhibited the chaperone association with IKKα activities and increased degradation of IKKα. Importantly, the loss of IKKα-associated Hsp90 occurred prior to any detectable loss in the levels of IKKα, indicating a novel pathway by which As(2)O(3) down-regulates HDAC6 to destabilize IKKα protein via Hsp90 chaperone function. Furthermore, we observed the effect of As(2)O(3) on TNF-α-induced NF-κB signaling pathway was to significantly reduced phosphorylation of Ser-536 on NF-κB p65. Therefore, our studies provide an important insight into the molecular mechanism of anti-myeloma activity of As(2)O(3) in HDAC6-Hsp90-IKKα-NFκB signaling axis and the rationale for As(2)O(3) can be extended readily using all the HDAC associated diseases.
Collapse
Affiliation(s)
- Xiaoyan Qu
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Juan Du
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Chunyang Zhang
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Weijun Fu
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Hao Xi
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Jianfeng Zou
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Jian Hou
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, The Second Military Medical University, Shanghai, China
- * E-mail:
| |
Collapse
|
88
|
Fliss PM, Jowers TP, Brinkmann MM, Holstermann B, Mack C, Dickinson P, Hohenberg H, Ghazal P, Brune W. Viral mediated redirection of NEMO/IKKγ to autophagosomes curtails the inflammatory cascade. PLoS Pathog 2012; 8:e1002517. [PMID: 22319449 PMCID: PMC3271075 DOI: 10.1371/journal.ppat.1002517] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/16/2011] [Indexed: 01/06/2023] Open
Abstract
The early host response to viral infections involves transient activation of pattern recognition receptors leading to an induction of inflammatory cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα). Subsequent activation of cytokine receptors in an autocrine and paracrine manner results in an inflammatory cascade. The precise mechanisms by which viruses avert an inflammatory cascade are incompletely understood. Nuclear factor (NF)-κB is a central regulator of the inflammatory signaling cascade that is controlled by inhibitor of NF-κB (IκB) proteins and the IκB kinase (IKK) complex. In this study we show that murine cytomegalovirus inhibits the inflammatory cascade by blocking Toll-like receptor (TLR) and IL-1 receptor-dependent NF-κB activation. Inhibition occurs through an interaction of the viral M45 protein with the NF-κB essential modulator (NEMO), the regulatory subunit of the IKK complex. M45 induces proteasome-independent degradation of NEMO by targeting NEMO to autophagosomes for subsequent degradation in lysosomes. We propose that the selective and irreversible degradation of a central regulatory protein by autophagy represents a new viral strategy to dampen the inflammatory response. Upon viral infection cells immediately induce an innate immune response which involves the production of inflammatory cytokines. These cytokines activate specific receptors on infected and surrounding cells leading to local signal amplification as well as signal broadcasting beyond the original site of infection. Inflammatory cytokine production depends on transcription factor NF-κB, whose activity is controlled by a kinase complex that includes the NF-κB essential modulator (NEMO). In order to replicate and spread in their hosts, viruses have evolved numerous strategies to counteract innate immune defenses. In this study we identify a highly effective viral strategy to blunt the host inflammatory response: The murine cytomegalovirus M45 protein binds to NEMO and redirects it to autophagosomes, vesicular structures that deliver cytoplasmic constituents to lysosomes for degradation and recycling. By this means, the virus installs a sustained block to all classical NF-κB activation pathways, which include signaling cascades originating from pattern recognition receptors and inflammatory cytokine receptors. Redirection of an essential component of the host cell defense machinery to the autophagic degradation pathway is a previously unrecognized viral immune evasion strategy whose principle is likely shared by other pathogens.
Collapse
Affiliation(s)
- Patricia M. Fliss
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
| | - Tali Pechenick Jowers
- Division of Pathway Medicine, Centre for Infectious Diseases, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | | | - Barbara Holstermann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Claudia Mack
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
| | - Paul Dickinson
- Division of Pathway Medicine, Centre for Infectious Diseases, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Heinrich Hohenberg
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Peter Ghazal
- Division of Pathway Medicine, Centre for Infectious Diseases, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Wolfram Brune
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
- * E-mail:
| |
Collapse
|
89
|
Kästle M, Grune T. Interactions of the Proteasomal System with Chaperones. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:113-60. [DOI: 10.1016/b978-0-12-397863-9.00004-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
90
|
Joo JH, Dorsey FC, Joshi A, Hennessy-Walters KM, Rose KL, McCastlain K, Zhang J, Iyengar R, Jung CH, Suen DF, Steeves MA, Yang CY, Prater SM, Kim DH, Thompson CB, Youle RJ, Ney PA, Cleveland JL, Kundu M. Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. Mol Cell 2011; 43:572-85. [PMID: 21855797 DOI: 10.1016/j.molcel.2011.06.018] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 04/21/2011] [Accepted: 06/24/2011] [Indexed: 12/26/2022]
Abstract
Autophagy, the primary recycling pathway of cells, plays a critical role in mitochondrial quality control under normal growth conditions and in the response to cellular stress. The Hsp90-Cdc37 chaperone complex coordinately regulates the activity of select kinases to orchestrate many facets of the stress response. Although both maintain mitochondrial integrity, the relationship between Hsp90-Cdc37 and autophagy has not been well characterized. Ulk1, one of the mammalian homologs of yeast Atg1, is a serine-threonine kinase required for mitophagy. Here we show that the interaction between Ulk1 and Hsp90-Cdc37 stabilizes and activates Ulk1, which in turn is required for the phosphorylation and release of Atg13 from Ulk1, and for the recruitment of Atg13 to damaged mitochondria. Hsp90-Cdc37, Ulk1, and Atg13 phosphorylation are all required for efficient mitochondrial clearance. These findings establish a direct pathway that integrates Ulk1- and Atg13-directed mitophagy with the stress response coordinated by Hsp90 and Cdc37.
Collapse
Affiliation(s)
- Joung Hyuck Joo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
Steroids and alkylating agents have formed the backbone of myeloma therapy for decades with the result that patient outcomes improved very little over this period. The situation has changed recently with the advent of immunomodulatory agents and bortezomib, and patient outcomes are now improving. The introduction of bortezomib can be viewed as particularly successful as it was designed in the laboratory to fit a target that had been identified through biological research. As such, it has formed the template for new drug discovery in myeloma, with an increased understanding of the biology of the myeloma cell leading to the definition of upregulated pathways which are then targeted with a specific agent. This chapter will examine novel agents currently in development in the context of the abnormal biology of the myeloma cell and its microenvironment.
Collapse
|
92
|
Jiang Q, Wang Y, Li T, Shi K, Li Z, Ma Y, Li F, Luo H, Yang Y, Xu C. Heat shock protein 90-mediated inactivation of nuclear factor-κB switches autophagy to apoptosis through becn1 transcriptional inhibition in selenite-induced NB4 cells. Mol Biol Cell 2011; 22:1167-80. [PMID: 21346199 PMCID: PMC3078072 DOI: 10.1091/mbc.e10-10-0860] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/28/2011] [Accepted: 02/14/2011] [Indexed: 01/07/2023] Open
Abstract
Autophagy can protect cells while also contributing to cell damage, but the precise interplay between apoptosis and autophagy and the contribution of autophagy to cell death are still not clear. Previous studies have shown that supranutritional doses of sodium selenite promote apoptosis in human leukemia NB4 cells. Here, we report that selenite treatment triggers opposite patterns of autophagy in the NB4, HL60, and Jurkat leukemia cell lines during apoptosis and provide evidence that the suppressive effect of selenite on autophagy in NB4 cells is due to the decreased expression of the chaperone protein Hsp90 (heat shock protein 90), suggesting a novel regulatory function of Hsp90 in apoptosis and autophagy. Excessive or insufficient expression indicates that Hsp90 protects NB4 cells from selenite-induced apoptosis, and selenite-induced decreases in the expression of Hsp90, especially in NB4 cells, inhibit the activities of the IκB kinase/nuclear factor-κB (IKK/NF-κB) signaling pathway, leading to less nuclear translocation and inactivation of NF-κB and the subsequent weak binding of the becn1 promoter, which facilitates the transition from autophagy to apoptosis. Taken together, our observations provide novel insights into the mechanisms underlying the balance between apoptosis and autophagy, and we also identified Hsp90-NF-κB-Beclin1 as a potential biological pathway for signaling the switch from autophagy to apoptosis in selenite-treated NB4 cells.
Collapse
Affiliation(s)
- Qian Jiang
- National Laboratory of Medical Molecular Biology; Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yuhan Wang
- National Laboratory of Medical Molecular Biology; Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Tianjiao Li
- National Laboratory of Medical Molecular Biology; Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Kejian Shi
- National Laboratory of Medical Molecular Biology; Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Zhushi Li
- National Laboratory of Medical Molecular Biology; Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yushi Ma
- National Laboratory of Medical Molecular Biology; Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Feng Li
- National Laboratory of Medical Molecular Biology; Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Hui Luo
- National Laboratory of Medical Molecular Biology; Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yang Yang
- National Laboratory of Medical Molecular Biology; Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Caimin Xu
- National Laboratory of Medical Molecular Biology; Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
93
|
Allegra A, Sant'antonio E, Penna G, Alonci A, D'Angelo A, Russo S, Cannavò A, Gerace D, Musolino C. Novel therapeutic strategies in multiple myeloma: role of the heat shock protein inhibitors. Eur J Haematol 2010; 86:93-110. [PMID: 21114539 DOI: 10.1111/j.1600-0609.2010.01558.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite advances in understanding the molecular pathogenesis of multiple myeloma and promising new therapies, almost all patients eventually relapse with resistant disease. There is therefore a strong rationale for combining novel therapies that target intrinsic molecular pathways mediating multiple myeloma cell resistance. One such protein family is the heat shock proteins (HSP), especially the HSP90 family. Heat shock protein inhibitors have been identified as promising cancer treatments as, while they only inhibit a single biologic function, the chaperone-protein association, their effect is widespread as it results in the destruction of numerous client proteins. This article reviews the preclinical and clinical data, which support the testing of HSP90 inhibitors as cancer drugs and update the reader on the current status of the ongoing clinical trials of HSP90 inhibitors in multiple myeloma.
Collapse
|
94
|
Fujishima Y, Nishiumi S, Masuda A, Inoue J, Nguyen NMT, Irino Y, Komatsu M, Tanaka K, Kutsumi H, Azuma T, Yoshida M. Autophagy in the intestinal epithelium reduces endotoxin-induced inflammatory responses by inhibiting NF-κB activation. Arch Biochem Biophys 2010; 506:223-35. [PMID: 21156154 DOI: 10.1016/j.abb.2010.12.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/03/2010] [Accepted: 12/07/2010] [Indexed: 01/06/2023]
Abstract
Autophagy is a lysosomal degradation pathway that is essential for survival, differentiation, development and homeostasis. There is growing evidence that impaired autophagy leads to the pathogenesis of diverse diseases. However, the role of autophagy in intestinal epithelium is not clearly understood, although previous studies have pointed out the possibility for the relationships of autophagy with bowel inflammation. In this study, we investigated the involvement of autophagy in intestinal epithelium with inflammatory responses. We generated the mice with a conditional deletion of Atg7, which is one of the autophagy regulated gene, in intestinal epithelium. In Atg7-deficient small intestinal epithelium, LPS-induced production of TNF-α and IL-1β mRNA was enhanced in comparison to the control small intestinal tissues. In addition, the degree of LPS-induced activation of NF-κB was promoted in Atg7-deficient intestinal epithelium. These results demonstrate that autophagy can attenuate endotoxin-induced inflammatory responses in intestinal epithelium resulting in the maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Yoshimi Fujishima
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
The tumor suppressor gene WWOX links the canonical and noncanonical NF-κB pathways in HTLV-I Tax-mediated tumorigenesis. Blood 2010; 117:1652-61. [PMID: 21115974 DOI: 10.1182/blood-2010-08-303073] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Both the canonical and noncanonical nuclear factor κB (NF-κB) pathways have been linked to tumorigenesis. However, it remains unknown whether and how the 2 signaling pathways cooperate during tumorigenesis. We report that inhibition of the noncanonical NF-κB pathway significantly delays tumorigenesis mediated by the viral oncoprotein Tax. One function of noncanonical NF-κB activation was to repress expression of the WWOX tumor suppressor gene. Notably, WWOX specifically inhibited Tax-induced activation of the canonical, but not the noncanonical NF-κB pathway. Mechanistic studies indicated that WWOX blocked Tax-induced inhibitors of κB kinaseα (IKKα) recruitment to RelA and subsequent RelA phosphorylation at S536. In contrast, WWOX Y33R, a mutant unable to block the IKKα recruitment and RelA phosphorylation, lost the ability to inhibit Tax-mediated tumorigenesis. These data provide one important mechanism by which Tax coordinates the 2 NF-κB pathways for tumorigenesis. These data also suggest a novel role of WWOX in NF-κB regulation and viral tumorigenesis.
Collapse
|
96
|
Kim JE, You DJ, Lee C, Ahn C, Seong JY, Hwang JI. Suppression of NF-κB signaling by KEAP1 regulation of IKKβ activity through autophagic degradation and inhibition of phosphorylation. Cell Signal 2010; 22:1645-54. [DOI: 10.1016/j.cellsig.2010.06.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 06/16/2010] [Indexed: 01/13/2023]
|
97
|
Li J, Wang XL, Fang YC, Wang CY. Tephrosin-induced autophagic cell death in A549 non-small cell lung cancer cells. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2010; 12:992-1000. [PMID: 21061222 DOI: 10.1080/10286020.2010.513034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Anticancer effect of tephrosin (1) has been documented; however, the molecular mechanisms underlying the cytotoxicity of tephrosin in cancer cells remain unclear. In the present paper, the proliferation inhibition rate of several cancer cells was tested using the MTT assay; cell cycle, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were determined by flow cytometry; poly(ADP-ribose) polymerase (PARP) cleavage and heat shock protein 90 (Hsp90) expression were evaluated by Western blotting; autophagy was examined by confocal microscopy and light chain 3 (LC3) conversion assay. The results showed that exposure of the cells to tephrosin induced significant proliferation inhibition in a dose-dependent manner, especially on A549 with G(2)/M being arrested. Tephrosin was not found to induce cell apoptosis as PARP cleavage was not detected after 24 h treatment, but the formation of acidic vesicular organelle of autophagy character was found, and autophagy was further confirmed by the increase in the ratio of LC3-II to LC3-I. It was observed that tephrosin induced ROS generation and Hsp90 expression inhibition. These results indicate that tephrosin induces A549 cancer cell death via the autophagy pathway, and the roles of ROS generation and Hsp90 expression inhibition in this process need further study in the future.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | | | | | | |
Collapse
|
98
|
Kazemi Z, Chang H, Haserodt S, McKen C, Zachara NE. O-linked beta-N-acetylglucosamine (O-GlcNAc) regulates stress-induced heat shock protein expression in a GSK-3beta-dependent manner. J Biol Chem 2010; 285:39096-107. [PMID: 20926391 DOI: 10.1074/jbc.m110.131102] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To investigate the mechanisms by which O-linked β-N-acetylglucosamine modification of nucleocytoplasmic proteins (O-GlcNAc) confers stress tolerance to multiple forms of cellular injury, we explored the role(s) of O-GlcNAc in the regulation of heat shock protein (HSP) expression. Using a cell line in which deletion of the O-GlcNAc transferase (OGT; the enzyme that adds O-GlcNAc) can be induced by 4-hydroxytamoxifen, we screened the expression of 84 HSPs using quantitative reverse transcriptase PCR. In OGT null cells the stress-induced expression of 18 molecular chaperones, including HSP72, were reduced. GSK-3β promotes apoptosis through numerous pathways, including phosphorylation of heat shock factor 1 (HSF1) at Ser(303) (Ser(P)(303) HSF1), which inactivates HSF1 and inhibits HSP expression. In OGT null cells we observed increased Ser(P)(303) HSF1; conversely, in cells in which O-GlcNAc levels had been elevated, reduced Ser(P)(303) HSF1 was detected. These data, combined with those showing that inhibition of GSK-3β in OGT null cells recovers HSP72 expression, suggests that O-GlcNAc regulates the activity of GSK-3β. In OGT null cells, stress-induced inactivation of GSK-3β by phosphorylation at Ser(9) was ablated providing a molecular basis for these findings. Together, these data suggest that stress-induced GlcNAcylation increases HSP expression through inhibition of GSK-3β.
Collapse
Affiliation(s)
- Zahra Kazemi
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
99
|
Sumpter R, Levine B. Autophagy and innate immunity: triggering, targeting and tuning. Semin Cell Dev Biol 2010; 21:699-711. [PMID: 20403453 DOI: 10.1016/j.semcdb.2010.04.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 02/06/2023]
Abstract
Autophagy is a conserved catabolic stress response pathway that is increasingly recognized as an important component of both innate and acquired immunity to pathogens. The activation of autophagy during infection not only provides cell-autonomous protection through lysosomal degradation of invading pathogens (xenophagy), but also regulates signaling by other innate immune pathways. This review will focus on recent advances in our understanding of three major areas of the interrelationship between autophagy and innate immunity, including how autophagy is triggered during infection, how invading pathogens are targeted to autophagosomes, and how the autophagy pathway participates in "tuning" the innate immune response.
Collapse
Affiliation(s)
- Rhea Sumpter
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
100
|
Yogev O, Goldberg R, Anzi S, Yogev O, Shaulian E. Jun proteins are starvation-regulated inhibitors of autophagy. Cancer Res 2010; 70:2318-27. [PMID: 20197466 DOI: 10.1158/0008-5472.can-09-3408] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The growing number of biological functions affected by autophagy ascribes a special significance to identification of factors regulating it. The activator protein-1 (AP-1) transcription factors are involved in most aspects of cellular proliferation, death, or survival, yet no information regarding their involvement in autophagy is available. Here, we show that the AP-1 proteins JunB and c-Jun, but not JunD, c-Fos, or Fra-1, inhibit autophagy. JunB inhibits autophagy induced by starvation, overexpression of a short form of ARF (smARF), a potent inducer of autophagy, or even after rapamycin treatment. In agreement, acute repression of JunB expression, by JunB knockdown, potently induces autophagy. As expected from autophagy-inhibiting proteins, Jun B and c-Jun expression is reduced by starvation. Decrease in JunB mRNA expression and posttranscriptional events downregulate JunB protein expression after starvation. The inhibition of autophagy by JunB is not mediated by mammalian target of rapamycin (mTOR) regulation, as it occurs also in the absence of mTOR activity, and autophagy induced by JunB knockdown is not correlated with changes in mTOR activity. Nevertheless, the transcriptional activities of c-Jun and JunB are required for autophagy inhibition, and JunB incapable of heterodimerizing is a less effective inhibitor of autophagy. Most importantly, inhibition of autophagy in starved HeLa cells by JunB enhances apoptotic cell death. We suggest that JunB and c-Jun are regulators of autophagy whose expression responds to autophagy-inducing signals.
Collapse
Affiliation(s)
- Orli Yogev
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|