51
|
Xu D, Liu X, Yu WM, Meyerson HJ, Guo C, Gerson SL, Qu CK. Non-lineage/stage-restricted effects of a gain-of-function mutation in tyrosine phosphatase Ptpn11 (Shp2) on malignant transformation of hematopoietic cells. ACTA ACUST UNITED AC 2011; 208:1977-88. [PMID: 21930766 PMCID: PMC3182060 DOI: 10.1084/jem.20110450] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A common Shp2 mutation leads to myeloproliferative disease and malignant acute leukemia in stem cells and committed progenitors, associated with Shp2 maintaining chromosomal stability Activating mutations in protein tyrosine phosphatase 11 (Ptpn11) have been identified in childhood acute leukemias, in addition to juvenile myelomonocytic leukemia (JMML), which is a myeloproliferative disorder (MPD). It is not clear whether activating mutations of this phosphatase play a causal role in the pathogenesis of acute leukemias. If so, the cell origin of leukemia-initiating stem cells (LSCs) remains to be determined. Ptpn11E76K mutation is the most common and most active Ptpn11 mutation found in JMML and acute leukemias. However, the pathogenic effects of this mutation have not been well characterized. We have created Ptpn11E76K conditional knock-in mice. Global Ptpn11E76K/+ mutation results in early embryonic lethality. Induced knock-in of this mutation in pan hematopoietic cells leads to MPD as a result of aberrant activation of hematopoietic stem cells (HSCs) and myeloid progenitors. These animals subsequently progress to acute leukemias. Intriguingly, in addition to acute myeloid leukemia (AML), T cell acute lymphoblastic leukemia/lymphoma (T-ALL) and B-ALL are evolved. Moreover, tissue-specific knock-in of Ptpn11E76K/+ mutation in lineage-committed myeloid, T lymphoid, and B lymphoid progenitors also results in AML, T-ALL, and B-ALL, respectively. Further analyses have revealed that Shp2 (encoded by Ptpn11) is distributed to centrosomes and that Ptpn11E76K/+ mutation promotes LSC development, partly by causing centrosome amplification and genomic instability. Thus, Ptpn11E76K mutation has non–lineage-specific effects on malignant transformation of hematopoietic cells and initiates acute leukemias at various stages of hematopoiesis.
Collapse
Affiliation(s)
- Dan Xu
- Department of Medicine, Division of Hematology and Oncology, Center for Stem Cell and Regenerative Medicine, Case Comprehensive Cancer Center, and Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Yu ZH, Chen L, Wu L, Liu S, Wang L, Zhang ZY. Small molecule inhibitors of SHP2 tyrosine phosphatase discovered by virtual screening. Bioorg Med Chem Lett 2011; 21:4238-42. [PMID: 21669525 DOI: 10.1016/j.bmcl.2011.05.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/18/2011] [Accepted: 05/20/2011] [Indexed: 10/18/2022]
Abstract
SHP2, encoded by PTPN11, is a non-receptor protein tyrosine phosphatase (PTP) containing two tandem Src homology-2 (SH2) domains. It is expressed ubiquitously and plays critical roles in growth factor mediated processes, primarily by promoting the activation of the RAS/ERK signaling pathway. Genetic and biochemical studies have identified SHP2 as the first bona fide oncoprotein in the PTP superfamily, and a promising target for anti-cancer and anti-leukemia therapy. Here, we report a structure-based approach to identify SHP2 inhibitors with a novel scaffold. Through sequential virtual screenings and in vitro inhibition assays, a reversible competitive SHP2 inhibitor (C21) was identified. C21 is structurally distinct from all known SHP2 inhibitors. Combining molecular dynamics simulation and binding free energy calculation, a most likely binding mode of C21 with SHP2 is proposed, and further validated by site-directed mutagenesis and structure-activity relationship studies. This binding mode is consistent with the observed potency and specificity of C21, and reveals the molecular determinants for further optimization based on the new scaffold.
Collapse
Affiliation(s)
- Zhi-Hong Yu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
53
|
Quintanar-Audelo M, Yusoff P, Sinniah S, Chandramouli S, Guy GR. Sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein (SPRED1), a tyrosine-protein phosphatase non-receptor type 11 (SHP2) substrate in the Ras/extracellular signal-regulated kinase (ERK) pathway. J Biol Chem 2011; 286:23102-12. [PMID: 21531714 DOI: 10.1074/jbc.m110.212662] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
SHP2 is a tyrosine phosphatase involved in the activation of the Ras/ERK signaling pathway downstream of a number of receptor tyrosine kinases. One of the proposed mechanisms involving SHP2 in this context is to dephosphorylate and inactivate inhibitors of the Ras/ERK pathway. Two protein families bearing a unique, common domain, Sprouty and SPRED proteins, are possible candidates because they have been reported to inhibit the Ras/ERK pathway upon FGF activation. We tested whether any of these proteins are likely substrates of SHP2. Our findings indicate that Sprouty2 binds to the C-terminal tail of SHP2, which is an unlikely substrate binding site, whereas SPRED proteins bind to the tyrosine phosphatase domain that is known to be the binding site for its substrates. Overexpressed SHP2 was able to dephosphorylate SPREDs but not Sprouty2. Finally, we found two tyrosine residues on SPRED1 that are required, when phosphorylated, to inhibit Ras/ERK activation and identified Tyr-420 as a specific dephosphorylation target of SHP2. The evidence obtained indicates that SPRED1 is a likely substrate of SHP2, whose tyrosine dephosphorylation is required to attenuate the inhibitory action of SPRED1 in the Ras/ERK pathway.
Collapse
Affiliation(s)
- Martina Quintanar-Audelo
- Institute of Molecular and Cell Biology, Signal Transduction Laboratory, 61 Biopolis Drive, Proteos 138673, Singapore
| | | | | | | | | |
Collapse
|
54
|
Kaltenbrun E, Tandon P, Amin NM, Waldron L, Showell C, Conlon FL. Xenopus: An emerging model for studying congenital heart disease. ACTA ACUST UNITED AC 2011; 91:495-510. [PMID: 21538812 DOI: 10.1002/bdra.20793] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/18/2011] [Accepted: 01/28/2011] [Indexed: 02/02/2023]
Abstract
Congenital heart defects affect nearly 1% of all newborns and are a significant cause of infant death. Clinical studies have identified a number of congenital heart syndromes associated with mutations in genes that are involved in the complex process of cardiogenesis. The African clawed frog, Xenopus, has been instrumental in studies of vertebrate heart development and provides a valuable tool to investigate the molecular mechanisms underlying human congenital heart diseases. In this review, we discuss the methodologies that make Xenopus an ideal model system to investigate heart development and disease. We also outline congenital heart conditions linked to cardiac genes that have been well studied in Xenopus and describe some emerging technologies that will further aid in the study of these complex syndromes.
Collapse
Affiliation(s)
- Erin Kaltenbrun
- University of North Carolina McAllister Heart Institute, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
55
|
Tartaglia M, Gelb BD. Disorders of dysregulated signal traffic through the RAS-MAPK pathway: phenotypic spectrum and molecular mechanisms. Ann N Y Acad Sci 2010; 1214:99-121. [PMID: 20958325 PMCID: PMC3010252 DOI: 10.1111/j.1749-6632.2010.05790.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
RAS GTPases control a major signaling network implicated in several cellular functions, including cell fate determination, proliferation, survival, differentiation, migration, and senescence. Within this network, signal flow through the RAF-MEK-ERK pathway-the first identified mitogen-associated protein kinase (MAPK) cascade-mediates early and late developmental processes controlling morphology determination, organogenesis, synaptic plasticity, and growth. Signaling through the RAS-MAPK cascade is tightly controlled; and its enhanced activation represents a well-known event in oncogenesis. Unexpectedly, in the past few years, inherited dysregulation of this pathway has been recognized as the cause underlying a group of clinically related disorders sharing facial dysmorphism, cardiac defects, reduced postnatal growth, ectodermal anomalies, variable cognitive deficits, and susceptibility to certain malignancies as major features. These disorders are caused by heterozygosity for mutations in genes encoding RAS proteins, regulators of RAS function, modulators of RAS interaction with effectors, or downstream signal transducers. Here, we provide an overview of the phenotypic spectrum associated with germline mutations perturbing RAS-MAPK signaling, the unpredicted molecular mechanisms converging toward the dysregulation of this signaling cascade, and major genotype-phenotype correlations.
Collapse
Affiliation(s)
- Marco Tartaglia
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy.
| | | |
Collapse
|
56
|
Abstract
Deregulation of signaling pathways, through mutation or other molecular changes, can ultimately result in disease. The tyrosine phosphatase Shp2 has emerged as a major regulator of receptor tyrosine kinase (RTK) and cytokine receptor signaling. In the last decade, germline mutations in the human PTPN11 gene, encoding Shp2, were linked to Noonan (NS) and LEOPARD syndromes, two multisymptomatic developmental disorders that are characterized by short stature, craniofacial defects, cardiac defects, and mental retardation. Somatic Shp2 mutations are also associated with several types of human malignancies, such as the most common juvenile leukemia, juvenile myelomonocytic leukemia (JMML). Whereas NS and JMML are caused by gain-of-function (GOF) mutations of Shp2, loss-of-function (LOF) mutations are thought to be associated with LEOPARD syndrome. Animal models that carry conditional LOF and GOF mutations have allowed a better understanding of the mechanism of Shp2 function in disease, and shed light on the role of Shp2 in signaling pathways that control decisive events during embryonic development or during cellular transformation/tumorigenesis.
Collapse
|
57
|
Zhang X, He Y, Liu S, Yu Z, Jiang ZX, Yang Z, Dong Y, Nabinger SC, Wu L, Gunawan AM, Wang L, Chan RJ, Zhang ZY. Salicylic acid based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2). J Med Chem 2010; 53:2482-93. [PMID: 20170098 DOI: 10.1021/jm901645u] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) plays a pivotal role in growth factor and cytokine signaling. Gain-of-function SHP2 mutations are associated with Noonan syndrome, various kinds of leukemias, and solid tumors. Thus, there is considerable interest in SHP2 as a potential target for anticancer and antileukemia therapy. We report a salicylic acid based combinatorial library approach aimed at binding both active site and unique nearby subpockets for enhanced affinity and selectivity. Screening of the library led to the identification of a SHP2 inhibitor II-B08 (compound 9) with highly efficacious cellular activity. Compound 9 blocks growth factor stimulated ERK1/2 activation and hematopoietic progenitor proliferation, providing supporting evidence that chemical inhibition of SHP2 may be therapeutically useful for anticancer and antileukemia treatment. X-ray crystallographic analysis of the structure of SHP2 in complex with 9 reveals molecular determinants that can be exploited for the acquisition of more potent and selective SHP2 inhibitors.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Tartaglia M, Zampino G, Gelb BD. Noonan syndrome: clinical aspects and molecular pathogenesis. Mol Syndromol 2010; 1:2-26. [PMID: 20648242 DOI: 10.1159/000276766] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 10/30/2009] [Indexed: 01/20/2023] Open
Abstract
Noonan syndrome (NS) is a relatively common, clinically variable and genetically heterogeneous developmental disorder characterized by postnatally reduced growth, distinctive facial dysmorphism, cardiac defects and variable cognitive deficits. Other associated features include ectodermal and skeletal defects, cryptorchidism, lymphatic dysplasias, bleeding tendency, and, rarely, predisposition to hematologic malignancies during childhood. NS is caused by mutations in the PTPN11, SOS1, KRAS, RAF1, BRAF and MEK1 (MAP2K1) genes, accounting for approximately 70% of affected individuals. SHP2 (encoded by PTPN11), SOS1, BRAF, RAF1 and MEK1 positively contribute to RAS-MAPK signaling, and possess complex autoinhibitory mechanisms that are impaired by mutations. Similarly, reduced GTPase activity or increased guanine nucleotide release underlie the aberrant signal flow through the MAPK cascade promoted by most KRAS mutations. More recently, a single missense mutation in SHOC2, which encodes a cytoplasmic scaffold positively controlling RAF1 activation, has been discovered to cause a closely related phenotype previously termed Noonan-like syndrome with loose anagen hair. This mutation promotes aberrantly acquired N-myristoylation of the protein, resulting in its constitutive targeting to the plasma membrane and dysregulated function. PTPN11, BRAF and RAF1 mutations also account for approximately 95% of LEOPARD syndrome, a condition which resembles NS phenotypically but is characterized by multiple lentigines dispersed throughout the body, café-au-lait spots, and a higher prevalence of electrocardiographic conduction abnormalities, obstructive cardiomyopathy and sensorineural hearing deficits. These recent discoveries demonstrate that the substantial phenotypic variation characterizing NS and related conditions can be ascribed, in part, to the gene mutated and even the specific molecular lesion involved.
Collapse
Affiliation(s)
- M Tartaglia
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | | | | |
Collapse
|
59
|
Retroviral insertional mutagenesis identifies Zeb2 activation as a novel leukemogenic collaborating event in CALM-AF10 transgenic mice. Blood 2009; 115:1194-203. [PMID: 20007546 DOI: 10.1182/blood-2009-04-216184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The t(10;11) translocation results in a CALM-AF10 fusion gene in a subset of leukemia patients. Expression of a CALM-AF10 transgene results in leukemia, with prolonged latency and incomplete penetrance, suggesting that additional events are necessary for leukemic transformation. CALM-AF10 mice infected with the MOL4070LTR retrovirus developed acute leukemia, and ligation-mediated polymerase chain reaction was used to identify retroviral insertions at 19 common insertion sites, including Zeb2, Nf1, Mn1, Evi1, Ift57, Mpl, Plag1, Kras, Erg, Vav1, and Gata1. A total of 26% (11 of 42) of the mice had retroviral integrations near Zeb2, a transcriptional corepressor leading to overexpression of the Zeb2-transcript. A total of 91% (10 of 11) of mice with Zeb2 insertions developed B-lineage acute lymphoblastic leukemia, suggesting that Zeb2 activation promotes the transformation of CALM-AF10 hematopoietic precursors toward B-lineage leukemias. More than half of the mice with Zeb2 integrations also had Nf1 integrations, suggesting cooperativity among CALM-AF10, Zeb2, and Ras pathway mutations. We searched for Nras, Kras, and Ptpn11 point mutations in the CALM-AF10 leukemic mice. Three mutations were identified, all of which occurred in mice with Zeb2 integrations, consistent with the hypothesis that Zeb2 and Ras pathway activation promotes B-lineage leukemic transformation in concert with CALM-AF10.
Collapse
|
60
|
Matozaki T, Murata Y, Saito Y, Okazawa H, Ohnishi H. Protein tyrosine phosphatase SHP-2: a proto-oncogene product that promotes Ras activation. Cancer Sci 2009; 100:1786-93. [PMID: 19622105 PMCID: PMC11158110 DOI: 10.1111/j.1349-7006.2009.01257.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SHP-2 is a cytoplasmic protein tyrosine phosphatase (PTP) that contains two Src homology 2 (SH2) domains. Although PTPs are generally considered to be negative regulators on the basis of their ability to oppose the effects of protein tyrosine kinases, SHP-2 is unusual in that it promotes the activation of the Ras-MAPK signaling pathway by receptors for various growth factors and cytokines. The molecular basis for the activation of SHP-2 is also unique: In the basal state, the NH(2)-terminal SH2 domain of SHP-2 interacts with the PTP domain, resulting in autoinhibition of PTP activity; the binding of SHP-2 via its SH2 domains to tyrosine-phosphorylated growth factor receptors or docking proteins, however, results in disruption of this intramolecular interaction, leading to exposure of the PTP domain and catalytic activation. Indeed, SHP-2 proteins with artificial mutations in the NH(2)-terminal SH2 domain have been shown to act as dominant active mutants in vitro. Such activating mutations of PTPN11 (human SHP-2 gene) were subsequently identified in individuals with Noonan syndrome, a human developmental disorder that is sometimes associated with juvenile myelomonocytic leukemia. Furthermore, somatic mutations of PTPN11 were found to be associated with pediatric leukemia. SHP-2 is also thought to participate in the development of other malignant disorders, but in a manner independent of such activating mutations. Biochemical and functional studies of SHP-2 and genetic analysis of PTPN11 in human disorders have thus converged to provide new insight into the pathogenesis of cancer as well as potential new targets for cancer treatment.
Collapse
Affiliation(s)
- Takashi Matozaki
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan.
| | | | | | | | | |
Collapse
|
61
|
Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia. Proc Natl Acad Sci U S A 2009; 106:12944-9. [PMID: 19651601 DOI: 10.1073/pnas.0903142106] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Pediatric de novo acute myeloid leukemia (AML) is an aggressive malignancy with current therapy resulting in cure rates of only 60%. To better understand the cause of the marked heterogeneity in therapeutic response and to identify new prognostic markers and therapeutic targets a comprehensive list of the genetic mutations that underlie the pathogenesis of AML is needed. To approach this goal, we examined diagnostic leukemic samples from a cohort of 111 children with de novo AML using single-nucleotide-polymorphism microarrays and candidate gene resequencing. Our data demonstrate that, in contrast to pediatric acute lymphoblastic leukemia (ALL), de novo AML is characterized by a very low burden of genomic alterations, with a mean of only 2.38 somatic copy-number alterations per leukemia, and less than 1 nonsynonymous point mutation per leukemia in the 25 genes analyzed. Even more surprising was the observation that 34% of the leukemias lacked any identifiable copy-number alterations, and 28% of the leukemias with recurrent translocations lacked any identifiable sequence or numerical abnormalities. The only exception to the presence of few mutations was acute megakaryocytic leukemias, with the majority of these leukemias being characterized by a high number of copy-number alterations but rare point mutations. Despite the low overall number of lesions across the patient cohort, novel recurring regions of genetic alteration were identified that harbor known, and potential new cancer genes. These data reflect a remarkably low burden of genomic alterations within pediatric de novo AML, which is in stark contrast to most other human malignancies.
Collapse
|
62
|
Bergom C, Gao C, Newman PJ. Mechanisms of PECAM-1-mediated cytoprotection and implications for cancer cell survival. Leuk Lymphoma 2009; 46:1409-21. [PMID: 16194886 DOI: 10.1080/10428190500126091] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Defects in apoptotic pathways can promote cancer development and cause cancers to become resistant to chemotherapy. The cell adhesion and signaling molecule PECAM-1 has been shown to potently suppress apoptosis in a variety of cellular systems. PECAM-1 expression has been reported on a variety of human malignancies-especially hematopoietic and vascular cell cancers-but the significance of this expression has not been fully explored. The ability of PECAM-1 to inhibit apoptosis makes it an attractive candidate as a molecule that may promote cancer development and/or confer resistance to chemotherapeutic treatment. The exact mechanisms by which PECAM-1 mediates its cytoprotection have not been fully defined, but its anti-apoptotic effects have been shown to require both homophilic binding and intracellular signaling via its immunoreceptor tyrosine-based inhibitory motif (ITIM) domains. In this review, we will discuss the data regarding PECAM-1's anti-apoptotic effects and ways in which this cytoprotection may be clinically relevant to the development and/or treatment of hematologic malignancies that express this vascular cell-specific surface molecule.
Collapse
Affiliation(s)
- Carmen Bergom
- Blood Research Institute, The Blood Center of Southeastern Wisconsin, Milwaukee, Milwaukee, WI, USA.
| | | | | |
Collapse
|
63
|
Zhou X, Agazie YM. Molecular mechanism for SHP2 in promoting HER2-induced signaling and transformation. J Biol Chem 2009; 284:12226-34. [PMID: 19261604 DOI: 10.1074/jbc.m900020200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Src homology phosphotyrosyl phosphatase 2 (SHP2) plays a positive role in HER2-induced signaling and transformation, but its mechanism of action is poorly understood. Given the significance of HER2 in breast cancer, defining a mechanism for SHP2 in the HER2 signaling pathway is of paramount importance. In the current report we show that SHP2 positively modulates the Ras-extracellular signal-regulated kinase 1 and 2 and the phospoinositide-3-kinase-Akt pathways downstream of HER2 by increasing the half-life the activated form of Ras. This is accomplished by dephosphorylating an autophosphorylation site on HER2 that serves as a docking platform for the SH2 domains of the Ras GTPase-activating protein (RasGAP). The net effect is an increase in the intensity and duration of GTP-Ras levels with the overall impact of enhanced HER2 signaling and cell transformation. In conformity to these findings, the HER2 mutant that lacks the SHP2 target site exhibits an enhanced signaling and cell transformation potential. Therefore, SHP2 promotes HER2-induced signaling and transformation at least in part by dephosphorylating a negative regulatory autophosphorylation site. These results suggest that SHP2 might serve as a therapeutic target against breast cancer and other cancers characterized by HER2 overexpression.
Collapse
Affiliation(s)
- Xiangdong Zhou
- Department of Biochemistry and The Marry Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506, USA
| | | |
Collapse
|
64
|
Yoshida N, Yagasaki H, Xu Y, Matsuda K, Yoshimi A, Takahashi Y, Hama A, Nishio N, Muramatsu H, Watanabe N, Matsumoto K, Kato K, Ueyama J, Inada H, Goto H, Yabe M, Kudo K, Mimaya J, Kikuchi A, Manabe A, Koike K, Kojima S. Correlation of clinical features with the mutational status of GM-CSF signaling pathway-related genes in juvenile myelomonocytic leukemia. Pediatr Res 2009; 65:334-40. [PMID: 19047918 DOI: 10.1203/pdr.0b013e3181961d2a] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mutations in RAS, neurofibromatosis type 1 (NF1), and PTPN11, constituents of the granulocyte-macrophage colony-stimulating factor signaling pathway, have been recognized in patients with juvenile myelomonocytic leukemia (JMML). We assessed 71 children with JMML for NRAS, KRAS, and PTPN11 mutations and evaluated their clinical significance. Of the 71 patients, three had been clinically diagnosed with neurofibromatosis type 1, and PTPN11 and NRAS/KRAS mutations were found in 32 (45%) and 13 (18%) patients, respectively. No simultaneous aberrations were found. Compared with patients with RAS mutation or without any aberrations, patients with PTPN11 mutation were significantly older at diagnosis and had higher fetal Hb levels, both of which have been recognized as poor prognostic factors. As was expected, overall survival was lower for patients with the PTPN11 mutation than for those without (25 versus 64%; p = 0.0029). In an analysis of 48 patients who received hematopoietic stem cell transplantation, PTPN11 mutations were also associated with poor prognosis for survival. Mutation in PTPN11 was the only unfavorable factor for relapse after hematopoietic stem cell transplantation (p = 0.001). All patients who died after relapse had PTPN11 mutation. These results suggest that JMML with PTPN11 mutation might be a distinct subgroup with specific clinical characteristics and poor outcome.
Collapse
Affiliation(s)
- Nao Yoshida
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Aoki Y, Niihori T, Narumi Y, Kure S, Matsubara Y. The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders. Hum Mutat 2008; 29:992-1006. [DOI: 10.1002/humu.20748] [Citation(s) in RCA: 274] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
66
|
Abstract
Diverse cellular processes are regulated by tyrosyl phosphorylation, which is controlled by protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPs). De-regulated tyrosyl phosphorylation, evoked by gain-of-function mutations and/or over-expression of PTKs, contributes to the pathogenesis of many cancers and other human diseases. PTPs, because they oppose the action of PTKs, had been considered to be prime suspects for potential tumor suppressor genes. Surprisingly, few, if any, tumor suppressor PTPs have been identified. However, the Src homology-2 domain-containing phosphatase Shp2 (encoded by PTPN11) is a bona fide proto-oncogene. Germline mutations in PTPN11 cause Noonan and LEOPARD syndromes, whereas somatic PTPN11 mutations occur in several types of hematologic malignancies, most notably juvenile myelomonocytic leukemia and, more rarely, in solid tumors. Shp2 also is an essential component in several other oncogene signaling pathways. Elucidation of the events underlying Shp2-evoked transformation may provide new insights into oncogenic mechanisms and novel targets for anti-cancer therapy.
Collapse
|
67
|
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of neoplastic disorders with great variability in clinical course and response to therapy, as well as in the genetic and molecular basis of the pathology. Major advances in the understanding of leukemogenesis have been made by the characterization and the study of acquired cytogenetic abnormalities, particularly reciprocal translocations observed in AML. Besides these major cytogenetic abnormalities, gene mutations also constitute key events in AML pathogenesis. In this review, we describe the contribution of known gene mutations to the understanding of AML pathogenesis and their clinical significance. To gain more insight in this understanding, we clustered these alterations in three groups: (1) mutations affecting genes that contribute to cell proliferation (FLT3, c-KIT, RAS, protein tyrosine standard phosphatase nonreceptor 11); (2) mutations affecting genes involved in myeloid differentiation (AML1 and CEBPA) and (3) mutations affecting genes implicated in cell cycle regulation or apoptosis (P53, NPM1). This nonexhaustive review aims to show how gene mutations interact with each other, how they contribute to refine prognosis and how they can be useful for risk-adapted therapeutic management of AML patients.
Collapse
|
68
|
Paulsson K, Horvat A, Strömbeck B, Nilsson F, Heldrup J, Behrendtz M, Forestier E, Andersson A, Fioretos T, Johansson B. Mutations of FLT3, NRAS, KRAS, and PTPN11 are frequent and possibly mutually exclusive in high hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 2008; 47:26-33. [PMID: 17910045 DOI: 10.1002/gcc.20502] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Although it has been suggested that mutations of the FLT3, NRAS, KRAS, and PTPN11 genes are particularly frequent in high hyperdiploid (>50 chromosomes) pediatric acute lymphoblastic leukemias (ALLs), this has as yet not been confirmed in a large patient cohort. Furthermore, it is unknown whether mutations of these genes coexist in hyperdiploid cases. We performed mutation analyses of FLT3, NRAS, KRAS, and PTPN11 in a consecutive series of 78 high hyperdiploid ALLs. Twenty-six (33%) of the cases harbored a mutation, comprising six activating point mutations and one internal tandem duplication of FLT3 (7/78 cases; 9.0%), eight codon 12, 13, or 61 NRAS mutations (8/78 cases; 10%), five codon 12 or 13 KRAS mutations (5/78 cases, 6.4%), and seven exon 3 or 13 PTPN11 mutations (7/78 cases; 9.0%). No association was seen between the presence of a mutation in FLT3, NRAS, KRAS, or PTPN11 and gender, age, white blood cell count, or relapse, suggesting that they do not confer a negative prognostic impact. Only one case harbored mutations in two different genes, suggesting that mutations of these four genes are generally mutually exclusive. In total, one third of the cases harbored a FLT3, NRAS, KRAS, or PTPN11 mutation, identifying the RTK-RAS signaling pathway as a potential target for novel therapies of high hyperdiploid pediatric ALLs.
Collapse
Affiliation(s)
- Kajsa Paulsson
- Department of Clinical Genetics, University Hospital, Lund, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Christiansen DH, Desta F, Andersen MK, Pedersen-Bjergaard J. Mutations of the PTPN11 gene in therapy-related MDS and AML with rare balanced chromosome translocations. Genes Chromosomes Cancer 2007; 46:517-21. [PMID: 17330262 DOI: 10.1002/gcc.20426] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Activating mutations of the PTPN11 gene encoding the SHP2 tyrosine phosphatase is the most common genetic abnormality in juvenile myelomonocytic leukemia and is sporadically observed in myelodysplasia (MDS) and acute myeloid leukemia (AML). An unselected series of 140 patients with therapy-related MDS or AML were investigated for mutations of PTPN11 in Exons 3, 4, 8, and 13. Four cases had mutations of the gene; three of these had deletions or loss of chromosome arm 7q. Two cases had rare balanced translocations to chromosome band 21q22 with rearrangement of the RUNX1 gene and the other two patients had rare balanced translocations to chromosome band 3q26 with rearrangement of the EVI1 gene. The findings support cooperation between so called Class I and Class II mutations in leukemogenesis.
Collapse
Affiliation(s)
- Debes H Christiansen
- Cytogenetic Laboratory, Section of Hematology/Oncology, Department of Clinical Genetics, The Juliane Marie Center, Copenhagen DK 2100 Ø, Denmark
| | | | | | | |
Collapse
|
70
|
Cheong JLY, Moorkamp MH. Respiratory failure, juvenile myelomonocytic leukemia, and neonatal Noonan syndrome. J Pediatr Hematol Oncol 2007; 29:262-4. [PMID: 17414570 DOI: 10.1097/mph.0b013e3180437e18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Noonan syndrome (NS) is a multiple malformation syndrome where confirmation of diagnosis is difficult in the newborn. We report a case of a dysmorphic neonate who presented with bilateral chylous effusions and juvenile myelomonocytic leukemia where NS was confirmed by the presence of PTPN11 mutation. Juvenile myelomonocytic leukemia in NS is uncommon. The leukemia is usually self-limiting but lethal cases have been reported. Decisions regarding need for the treatment are unclear and further understanding of the genotype-phenotype relationships in PTPN11 mutations may help direct this.
Collapse
|
71
|
Bocchinfuso G, Stella L, Martinelli S, Flex E, Carta C, Pantaleoni F, Pispisa B, Venanzi M, Tartaglia M, Palleschi A. Structural and functional effects of disease-causing amino acid substitutions affecting residues Ala72 and Glu76 of the protein tyrosine phosphatase SHP-2. Proteins 2006; 66:963-74. [PMID: 17177198 DOI: 10.1002/prot.21050] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mutations of the protein tyrosine phosphatase SHP-2 are implicated in human diseases, causing Noonan syndrome (NS) and related developmental disorders or contributing to leukemogenesis depending on the specific amino acid substitution involved. SHP-2 is composed by a catalytic (PTP) and two regulatory (N-SH2 and C-SH2) domains that bind to signaling partners and control the enzymatic activity by limiting the accessibility of the catalytic site. Wild type SHP-2 and four disease-associated mutants recurring in hematologic malignancies (Glu76Lys and Ala72Val) or causing NS (Glu76Asp and Ala72Ser), with affected residues located in the PTP-interacting region of the N-SH2 domain, were analyzed by molecular dynamics simulations and in vitro biochemical assays. Simulations demonstrate that mutations do not affect significantly the conformation of the N-SH2 domain. Rather they destabilize the interaction of this domain with the catalytic site, with more evident effects in the two leukemia associated mutants. Consistent with this structural evidence, mutants exhibit an increased level of basal phosphatase activity in the order Glu76Lys > Ala72Val > Glu76Asp > Ala72Ser > WT. The experimental data also show that the mutants with higher basal activity are more responsive to an activating phosphopeptide. A thermodynamic analysis demonstrates that an increase in the overall phosphopeptide affinity of mutants can be explained by a shift in the equilibrium between the inactive and active SHP-2 structure. These data support the view that an increase in the affinity of SHP-2 for its binding partners, caused by destabilization of the closed, inactive conformation, rather than protein basal activation per se, would represent the molecular mechanism, leading to pathogenesis in these mutants.
Collapse
Affiliation(s)
- Gianfranco Bocchinfuso
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Chan RJ, Li Y, Hass MN, Walter A, Voorhorst CS, Shelley WC, Yang Z, Orschell CM, Yoder MC. Shp-2 heterozygous hematopoietic stem cells have deficient repopulating ability due to diminished self-renewal. Exp Hematol 2006; 34:1230-9. [PMID: 16939816 DOI: 10.1016/j.exphem.2006.04.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 04/14/2006] [Accepted: 04/17/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Improved understanding of hematopoietic stem cell (HSC) differentiation, proliferation, and self-renewal is sought to develop improved stem cell-based therapies as well as to define novel therapies for stem cell-based diseases such as leukemia. Shp-2 is a widely expressed nonreceptor protein tyrosine phosphatase that participates early in hematopoietic development. The following study was performed to examine the role of Shp-2 in HSC function. METHODS Bone marrow low-density mononuclear cells were isolated from WT and Shp-2(+/-) littermate controls and utilized in competitive repopulation studies, homing analysis, cell-cycle analysis, and serial transplantation studies. RESULTS Haploinsufficiency of Shp-2 causes a threefold reduction in HSC repopulating units following transplantation into lethally irradiated recipients. Homing of Shp-2(+/-) and WT cells to the bone marrow and spleen compartments was equal. Cell-cycle analysis studies revealed that the Shp-2(+/-) lin(-)Sca-1(+)c-kit(+) cells are less quiescent than WT cells, providing a potential etiology for the observed reduced engraftment of the Shp-2(+/-) cells. Consistently, in serial transplantation studies, we observed a significant reduction of Shp-2(+/-) self-renewal compared to that of WT cells. CONCLUSION These data demonstrate that Shp-2 is required for the physiologic homeostasis of the HSC compartment and potentially provide insight into how oncogenic Shp-2 may contribute to the pathogenesis of myeloproliferative disorders and leukemias.
Collapse
Affiliation(s)
- Rebecca J Chan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
Elucidation of the molecular mechanisms underlying carcinogenesis has benefited tremendously from the identification and characterization of oncogenes and tumor suppressor genes. One new advance in this field is the identification of PTPN11 as the first proto-oncogene that encodes a cytoplasmic tyrosine phosphatase with 2 Src-homology 2 (SH2) domains (Shp2). This tyrosine phosphatase was previously shown to play an essential role in normal hematopoiesis. More recently, somatic missense PTPN11 gain-of-function mutations have been detected in leukemias and rarely in solid tumors, and have been found to induce aberrant hyperactivation of the Ras-Erk pathway. This progress represents another milestone in the leukemia/cancer research field and provides a fresh view on the molecular mechanisms underlying cell transformation.
Collapse
Affiliation(s)
- Rebecca J Chan
- Department of Pediatrics, the Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, USA
| | | |
Collapse
|
74
|
Chen Y, Takita J, Hiwatari M, Igarashi T, Hanada R, Kikuchi A, Hongo T, Taki T, Ogasawara M, Shimada A, Hayashi Y. Mutations of the PTPN11 and RAS genes in rhabdomyosarcoma and pediatric hematological malignancies. Genes Chromosomes Cancer 2006; 45:583-91. [PMID: 16518851 DOI: 10.1002/gcc.20322] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PTPN11 has been identified as a causative gene in Noonan syndrome (NS), responsible for about 50% of cases of NS. Given the association between NS and an increased risk of some malignancies, notably leukemia and probably some solid tumors including neuroblastoma (NB) and rhabdomyosarcoma (RMS), recent studies have reported that gain-of-function somatic mutations in PTPN11 occur in some hematological malignancies, especially de novo juvenile myelomonocytic leukemia (JMML) and in some solid tumors such as NB, although at a low frequency. In a screen for mutations of PTPN11 in 7 cell lines and 30 fresh tumors of RMS and in 25 cell lines and 40 fresh tumors of NB, we identified a missense mutation (A72T) in an embryonal RMS patient. In the RMS samples, we also detected mutations of NRAS in 1 cell line and 1 patient; both mutations were in embryonal RMSs and had no PTPN11 mutations. No mutations of PTPN11 were detected in NB. In 95 leukemia cell lines and 261 fresh leukemia samples including 22 JMMLs, 9 kinds of missense mutations were detected in 17 leukemia samples, which included 11 (50.0%) mutations in JMML samples and lower frequencies in other hematological malignancies. Furthermore, we identified 4 (18.2%) NRAS mutations and 1 (4.5%) KRAS mutation in 5 JMML samples, 1 of which had a concomitant PTPN11 mutation. Our data suggest that mutations of PTPN11 as well as RAS play a role in the pathogenesis of not only myeloid hematological malignancies but also a subset of RMS malignancies.
Collapse
Affiliation(s)
- Yuyan Chen
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Knoche E, McLeod HL, Graubert TA. Pharmacogenetics of alkylator-associated acute myeloid leukemia. Pharmacogenomics 2006; 7:719-29. [PMID: 16886897 DOI: 10.2217/14622416.7.5.719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Therapy-related acute myeloid leukemia (t-AML) is a lethal late complication of alkylator chemotherapy. The genetic basis of susceptibility to t-AML is poorly understood. Both t-AML and de novo AML are complex genetic diseases, requiring cooperating mutations in interacting pathways for disease initiation and progression. Germline variants of these ‘leukemia pathway’ genes may cooperate with somatic mutations to induce both de novo and therapy-related AML. Several cancer susceptibility syndromes have been identified that cause an inherited predisposition to de novo and t-AML. The genes responsible for these syndromes are also somatically mutated in sporadic AML. We reason that germline polymorphism in any gene somatically mutated in AML could contribute to t-AML risk in the general population. Identification of these susceptibility alleles should help clinicians develop tailored therapies that reduce the relative risk of t-AML.
Collapse
Affiliation(s)
- Eric Knoche
- Washington University School of Medicine, Division of Oncology, Stem Cell Biology Section, Campus Box 8007, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | | | |
Collapse
|
76
|
Martinelli S, Carta C, Flex E, Binni F, Cordisco EL, Moretti S, Puxeddu E, Tonacchera M, Pinchera A, McDowell HP, Dominici C, Rosolen A, Di Rocco C, Riccardi R, Celli P, Picardo M, Genuardi M, Grammatico P, Sorcini M, Tartaglia M. Activating PTPN11 mutations play a minor role in pediatric and adult solid tumors. ACTA ACUST UNITED AC 2006; 166:124-9. [PMID: 16631468 DOI: 10.1016/j.cancergencyto.2005.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 10/10/2005] [Accepted: 10/11/2005] [Indexed: 11/17/2022]
Abstract
The PTPN11 gene encodes SHP-2, a widely expressed cytoplasmic protein tyrosine phosphatase functioning as a signaling transducer. Germ-line PTPN11 mutations cause Noonan syndrome (NS), a developmental disorder characterized by an increased risk of malignancies. Recently, a novel class of activating mutations in PTPN11 has been documented as a somatic event in a heterogeneous group of leukemias. Because of the relatively higher prevalence of certain solid tumors in children with NS and the positive modulatory function of SHP-2 in RAS signaling, a wider role for activating PTPN11 mutations in cancer has been hypothesized. Here, we screened a number of solid tumors, including those documented in NS or in which deregulated RAS signaling occurs at significant frequency, for PTPN11 mutations. No disease-associated mutation was identified in rhabdomyosarcoma (n = 13), neuroblastoma (n = 32), melanoma (n = 50), thyroid (n = 85), and colon (n = 48) tumors; a novel missense change, promoting an increased basal phosphatase activity of SHP-2, was observed in one glioma specimen. Our data document that deregulated SHP-2 function does not represent a major molecular event in pediatric and adult tumors, further supporting our previous evidence indicating that the oncogenic role of PTPN11 mutations is cell-context specific.
Collapse
Affiliation(s)
- Simone Martinelli
- Dipartimento di Biologia cellulare e Neuroscienze, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Yamamoto T, Isomura M, Xu Y, Liang J, Yagasaki H, Kamachi Y, Kudo K, Kiyoi H, Naoe T, Kojma S. PTPN11, RAS and FLT3 mutations in childhood acute lymphoblastic leukemia. Leuk Res 2006; 30:1085-9. [PMID: 16533526 DOI: 10.1016/j.leukres.2006.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 01/31/2006] [Accepted: 02/02/2006] [Indexed: 12/01/2022]
Abstract
PTPN11, the gene which encodes protein tyrosine phosphatase SHP-2, plays an important role in regulating intracellular signaling. Germline mutations in PTPN11 were first observed in Noonan syndrome, while somatic mutations were identified in hematological myeloid malignancies. Recently, PTPN11 mutations have been reported in children with acute lymphoblastic leukemia (ALL). In the present study, we investigated the prevalence of mutations in PTPN11, RAS and FLT3 in samples from 95 Japanese children with ALL. We observed exon 3 and 8 missense mutations of PTPN11 in 6 children with B precursor ALL. One patient with Down syndrome and ALL had PTPN11 mutation. We also identified RAS mutations in ten patients and FLT3 internal tandem duplication (FLT3/ITD) in one patient. None of the patients had simultaneous mutations in PTPN11 and RAS, while one patient had both PTPN11 and FLT3 mutations. These data suggest that PTPN11 mutation may play an important role for leukemogenesis in a proportion of children with ALL, particularly B precursor ALL.
Collapse
Affiliation(s)
- Tomoko Yamamoto
- Departments of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Tartaglia M, Martinelli S, Stella L, Bocchinfuso G, Flex E, Cordeddu V, Zampino G, Burgt IVD, Palleschi A, Petrucci TC, Sorcini M, Schoch C, Foa R, Emanuel PD, Gelb BD. Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am J Hum Genet 2006; 78:279-90. [PMID: 16358218 PMCID: PMC1380235 DOI: 10.1086/499925] [Citation(s) in RCA: 300] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 11/17/2005] [Indexed: 12/17/2022] Open
Abstract
Germline mutations in PTPN11, the gene encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome (NS) and the clinically related LEOPARD syndrome (LS), whereas somatic mutations in the same gene contribute to leukemogenesis. On the basis of our previously gathered genetic and biochemical data, we proposed a model that splits NS- and leukemia-associated PTPN11 mutations into two major classes of activating lesions with differential perturbing effects on development and hematopoiesis. To test this model, we investigated further the diversity of germline and somatic PTPN11 mutations, delineated the association of those mutations with disease, characterized biochemically a panel of mutant SHP-2 proteins recurring in NS, LS, and leukemia, and performed molecular dynamics simulations to determine the structural effects of selected mutations. Our results document a strict correlation between the identity of the lesion and disease and demonstrate that NS-causative mutations have less potency for promoting SHP-2 gain of function than do leukemia-associated ones. Furthermore, we show that the recurrent LS-causing Y279C and T468M amino acid substitutions engender loss of SHP-2 catalytic activity, identifying a previously unrecognized behavior for this class of missense PTPN11 mutations.
Collapse
Affiliation(s)
- Marco Tartaglia
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanita, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Dluzniewska A, Balwierz W, Armata J, Balcerska A, Chybicka A, Kowalczyk J, Matysiak M, Ochocka M, Radwanska U, Rokicka-Milewska R, Sonta-Jakimczyk D, Wachowiak J, Wysocki M. Twenty years of Polish experience with three consecutive protocols for treatment of childhood acute myelogenous leukemia. Leukemia 2006; 19:2117-24. [PMID: 16107894 DOI: 10.1038/sj.leu.2403892] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Until 1983, results of treatment of acute myelogenous leukemia (AML) in Poland with different regimens were very poor. In 1983, the Polish Pediatric Leukemia/Lymphoma Study Group introduced a unified treatment protocol--a modified version of BFM-83 protocol. This led to an increase in the curability of AML from 15% to approximately 32%. In 1994, a modification was made: the high-risk patients (>5% blasts in bone marrow on day 15 of therapy and all M5 cases) received two additional cycles with intermediate-dose cytarabine (ID-ARAC). This led to a nonsignificant improvement in the 5-year event-free survival (EFS) rate from 32 to 36%. A new treatment protocol employing idarubicin in place of daunorubicin was introduced in 1998 and produced better initial responses, increase in the number of patients attaining remission after induction therapy and proportional increase of standard-risk patients. The probability of 5-year EFS (pEFS) for the whole group of patients increased from 36 to 47%. In standard- and high-risk groups, the 5-year pEFS was 62 and 33%, respectively. The probability of 5-year disease-free survival was 58% in the whole group, and there were no differences between risk groups. Unsatisfactory treatment results in children classified into the high-risk group are principally due to the low remission rate.
Collapse
Affiliation(s)
- A Dluzniewska
- Department of Pediatric Oncology/Hematology, Institute of Pediatrics, Medical College Jagiellonian University, Krakow, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Oishi K, Gaengel K, Krishnamoorthy S, Kamiya K, Kim IK, Ying H, Weber U, Perkins LA, Tartaglia M, Mlodzik M, Pick L, Gelb BD. Transgenic Drosophila models of Noonan syndrome causing PTPN11 gain-of-function mutations. Hum Mol Genet 2006; 15:543-53. [PMID: 16399795 DOI: 10.1093/hmg/ddi471] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in the PTPN11 gene, which encodes the protein tyrosine phosphatase SHP-2, causes Noonan syndrome (NS), an autosomal dominant disorder with pleomorphic developmental abnormalities. Certain germline and somatic PTPN11 mutations cause leukemias. Mutations have gain-of-function (GOF) effects with the commonest NS allele, N308D, being weaker than the leukemia-causing mutations. To study the effects of disease-associated PTPN11 alleles, we generated transgenic fruitflies with GAL4-inducible expression of wild-type or mutant csw, the Drosophila orthologue of PTPN11. All three transgenic mutant CSWs rescued a hypomorphic csw allele's eye phenotype, documenting activity. Ubiquitous expression of two strong csw mutant alleles were lethal, but did not perturb development from some CSW-dependent receptor tyrosine kinase pathways. Ubiquitous expression of the weaker N308D allele caused ectopic wing veins, identical to the EGFR GOF phenotype. Epistatic analyses established that csw(N308D)'s ectopic wing vein phenotype required intact EGF ligand and receptor, and that this transgene interacted genetically with Notch, DPP and JAK/STAT signaling. Expression of the mutant csw transgenes increased RAS-MAP kinase activation, which was necessary but not sufficient for transducing their phenotypes. The findings from these fly models provided hypotheses testable in mammalian models, in which these signaling cassettes are largely conserved. In addition, these fly models can be used for sensitized screens to identify novel interacting genes as well as for high-throughput screening of therapeutic compounds for NS and PTPN11-related cancers.
Collapse
Affiliation(s)
- Kimihiko Oishi
- Departments of Pediatrics and Human Genetics, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1498, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Noonan syndrome is a pleiomorphic autosomal dominant disorder with short stature, facial dysmorphia, webbed neck, and heart defects. In the past decade, progress has been made in elucidating the pathogenesis of this disorder using a positional cloning approach. Noonan syndrome is now known to be a genetically heterogeneous disorder with nearly one half of cases caused by gain-of-function mutations in PTPN11, the gene encoding the protein tyrosine phosphatase SHP-2. Similar germ line mutations cause two related genetic disorders, Noonan-like disorder with multiple giant cell lesion syndrome and LEOPARD syndrome, and somatic PTPN11 mutations can underlie certain pediatric hematopoietic malignancies, including juvenile myelomonocytic, acute lymphoblastic, and acute myelogenous leukemias. A mouse model of PTPN11-related Noonan syndrome was recently generated, providing a reagent for studying disease pathogenesis in greater depth as well as experimenting with novel therapeutic strategies.
Collapse
Affiliation(s)
- Marco Tartaglia
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, 299-00161 Rome, Italy.
| | | |
Collapse
|
82
|
Rakesh K, Agrawal DK. Controlling cytokine signaling by constitutive inhibitors. Biochem Pharmacol 2005; 70:649-57. [PMID: 15936728 DOI: 10.1016/j.bcp.2005.04.042] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 04/14/2005] [Indexed: 11/21/2022]
Abstract
Cytokines are secreted proteins that regulate diverse biological functions by binding to receptors at the cell surface to activate complex signal transduction pathways including the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. Stringent mechanisms of signal attenuation are essential for ensuring an appropriate, controlled cellular response. Three families of proteins, the SH2-containing phosphatases (SHP), the protein inhibitors of activated STATs (PIAS), and the suppressors of cytokine signaling (SOCS), inhibit specific and distinct aspects of cytokine signal transduction. The analysis of mice lacking genes for members of the SHP has shed much light on the roles of these proteins in vivo. In recent in vitro studies, the protein modifiers ubiquitin and small ubiquitin-like modifier (SUMO) have emerged as key players in the strategies employed by SOCS and PIAS to repress signaling. This review throws light on the mechanisms of action of these regulators as being evolved by the latest researches.
Collapse
Affiliation(s)
- Kriti Rakesh
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA.
| | | |
Collapse
|
83
|
Goemans BF, Zwaan CM, Martinelli S, Harrell P, de Lange D, Carta C, Reinhardt D, Hählen K, Creutzig U, Tartaglia M, Heinrich MC, Kaspers GJL. Differences in the prevalence of PTPN11 mutations in FAB M5 paediatric acute myeloid leukaemia. Br J Haematol 2005; 130:801-3. [PMID: 16115145 DOI: 10.1111/j.1365-2141.2005.05685.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
84
|
Abstract
FLT3 is a class III receptor tyrosine kinase together with KIT, FMS and PDGFR. FLT3 mutations were first reported as internal tandem duplication (FLT3/ITD) of the juxtamembrane domain-coding sequence, and subsequently as a missense mutation of D835 (FLT3/KDM) within a kinase domain. Furthermore, point mutations, deletions, and insertions in the codons surrounding D835 have also been found. FLT3/ITD and FLT3/KDM occur in 15% to 35% and 5% to 10%, respectively, of patients with AML. FLT3 mutations are, therefore, the most frequent genetic alterations so far reported in AML. Several large-scale studies have confirmed that FLT3/ITD is strongly associated with leukocytosis and a poor prognosis. Although the clinical significance of FLT3/KDM is controversial, the meta-analysis suggests its adverse effect on the outcome. FLT3/ITD is far less common in patients with ALL, whereas FLT3/KDM is recurrently found in patients with ALL, especially in those harboring an MLL gene rearrangement or hyperdiploidy. The overexpression of FLT3 transcripts has been demonstrated in a pro-portion of the AML patients without FLT3 mutations, which are associated with a poor prognosis for overall survival. Routine screening of FLT3 mutations is recommended to stratify the patients into distinct risk groups, while the optimal treatment strategy for patients with FLT3 mutations should be further evaluated.
Collapse
Affiliation(s)
- Hitoshi Kiyoi
- Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Japan.
| | | | | |
Collapse
|
85
|
Keilhack H, David FS, McGregor M, Cantley LC, Neel BG. Diverse biochemical properties of Shp2 mutants. Implications for disease phenotypes. J Biol Chem 2005; 280:30984-93. [PMID: 15987685 DOI: 10.1074/jbc.m504699200] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the Src homology 2 (SH2)-containing protein-tyrosine phosphatase Shp2 (PTPN11) underlie half of the cases of the autosomal dominant genetic disorder Noonan syndrome, and somatic Shp2 mutations are found in several hematologic and solid malignancies. Earlier studies of small numbers of mutants suggested that disease-associated mutations cause constitutive (SH2 binding-independent) activation and that cancer-associated mutants are more active than those associated with Noonan syndrome. We have characterized a larger panel of Shp2 mutants and find that this "activity-centric" model cannot explain the behaviors of all pathogenic Shp2 mutations. Instead, enzymatic, structural, and mathematical modeling analyses show that these mutants can affect basal activation, SH2 domain-phosphopeptide affinity, and/or substrate specificity to varying degrees. Furthermore, there is no absolute correlation between the mutants' extents of basal activation and the diseases they induce. We propose that activated mutants of Shp2 modulate signaling from specific stimuli to a subset of effectors and provide a theoretical framework for understanding the complex relationship between Shp2 activation, intracellular signaling, and pathology.
Collapse
Affiliation(s)
- Heike Keilhack
- Cancer Biology Program, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
86
|
Tartaglia M, Martinelli S, Iavarone I, Cazzaniga G, Spinelli M, Giarin E, Petrangeli V, Carta C, Masetti R, Aricò M, Locatelli F, Basso G, Sorcini M, Pession A, Biondi A. Somatic PTPN11 mutations in childhood acute myeloid leukaemia. Br J Haematol 2005; 129:333-9. [PMID: 15842656 DOI: 10.1111/j.1365-2141.2005.05457.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Somatic mutations in PTPN11, the gene encoding the transducer SHP-2, have emerged as a novel class of lesions that upregulate RAS signalling and contribute to leukaemogenesis. In a recent study of 69 children and adolescents with de novo acute myeloid leukaemia (AML), we documented a non-random distribution of PTPN11 mutations among French-American-British (FAB) subtypes. Lesions were restricted to FAB-M5 cases, where they were relatively common (four of 12 cases). Here, we report on the results of a molecular screening performed on 181 additional unselected patients, enrolled in participating institutions of the Associazione Italiana Ematologia Oncologia Pediatrica-AML Study Group, to provide a more accurate picture of the prevalence, spectrum and distribution of PTPN11 mutations in childhood AML and to investigate their clinical relevance. We concluded that PTPN11 defects do not represent a frequent event in this heterogeneous group of malignancies (4.4%), although they recur in a considerable percentage of patients with FAB-M5 (18%). PTPN11 lesions rarely occur in other subtypes. Within the FAB-M5 group no clear association of PTPN11 mutations with any clinical variable was evident. Nearly two third of the patients with this subtype were found to harbour an activating mutation in PTPN11, NRAS, KRAS2 or FLT3.
Collapse
Affiliation(s)
- Marco Tartaglia
- Dipartimento di Biologia cellulare e Neuroscienze, Istituto Superiore di Sanità, 299-00161 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Kratz CP, Niemeyer CM, Castleberry RP, Cetin M, Bergsträsser E, Emanuel PD, Hasle H, Kardos G, Klein C, Kojima S, Stary J, Trebo M, Zecca M, Gelb BD, Tartaglia M, Loh ML. The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease. Blood 2005; 106:2183-5. [PMID: 15928039 PMCID: PMC1895140 DOI: 10.1182/blood-2005-02-0531] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Germ line PTPN11 mutations cause 50% of cases of Noonan syndrome (NS). Somatic mutations in PTPN11 occur in 35% of patients with de novo, nonsyndromic juvenile myelomonocytic leukemia (JMML). Myeloproliferative disorders (MPDs), either transient or more fulminant forms, can also occur in infants with NS (NS/MPD). We identified PTPN11 mutations in blood or bone marrow specimens from 77 newly reported patients with JMML (n = 69) or NS/MPD (n = 8). Together with previous reports, we compared the spectrum of PTPN11 mutations in 3 groups: (1) patients with JMML (n = 107); (2) patients with NS/MPD (n = 19); and (3) patients with NS (n = 243). Glu76 was the most commonly affected residue in JMML (n = 45), with the Glu76Lys alteration (n = 29) being most frequent. Eight of 19 patients with NS/MPD carried the Thr73Ile substitution. These data suggest that there is a genotype/phenotype correlation in the spectrum of PTPN11 mutations found in patients with JMML, NS/MPD, and NS. This supports the need to characterize the spectrum of hematologic abnormalities in individuals with NS and to better define the impact of the PTPN11 lesion on the disease course in patients with NS/MPD and JMML.
Collapse
Affiliation(s)
- Christian P Kratz
- University of California, Room HSE-302 Box 0519, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Tartaglia M, Gelb BD. Germ-line and somatic PTPN11 mutations in human disease. Eur J Med Genet 2005; 48:81-96. [PMID: 16053901 DOI: 10.1016/j.ejmg.2005.03.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Indexed: 10/25/2022]
Abstract
Reversible protein tyrosyl phosphorylation of cell surface receptors and downstream intracellular transducers is a major regulatory mechanism used to modulate cellular responses to extracellular stimuli, and its deregulation frequently drives aberrant cell proliferation, survival and/or differentiation. SHP-2 is a cytoplasmic Src-homology 2 domain-containing protein tyrosine phosphatase that plays an important role in intracellular signaling and is required during development and hematopoiesis. Germ-line missense mutations in PTPN11, the gene coding SHP-2, have been discovered as a major molecular event underlying Noonan syndrome, an autosomal dominant trait characterized by short stature, dysmorphic facies, and congenital heart defects, as well as in other closely related developmental disorders. More recently, a distinct class of missense mutations in the same gene has been identified to occur as a somatic event contributing to myeloid and lymphoid malignancies. This review focuses on the role of SHP-2 in signal transduction, development and hematopoiesis, as well as on the consequences of SHP-2 gain-of-function.
Collapse
Affiliation(s)
- Marco Tartaglia
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | | |
Collapse
|
89
|
Loh ML, Martinelli S, Cordeddu V, Reynolds MG, Vattikuti S, Lee CM, Wulfert M, Germing U, Haas P, Niemeyer C, Beran ME, Strom S, Lübbert M, Sorcini M, Estey EH, Gattermann N, Tartaglia M. Acquired PTPN11 mutations occur rarely in adult patients with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leuk Res 2004; 29:459-62. [PMID: 15725481 DOI: 10.1016/j.leukres.2004.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 10/28/2004] [Accepted: 10/28/2004] [Indexed: 10/26/2022]
Abstract
Myelodysplastic syndromes (MDS) are comprised of a heterogeneous group of stem cell disorders characterized by ineffective hematopoiesis and susceptibility to transform to acute myeloid leukemia. The molecular pathways underlying disease initiation and evolution are still largely unknown. We recently demonstrated that acquired mutations in PTPN11 are a major event in JMML and occur with variable prevalence in children with other hematologic malignancies, including MDS. Here, we investigated contribution of PTPN11 mutations to adult MDS and CMML pathogenesis. Our results indicate that PTPN11 lesions might play a role in adult MDS/CMML pathogenesis but do not represent a major molecular event.
Collapse
Affiliation(s)
- Mignon L Loh
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|