51
|
Kong B, Cheng T, Qian C, Wu W, Steiger K, Cao J, Schlitter AM, Regel I, Raulefs S, Friess H, Erkan M, Esposito I, Kleeff J, Michalski CW. Pancreas-specific activation of mTOR and loss of p53 induce tumors reminiscent of acinar cell carcinoma. Mol Cancer 2015; 14:212. [PMID: 26683340 PMCID: PMC4683950 DOI: 10.1186/s12943-015-0483-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022] Open
Abstract
Background Pancreatic acinar cell carcinoma (ACC) is a rare tumor entity with an unfavorable prognosis. Recent whole-exome sequencing identified p53 mutations in a subset of human ACC. Activation of the mammalian target of rapamycin (mTOR) pathway is associated with various pancreatic neoplasms. We thus aimed at analyzing whether activation of mTOR with a concomitant loss of p53 may initiate ACC. Methods We generated transgenic mouse models in which mTOR was hyperactivated through pancreas-specific, homozygous tuberous sclerosis 1 (Tsc1) deficiency, with or without deletion of p53 (Tsc1-/- and Tsc1-/-; p53-/-). Activity of mTOR signaling was investigated using mouse tissues and isolated murine cell lines. Human ACC specimens were used to corroborate the findings from the transgenic mouse models. Results Hyperactive mTOR signaling in Tsc1-/- mice was not oncogenic but rather induced a near-complete loss of the pancreatic acinar compartment. Acinar cells were lost as a result of apoptosis which was associated with p53 activation. Concomitantly, ductal cells were enriched. Ablation of p53 in Tsc1-deficient mice prevented acinar cell death but promoted formation of acinar cells with severe nuclear abnormalities. One out of seven Tsc1-/-; p53-/- animals developed pancreatic tumors showing a distinctive tumor morphology, reminiscent of human ACC. Hyperactive mTOR signaling was also detected in a subset of human ACC. Conclusion Hyperactive mTOR signaling combined with loss of p53 in mice induces tumors similar to human ACC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0483-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Kong
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Tao Cheng
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Chengjia Qian
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Weiwei Wu
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | | | - Jing Cao
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | | | - Ivonne Regel
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Susanne Raulefs
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Helmut Friess
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Mert Erkan
- Department of Surgery, Technische Universität München (TUM), Munich, Germany.,Department of Surgery, Koc School of Medicine, Istanbul, Turkey
| | - Irene Esposito
- Institute of Pathology, TUM, Munich, Germany.,Institute of Pathology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jörg Kleeff
- Department of Surgery, Technische Universität München (TUM), Munich, Germany.,Royal Liverpool and Broadgreen University Hospitals, Liverpool, UK
| | - Christoph W Michalski
- Department of Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| |
Collapse
|
52
|
Duan L, Perez RE, Hansen M, Gitelis S, Maki CG. Increasing cisplatin sensitivity by schedule-dependent inhibition of AKT and Chk1. Cancer Biol Ther 2015; 15:1600-12. [PMID: 25482935 DOI: 10.4161/15384047.2014.961876] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The effectiveness of DNA damaging chemotherapy drugs can be limited by activation of survival signaling pathways and cell cycle checkpoints that allow DNA repair. Targeting survival pathways and inhibiting cell cycle checkpoints may increase chemotherapy-induced cancer cell killing. AKT and Chk1 are survival and cell cycle checkpoint kinases, respectively, that can be activated by DNA damage. Cisplatin (CP) is a standard chemotherapy agent for osteosarcoma (OS). CP induced apoptosis to varying extents and activated AKT and Chk1 in multiple p53 wild-type and p53-null OS cell lines. A Chk1 inhibitor increased CP-induced apoptosis in all OS cell lines regardless of p53 status. In contrast, an AKT inhibitor increased CP-induced apoptosis only in p53 wild-type OS cells, but not p53 nulll cells. The increased apoptosis in p53 wild-type cells was coincident with decreased p53 protein levels, but increased expression of p53-responsive apoptotic genes Noxa and PUMA. Further studies revealed the inability of AKT inhibitor to CP-sensitize p53-null OS cells resulted from 2 things: 1) AKT inhibition stabilized/maintained p27 levels in CP-treated cells, which then mediated a protective G1-phase cell cycle arrest, 2) AKT inhibition increased the levels of activated Chk1. Finally, schedule dependent inhibition of AKT and Chk1 evaded the protective G1 arrest mediated by p27 and maximized CP-induced OS cell killing. These data demonstrate AKT and Chk1 activation promote survival in CP-treated OS cells, and that strategic, scheduled targeting of AKT and Chk1 can maximize OS cell killing by CP.
Collapse
Affiliation(s)
- Lei Duan
- a Department of Anatomy and Cell Biology ; Rush University Medical Center ; Chicago , IL USA
| | | | | | | | | |
Collapse
|
53
|
Abstract
In this issue of Molecular Cell, Ye et al. (2015) demonstrate that mTORC1 globally regulates miRNA biogenesis under nutrient-rich conditions via the E3 ubiquitin ligase Mdm2, which promotes Drosha degradation.
Collapse
Affiliation(s)
- Jenna L Jewell
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla CA 92093, USA
| | - Fabian Flores
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla CA 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla CA 92093, USA.
| |
Collapse
|
54
|
Zha X, Hu Z, Ji S, Jin F, Jiang K, Li C, Zhao P, Tu Z, Chen X, Di L, Zhou H, Zhang H. NFκB up-regulation of glucose transporter 3 is essential for hyperactive mammalian target of rapamycin-induced aerobic glycolysis and tumor growth. Cancer Lett 2015; 359:97-106. [PMID: 25578782 DOI: 10.1016/j.canlet.2015.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/05/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
Accumulating evidence indicates that mammalian target of rapamycin (mTOR) exerts a crucial role in aerobic glycolysis and tumorigenesis, but the underlying mechanisms remain largely obscure. Results from Tsc1- or Tsc2-null mouse embryonic fibroblasts (MEFs) and human cancer cell lines consistently indicate that the expression of glucose transporter 3 (Glut3) is dramatically up-regulated by mTOR. The rapamycin-sensitive mTOR complex 1 (mTORC1), but not the rapamycin-insensitive mTOR complex 2 (mTORC2), was involved in the regulation of Glut3 expression. Moreover, mTORC1 enhances Glut3 expression through the activation of the IKK/NFκB pathway. Depletion of Glut3 led to the suppression of aerobic glycolysis, the inhibition of cell proliferation and colony formation, and the attenuation of the tumorigenic potential of the cells with aberrantly hyper-activated mTORC1 signaling in nude mice. We conclude that Glut3 is a downstream target of mTORC1, and it is critical for oncogenic mTORC1-mediated aerobic glycolysis and tumorigenesis. Hence Glut3 may be a potential target for therapy against cancers caused by the aberrantly activated mTORC1 signaling.
Collapse
Affiliation(s)
- Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Zhongdong Hu
- State Key Laboratory of Medical Molecular Biology, Department of Physiology & Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China; Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuang Ji
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Fuquan Jin
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Keguo Jiang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; Department of nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chunjia Li
- State Key Laboratory of Medical Molecular Biology, Department of Physiology & Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Pan Zhao
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Zhenzhen Tu
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; School of Life Sciences, Anhui Medical University, Hefei, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lijun Di
- School of Life Sciences, Anhui Medical University, Hefei, China; Faculty of Health Sciences, University of Macau, Macau, China
| | - Haisheng Zhou
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; School of Life Sciences, Anhui Medical University, Hefei, China.
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology & Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
55
|
Ye P, Liu Y, Chen C, Tang F, Wu Q, Wang X, Liu CG, Liu X, Liu R, Liu Y, Zheng P. An mTORC1-Mdm2-Drosha axis for miRNA biogenesis in response to glucose- and amino acid-deprivation. Mol Cell 2015; 57:708-720. [PMID: 25639470 DOI: 10.1016/j.molcel.2014.12.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/28/2014] [Accepted: 12/21/2014] [Indexed: 12/21/2022]
Abstract
mTOR senses nutrient and energy status to regulate cell survival and metabolism in response to environmental changes. Surprisingly, targeted mutation of Tsc1, a negative regulator of mTORC1, caused a broad reduction in miRNAs due to Drosha degradation. Conversely, targeted mutation of Raptor, an essential component of mTORC1, increased miRNA biogenesis. mTOR activation increased expression of Mdm2, which is hereby identified as the necessary and sufficient ubiquitin E3 ligase for Drosha. Drosha was induced by nutrient and energy deprivation and conferred resistance to glucose deprivation. Using a high-throughput screen of a miRNA library, we identified four miRNAs that were necessary and sufficient to protect cells against glucose-deprivation-induced apoptosis. These miRNA was regulated by glucose through the mTORC1-MDM2-DROSHA axis. Taken together, our data reveal an mTOR-Mdm2-Drosha pathway in mammalian cells that broadly regulates miRNA biogenesis as a response to alteration in cellular environment.
Collapse
Affiliation(s)
- Peiying Ye
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Yu Liu
- State Key Laboratory of Biotherapy, West China Center of Medical Sciences, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Chong Chen
- State Key Laboratory of Biotherapy, West China Center of Medical Sciences, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Fei Tang
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Qi Wu
- Departments of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Xiang Wang
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiuping Liu
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Runhua Liu
- Department of Genetics, University of Alabama, Birmingham, Birmingham, AL 35294, USA
| | - Yang Liu
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC 20010, USA.
| | - Pan Zheng
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC 20010, USA.
| |
Collapse
|
56
|
Selvarajah J, Elia A, Carroll VA, Moumen A. DNA damage-induced S and G2/M cell cycle arrest requires mTORC2-dependent regulation of Chk1. Oncotarget 2015; 6:427-40. [PMID: 25460505 PMCID: PMC4381605 DOI: 10.18632/oncotarget.2813] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/14/2014] [Indexed: 12/25/2022] Open
Abstract
mTOR signalling is commonly dysregulated in cancer. Concordantly, mTOR inhibitors have demonstrated efficacy in a subset of tumors and are in clinical trials as combination therapies. Although mTOR is associated with promoting cell survival after DNA damage, the exact mechanisms are not well understood. Moreover, since mTOR exists as two complexes, mTORC1 and mTORC2, the role of mTORC2 in cancer and in the DNA damage response is less well explored. Here, we report that mTOR protein levels and kinase activity are transiently increased by DNA damage in an ATM and ATR-dependent manner. We show that inactivation of mTOR with siRNA or pharmacological inhibition of mTORC1/2 kinase prevents etoposide-induced S and G2/M cell cycle arrest. Further results show that Chk1, a key regulator of the cell cycle arrest, is important for this since ablation of mTOR prevents DNA damage-induced Chk1 phosphorylation and decreases Chk1 protein production. Furthermore, mTORC2 was essential and mTORC1 dispensable, for this role. Importantly, we show that mTORC1/2 inhibition sensitizes breast cancer cells to chemotherapy. Taken together, these results suggest that breast cancer cells may rely on mTORC2-Chk1 pathway for survival and provide evidence that mTOR kinase inhibitors may overcome resistance to DNA-damage based therapies in breast cancer.
Collapse
Affiliation(s)
- Jogitha Selvarajah
- Cardiovascular and Cell Sciences Research Institute, St George's University of London, Cranmer Terrace, UK
| | - Androulla Elia
- Cardiovascular and Cell Sciences Research Institute, St George's University of London, Cranmer Terrace, UK
| | - Veronica A. Carroll
- Cardiovascular and Cell Sciences Research Institute, St George's University of London, Cranmer Terrace, UK
| | - Abdeladim Moumen
- Division of Medical Biotechnology, MAscIR Institution, Rabat, Morocco
| |
Collapse
|
57
|
Ou J, Miao H, Ma Y, Guo F, Deng J, Wei X, Zhou J, Xie G, Shi H, Xue B, Liang H, Yu L. Loss of abhd5 promotes colorectal tumor development and progression by inducing aerobic glycolysis and epithelial-mesenchymal transition. Cell Rep 2014; 9:1798-1811. [PMID: 25482557 DOI: 10.1016/j.celrep.2014.11.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/08/2014] [Accepted: 11/07/2014] [Indexed: 12/19/2022] Open
Abstract
How cancer cells shift metabolism to aerobic glycolysis is largely unknown. Here, we show that deficiency of α/β-hydrolase domain-containing 5 (Abhd5), an intracellular lipolytic activator that is also known as comparative gene identification 58 (CGI-58), promotes this metabolic shift and enhances malignancies of colorectal carcinomas (CRCs). Silencing of Abhd5 in normal fibroblasts induces malignant transformation. Intestine-specific knockout of Abhd5 in Apc(Min/+) mice robustly increases tumorigenesis and malignant transformation of adenomatous polyps. In colon cancer cells, Abhd5 deficiency induces epithelial-mesenchymal transition by suppressing the AMPKα-p53 pathway, which is attributable to increased aerobic glycolysis. In human CRCs, Abhd5 expression falls substantially and correlates negatively with malignant features. Our findings link Abhd5 to CRC pathogenesis and suggest that cancer cells develop aerobic glycolysis by suppressing Abhd5-mediated intracellular lipolysis.
Collapse
Affiliation(s)
- Juanjuan Ou
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Department of Oncology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Hongming Miao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Department of Oncology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Yinyan Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Feng Guo
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jia Deng
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Xing Wei
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Department of Oncology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Jie Zhou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Ganfeng Xie
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | - Houjie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.
| | - Liqing Yu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
58
|
Dombkowski AA, Batista CE, Cukovic D, Carruthers NJ, Ranganathan R, Shukla U, Stemmer PM, Chugani HT, Chugani DC. Cortical Tubers: Windows into Dysregulation of Epilepsy Risk and Synaptic Signaling Genes by MicroRNAs. Cereb Cortex 2014; 26:1059-71. [PMID: 25452577 DOI: 10.1093/cercor/bhu276] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a multisystem genetic disorder caused by mutations in the TSC1 and TSC2 genes. Over 80% of TSC patients are affected by epilepsy, but the molecular events contributing to seizures in TSC are not well understood. Recent reports have demonstrated that the brain is enriched with microRNA activity, and they are critical in neural development and function. However, little is known about the role of microRNAs in TSC. Here, we report the characterization of aberrant microRNA activity in cortical tubers resected from 5 TSC patients surgically treated for medically intractable epilepsy. By comparing epileptogenic tubers with adjacent nontuber tissue, we identified a set of 4 coordinately overexpressed microRNAs (miRs 23a, 34a, 34b*, 532-5p). We used quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic profiling to investigate the combined effect of the 4 microRNAs on target proteins. The proportion of repressed proteins among the predicted targets was significantly greater than in the overall proteome and was highly enriched for proteins involved in synaptic signal transmission. Among the combinatorial targets were TSC1, coding for the protein hamartin, and several epilepsy risk genes. We found decreased levels of hamartin in epileptogenic tubers and confirmed targeting of the TSC1 3' UTR by miRs-23a and 34a.
Collapse
Affiliation(s)
| | | | | | - Nicholas J Carruthers
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | | | | | - Paul M Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Harry T Chugani
- Carman and Ann Adams Department of Pediatrics Department of Neurology, Wayne State University School of Medicine, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, USA
| | | |
Collapse
|
59
|
Leprivier G, Rotblat B, Khan D, Jan E, Sorensen PH. Stress-mediated translational control in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:845-60. [PMID: 25464034 DOI: 10.1016/j.bbagrm.2014.11.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 12/22/2022]
Abstract
Tumor cells are continually subjected to diverse stress conditions of the tumor microenvironment, including hypoxia, nutrient deprivation, and oxidative or genotoxic stress. Tumor cells must evolve adaptive mechanisms to survive these conditions to ultimately drive tumor progression. Tight control of mRNA translation is critical for this response and the adaptation of tumor cells to such stress forms. This proceeds though a translational reprogramming process which restrains overall translation activity to preserve energy and nutrients, but which also stimulates the selective synthesis of major stress adaptor proteins. Here we present the different regulatory signaling pathways which coordinate mRNA translation in the response to different stress forms, including those regulating eIF2α, mTORC1 and eEF2K, and we explain how tumor cells hijack these pathways for survival under stress. Finally, mechanisms for selective mRNA translation under stress, including the utilization of upstream open reading frames (uORFs) and internal ribosome entry sites (IRESes) are discussed in the context of cell stress. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Gabriel Leprivier
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L4, Canada; Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Barak Rotblat
- Department of Life Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Debjit Khan
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L4, Canada; Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L4, Canada; Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada.
| |
Collapse
|
60
|
Magliozzi R, Kim J, Low TY, Heck AJR, Guardavaccaro D. Degradation of Tiam1 by casein kinase 1 and the SCFβTrCP ubiquitin ligase controls the duration of mTOR-S6K signaling. J Biol Chem 2014; 289:27400-9. [PMID: 25124033 DOI: 10.1074/jbc.m114.575571] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tiam1 (T-cell lymphoma invasion and metastasis 1) is a guanine nucleotide exchange factor that specifically controls the activity of the small GTPase Rac, a key regulator of cell adhesion, proliferation, and survival. Here, we report that in response to mitogens, Tiam1 is degraded by the ubiquitin-proteasome system via the SCF(βTrCP) ubiquitin ligase. Mitogenic stimulation triggers the binding of Tiam1 to the F-box protein βTrCP via its degron sequence and subsequent Tiam1 ubiquitylation and proteasomal degradation. The proteolysis of Tiam1 is prevented by βTrCP silencing, inhibition of CK1 and MEK, or mutation of the Tiam1 degron site. Expression of a stable Tiam1 mutant that is unable to interact with βTrCP results in sustained activation of the mTOR/S6K signaling and increased apoptotic cell death. We propose that the SCF(βTrCP)-mediated degradation of Tiam1 controls the duration of the mTOR-S6K signaling pathway in response to mitogenic stimuli.
Collapse
Affiliation(s)
- Roberto Magliozzi
- From the Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Jihoon Kim
- From the Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Teck Yew Low
- the Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands, and the Netherlands Proteomics Center, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- the Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands, and the Netherlands Proteomics Center, 3584 CH Utrecht, The Netherlands
| | - Daniele Guardavaccaro
- From the Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands,
| |
Collapse
|
61
|
Aramburu J, Ortells MC, Tejedor S, Buxadé M, López-Rodríguez C. Transcriptional regulation of the stress response by mTOR. Sci Signal 2014; 7:re2. [PMID: 24985347 DOI: 10.1126/scisignal.2005326] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The kinase mammalian target of rapamycin (mTOR) is a central regulator of cell growth and proliferation that integrates inputs from growth factor receptors, nutrient availability, intracellular ATP (adenosine 5'-triphosphate), and a variety of stressors. Since early works in the mid-1990s uncovered the role of mTOR in stimulating protein translation, this kinase has emerged as a rather multifaceted regulator of numerous processes. Whereas mTOR is generally activated by growth- and proliferation-stimulating signals, its activity can be reduced and even suppressed when cells are exposed to a variety of stress conditions. However, cells can also adapt to stress while maintaining their growth capacity and mTOR function. Despite knowledge accumulated on how stress represses mTOR, less is known about mTOR influencing stress responses. In this review, we discuss the capability of mTOR, in particular mTOR complex 1 (mTORC1), to activate stress-responsive transcription factors, and we outline open questions for future investigation.
Collapse
Affiliation(s)
- Jose Aramburu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| | - M Carmen Ortells
- Centre for Genomic Regulation and Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Sonia Tejedor
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Maria Buxadé
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Cristina López-Rodríguez
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| |
Collapse
|
62
|
Krześniak M, Zajkowicz A, Matuszczyk I, Rusin M. Rapamycin prevents strong phosphorylation of p53 on serine 46 and attenuates activation of the p53 pathway in A549 lung cancer cells exposed to actinomycin D. Mech Ageing Dev 2014; 139:11-21. [DOI: 10.1016/j.mad.2014.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 05/27/2014] [Accepted: 06/01/2014] [Indexed: 12/24/2022]
|
63
|
Wei Y, Lilly MA. The TORC1 inhibitors Nprl2 and Nprl3 mediate an adaptive response to amino-acid starvation in Drosophila. Cell Death Differ 2014; 21:1460-8. [PMID: 24786828 DOI: 10.1038/cdd.2014.63] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 01/09/2023] Open
Abstract
Target of rapamycin complex 1 (TORC1) is a master regulator of metabolism in eukaryotes that integrates information from multiple upstream signaling pathways. In yeast, the Nitrogen permease regulators 2 and 3 (Npr2 and Npr3) mediate an essential response to amino-acid limitation upstream of TORC1. In mammals, the Npr2 ortholog, Nprl2, is a putative tumor suppressor gene that inhibits cell growth and enhances sensitivity to numerous anticancer drugs including cisplatin. However, the precise role of Nprl2 and Nprl3 in the regulation of metabolism in metazoans remains poorly defined. Here we demonstrate that the central importance of Nprl2 and Nprl3 in the response to amino-acid starvation has been conserved from single celled to multicellular animals. We find that in Drosophila Nprl2 and Nprl3 physically interact and are targeted to lysosomes and autolysosomes. Using oogenesis as a model system, we show that Nprl2 and Nprl3 inhibit TORC1 signaling in the female germline in response to amino-acid starvation. Moreover, the inhibition TORC1 by Nprl2/3 is critical to the preservation of female fertility during times of protein scarcity. In young egg chambers the failure to downregulate TORC1 in response to amino-acid limitation triggers apoptosis. Thus, our data suggest the presence of a metabolic checkpoint that initiates a cell death program when TORC1 activity remains inappropriately high during periods of amino-acid and/or nutrient scarcity in oogenesis. Finally, we demonstrate that Nprl2/3 work in concert with the TORC1 inhibitors Tsc1/2 to fine tune TORC1 activity during oogenesis and that Tsc1 is a critical downstream effector of Akt1 in the female germline.
Collapse
Affiliation(s)
- Y Wei
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - M A Lilly
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
64
|
Rehman G, Shehzad A, Khan AL, Hamayun M. Role of AMP-activated protein kinase in cancer therapy. Arch Pharm (Weinheim) 2014; 347:457-68. [PMID: 24677093 DOI: 10.1002/ardp.201300402] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/23/2014] [Accepted: 01/31/2014] [Indexed: 11/07/2022]
Abstract
Recent advances in AMP-activated protein kinase (AMPK) as a target in cancer waxed and waned over the past decade of cancer research. AMPK is a cellular energy sensor, present in almost all eukaryotic cells. An elevated AMP/ATP ratio activates the AMPK, which in turn inhibits energy-consuming processes and induces catabolic events that generate ATP to restore the energy homeostasis inside the cell. Several reports have indicated that AMPK regulates several metabolic pathways and may be a potential therapeutic target for the treatment of cancer. Cancer cells have specific metabolic changes that differ from normal cells, and AMPK prevents the deregulated processes in cancer. AMPK may also act to inhibit tumor formation through modulation of cell growth, cell proliferation, autophagy, stress responses, and cell polarity. AMPK has been shown to inhibit mammalian target of rapamycin (mTOR) through tuberous sclerosis complex 2 (TSC2) phosphorylation and phosphatase and tensin homolog (PTEN), considered as central cell growth controller signals in diseases. In response to glucose deprivation, AMPK phosphorylates and activates p53, which induces cell cycle arrest in the G1/S phase of the cell cycle. AMPK has also been reported to block cyclin-dependent kinases through phosphorylation of p27(kip1) , promoting its stabilization and allowing cells to survive metabolic stress via induction of autophagy. Additionally, AMPK induces autophagy by phosphorylation and activation of eEF-2 kinase, and prevents the formation of new proteins. AMPK activators are also used for the treatment of type II diabetes and cancer. This review focuses on AMPK activation and its possible therapeutic role in the treatment of cancer.
Collapse
Affiliation(s)
- Gauhar Rehman
- School of Life Science, College of Natural Science, Kyungpook National University, Daegu, South Korea; Department of Zoology, Abdul Wali Khan University, Mardan, K. P. K. Pakistan
| | | | | | | |
Collapse
|
65
|
Abstract
Cancers cells shift their metabolism towards glycolysis in order to help them support the biosynthetic demands necessary to sustain cell proliferation and growth, adapt to stress and avoid excessive reactive oxygen species (ROS) accumulation. While the p53 tumor suppressor protein is known to inhibit cell growth by inducing apoptosis, senescence and cell cycle arrest, recent studies have found that p53 is also able to influence cell metabolism. TIGAR is a p53 target that functions as a fructose-2,6-bisphosphatase, thereby lowering glycolytic flux and promoting antioxidant functions. By protecting cells from oxidative stress, TIGAR may mediate some of the tumor suppressor activity of p53 but could also contribute to tumorigenesis. Here we discuss the activities of TIGAR described so far, and the potential consequences of TIGAR expression on normal and tumor cells.
Collapse
Affiliation(s)
- Pearl Lee
- Cancer Research-UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK
| | - Karen H Vousden
- Cancer Research-UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK
| | - Eric C Cheung
- Cancer Research-UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK
| |
Collapse
|
66
|
Cuyàs E, Corominas-Faja B, Joven J, Menendez JA. Cell cycle regulation by the nutrient-sensing mammalian target of rapamycin (mTOR) pathway. Methods Mol Biol 2014; 1170:113-44. [PMID: 24906312 DOI: 10.1007/978-1-4939-0888-2_7] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell division involves a series of ordered and controlled events that lead to cell proliferation. Cell cycle progression implies not only demanding amounts of cell mass, protein, lipid, and nucleic acid content but also a favorable energy state. The mammalian target of rapamycin (mTOR), in response to the energy state, nutrient status, and growth factor stimulation of cells, plays a pivotal role in the coordination of cell growth and the cell cycle. Here, we review how the nutrient-sensing mTOR-signaling cascade molecularly integrates nutritional and mitogenic/anti-apoptotic cues to accurately coordinate cell growth and cell cycle. First, we briefly outline the structure, functions, and regulation of the mTOR complexes (mTORC1 and mTORC2). Second, we concisely evaluate the best known ability of mTOR to control G1-phase progression. Third, we discuss in detail the recent evidence that indicates a new genome stability caretaker function of mTOR based on the specific ability of phosphorylated forms of several mTOR-signaling components (AMPK, raptor, TSC, mTOR, and S6K1), which spatially and temporally associate with essential mitotic regulators at the mitotic spindle and at the cytokinetic cleavage furrow.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Metabolism & Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona (ICO-Girona), Hospital Dr. Josep Trueta de Girona, Ctra. França s/n, E-17007, Girona, Catalonia, Spain
| | | | | | | |
Collapse
|
67
|
Thedieck K, Holzwarth B, Prentzell MT, Boehlke C, Kläsener K, Ruf S, Sonntag AG, Maerz L, Grellscheid SN, Kremmer E, Nitschke R, Kuehn EW, Jonker JW, Groen AK, Reth M, Hall MN, Baumeister R. Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells. Cell 2013; 154:859-74. [PMID: 23953116 DOI: 10.1016/j.cell.2013.07.031] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/03/2013] [Accepted: 07/23/2013] [Indexed: 12/21/2022]
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) controls growth and survival in response to metabolic cues. Oxidative stress affects mTORC1 via inhibitory and stimulatory inputs. Whereas downregulation of TSC1-TSC2 activates mTORC1 upon oxidative stress, the molecular mechanism of mTORC1 inhibition remains unknown. Here, we identify astrin as an essential negative mTORC1 regulator in the cellular stress response. Upon stress, astrin inhibits mTORC1 association and recruits the mTORC1 component raptor to stress granules (SGs), thereby preventing mTORC1-hyperactivation-induced apoptosis. In turn, balanced mTORC1 activity enables expression of stress factors. By identifying astrin as a direct molecular link between mTORC1, SG assembly, and the stress response, we establish a unifying model of mTORC1 inhibition and activation upon stress. Importantly, we show that in cancer cells, apoptosis suppression during stress depends on astrin. Being frequently upregulated in tumors, astrin is a potential clinically relevant target to sensitize tumors to apoptosis.
Collapse
Affiliation(s)
- Kathrin Thedieck
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
The function of p53 is best understood in response to genotoxic stress, but increasing evidence suggests that p53 also plays a key role in the regulation of metabolic homeostasis. p53 and its family members directly influence various metabolic pathways, enabling cells to respond to metabolic stress. These functions are likely to be important for restraining the development of cancer but could also have a profound effect on the development of metabolic diseases, including diabetes. A better understanding of the metabolic functions of p53 family members may aid in the identification of therapeutic targets and reveal novel uses for p53-modulating drugs.
Collapse
|
69
|
Wang Y, Hu Z, Liu Z, Chen R, Peng H, Guo J, Chen X, Zhang H. MTOR inhibition attenuates DNA damage and apoptosis through autophagy-mediated suppression of CREB1. Autophagy 2013; 9:2069-86. [PMID: 24189100 DOI: 10.4161/auto.26447] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hyperactivation of mechanistic target of rapamycin (MTOR) is a common feature of human cancers, and MTOR inhibitors, such as rapamycin, are thus becoming therapeutics in targeting certain cancers. However, rapamycin has also been found to compromise the efficacy of chemotherapeutics to cells with hyperactive MTOR. Here, we show that loss of TSC2 or PTEN enhanced etoposide-induced DNA damage and apoptosis, which was blunted by suppression of MTOR with either rapamycin or RNA interference. cAMP response element-binding protein 1 (CREB1), a nuclear transcription factor that regulates genes involved in survival and death, was positively regulated by MTOR in mouse embryonic fibroblasts (MEFs) and cancer cell lines. Silencing Creb1 expression with siRNA protected MTOR-hyperactive cells from DNA damage-induced apoptosis. Furthermore, loss of TSC2 or PTEN impaired either etoposide or nutrient starvation-induced autophagy, which in turn, leads to CREB1 hyperactivation. We further elucidated an inverse correlation between autophagy activity and CREB1 activity in the kidney tumor tissue obtained from a TSC patient and the mouse livers with hepatocyte-specific knockout of PTEN. CREB1 induced DNA damage and subsequent apoptosis in response to etoposide in autophagy-defective cells. Reactivation of CREB1 or inhibition of autophagy not only improved the efficacy of rapamycin but also alleviated MTOR inhibition-mediated chemoresistance. Therefore, autophagy suppression of CREB1 may underlie the MTOR inhibition-mediated chemoresistance. We suggest that inhibition of MTOR in combination with CREB1 activation may be used in the treatment of cancer caused by an abnormal PI3K-PTEN-AKT-TSC1/2-MTOR signaling pathway. CREB1 activators should potentiate the efficacy of chemotherapeutics in treatment of these cancers.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Medical Molecular Biology; Department of Physiology; Institute of Basic Medical Sciences and School of Basic Medicine; Graduate School of Peking Union Medical College; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Panganiban RAM, Day RM. Inhibition of IGF-1R prevents ionizing radiation-induced primary endothelial cell senescence. PLoS One 2013; 8:e78589. [PMID: 24205274 PMCID: PMC3813482 DOI: 10.1371/journal.pone.0078589] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/23/2013] [Indexed: 01/01/2023] Open
Abstract
Accelerated senescence is a primary response to cellular stresses including DNA damaging agents (e.g., ionizing radiation) and is widely believed to be caused by continuous proliferative signaling in the presence of cell cycle arrest. Studies of signal transduction pathways leading to accelerated senescence have revealed that inhibition of mammalian target of rapamycin (mTOR) by rapamycin rescues cells from senescence. However, the molecular mechanisms upstream of mTOR following ionizing radiation (IR) are not well defined. We investigated signal transduction leading to IR-induced accelerated senescence in human pulmonary artery endothelial cells (HPAEC). Exposure of HPAEC to X-rays (10 Gy, 2.4 Gy/min) upregulated senescence markers including p53, p21/waf1, and senescence-associated beta galactosidase (SA-β-gal). Ly294002 (a phosphatidylinositol-3-kinase [PI3K] inhibitor) or rapamycin (an mTOR inhibitor) blocked the induction of cellular senescence markers suggesting roles for PI3K and mTOR. Pathway-directed microarrays revealed increased transcription of insulin-like growth factor I (IGF-1), a modulator of cell growth and proliferation upstream of mTOR. qRT-PCR confirmed that both IGF-1 and IGF-2 mRNA were increased in response to X-rays, and ELISA showed increased secretion of IGF-1 protein into the medium of irradiated HPAEC. Consistent with upregulation of these ligands, we found that X-ray exposure led to hyperphosphorylation of IGF-1R, the receptor for IGF-1 and -2. Treatment with AG1024, an IGF-1R inhibitor, suppressed IR-induced upregulation of p53, p21/waf1, and SA-β-gal. Together these findings suggest that IGF-1R is a key regulator of IR-induced accelerated senescence in a pathway that requires intact mTOR activity upstream of both p53 and p21/waf1.
Collapse
Affiliation(s)
- Ronald Allan M. Panganiban
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Regina M. Day
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
71
|
Chemotherapy-mediated p53-dependent DNA damage response in clear cell renal cell carcinoma: role of the mTORC1/2 and hypoxia-inducible factor pathways. Cell Death Dis 2013; 4:e865. [PMID: 24136229 PMCID: PMC3920935 DOI: 10.1038/cddis.2013.395] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 12/23/2022]
Abstract
The DNA-damaging agent camptothecin (CPT) and its analogs demonstrate clinical utility for the treatment of advanced solid tumors, and CPT-based nanopharmaceuticals are currently in clinical trials for advanced kidney cancer; however, little is known regarding the effects of CPT on hypoxia-inducible factor-2α (HIF-2α) accumulation and activity in clear cell renal cell carcinoma (ccRCC). Here we assessed the effects of CPT on the HIF/p53 pathway. CPT demonstrated striking inhibition of both HIF-1α and HIF-2α accumulation in von Hippel–Lindau (VHL)-defective ccRCC cells, but surprisingly failed to inhibit protein levels of HIF-2α-dependent target genes (VEGF, PAI-1, ET-1, cyclin D1). Instead, CPT induced DNA damage-dependent apoptosis that was augmented in the presence of pVHL. Further analysis revealed CPT regulated endothelin-1 (ET-1) in a p53-dependent manner: CPT increased ET-1 mRNA abundance in VHL-defective ccRCC cell lines that was significantly augmented in their VHL-expressing counterparts that displayed increased phosphorylation and accumulation of p53; p53 siRNA suppressed CPT-induced increase in ET-1 mRNA, as did an inhibitor of ataxia telangiectasia mutated (ATM) signaling, suggesting a role for ATM-dependent phosphorylation of p53 in the induction of ET-1. Finally, we demonstrate that p53 phosphorylation and accumulation is partially dependent on mTOR activity in ccRCC. Consistent with this result, pharmacological inhibition of mTORC1/2 kinase inhibited CPT-mediated ET-1 upregulation, and p53-dependent responses in ccRCC. Collectively, these data provide mechanistic insight into the action of CPT in ccRCC, identify ET-1 as a p53-regulated gene and demonstrate a requirement of mTOR for p53-mediated responses in this tumor type.
Collapse
|
72
|
Abstract
A balance must be struck between cell growth and stress responses to ensure that cells proliferate without accumulating damaged DNA. This balance means that optimal cell proliferation requires the integration of pro-growth and stress-response pathways. mTOR (mechanistic target of rapamycin) is a pleiotropic kinase found in complex 1 (mTORC1).The mTORC1 pathway governs a response to mitogenic signals with high energy levels to promote protein synthesis and cell growth. In contrast, the p53DNA damage response pathway is the arbiter of cell proliferation, restraining mTORC1 under conditions of genotoxic stress. Recent studies suggest a complicated integration of these pathways to ensure successful cell growth and proliferation without compromising genome maintenance. Deciphering this integration could be key to understanding the potential clinical usefulness of mTORC1 inhibitors like rapamycin. Here we discuss how these p53-mTORC1 interactions might play a role in the suppression of cancer and perhaps the development of cellular senescence and organismal aging.
Collapse
Affiliation(s)
- Paul Hasty
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center, San Antonio, TX, USA.
| | | | | | | |
Collapse
|
73
|
Eid AA, Ford BM, Bhandary B, de Cassia Cavaglieri R, Block K, Barnes JL, Gorin Y, Choudhury GG, Abboud HE. Mammalian target of rapamycin regulates Nox4-mediated podocyte depletion in diabetic renal injury. Diabetes 2013; 62:2935-47. [PMID: 23557706 PMCID: PMC3717863 DOI: 10.2337/db12-1504] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Podocyte apoptosis is a critical mechanism for excessive loss of urinary albumin that eventuates in kidney fibrosis. Pharmacological doses of the mammalian target of rapamycin (mTOR) inhibitor rapamycin reduce albuminuria in diabetes. We explored the hypothesis that mTOR mediates podocyte injury in diabetes. High glucose (HG) induces apoptosis of podocytes, inhibits AMP-activated protein kinase (AMPK) activation, inactivates tuberin, and activates mTOR. HG also increases the levels of Nox4 and Nox1 and NADPH oxidase activity. Inhibition of mTOR by low-dose rapamycin decreases HG-induced Nox4 and Nox1, NADPH oxidase activity, and podocyte apoptosis. Inhibition of mTOR had no effect on AMPK or tuberin phosphorylation, indicating that mTOR is downstream of these signaling molecules. In isolated glomeruli of OVE26 mice, there is a similar decrease in the activation of AMPK and tuberin and activation of mTOR with increase in Nox4 and NADPH oxidase activity. Inhibition of mTOR by a small dose of rapamycin reduces podocyte apoptosis and attenuates glomerular injury and albuminuria. Our data provide evidence for a novel function of mTOR in Nox4-derived reactive oxygen species generation and podocyte apoptosis that contributes to urinary albumin excretion in type 1 diabetes. Thus, mTOR and/or NADPH oxidase inhibition may represent a therapeutic modality of diabetic kidney disease.
Collapse
Affiliation(s)
- Assaad A Eid
- Department of Medicine, South Texas Veterans Healthcare System and the University of Texas Health Science Center, San Antonio, Texas, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Ninjurin1, a target of p53, regulates p53 expression and p53-dependent cell survival, senescence, and radiation-induced mortality. Proc Natl Acad Sci U S A 2013; 110:9362-7. [PMID: 23690620 DOI: 10.1073/pnas.1221242110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The tumor suppressor protein p53 plays a crucial role in coordinating cellular processes, such as cell cycle arrest, apoptosis, and senescence. The nerve injury-induced protein 1 (Ninjurin1, Ninj1) is a homophilic adhesion molecule and involved in nerve regeneration. Interestingly, Ninj1 is found to be overexpressed in human cancer, but its role in tumorigenesis is not clear. Here, we found that Ninj1 is transcriptionally regulated by p53 and can be induced by DNA damage in a p53-dependent manner. We also found that knockout or knockdown of Ninj1 increases p53 expression potentially through enhanced p53 mRNA translation. In addition, we found that Ninj1 deficiency suppresses cell proliferation but enhances apoptosis and premature senescence in a p53-dependent manner. Consistent with this, we found that mice heterozygous in ninj1 are hypersensitive to ionizing radiation-induced lethality, along with increased expression of p53 in thymus. Taken together, we provided evidence that Ninj1 is a p53 target and modulates p53 mRNA translation and p53-dependent premature senescence, cell proliferation, apoptosis, and radiation-induced mortality in vitro and in vivo. Thus, we postulate that as a membrane adhesion molecule, Ninj1 is an ideal target to regulate p53 activity via the p53-Ninj1 loop.
Collapse
|
75
|
Kim SH, Kowalski ML, Carson RP, Bridges LR, Ess KC. Heterozygous inactivation of tsc2 enhances tumorigenesis in p53 mutant zebrafish. Dis Model Mech 2013; 6:925-33. [PMID: 23580196 PMCID: PMC3701212 DOI: 10.1242/dmm.011494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a multi-organ disorder caused by mutations of the TSC1 or TSC2 genes. A key function of these genes is to inhibit mTORC1 (mechanistic target of rapamycin complex 1) kinase signaling. Cells deficient for TSC1 or TSC2 have increased mTORC1 signaling and give rise to benign tumors, although, as a rule, true malignancies are rarely seen. In contrast, other disorders with increased mTOR signaling typically have overt malignancies. A better understanding of genetic mechanisms that govern the transformation of benign cells to malignant ones is crucial to understand cancer pathogenesis. We generated a zebrafish model of TSC and cancer progression by placing a heterozygous mutation of the tsc2 gene in a p53 mutant background. Unlike tsc2 heterozygous mutant zebrafish, which never exhibited cancers, compound tsc2;p53 mutants had malignant tumors in multiple organs. Tumorigenesis was enhanced compared with p53 mutant zebrafish. p53 mutants also had increased mTORC1 signaling that was further enhanced in tsc2;p53 compound mutants. We found increased expression of Hif1-α, Hif2-α and Vegf-c in tsc2;p53 compound mutant zebrafish compared with p53 mutant zebrafish. Expression of these proteins probably underlies the increased angiogenesis seen in compound mutant zebrafish compared with p53 mutants and might further drive cancer progression. Treatment of p53 and compound mutant zebrafish with the mTORC1 inhibitor rapamycin caused rapid shrinkage of tumor size and decreased caliber of tumor-associated blood vessels. This is the first report using an animal model to show interactions between tsc2, mTORC1 and p53 during tumorigenesis. These results might explain why individuals with TSC rarely have malignant tumors, but also suggest that cancer arising in individuals without TSC might be influenced by the status of TSC1 and/or TSC2 mutations and be potentially treatable with mTORC1 inhibitors.
Collapse
Affiliation(s)
- Seok-Hyung Kim
- Department of Neurology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
76
|
Abstract
The senescence program is activated in response to diverse stress stimuli potentially compromising genetic stability and leads to an irreversible cell cycle arrest. The mTOR pathway plays a crucial role in the regulation of cell metabolism and cellular growth. The goal of this chapter is to present evidence linking these two processes, which have one common regulator-the tumor suppressor p53. While the role of mTOR in senescence is still controversial, recent papers have shed new light onto this issue. This review, far from being exhaustive given the complexity of the field, will hopefully stimulate further research in this domain, whose relevance for ageing is becoming increasingly documented.
Collapse
|
77
|
Hung CM, Garcia-Haro L, Sparks CA, Guertin DA. mTOR-dependent cell survival mechanisms. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a008771. [PMID: 23124837 DOI: 10.1101/cshperspect.a008771] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mechanistic target of rapamycin (mTOR) kinase is a conserved regulator of cell growth, proliferation, and survival. In cells, mTOR is the catalytic subunit of two complexes called mTORC1 and mTORC2, which have distinct upstream regulatory signals and downstream substrates. mTORC1 directly senses cellular nutrient availability while indirectly sensing circulating nutrients through growth factor signaling pathways. Cellular stresses that restrict growth also impinge on mTORC1 activity. mTORC2 is less well understood and appears only to sense growth factors. As an integrator of diverse growth regulatory signals, mTOR evolved to be a central signaling hub for controlling cellular metabolism and energy homoeostasis, and defects in mTOR signaling are important in the pathologies of cancer, diabetes, and aging. Here we discuss mechanisms by which each mTOR complex might regulate cell survival in response to metabolic and other stresses.
Collapse
Affiliation(s)
- Chien-Min Hung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
78
|
Henske EP, McCormack FX. Lymphangioleiomyomatosis - a wolf in sheep's clothing. J Clin Invest 2012; 122:3807-16. [PMID: 23114603 DOI: 10.1172/jci58709] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare progressive lung disease of women. LAM is caused by mutations in the tuberous sclerosis genes, resulting in activation of the mTOR complex 1 signaling network. Over the past 11 years, there has been remarkable progress in the understanding of LAM and rapid translation of this knowledge to an effective therapy. LAM pathogenic mechanisms mirror those of many forms of human cancer, including mutation, metabolic reprogramming, inappropriate growth and survival, metastasis via blood and lymphatic circulation, infiltration/invasion, sex steroid sensitivity, and local and remote tissue destruction. However, the smooth muscle cell that metastasizes, infiltrates, and destroys the lung in LAM arises from an unknown source and has an innocent histological appearance, with little evidence of proliferation. Thus, LAM is as an elegant, monogenic model of neoplasia, defying categorization as either benign or malignant.
Collapse
Affiliation(s)
- Elizabeth P Henske
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
79
|
Kwak D, Choi S, Jeong H, Jang JH, Lee Y, Jeon H, Lee MN, Noh J, Cho K, Yoo JS, Hwang D, Suh PG, Ryu SH. Osmotic stress regulates mammalian target of rapamycin (mTOR) complex 1 via c-Jun N-terminal Kinase (JNK)-mediated Raptor protein phosphorylation. J Biol Chem 2012; 287:18398-407. [PMID: 22493283 DOI: 10.1074/jbc.m111.326538] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
mTOR complex 1 (mTORC1) is a multiprotein complex that integrates diverse signals including growth factors, nutrients, and stress to control cell growth. Raptor is an essential component of mTORC1 that functions to recruit specific substrates. Recently, Raptor was suggested to be a key target of regulation of mTORC1. Here, we show that Raptor is phosphorylated by JNK upon osmotic stress. We identified that osmotic stress induces the phosphorylation of Raptor at Ser-696, Thr-706, and Ser-863 using liquid chromatography-tandem mass spectrometry. We found that JNK is responsible for the phosphorylation. The inhibition of JNK abolishes the phosphorylation of Raptor induced by osmotic stress in cells. Furthermore, JNK physically associates with Raptor and phosphorylates Raptor in vitro, implying that JNK is responsible for the phosphorylation of Raptor. Finally, we found that osmotic stress activates mTORC1 kinase activity in a JNK-dependent manner. Our findings suggest that the molecular link between JNK and Raptor is a potential mechanism by which stress regulates the mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Dongoh Kwak
- Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Pancaldi V, Saraç ÖS, Rallis C, McLean JR, Převorovský M, Gould K, Beyer A, Bähler J. Predicting the fission yeast protein interaction network. G3 (BETHESDA, MD.) 2012; 2:453-67. [PMID: 22540037 PMCID: PMC3337474 DOI: 10.1534/g3.111.001560] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/31/2012] [Indexed: 12/03/2022]
Abstract
A systems-level understanding of biological processes and information flow requires the mapping of cellular component interactions, among which protein-protein interactions are particularly important. Fission yeast (Schizosaccharomyces pombe) is a valuable model organism for which no systematic protein-interaction data are available. We exploited gene and protein properties, global genome regulation datasets, and conservation of interactions between budding and fission yeast to predict fission yeast protein interactions in silico. We have extensively tested our method in three ways: first, by predicting with 70-80% accuracy a selected high-confidence test set; second, by recapitulating interactions between members of the well-characterized SAGA co-activator complex; and third, by verifying predicted interactions of the Cbf11 transcription factor using mass spectrometry of TAP-purified protein complexes. Given the importance of the pathway in cell physiology and human disease, we explore the predicted sub-networks centered on the Tor1/2 kinases. Moreover, we predict the histidine kinases Mak1/2/3 to be vital hubs in the fission yeast stress response network, and we suggest interactors of argonaute 1, the principal component of the siRNA-mediated gene silencing pathway, lost in budding yeast but preserved in S. pombe. Of the new high-quality interactions that were discovered after we started this work, 73% were found in our predictions. Even though any predicted interactome is imperfect, the protein network presented here can provide a valuable basis to explore biological processes and to guide wet-lab experiments in fission yeast and beyond. Our predicted protein interactions are freely available through PInt, an online resource on our website (www.bahlerlab.info/PInt).
Collapse
Affiliation(s)
- Vera Pancaldi
- Department of Genetics, Evolution, and Environment and
- UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Ömer S. Saraç
- Cellular Networks and Systems Biology, Biotechnology Center, Dresden University of Technology (TU Dresden), Dresden 01307, Germany, and
| | - Charalampos Rallis
- Department of Genetics, Evolution, and Environment and
- UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Janel R. McLean
- Howard Hughes Medical Institute
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Martin Převorovský
- Department of Genetics, Evolution, and Environment and
- UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Kathleen Gould
- Howard Hughes Medical Institute
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Andreas Beyer
- Cellular Networks and Systems Biology, Biotechnology Center, Dresden University of Technology (TU Dresden), Dresden 01307, Germany, and
| | - Jürg Bähler
- Department of Genetics, Evolution, and Environment and
- UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
81
|
Abstract
Mast cells play critical roles in allergic disorders and asthma. The importance of tuberous sclerosis complex 1/2-mammalian target of rapamycin (TSC1/2-mTOR) signaling in mast cells is unknown. Here, we report that TSC1 is a critical regulator for mTOR signaling in mast cells downstream of FcεRI and c-Kit, and differentially controls mast cell degranulation and cytokine production. TSC1-deficiency results in impaired mast cell degranulation, but enhanced cytokine production in vitro and in vivo after FcεRI engagement. Furthermore, TSC1 is critical for mast cell survival through multiple pathways of apoptosis including the down-regulation of p53, miR-34a, reactive oxygen species, and the up-regulation of Bcl-2. Together, these findings reveal that TSC1 is a critical regulator of mast cell activation and survival, suggesting the manipulation of the TSC1/2-mTOR pathway as a therapeutic strategy for mast cell-mediated diseases.
Collapse
|
82
|
Ortells MC, Morancho B, Drews-Elger K, Viollet B, Laderoute KR, López-Rodríguez C, Aramburu J. Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin. Nucleic Acids Res 2012; 40:4368-84. [PMID: 22287635 PMCID: PMC3378878 DOI: 10.1093/nar/gks038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although stress can suppress growth and proliferation, cells can induce adaptive responses that allow them to maintain these functions under stress. While numerous studies have focused on the inhibitory effects of stress on cell growth, less is known on how growth-promoting pathways influence stress responses. We have approached this question by analyzing the effect of mammalian target of rapamycin (mTOR), a central growth controller, on the osmotic stress response. Our results showed that mammalian cells exposed to moderate hypertonicity maintained active mTOR, which was required to sustain their cell size and proliferative capacity. Moreover, mTOR regulated the induction of diverse osmostress response genes, including targets of the tonicity-responsive transcription factor NFAT5 as well as NFAT5-independent genes. Genes sensitive to mTOR-included regulators of stress responses, growth and proliferation. Among them, we identified REDD1 and REDD2, which had been previously characterized as mTOR inhibitors in other stress contexts. We observed that mTOR facilitated transcription-permissive conditions for several osmoresponsive genes by enhancing histone H4 acetylation and the recruitment of RNA polymerase II. Altogether, these results reveal a previously unappreciated role of mTOR in regulating transcriptional mechanisms that control gene expression during cellular stress responses.
Collapse
Affiliation(s)
- M Carmen Ortells
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
83
|
Deisenroth C, Zhang Y. The Ribosomal Protein-Mdm2-p53 Pathway and Energy Metabolism: Bridging the Gap between Feast and Famine. Genes Cancer 2011; 2:392-403. [PMID: 21779508 DOI: 10.1177/1947601911409737] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cellular growth and division are two fundamental processes that are exquisitely sensitive and responsive to environmental fluctuations. One of the most energetically demanding functions of these processes is ribosome biogenesis, the key component to regulating overall protein synthesis and cell growth. Perturbations to ribosome biogenesis have been demonstrated to induce an acute stress response leading to p53 activation through the inhibition of Mdm2 by a number of ribosomal proteins. The energy status of a cell is a highly dynamic variable that naturally contributes to metabolic fluctuations, which can affect both the rates of ribosome biogenesis and p53 function. This, in turn, determines whether a cell is in an anabolic, growth-promoting state or a catabolic, growth-suppressing state. Here the authors integrate the known functions of p53 to postulate how changes in nutrient availability may induce the ribosomal protein-Mdm2-p53 signaling pathway to modulate p53-dependent metabolic regulation.
Collapse
Affiliation(s)
- Chad Deisenroth
- Department of Radiation Oncology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
84
|
Hypergrowth mTORC1 signals translationally activate the ARF tumor suppressor checkpoint. Mol Cell Biol 2011; 32:348-64. [PMID: 22064482 DOI: 10.1128/mcb.06030-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The ARF tumor suppressor is a potent sensor of hyperproliferative cues emanating from oncogenic signaling. ARF responds to these cues by eliciting a cell cycle arrest, effectively abating the tumorigenic potential of these stimuli. Prior reports have demonstrated that oncogenic Ras(V12) signaling induces ARF through a mechanism mediated by the Dmp1 transcription factor. However, we now show that ARF protein is still induced in response to Ras(V12) in the absence of Dmp1 through the enhanced translation of existing Arf mRNAs. Here, we report that the progrowth Ras/tuberous sclerosis complex (TSC)/mTORC1 signaling pathway regulates ARF protein expression and triggers ARF-mediated tumor suppression through a novel translational mechanism. Hyperactivation of mTORC1 through Tsc1 loss resulted in a significant increase in ARF expression, activation of the p53 pathway, and a dramatic cell cycle arrest, which were completely reversed upon Arf deletion. ARF protein induced from Ras(V12) in the absence of Dmp1 repressed anchorage-independent colony formation in soft agar and tumor burden in an allograft model. Taken together, our data demonstrate the ability of the ARF tumor suppressor to respond to hypergrowth stimuli to prevent unwarranted tumor formation.
Collapse
|
85
|
Habib SL, Yadav A, Mahimainathan L, Valente AJ. Regulation of PI 3-K, PTEN, p53, and mTOR in Malignant and Benign Tumors Deficient in Tuberin. Genes Cancer 2011; 2:1051-60. [PMID: 22737271 PMCID: PMC3379569 DOI: 10.1177/1947601912445376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/17/2012] [Indexed: 01/05/2023] Open
Abstract
The tuberous sclerosis complex (TSC) is caused by mutation in either of 2 tumor suppressor genes, TSC-1 (encodes hamartin) and TSC-2 (encodes tuberin). In humans, deficiency in TSC1/2 is associated with benign tumors in many organs, including renal angiomyolipoma (AML) but rarely renal cell carcinoma (RCC). In contrast, deficiency of TSC function in the Eker rat is associated with RCC. Here, we have investigated the activity of PI 3-K and the expression of PTEN, p53, tuberin, p-mTOR, and p-p70S6K in both Eker rat RCC and human renal AML. Compared to normal tissue, increased PI 3-K activity was detected in RCC of Eker rats but not in human AML tissue. In contrast, PTEN was highly expressed in AML but significantly reduced in the renal tumors of Eker rats. Phosphorylation on Ser(2448) of mTOR and Thr(389) of p70S6K were significantly increased in both RCC and AML compared to matching control tissue. Total tuberin was significantly decreased in AML while completely lost in RCC of Eker rats. Our data also show that while p53 protein expression is lost in rat RCC, it was highly elevated in AML. These novel data provide evidence that loss of TSC-2, PTEN, and p53 as well as activation of PI 3-K and mTOR is associated with kidney cancer in the Eker rat, while sustained expression of TSC-2, PTEN, and p53 may prevent progression of kidney cancer in TSC patients.
Collapse
Affiliation(s)
- Samy L. Habib
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Anamika Yadav
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, TX, USA
| | - Lenin Mahimainathan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Anthony J. Valente
- Department of Medicine, University of Texas Health Science Center at San Antonio, TX, USA
| |
Collapse
|
86
|
Abstract
The mammalian target of rapamycin (mTOR) is a central controller of cell growth and proliferation. mTOR forms two distinct complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 is regulated by multiple signals such as growth factors, amino acids, and cellular energy and regulates numerous essential cellular processes including translation, transcription, and autophagy. The AMP-activated protein kinase (AMPK) is a cellular energy sensor and signal transducer that is regulated by a wide array of metabolic stresses. These two pathways serve as a signaling nexus for regulating cellular metabolism, energy homeostasis, and cell growth, and dysregulation of each pathway may contribute to the development of metabolic disorders such as obesity, type 2 diabetes, and cancer. This review focuses on our current understanding of the relationship between AMPK and mTORC1 signaling and discusses their roles in cellular and organismal energy homeostasis.
Collapse
Affiliation(s)
- Ken Inoki
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
87
|
Huang S, Yang ZJ, Yu C, Sinicrope FA. Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and down-regulation of p62/sequestosome 1. J Biol Chem 2011; 286:40002-12. [PMID: 21949121 DOI: 10.1074/jbc.m111.297432] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AZD8055 is an ATP-competitive inhibitor of mammalian target of rapamycin (mTOR) that forms two multiprotein complexes, mTORC1 and mTORC2, and negatively regulates autophagy. We demonstrate that AZD8055 stimulates and potentiates chemotherapy-mediated autophagy, as shown by LC3I-II conversion and down-regulation of the ubiquitin-binding protein p62/sequestosome 1. AZD8055-induced autophagy was pro-survival as shown by its ability to attenuate cell death and DNA damage (p-H2AX), and to enhance clonogenic survival by cytotoxic chemotherapy. Autophagy inhibition by siRNA against Beclin 1 or LC3B, or by chloroquine, partially reversed the cytoprotective effect of AZD8055 that was independent of cell cycle inhibition. The pro-survival role of autophagy was confirmed using ectopic expression of Beclin 1 that conferred cytoprotection. To determine whether autophagy-mediated down-regulation of p62/sequestosome 1 contributes to its pro-survival role, we generated p62 knockdown cells using shRNA that showed protection from chemotherapy-induced cell death and DNA damage. We also overexpressed wild-type (wt) p62 that promoted chemotherapy-induced cell death, whereas mutated p62 at functional domains (PB1, UBA) failed to do so. The ability of ectopic wt p62 to promote cell death was blocked by AZD8055. AZD8055 was shown to inhibit phosphorylation of the autophagy-initiating kinase ULK1 at Ser(757) and inhibited known targets of mTORC1 (p-mTOR Ser(2448), p70S6K, p-S6, p4EBP1) and mTORC2 (p-mTOR Ser(2481), p-AKT Ser(473)). Knockdown of mTOR, but not Raptor or Rictor, reduced p-ULK1 at Ser(757) and enhanced chemotherapy-induced autophagy that resulted in a similar cytoprotective effect as shown for AZD8055. In conclusion, AZD8055 inhibits mTOR kinase and ULK1 phosphorylation to induce autophagy whose pro-survival effect is due, in part, to down-regulation of p62.
Collapse
Affiliation(s)
- Shengbing Huang
- Mayo Clinic and Mayo Cancer Center, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
88
|
The AMPK stress response pathway mediates anoikis resistance through inhibition of mTOR and suppression of protein synthesis. Cell Death Differ 2011; 19:501-10. [PMID: 21941369 DOI: 10.1038/cdd.2011.119] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Suppression of anoikis after detachment of cancer cells from the extracellular matrix is a key step during metastasis. Here we show that, after detachment, mouse embryonic fibroblasts (MEFs) transformed by K-Ras(V12) or ETV6-NTRK3 (EN) activate a transcriptional response overrepresented by genes related to bioenergetic stress and the AMP-activated protein kinase (AMPK) energy-sensing pathway. Accordingly, AMPK is activated in both transformed and non-transformed cells after detachment, and AMPK deficiency restores anoikis to transformed MEFs. However, AMPK activation represses the mTOR complex-1 (mTORC1) pathway only in transformed cells, suggesting a key role for AMPK-mediated mTORC1 inhibition in the suppression of anoikis. Consistent with this, AMPK-/- MEFs transformed by EN or K-Ras show sustained mTORC1 activation after detachment and fail to suppress anoikis. Transformed TSC1-/- MEFs, which are incapable of suppressing mTORC1, also undergo anoikis after detachment, which is reversed by mTORC1 inhibitors. Furthermore, transformed AMPK-/- and TSC1-/- MEFs both have higher total protein synthesis rates than wild-type controls, and translation inhibition using cycloheximide partially restores their anoikis resistance, indicating a mechanism whereby mTORC1 inhibition suppresses anoikis. Finally, breast carcinoma cell lines show similar detachment-induced AMPK/mTORC1 activation and restoration of anoikis by AMPK inhibition. Our data implicate AMPK-mediated mTORC1 inhibition and suppression of protein synthesis as a means for bioenergetic conservation during detachment, thus promoting anoikis resistance.
Collapse
|
89
|
Zajkowicz A, Rusin M. The activation of the p53 pathway by the AMP mimetic AICAR is reduced by inhibitors of the ATM or mTOR kinases. Mech Ageing Dev 2011; 132:543-51. [PMID: 21945951 DOI: 10.1016/j.mad.2011.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 07/24/2011] [Accepted: 09/13/2011] [Indexed: 02/03/2023]
Abstract
A balanced diet reduces the risk of life-threatening diseases such as diabetes and cancer. A reduced supply of energy at the cellular level leads to an increased concentration of AMP, which, in turn, results in LKB1-mediated activation of the AMPK kinase. The activation of the p53 tumor suppressor protein by metabolic stress has been shown to be mediated by AMPK. Increased intracellular AMP can be mimicked by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). We showed that AICAR activated the p53 pathway in LKB1-deficient cells. This activation was strongly attenuated by two inhibitors of the ATM kinase (caffeine and Ku-55933), which is dysfunctional in ataxia-telanagiectasia patients. In cells with ATM expression silenced by shRNA, AICAR-induced p53 phosphorylation at Ser(15) and Ser(37) was attenuated. Furthermore, p53 activation by AICAR was blocked by rapamycin, a specific inhibitor of the mTOR kinase, which is a crucial regulator of cell growth. Rapamycin did not block p53 activation by resveratrol, which, in contrast to AICAR, induced the DNA damage response, senescence-like growth inhibition, a high level of post-translational modification of p53, and weak upregulation of MDM2 (the negative regulator of p53). Thus, ATM and mTOR participate in the activation of p53 in response to a compound mimicking metabolic stress.
Collapse
Affiliation(s)
- Artur Zajkowicz
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska - Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland
| | | |
Collapse
|
90
|
Astle MV, Hannan KM, Ng PY, Lee RS, George AJ, Hsu AK, Haupt Y, Hannan RD, Pearson RB. AKT induces senescence in human cells via mTORC1 and p53 in the absence of DNA damage: implications for targeting mTOR during malignancy. Oncogene 2011; 31:1949-62. [PMID: 21909130 PMCID: PMC3325598 DOI: 10.1038/onc.2011.394] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT and RAS oncogenic signalling modules are frequently mutated in sporadic human cancer. Although each of these pathways has been shown to play critical roles in driving tumour growth and proliferation, their activation in normal human cells can also promote cell senescence. Although the mechanisms mediating RAS-induced senescence have been well characterised, those controlling PI3K/AKT-induced senescence are poorly understood. Here we show that PI3K/AKT pathway activation in response to phosphatase and tensin homolog (PTEN) knockdown, mutant PI3K, catalytic, α polypeptide (PIK3CA) or activated AKT expression, promotes accumulation of p53 and p21, increases cell size and induces senescence-associated β-galactosidase activity. We demonstrate that AKT-induced senescence is p53-dependent and is characterised by mTORC1-dependent regulation of p53 translation and stabilisation of p53 protein following nucleolar localisation and inactivation of MDM2. The underlying mechanisms of RAS and AKT-induced senescence appear to be distinct, demonstrating that different mediators of senescence may be deregulated during transformation by specific oncogenes. Unlike RAS, AKT promotes rapid proliferative arrest in the absence of a hyperproliferative phase or DNA damage, indicating that inactivation of the senescence response is critical at the early stages of PI3K/AKT-driven tumourigenesis. Furthermore, our data imply that chronic activation of AKT signalling provides selective pressure for the loss of p53 function, consistent with observations that PTEN or PIK3CA mutations are significantly associated with p53 mutation in a number of human tumour types. Importantly, the demonstration that mTORC1 is an essential mediator of AKT-induced senescence raises the possibility that targeting mTORC1 in tumours with activated PI3K/AKT signalling may exert unexpected detrimental effects due to inactivation of a senescence brake on potential cancer-initiating cells.
Collapse
Affiliation(s)
- M V Astle
- Growth Control and Differentiation Program, Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Feedback control of p53 translation by REDD1 and mTORC1 limits the p53-dependent DNA damage response. Mol Cell Biol 2011; 31:4356-65. [PMID: 21896779 DOI: 10.1128/mcb.05541-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Exquisite control of the level and activity of p53 are required in order to preserve cellular homeostasis following DNA damage. How this regulation is integrated with other key metabolic pathways in vivo is poorly understood. Here, we describe an endogenous feedback circuit for regulation of p53 through its transcriptional target gene, Redd1, a stress-induced inhibitor of TOR complex 1 (TORC1) activity. Cells and tissues of Redd1(-/-) mice exhibit enhanced sensitivity to ionizing radiation and chemotherapy treatment, which we demonstrate is attributable to abnormally increased p53 protein level and activity in the absence of Redd1. We find that deregulation of p53 in this setting is not due to failed DNA repair or to increased p53 stabilization but, instead, to increased p53 translation. We show that Redd1 loss leads to elevated mammalian TORC1 (mTORC1) activity, which explains the increased p53 translation and protein levels. Together, these findings suggest that REDD1-mediated suppression of mTORC1 activity exerts feedback control on p53, thereby limiting the apoptotic response and contributing to cellular survival following DNA damage. This work therefore defines a role for REDD1 in the control of p53 in vivo, with potential therapeutic implications for cancer and for the variety of genetic diseases involving TOR pathway signaling components.
Collapse
|
92
|
Abstract
Mutations in genes encoding either hamartin [TSC1 (tuberous sclerosis complex 1)] or tuberin (TSC2) result in a multisystem disorder characterized by the development of benign tumours and hamartomas in several organs. The TSC1 and TSC2 proteins form a complex that lies at the crossroad of many signalling pathways integrating the energy status of the cell with signals induced by nutrients and growth factors. The TSC1/2 complex is a critical negative regulator of mTORC1 [mTOR (mammalian target of rapamycin) complex 1], and by that controls anabolic processes to promote cell growth, proliferation and survival. In the present paper, we review recent evidence highlighting the notion that the TSC1/2 complex simultaneously controls mTOR-dependent and mTOR-independent signals critical for the balancing of cell proliferation and cell death.
Collapse
|
93
|
Yun H, Ha J. AMP-activated protein kinase modulators: a patent review (2006 - 2010). Expert Opin Ther Pat 2011; 21:983-1005. [PMID: 21548715 DOI: 10.1517/13543776.2011.577069] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION AMPK is a key player in the regulation of energy balance at both the cellular and whole-body levels, placing it at the center stage in studies of metabolic disorders. Recently, AMPK has also been identified as a potential target for either therapy or prevention of some types of cancer. Thus, identification of AMPK modulators for possible use as novel therapeutic drugs, both for treatment of metabolic disorders and cancer, will have a high commercial potential. AREAS COVERED This review covers the structures and activities of AMPK modulators described in the patent literature since 2006. The patents reviewed include those for direct and/or indirect activators of AMPK, and novel pharmaceutical compounds with potential for use in the prevention and/or treatment of metabolic disorders, and cancer targeting AMPK. EXPERT OPINION Targeting of AMPK appears to be an attractive strategy in the treatment of metabolic disorders. However, some detrimental effects of AMPK have also been reported, including a possible tumor-promoting effect in some settings and a heart disease-causing effect. Moreover, activation of AMPK in the hypothalamus may cause undesired consequences, such as an increase in feeding and body weight gain. These effects, therefore, must be carefully assessed for the development of therapeutic drugs targeting AMPK.
Collapse
Affiliation(s)
- Hee Yun
- Kyung Hee University, Medical Research Center and Biomedical Science Institute, School of Medicine, Department of Biochemistry and Molecular Biology, Seoul, Republic of Korea
| | | |
Collapse
|
94
|
Neuman NA, Henske EP. Non-canonical functions of the tuberous sclerosis complex-Rheb signalling axis. EMBO Mol Med 2011; 3:189-200. [PMID: 21412983 PMCID: PMC3377068 DOI: 10.1002/emmm.201100131] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/11/2011] [Accepted: 02/16/2011] [Indexed: 01/10/2023] Open
Abstract
The protein products of the tuberous sclerosis complex (TSC) genes, TSC1 and TSC2, form a complex, which inhibits the small G-protein, Ras homolog enriched in brain (Rheb). The vast majority of research regarding these proteins has focused on mammalian Target of Rapamycin (mTOR), a target of Rheb. Here, we propose that there are clinically relevant functions and targets of TSC1, TSC2 and Rheb, which are independent of mTOR. We present evidence that such non-canonical functions of the TSC-Rheb signalling network exist, propose a standard of evidence for these non-canonical functions, and discuss their potential clinical and therapeutic implications for patients with TSC and lymphangioleiomyomatosis (LAM).
Collapse
Affiliation(s)
- Nicole A Neuman
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
95
|
Cam H, Easton JB, High A, Houghton PJ. mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1α. Mol Cell 2010; 40:509-20. [PMID: 21095582 DOI: 10.1016/j.molcel.2010.10.030] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 06/07/2010] [Accepted: 08/27/2010] [Indexed: 12/15/2022]
Abstract
The mTOR complex-1 (mTORC1) coordinates cell growth and metabolism, acting as a restriction point under stress conditions such as low oxygen tension (hypoxia). Hypoxia suppresses mTORC1 signaling. However, the signals by which hypoxia suppresses mTORC1 are only partially understood, and a direct link between hypoxia-driven physiological stress and the regulation of mTORC1 signaling is unknown. Here we show that hypoxia results in ataxia telangiectasia mutated (ATM)-dependent phosphorylation of hypoxia-inducible factor 1-alpha (HIF-1α) on serine(696) and mediates downregulation of mTORC1 signaling. Deregulation of these pathways in pediatric solid tumor xenografts suggests a link between mTORC1 dysregulation and solid tumor development and points to an important role for hypoxic regulation of mTORC1 activity in tumor development.
Collapse
Affiliation(s)
- Hakan Cam
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | | | | | | |
Collapse
|
96
|
Requirement of the ATM/p53 tumor suppressor pathway for glucose homeostasis. Mol Cell Biol 2010; 30:5787-94. [PMID: 20956556 DOI: 10.1128/mcb.00347-10] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ataxia telangiectasia (A-T) patients can develop multiple clinical pathologies, including neuronal degeneration, an elevated risk of cancer, telangiectasias, and growth retardation. Patients with A-T can also exhibit an increased risk of insulin resistance and type 2 diabetes. The ATM protein kinase, the product of the gene mutated in A-T patients (Atm), has been implicated in metabolic disease, which is characterized by insulin resistance and increased cholesterol and lipid levels, blood pressure, and atherosclerosis. ATM phosphorylates the p53 tumor suppressor on a site (Ser15) that regulates transcription activity. To test whether the ATM pathway that regulates insulin resistance is mediated by p53 phosphorylation, we examined insulin sensitivity in mice with a germ line mutation that replaces the p53 phosphorylation site with alanine. The loss of p53 Ser18 (murine Ser15) led to increased metabolic stress, including severe defects in glucose homeostasis. The mice developed glucose intolerance and insulin resistance. The insulin resistance correlated with the loss of antioxidant gene expression and decreased insulin signaling. N-Acetyl cysteine (NAC) treatment restored insulin signaling in late-passage primary fibroblasts. The addition of an antioxidant in the diet rendered the p53 Ser18-deficient mice glucose tolerant. This analysis demonstrates that p53 phosphorylation on an ATM site is an important mechanism in the physiological regulation of glucose homeostasis.
Collapse
|
97
|
Eid AA, Ford BM, Block K, Kasinath BS, Gorin Y, Ghosh-Choudhury G, Barnes JL, Abboud HE. AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J Biol Chem 2010; 285:37503-12. [PMID: 20861022 DOI: 10.1074/jbc.m110.136796] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diabetes and high glucose (HG) increase the generation of NADPH oxidase-derived reactive oxygen species and induce apoptosis of glomerular epithelial cells (podocytes). Loss of podocytes contributes to albuminuria, a major risk factor for progression of kidney disease. Here, we show that HG inactivates AMP-activated protein kinase (AMPK), up-regulates Nox4, enhances NADPH oxidase activity, and induces podocyte apoptosis. Activation of AMPK blocked HG-induced expression of Nox4, NADPH oxidase activity, and apoptosis. We also identified the tumor suppressor protein p53 as a mediator of podocyte apoptosis in cells exposed to HG. Inactivation of AMPK by HG up-regulated the expression and phosphorylation of p53, and p53 acted downstream of Nox4. To investigate the mechanism of podocyte apoptosis in vivo, we used OVE26 mice, a model of type 1 diabetes. Glomeruli isolated from these mice showed decreased phosphorylation of AMPK and enhanced expression of Nox4 and p53. Pharmacologic activation of AMPK by 5-aminoimidazole-4-carboxamide-1-riboside in OVE26 mice attenuated Nox4 and p53 expression. Administration of 5-aminoimidazole-4-carboxamide-1-riboside also prevented renal hypertrophy, glomerular basement thickening, foot process effacement, and podocyte loss, resulting in marked reduction in albuminuria. Our results uncover a novel function of AMPK that integrates metabolic input to Nox4 and provide new insight for activation of p53 to induce podocyte apoptosis. The data indicate the potential therapeutic utility of AMPK activators to block Nox4 and reactive oxygen species generation and to reduce urinary albumin excretion in type 1 diabetes.
Collapse
Affiliation(s)
- Assaad A Eid
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Hobbs RM, Seandel M, Falciatori I, Rafii S, Pandolfi PP. Plzf regulates germline progenitor self-renewal by opposing mTORC1. Cell 2010; 142:468-79. [PMID: 20691905 DOI: 10.1016/j.cell.2010.06.041] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 04/01/2010] [Accepted: 05/28/2010] [Indexed: 12/25/2022]
Abstract
Hyperactivity of mTORC1, a key mediator of cell growth, leads to stem cell depletion, although the underlying mechanisms are poorly defined. Using spermatogonial progenitor cells (SPCs) as a model system, we show that mTORC1 impairs stem cell maintenance by a negative feedback from mTORC1 to receptors required to transduce niche-derived signals. We find that SPCs lacking Plzf, a transcription factor essential for SPC maintenance, have enhanced mTORC1 activity. Aberrant mTORC1 activation in Plzf(-/-) SPCs inhibits their response to GDNF, a growth factor critical for SPC self-renewal, via negative feedback at the level of the GDNF receptor. Plzf opposes mTORC1 activity by inducing expression of the mTORC1 inhibitor Redd1. Thus, we identify the mTORC1-Plzf functional interaction as a critical rheostat for maintenance of the spermatogonial pool and propose a model whereby negative feedback from mTORC1 to the GDNF receptor balances SPC growth with self-renewal.
Collapse
Affiliation(s)
- Robin M Hobbs
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
99
|
The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol 2010; 20:427-34. [PMID: 20399660 DOI: 10.1016/j.tcb.2010.03.004] [Citation(s) in RCA: 292] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/19/2010] [Accepted: 03/24/2010] [Indexed: 01/09/2023]
Abstract
In response to stress, p53 initiates the transcriptional regulation of selected target genes and various cellular responses, including cell cycle arrest, apoptosis and senescence. Recent studies revealed two additional functions of p53 in the regulation of IGF-1/AKT/mTOR pathways and energy metabolism, contributing to p53's role as a tumor suppressor. Oncogenic processes give rise to metabolic pathways focused upon the use of aerobic glycolysis (the Warburg effect) and the pentose shunt, providing higher levels of reducing activities. p53 shuts down these pathways and refocuses cells to utilize mitochondrial oxidative phosphorylation, thereby maximizing efficient ATP production and minimizing the synthesis of substrates for cell division. The use of these alternative metabolic pathways is an integral part of both normal and oncogenic phenotypes.
Collapse
|
100
|
Lai KP, Leong WF, Chau JFL, Jia D, Zeng L, Liu H, He L, Hao A, Zhang H, Meek D, Velagapudi C, Habib SL, Li B. S6K1 is a multifaceted regulator of Mdm2 that connects nutrient status and DNA damage response. EMBO J 2010; 29:2994-3006. [PMID: 20657550 DOI: 10.1038/emboj.2010.166] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 06/30/2010] [Indexed: 12/28/2022] Open
Abstract
p53 mediates DNA damage-induced cell-cycle arrest, apoptosis, or senescence, and it is controlled by Mdm2, which mainly ubiquitinates p53 in the nucleus and promotes p53 nuclear export and degradation. By searching for the kinases responsible for Mdm2 S163 phosphorylation under genotoxic stress, we identified S6K1 as a multifaceted regulator of Mdm2. DNA damage activates mTOR-S6K1 through p38alpha MAPK. The activated S6K1 forms a tighter complex with Mdm2, inhibits Mdm2-mediated p53 ubiquitination, and promotes p53 induction, in addition to phosphorylating Mdm2 on S163. Deactivation of mTOR-S6K1 signalling leads to Mdm2 nuclear translocation, which is facilitated by S163 phosphorylation, a reduction in p53 induction, and an alteration in p53-dependent cell death. These findings thus establish mTOR-S6K1 as a novel regulator of p53 in DNA damage response and likely in tumorigenesis. S6K1-Mdm2 interaction presents a route for cells to incorporate the metabolic/energy cues into DNA damage response and links the aging-controlling Mdm2-p53 and mTOR-S6K pathways.
Collapse
Affiliation(s)
- Keng Po Lai
- Division of Cancer and Developmental Biology, Institute of Molecular and Cell Biology, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|