51
|
Fischer IW, Hansen TM, Lelic D, Brokjaer A, Frøkjær J, Christrup LL, Olesen AE. Objective methods for the assessment of the spinal and supraspinal effects of opioids. Scand J Pain 2016; 14:15-24. [PMID: 28850426 DOI: 10.1016/j.sjpain.2016.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE Opioids are potent analgesics. Opioids exert effects after interaction with opioid receptors. Opioid receptors are present in the peripheral- and central nervous system (CNS), but the analgesic effects are primarily mediated via receptors in the CNS. Objective methods for assessment of opioid effects may increase knowledge on the CNS processes responsible for analgesia. The aim of this review was to provide an overview of the most common objective methods for assessment of the spinal and supraspinal effects of opioids and discuss their advantages and limitations. METHOD The literature search was conducted in Pub Med (http://www.ncbi.nlm.nih.gov/pubmed) from November 2014 to June 2016, using free-text terms: "opioid", "morphine" and "oxycodone" combined with the terms "pupillometry," "magnetic resonance spectroscopy," "fMRI," "BOLD," "PET," "pharmaco-EEG", "electroencephalogram", "EEG," "evoked potentials," and "nociceptive reflex". Only original articles published in English were included. RESULTS For assessment of opioid effects at the supraspinal level, the following methods are evaluated: pupillometry, proton magnetic resonance spectroscopy, functional resonance magnetic imaging (fMRI), positron emission tomography (PET), spontaneous electroencephalogram (EEG) and evoked potentials (EPs). Pupillometry is a non-invasive tool used in research as well as in the clinical setting. Proton magnetic resonance spectroscopy has been used for the last decades and it is a non-invasive technique for measurement of in vivo brain metabolite concentrations. fMRI has been a widely used non-invasive method to estimate brain activity, where typically from the blood oxygen level-dependent (BOLD) signal. PET is a nuclear imaging technique based on tracing radio labeled molecules injected into the blood, where receptor distribution, density and activity in the brain can be visualized. Spontaneous EEG is typically quantified in frequency bands, power spectrum and spectral edge frequency. EPs are brain responses (assessed by EEG) to a predefined number of short phasic stimuli. EPs are quantified by their peak latencies and amplitudes, power spectrum, scalp topographies and brain source localization. For assessment of opioid effects at the spinal level, the following methods are evaluated: the nociceptive withdrawal reflex (NWR) and spinal EPs. The nociceptive withdrawal reflex can be recorded from all limbs, but it is standard to record the electromyography signal at the biceps femoris muscle after stimulation of the ipsilateral sural nerve; EPs can be recorded from the spinal cord and are typically recorded after stimulation of the median nerve at the wrist. CONCLUSION AND IMPLICATIONS The presented methods can all be used as objective methods for assessing the centrally mediated effects of opioids. Advantages and limitations should be considered before implementation in drug development, future experimental studies as well as in clinical settings. In conclusion, pupillometry is a sensitive measurement of opioid receptor activation in the CNS and from a practical and economical perspective it may be used as a biomarker for opioid effects in the CNS. However, if more detailed information is needed on opioid effects at different levels of the CNS, then EEG, fMRI, PET and NWR have the potential to be used. Finally, it is conceivable that information from different methods should be considered together for complementary information.
Collapse
Affiliation(s)
- Iben W Fischer
- Mech-Sense, Department of Gastroenterology &Hepatology, Aalborg University Hospital, Mølleparkvej 4, 9000, Aalborg, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tine M Hansen
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Dina Lelic
- Mech-Sense, Department of Gastroenterology &Hepatology, Aalborg University Hospital, Mølleparkvej 4, 9000, Aalborg, Denmark
| | - Anne Brokjaer
- Mech-Sense, Department of Gastroenterology &Hepatology, Aalborg University Hospital, Mølleparkvej 4, 9000, Aalborg, Denmark
| | - Jens Frøkjær
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Lona L Christrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne E Olesen
- Mech-Sense, Department of Gastroenterology &Hepatology, Aalborg University Hospital, Mølleparkvej 4, 9000, Aalborg, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
52
|
Enriched environment ameliorates depression-induced cognitive deficits and restores abnormal hippocampal synaptic plasticity. Neurobiol Learn Mem 2016; 134 Pt B:379-91. [DOI: 10.1016/j.nlm.2016.08.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/06/2016] [Accepted: 08/19/2016] [Indexed: 01/19/2023]
|
53
|
Benedetti F, Poletti S, Hoogenboezem TA, Mazza E, Ambrée O, de Wit H, Wijkhuijs AJM, Locatelli C, Bollettini I, Colombo C, Arolt V, Drexhage HA. Inflammatory cytokines influence measures of white matter integrity in Bipolar Disorder. J Affect Disord 2016; 202:1-9. [PMID: 27253210 DOI: 10.1016/j.jad.2016.05.047] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/21/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bipolar Disorder (BD) is associated with elevated biomarkers of cell-mediated immune activation and inflammation and with signs of widespread disruption of white matter (WM) integrity in adult life. Consistent findings in animal models link WM damage in inflammatory diseases of the brain and serum levels of cytokines. METHODS With an exploratory approach, we tested the effects of 22 serum analytes, including pro- and anti-inflammatory cytokines and neurotrophic/hematopoietic factors, on DTI measures of WM microstructure in a sample of 31 patients with a major depressive episode in course of BD. We used whole brain tract-based spatial statistics in the WM skeleton with threshold-free cluster enhancement of DTI measures of WM microstructure: axial (AD), radial (RD), and mean diffusivity (MD), and fractional anisotropy (FA). RESULTS The inflammation-related cytokines TNF-α, IL-8, IFN-γ and IL-10, and the growth factors IGFBP2 and PDGF-BB, shared the same significant associations with lower FA, and higher MD and RD, in large overlapping networks of WM fibers mostly located in the anterior part of the brain and including corpus callosum, cingulum, superior and inferior longitudinal fasciculi, inferior fronto-occipital fasciculi, uncinate, forceps, corona radiata, thalamic radiation, internal capsule. CONCLUSIONS Higher RD is thought to signify increased space between fibers, suggesting demyelination or dysmyelination. The pattern of higher RD and MD with lower FA suggests that inflammation-related cytokine and growth factor levels inversely associate with integrity of myelin sheaths. The activated inflammatory response system might contribute to BD pathophysiology by hampering structural connectivity in critical cortico-limbic networks.
Collapse
Affiliation(s)
- Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milano, University Vita-Salute San Raffaele, Milano, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milano, Italy.
| | - Sara Poletti
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milano, University Vita-Salute San Raffaele, Milano, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milano, Italy
| | | | - Elena Mazza
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milano, University Vita-Salute San Raffaele, Milano, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milano, Italy
| | - Oliver Ambrée
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Harm de Wit
- Department of Immunology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | | | - Clara Locatelli
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milano, University Vita-Salute San Raffaele, Milano, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milano, Italy
| | - Irene Bollettini
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milano, University Vita-Salute San Raffaele, Milano, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milano, Italy
| | - Cristina Colombo
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milano, University Vita-Salute San Raffaele, Milano, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milano, Italy
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Hemmo A Drexhage
- Department of Immunology, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
54
|
Li M, Chang H, Xiao X. BDNF Val66Met polymorphism and bipolar disorder in European populations: A risk association in case-control, family-based and GWAS studies. Neurosci Biobehav Rev 2016; 68:218-233. [DOI: 10.1016/j.neubiorev.2016.05.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 05/11/2016] [Accepted: 05/24/2016] [Indexed: 01/15/2023]
|
55
|
Ian E, Gwen CL, Soo CT, Melissa C, Chun-Kai H, Eosu K, Hyo-Youl K, Asad K, Scott L, Chung-Ki LP, Anekthananon T, Jordan TG, Han-Ting W, Wing-Wai W. The burden of HIV-associated neurocognitive disorder (HAND) in the Asia-Pacific region and recommendations for screening. Asian J Psychiatr 2016; 22:182-9. [PMID: 26617385 DOI: 10.1016/j.ajp.2015.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/15/2015] [Accepted: 10/25/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND HIV-associated neurocognitive disorder incurs a significant burden on HIV patients in Asia-Pacific countries; however, the incidence is difficult to estimate due to a lack of local epidemiological data. The impact of neurocognitive impairment in HIV patients is often underestimated due to a lack of education and awareness, and there are consequently gaps in the provision of screening and diagnosis to enable earlier intervention to limit neurocognitive impairment. METHOD This review seeks to redress the imbalance by promoting awareness and education among physicians concerning the neurovirulence of HIV and thereby increase screening efforts to improve diagnosis rates and clinical outcomes for underserved patients in this region. The Asia, Australia, and Middle East (AAME) HAND Advisory Board convened expert regional representatives to review current practice and recommend appropriate measures related to the implementation of standardised screening programmes and treatment recommendations to curb the developing HAND epidemic in the region. In particular, we recommend basic neuropsychological testing protocols that could be efficiently introduced into clinical practice for routine screening. RESULT We also propose simple guidelines for the management of HAND. We believe that HAND is a significant and under-reported diagnosis in HIV patients that warrants both greater recognition and further clinical investigation of the underlying pathophysiology and the impact of HIV disease progression, with HAND being associated with worse medication adherence and therefore possibly increased risk of ARV treatment failure. DISCUSSION Widespread screening will lead to greater recognition of HAND and earlier intervention, which may lead to improved management strategies in the future.
Collapse
Affiliation(s)
- Everall Ian
- Department of Psychiatry, University of Melbourne, Australia.
| | - Chan Lai Gwen
- Department of Psychological Medicine, Tan Tock Seng Hospital, Singapore
| | - Chow Ting Soo
- Infectious Diseases Unit, Hospital Pulau Pinang, Penang, Malaysia
| | - Corr Melissa
- Department of Consultation-Liaison Psychiatry, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Huang Chun-Kai
- Department of Psychiatry, Infectious Diseases Section, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan
| | - Kim Eosu
- Department of Psychiatry, Institute of Behavioural Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kim Hyo-Youl
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Khan Asad
- Infectious Diseases Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - Letendre Scott
- HIV Neurobehavioural Research Centre, Division of Infectious Disease, University of California, San Diego, USA
| | - Li Patrick Chung-Ki
- Department of Medicine and Infectious Diseases, Queen Elizabeth Hospital, Hong Kong
| | - Thanomsak Anekthananon
- Department of Preventive and Social Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Treisman Glenn Jordan
- Psychiatry and Behavioural Sciences and Internal Medicine, Johns Hopkins University, School of Medicine, Baltimore, USA
| | - Wei Han-Ting
- Department of Psychiatry, Taipei Veteran's General Hospital, Taipei, Taiwan
| | - Wong Wing-Wai
- Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Affiliate National Yang Ming University, College of Medicine, Taipei, Taiwan
| |
Collapse
|
56
|
Biophysical modeling of high field diffusion MRI demonstrates micro-structural aberration in chronic mild stress rat brain. Neuroimage 2016; 142:421-430. [PMID: 27389790 DOI: 10.1016/j.neuroimage.2016.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/06/2016] [Accepted: 07/02/2016] [Indexed: 11/23/2022] Open
Abstract
Depression is one of the leading causes of disability worldwide. Immense heterogeneity in symptoms of depression causes difficulty in diagnosis, and to date, there are no established biomarkers or imaging methods to examine depression. Unpredictable chronic mild stress (CMS) induced anhedonia is considered to be a realistic model of depression in studies of animal subjects. Stereological and neuronal tracing techniques have demonstrated persistent remodeling of microstructure in hippocampus, prefrontal cortex and amygdala of CMS brains. Recent developments in diffusion MRI (d-MRI) analyses, such as neurite density and diffusion kurtosis imaging (DKI), are able to capture microstructural changes and are considered to be robust tools in preclinical and clinical imaging. The present study utilized d-MRI analyzed with a neurite density model and the DKI framework to investigate microstructure in the hippocampus, prefrontal cortex, caudate putamen and amygdala regions of CMS rat brains by comparison to brains from normal controls. To validate findings of CMS induced microstructural alteration, histology was performed to determine neurite, nuclear and astrocyte density. d-MRI based neurite density and tensor-based mean kurtosis (MKT) were significantly higher, while mean diffusivity (MD), extracellular diffusivity (Deff) and intra-neurite diffusivity(DL) were significantly lower in the amygdala of CMS rat brains. Deff was also significantly lower in the hippocampus and caudate putamen in stressed groups. Histological neurite density corroborated the d-MRI findings in the amygdala and reductions in nuclear and astrocyte density further buttressed the d-MRI results. The present study demonstrated that the d-MRI based neurite density and MKT can reveal specific microstructural changes in CMS rat brains and these parameters might have value in clinical diagnosis of depression and for evaluation of treatment efficacy.
Collapse
|
57
|
Kim Y, Morath B, Hu C, Byrne LK, Sutor SL, Frye MA, Tye SJ. Antidepressant actions of lateral habenula deep brain stimulation differentially correlate with CaMKII/GSK3/AMPK signaling locally and in the infralimbic cortex. Behav Brain Res 2016; 306:170-7. [PMID: 26956153 DOI: 10.1016/j.bbr.2016.02.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/24/2016] [Accepted: 02/28/2016] [Indexed: 12/28/2022]
Abstract
High frequency deep brain stimulation (DBS) of the lateral habenula (LHb) reduces symptoms of depression in severely treatment-resistant individuals. Despite the observed therapeutic effects, the molecular underpinnings of DBS are poorly understood. This study investigated the efficacy of high frequency LHb DBS (130Hz; 200μA; 90μs) in an animal model of tricyclic antidepressant resistance. Further, we reported DBS mediated changes in Ca(2+)/calmodulin-dependent protein kinase (CaMKIIα/β), glycogen synthase kinase 3 (GSK3α/β) and AMP-activated protein kinase (AMPK) both locally and in the infralimbic cortex (IL). Protein expressions were then correlated to immobility time during the forced swim test (FST). Antidepressant actions were quantified via FST. Treatment groups comprised of animals treated with adrenocorticotropic hormone alone (ACTH; 100μg/day, 14days, n=7), ACTH with active DBS (n=7), sham DBS (n=8), surgery only (n=8) or control (n=8). Active DBS significantly reduced immobility in ACTH-treated animals (p<0.05). For this group, western blot results demonstrated phosphorylation status of LHb CaMKIIα/β and GSK3α/β significantly correlated to immobility time in the FST. Concurrently, we observed phosphorylation status of CaMKIIα/β, GSK3α/β, and AMPK in the IL to be negatively correlated with antidepressant actions of DBS. These findings suggest that activity dependent phosphorylation of CaMKIIα/β, and GSK3α/β in the LHb together with the downregulation of CaMKIIα/β, GSK3α/β, and AMPK in the IL, contribute to the antidepressant actions of DBS.
Collapse
Affiliation(s)
- Yesul Kim
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA; School of Psychology, Deakin University, Burwood, Victoria 3125, Australia
| | - Brooke Morath
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chunling Hu
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Linda K Byrne
- School of Psychology, Deakin University, Burwood, Victoria 3125, Australia
| | - Shari L Sutor
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Susannah J Tye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA; School of Psychology, Deakin University, Burwood, Victoria 3125, Australia; Department of Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
58
|
d-amphetamine withdrawal-induced decreases in brain-derived neurotrophic factor in sprague-dawley rats are reversed by treatment with ketamine. Neuropharmacology 2015; 97:7-17. [DOI: 10.1016/j.neuropharm.2015.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/24/2015] [Accepted: 04/26/2015] [Indexed: 12/16/2022]
|
59
|
Regional gray matter volume is associated with rejection sensitivity: a voxel-based morphometry study. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2015; 14:1077-85. [PMID: 24464638 DOI: 10.3758/s13415-014-0249-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rejection sensitivity (RS) can be defined as the disposition that one tends to anxiously expect, readily perceive, and intensely react to rejection. High-RS individuals are more likely to suffer mental disorders. Previous studies have investigated brain activity during social rejection using different kinds of rejection paradigms and have provided neural evidence of individual differences in response to rejection cues, but the association between individual differences in RS and brain structure has never been investigated. In this study, voxel-based morphometry (VBM) was used to investigate the relationship between gray matter volume (GMV) and RS in a large healthy sample of 150 men and 188 women. The participants completed the RS Questionnaire and underwent an anatomical magnetic resonance imaging scan. Multiple regression was used to analyze the correlation between regional GMV and RS scores, adjusting for age, sex, and total brain GMV. These results showed that GMV in the region of the posterior cingulate cortex/precuneus was negatively associated with RS, and GMV in the region of the inferior temporal gyrus was positively correlated with RS. These findings suggest a relationship between individual differences in RS and GMV in brain regions that are primarily related to social cognition.
Collapse
|
60
|
Benedetti F, Poletti S, Radaelli D, Locatelli C, Pirovano A, Lorenzi C, Vai B, Bollettini I, Falini A, Smeraldi E, Colombo C. Lithium and GSK-3β promoter gene variants influence cortical gray matter volumes in bipolar disorder. Psychopharmacology (Berl) 2015; 232:1325-36. [PMID: 25345732 DOI: 10.1007/s00213-014-3770-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/04/2014] [Indexed: 12/11/2022]
Abstract
RATIONALE Lithium is the mainstay for the treatment of bipolar disorder (BD) and inhibits glycogen synthase kinase-3β (GSK-3β). The less active GSK-3β promoter gene variants have been associated with less detrimental clinical features of BD. GSK-3β gene variants and lithium can influence brain gray and white matter structure in psychiatric conditions, so we studied their combined effect in BD. OBJECTIVES The aim of this study is to investigate the effects of ongoing long-term lithium treatment and GSK-3β promoter rs334558 polymorphism on regional gray matter (GM) volumes of patients with BD. MATERIALS AND METHODS GM volumes were estimated with 3.0 Tesla MRI in 150 patients affected by a major depressive episode in course of BD. Duration of lifetime lithium treatment was retrospectively assessed. Analyses were performed by searching for significant effects of lithium and rs334558 in the whole brain. RESULTS The less active GSK-3β rs334558*G gene promoter variant and the long-term administration of lithium were synergistically associated with increased GM volumes in the right frontal lobe, in a large cluster encompassing the boundaries of subgenual and orbitofrontal cortex (including Brodmann areas 25, 11, and 47). Effects of lithium on GM revealed in rs334558*G carriers only, consistent with previously reported clinical effects in these genotype groups, and were proportional to the duration of treatment. CONCLUSIONS Lithium and rs334558 influenced GM volumes in areas critical for the generation and control of affect, which have been widely implicated in the process of BD pathophysiology. In the light of the protective effects of lithium on white matter integrity, our results suggest that the clinical effects of lithium associate with a neurotrophic effect on the whole brain, probably mediated by GSK-3β inhibition.
Collapse
Affiliation(s)
- Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Han F, Xiao B, Wen L. Loss of Glial Cells of the Hippocampus in a Rat Model of Post-traumatic Stress Disorder. Neurochem Res 2015; 40:942-51. [PMID: 25749890 DOI: 10.1007/s11064-015-1549-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 01/30/2015] [Accepted: 02/27/2015] [Indexed: 12/23/2022]
Abstract
Single prolonged stress (SPS) rats is a rodent model of post traumatic stress disorder (PTSD). Abnormal hippocampal morphology and function were found in the PTSD patients. Our previous study has shown that SPS induce loss of hippocampal neurons. But the effects of SPS on glial cells in the hippocampus have not been evaluated. In the present study, wistar male rats were examined at 1, 4, 7, or 14 days after SPS. The morris water maze were performed to examine hippocampal-dependent cognition. The neurometabolite and morphological change in the hippocampal neurons and glial cells were investigated using in vivo proton magnetic resonance spectroscopy and transmission electron microscopy. Immunofluorescence histochemistry and western blotting for Glial fibrillary acidic protein (GFAP) was used to evaluate change of astrocytes. SPS rats showed increased escape latency. The significant reductions in N-acetylaspartate, creatine, and choline-containing compounds in the hippocampus of SPS rats were found. Moreover, abnormal morphological characteristics in glial cells of the SPS group were observed. The number of GFAP-positive cells, intensity of GFAP-ir and GFAP-protein within the hippocampus increased after SPS at 1 day, and then decreased. The findings suggested that SPS induced loss/impairment of glial cell in the hippocampus; also loss of glial cells may due to the astrocytes reduction within the hippocampus of SPS rats.
Collapse
Affiliation(s)
- Fang Han
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University, No. 92 BeiEr Road, Heping District, Shenyang, 110001, Liaoning, People's Republic of China,
| | | | | |
Collapse
|
62
|
Wang Z, Li Z, Gao K, Fang Y. Association between brain-derived neurotrophic factor genetic polymorphism Val66Met and susceptibility to bipolar disorder: a meta-analysis. BMC Psychiatry 2014; 14:366. [PMID: 25539739 PMCID: PMC4297385 DOI: 10.1186/s12888-014-0366-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 12/17/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND In view of previous conflicting findings, this meta-analysis was performed to comprehensively determine the overall strength of associations between brain-derived neurotrophic factor (BDNF) genetic polymorphism Val66Met and susceptibility to bipolar disorders (BPD). METHODS Literatures published and cited in Pubmed and Wanfang Data was searched with terms of 'Val66Met', 'G196A', 'rs6265', 'BDNF', 'association', and 'bipolar disorder' up to March 2014. All original case-control association studies were meta-analyzed with a pooled OR to estimate the risk and 95% confidence interval (CI) to reflect the magnitude of variance. RESULTS Twenty-one case-control association studies met our criteria for the meta-analysis. Overall, there was no significant difference in allelic distribution of Val66Met polymorphism between patients and controls with a pooled OR = 1.03 (95% CI 0.98, 1.08) although there was a trend towards association between Val66Met polymorphism and BPD in Caucasians with an OR of 1.08 (95% CI 1.00, 1.16). However, subgroup analyses showed that there was a significant association of Val allele with decreased disease susceptibility for bipolar disorder type II with a pooled OR of 0.88 (95% CI 0.78, 0.99). CONCLUSIONS There is no compelling evidence to supportVal66Met polymorphism in BDNF gene playing an important role in the susceptibility to BPD across different ethnicities.
Collapse
Affiliation(s)
- Zuowei Wang
- Division of Mood Disorders, Hongkou District Mental Health Center of Shanghai, Shanghai, 200083, P. R. China.
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China.
| | - Zezhi Li
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Keming Gao
- Department of Psychiatry, Mood and Anxiety Clinic in the Mood Disorders Program, University Hospitals Case Medical Center/Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106, USA.
| | - Yiru Fang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China.
| |
Collapse
|
63
|
Taylor WD, McQuoid DR, Payne ME, Zannas AS, MacFall JR, Steffens DC. Hippocampus atrophy and the longitudinal course of late-life depression. Am J Geriatr Psychiatry 2014; 22:1504-12. [PMID: 24378256 PMCID: PMC4031313 DOI: 10.1016/j.jagp.2013.11.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/06/2013] [Accepted: 11/18/2013] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Smaller hippocampal volumes are observed in depression but it remains unclear how antidepressant response and persistent depression relate to changes in hippocampal volume. We examined the longitudinal relationship between hippocampal atrophy and course of late-life depression. SETTING Academic medical center. PARTICIPANTS Depressed and never-depressed cognitively intact subjects age 60 years or older. MEASUREMENTS Depression severity was measured every three months with the Montgomery-Asberg Depression Rating Scale (MADRS). Participants also completed cranial 1.5-T magnetic resonance imaging every 2 years. We compared 2-year change in hippocampal volume based on remission status, then in expanded analyses examined how hippocampal volumes predicted MADRS score. RESULTS In analyses of 92 depressed and 70 never-depressed subjects, over 2 years the cohort whose depression never remitted exhibited greater hippocampal atrophy than the never-depressed cohort. In expanded analyses of a broader sample of 152 depressed elders, depression severity was significantly predicted by a hippocampus × time interaction where smaller hippocampus volumes over time were associated with greater depression severity. CONCLUSIONS Hippocampal atrophy is associated with greater and persistent depression severity. Neuropathological studies are needed to determine if this atrophy is related to the toxic effects of persistent depression or related to underlying Alzheimer disease.
Collapse
Affiliation(s)
- Warren D. Taylor
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, 37212
| | - Douglas R. McQuoid
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710
| | - Martha E. Payne
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710
| | - Anthony S. Zannas
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710
| | - James R. MacFall
- Department of Radiology, Duke University Medical Center, Durham, NC, 27710
| | - David C. Steffens
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT, 06030
| |
Collapse
|
64
|
Nowacka MM, Paul-Samojedny M, Bielecka AM, Obuchowicz E. Chronic social instability stress enhances vulnerability of BDNF response to LPS in the limbic structures of female rats: A protective role of antidepressants. Neurosci Res 2014; 88:74-83. [DOI: 10.1016/j.neures.2014.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/31/2014] [Accepted: 08/21/2014] [Indexed: 01/06/2023]
|
65
|
Alterations in BDNF (brain derived neurotrophic factor) and GDNF (glial cell line-derived neurotrophic factor) serum levels in bipolar disorder: The role of lithium. J Affect Disord 2014; 166:193-200. [PMID: 25012431 DOI: 10.1016/j.jad.2014.05.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Brain-derived neurotrophic factor (BDNF) has been consistently reported to be decreased in mania or depression in bipolar disorders. Evidence suggests that Glial cell line-derived neurotrophic factor (GDNF) has a role in the pathogenesis of mood disorders. Whether GDNF and BDNF act in the same way across different episodes in bipolar disorders is unclear. METHOD BDNF and GDNF serum levels were measured simultaneously by enzyme-linked immunosorbent assay (ELISA) method in 96 patients diagnosed with bipolar disorder according to DSM-IV (37 euthymic, 33 manic, 26 depressed) in comparison to 61 healthy volunteers. SCID- I and SCID-non patient version were used for clinical evaluation of the patients and healthy volunteers respectively. Correlations between the two trophic factor levels, and medication dose, duration and serum levels of lithium or valproate were studied across different episodes of illness. RESULTS Patients had significantly lower BDNF levels during mania and depression compared to euthymic patients and healthy controls. GDNF levels were not distinctive. However GDNF/BDNF ratio was higher in manic state compared to euthymia and healthy controls. Significant negative correlation was observed between BDNF and GDNF levels in euthymic patients. While BDNF levels correlated positively, GDNF levels correlated negatively with lithium levels. Regression analysis confirmed that lithium levels predicted only GDNF levels positively in mania, and negatively in euthymia. LIMITATIONS Small sample size in different episodes and drug-free patients was the limitation of thestudy. CONCLUSION Current data suggests that lithium exerts its therapeutic action by an inverse effect on BDNF and GDNF levels, possibly by up-regulating BDNF and down-regulating GDNF to achieve euthymia.
Collapse
|
66
|
Adriaens A, Polis I, Vermeire S, Waelbers T, Croubels S, Duchateau L, Van Dorpe S, Eersels J, De Spiegeleer B, Peremans K. The effect of prolonged exposure to morphine on canine cerebral 5-HT2A receptors measured with (123)I-R91150 SPECT. Eur Neuropsychopharmacol 2014; 24:1133-8. [PMID: 24726581 DOI: 10.1016/j.euroneuro.2014.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/19/2013] [Accepted: 03/19/2014] [Indexed: 12/15/2022]
Abstract
Down-stream neuronal alterations, including changes in the 5-HT-2A receptor system, play an important role in the etiology and treatment of depression. The present study examined the effect of prolonged opioid treatment on cerebral 5-HT2A receptors. Cerebral 5-HT2A receptor availability was estimated in seven healthy five-year-old female neutered Beagle dogs pre and post 10-day morphine treatment (oral sustained release morphine 20mg twice daily for 10 days) with (123)I-R-91150, a 5-HT2A selective radioligand, and SPECT. 5-HT2A receptor binding indices (BI) for the frontal, parietal, temporal and occipital cortex and the subcortical region were calculated. Statistical analysis was performed using a linear mixed-effect model with treatment as fixed effect and dog as random effect. Morphine treatment significantly (P≤0.05) lowered 5-HT2A BIs in the right and left frontal cortex, the right and left temporal cortex, the right and left parietal cortex, and the subcortical region. The decreased cerebral 5-HT2A receptor availability following prolonged morphine exposure provides further evidence for an interaction between the opioid and serotonergic system.
Collapse
Affiliation(s)
- Antita Adriaens
- Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Ingeborgh Polis
- Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Simon Vermeire
- Medical Imaging of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Tim Waelbers
- Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Siska Croubels
- Pharmacology, Biochemistry and Toxicology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Duchateau
- Physiology and Biometry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sylvia Van Dorpe
- Drug Quality & Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Jos Eersels
- Nuclear Medicine and PET Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Bart De Spiegeleer
- Drug Quality & Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Kathelijne Peremans
- Medical Imaging of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
67
|
Hansen TM, Olesen AE, Simonsen CW, Drewes AM, Frøkjær JB. Cingulate metabolites during pain and morphine treatment as assessed by magnetic resonance spectroscopy. J Pain Res 2014; 7:269-76. [PMID: 24899823 PMCID: PMC4038455 DOI: 10.2147/jpr.s61193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Experimental investigation of cerebral mechanisms underlying pain and analgesia are important in the development of methods for diagnosis and treatment of pain. The aim of the current study was to explore brain metabolites in response to pain and treatment with morphine. Methods Proton magnetic resonance spectroscopy of the anterior cingulate cortex was performed in 20 healthy volunteers (13 males and seven females, aged 24.9±2.6 years) during rest and acute pain before and during treatment with 30 mg of oral morphine or placebo in a randomized, double-blinded, cross-over study design. Pain was evoked by skin stimulation applied to the right upper leg using a contact heat-evoked potential stimulator. Results Data from 12 subjects were valid for analysis. Painful stimulation induced an increase in N-acetylaspartate/creatine compared with rest (F=5.5, P=0.04). During treatment with morphine, painful stimulation induced decreased glutamate/creatine (F=7.3, P=0.02), myo-inositol/creatine (F=8.38, P=0.02), and N-acetylaspartate/creatine (F=13.8, P=0.004) concentrations, whereas an increase in the pain-evoked N-acetylaspartate/creatine concentration (F=6.1, P=0.04) was seen during treatment with placebo. Conclusion This explorative study indicates that neuronal metabolites in the anterior cingulate cortex, such as N-acetylaspartate, glutamate, and myo-inositol, could be related to the physiology of pain and treatment with morphine. This experimental method has the potential to enable the study of brain metabolites involved in pain and its treatment, and may in the future be used to provide further insight into these mechanisms.
Collapse
Affiliation(s)
- Tine Maria Hansen
- Mech-Sense, Department of Radiology, Aalborg University, Aalborg, Denmark
| | - Anne Estrup Olesen
- Mech-Sense, Department of Gastroenterology, Aalborg University, Aalborg, Denmark
| | | | - Asbjørn Mohr Drewes
- Mech-Sense, Department of Gastroenterology, Aalborg University, Aalborg, Denmark ; Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
68
|
Romanczyk TB, Jacobowitz DM, Pollard HB, Wu X, Anders JJ. The antidepressant tranylcypromine alters cellular proliferation and migration in the adult goldfish brain. Anat Rec (Hoboken) 2014; 297:1919-26. [PMID: 24816924 DOI: 10.1002/ar.22946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/20/2014] [Indexed: 11/09/2022]
Abstract
The goldfish (Carassius auratus) is a widely studied vertebrate model organism for studying cell proliferation in the adult brain, and provide the experimental advantage of growing their body and brain throughout their ∼30-year life time. Cell proliferation occurs in the teleost brain in widespread proliferation zones. Increased cell proliferation in the brain has been linked to the actions of certain antidepressants, including tranylcypromine (TCP), which is used in the treatment of depression. We hypothesized that proliferation zones in the adult goldfish brain can be used to determine the antidepressant effects on cellular proliferation. Here, we report that bromodeoxyuridine (BrdU) labeling over a 24-hr period can be used to rapidly identify the proliferation zones throughout the goldfish brain, including the telencephalon, diencephalon, optic tectal lobes, cerebellum, and facial and vagal lobes. In the first 24 hr of BrdU administration, TCP caused an approximate and significant doubling of labeled cells in the combined brain regions examined, as detected by BrdU immunohistochemistry. TCP caused the greatest increase in cell proliferation in the cerebellum. The normal migratory paths of the proliferating cells within the cerebellum were not affected by TCP treatment. These results indicate that the goldfish provide significant advantages as a vertebrate model for rapidly investigating the effects of antidepressant drugs on cellular proliferation and migration in the normal and injured brain.
Collapse
Affiliation(s)
- Tara B Romanczyk
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | | | | |
Collapse
|
69
|
Schroeter ML, Sacher J, Steiner J, Schoenknecht P, Mueller K. Serum S100B represents a new biomarker for mood disorders. Curr Drug Targets 2014; 14:1237-48. [PMID: 23701298 PMCID: PMC3821390 DOI: 10.2174/13894501113149990014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/26/2013] [Accepted: 05/17/2013] [Indexed: 01/11/2023]
Abstract
Recently, mood disorders have been discussed to be characterized by glial pathology. The protein S100B, a growth and differentiation factor, is located in, and may actively be released by astro- and oligodendrocytes. This protein is easily assessed in human serum and provides a useful parameter for glial activation or injury. Here, we review studies investigating the glial marker S100B in serum of patients with mood disorders. Studies consistently show that S100B is elevated in mood disorders; more strongly in major depressive than bipolar disorder. Consistent with the glial hypothesis of mood disorders, serum S100B levels interact with age with higher levels in elderly depressed subjects. Successful antidepressive treatment has been associated with serum S100B reduction in major depression, whereas there is no evidence of treatment effects in mania. In contrast to the glial marker S100B, the neuronal marker protein neuron-specific enolase is unaltered in mood disorders. Recently, serum S100B has been linked to specific imaging parameters in the human white matter suggesting a role for S100B as an oligodendrocytic marker protein. In sum, serum S100B can be regarded as a promising in vivo biomarker for mood disorders deepening the understanding of the pathogenesis and plasticity-changes in these disorders. Future longitudinal studies combining serum S100B with other cell-specific serum parameters and multimodal imaging are warranted to further explore this serum protein in the development, monitoring and treatment of mood disorders.
Collapse
Affiliation(s)
- Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
70
|
Abstract
OBJECTIVE This review aims to address concerns about the potential overinclusiveness and vagueness of bipolar spectrum concepts, and also, concerns about the overlap between bipolar illness and borderline personality. METHOD Narrative review based on historical and empirical studies. RESULTS Bipolar disorder (BD) and major depressive disorder (MDD) came to be separate entities with the Diagnostic and Statistical Manual of Mental Disorders, Third Edition (DSM III), in contrast to the Kraepelinian manic-depressive insanity (MDI) concept, which included both. The bipolar spectrum concept is a return to this earlier Kraepelinian perspective. Further, very different features differentiate the disease of bipolar illness (family history of bipolar illness, severe recurrent mood episodes with psychomotor activation) from the clinical picture of borderline personality (dissociative symptoms, sexual trauma, parasuicidal self-harm). The term 'disorder' obfuscates an ontological difference between diseases, such as manic-depressive illness, and clinical pictures, such as hysteria/post-traumatic stress disorder/dissociation/borderline personality. CONCLUSIONS Bipolar spectrum concepts are historically rooted in Kraepelin's manic-depressive illness concept, are scientifically testable, and can be clearly formulated. Further, they differ in kind from traumatic/dissociative conditions in ways that can be both historically and scientifically established.
Collapse
Affiliation(s)
- S Nassir Ghaemi
- 1Mood Disorders Program, Tufts Medical Center, Tufts University School of Medicine, Boston, USA
| | | |
Collapse
|
71
|
Miguel-Hidalgo JJ, Whittom A, Villarreal A, Soni M, Meshram A, Pickett JC, Rajkowska G, Stockmeier CA. Apoptosis-related proteins and proliferation markers in the orbitofrontal cortex in major depressive disorder. J Affect Disord 2014; 158:62-70. [PMID: 24655767 PMCID: PMC3996705 DOI: 10.1016/j.jad.2014.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/03/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND In major depressive disorder (MDD), lowered neural activity and significant reductions of markers of cell resiliency to degeneration occur in the prefrontal cortex (PFC). It is still unclear whether changes in other relevant markers of cell vulnerability to degeneration and markers of cell proliferation are associated with MDD. METHODS Levels of caspase 8 (C8), X-linked inhibitor of apoptosis protein (XIAP), direct IAP binding protein with low pI (DIABLO), proliferating cell nuclear antigen (PCNA) and density of cells immunoreactive (-IR) for proliferation marker Ki-67 were measured in postmortem samples of the left orbitofrontal cortex (OFC) of subjects with MDD, and psychiatrically-normal comparison subjects. RESULTS There was significant increase in C8, a higher ratio of DIABLO to XIAP, lower packing density of Ki-67-IR cells, and an unexpected age-dependent increase in PCNA in subjects with MDD vs. controls. PCNA levels were significantly higher in MDD subjects unresponsive to antidepressants or untreated with antidepressants. The DIABLO/XIAP ratio was higher in MDD subjects without antidepressants than in comparison subjects. LIMITATIONS Qualitative nature of responsiveness assessments; definition of resistance to antidepressant treatment is still controversial; and unclear role of PCNA. CONCLUSIONS Markers of cell vulnerability to degeneration are increased and density of Ki67-positive cells is low MDD, but accompanied by normal XIAP levels. The results suggest increased vulnerability to cell pathology in depression that is insufficient to cause morphologically conspicuous cell death. Persistent but low-grade vulnerability to cell degeneration coexisting with reduced proliferation readiness may explain age-dependent reductions in neuronal densities in the OFC of depressed subjects.
Collapse
Affiliation(s)
- Jose J Miguel-Hidalgo
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Angela Whittom
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ashley Villarreal
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Madhav Soni
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ashish Meshram
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jason C Pickett
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Grazyna Rajkowska
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Craig A Stockmeier
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA; Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
72
|
Faure C, Mnie-Filali O, Haddjeri N. Long-term adaptive changes induced by serotonergic antidepressant drugs. Expert Rev Neurother 2014; 6:235-45. [PMID: 16466303 DOI: 10.1586/14737175.6.2.235] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of conventional antidepressants has been largely based on the hypothesis of monoaminergic dysfunctions and focuses particularly on the serotonin 5-hydroxytryptamine (5-HT) system. Hence, various classes of antidepressant treatments enhance 5-HT neurotransmission with a time course consistent with their delayed therapeutic effect. This delayed onset appears to be associated with the gradual development of specific adaptive changes of functional 5-HT receptors. However, recent theories suggest that major depressive disorders may be associated with impairments of functional plasticity and cellular flexibility. This review discusses several physiological mechanisms by which 5-HT function and hippocampal neuroplasticity are regulated. Knowledge of these long-term adaptations will increase not only our understanding of pathological processes underlying affective disorders, but could also lead to the development of new strategies to treat these devastating illnesses.
Collapse
Affiliation(s)
- Céline Faure
- Laboratoire de Neuropharmacologie et Neurochimie, Faculté de Pharmacie, Université Claude Bernard, Lyon 1, EA-512, 8, Avenue Rockefeller, 69373 Lyon Cedex 08, France.
| | | | | |
Collapse
|
73
|
Rege S, Hodgkinson SJ. Immune dysregulation and autoimmunity in bipolar disorder: Synthesis of the evidence and its clinical application. Aust N Z J Psychiatry 2013; 47:1136-51. [PMID: 23908311 DOI: 10.1177/0004867413499077] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Increasing evidence suggests that inflammation and immune dysregulation play an important role in the pathogenesis of bipolar disorder. Because the brain can be affected by various autoimmune processes, it is possible that some psychiatric disorders may have an autoimmune basis. METHOD This article reviews the literature on peripheral and central immune dysregulation and autoimmunity in bipolar disorder. The mechanisms of the innate and adaptive immune systems in the pathophysiology of bipolar disorder are explored. The clinical features and pathogenesis of neuropsychiatric systemic lupus erythematosus, anti-NMDA encephalitis, and Hashimoto's encephalopathy are summarized. RESULTS Neuroinflammation and peripheral immune dysregulation may play a role in the pathophysiology of bipolar disorder. This involves a complex interaction between immune cells of the central nervous system and periphery resulting in cellular damage through mechanisms involving excitotoxicity, oxidative stress, and mitochondrial dysfunction. Neuropsychiatric systemic lupus erythematosus, anti-NMDA encephalitis, and Hashimoto's encephalopathy are important differentials for a psychiatrist to consider when suspecting autoimmune encephalopathy. CONCLUSIONS The link between immune dysregulation, autoimmunity, and bipolar disorder may be closer than previously thought. Psychiatrists should be vigilant for autoimmunity in presentations of bipolar disorder due to its high morbidity and therapeutic implications. Advances in neuroimaging and biomarker identification related to immune dysregulation and neuroinflammation will contribute to our knowledge of the pathophysiology of bipolar disorder.
Collapse
Affiliation(s)
- Sanil Rege
- 1Peninsula Health Mental Health Service, Frankston, Australia
| | | |
Collapse
|
74
|
Alves CRR, Merege Filho CAA, Benatti FB, Brucki S, Pereira RMR, de Sá Pinto AL, Lima FR, Roschel H, Gualano B. Creatine supplementation associated or not with strength training upon emotional and cognitive measures in older women: a randomized double-blind study. PLoS One 2013; 8:e76301. [PMID: 24098469 PMCID: PMC3789718 DOI: 10.1371/journal.pone.0076301] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 08/22/2013] [Indexed: 01/18/2023] Open
Abstract
Purpose To assess the effects of creatine supplementation, associated or not with strength training, upon emotional and cognitive measures in older woman. Methods This is a 24-week, parallel-group, double-blind, randomized, placebo-controlled trial. The individuals were randomly allocated into one of the following groups (n=14 each): 1) placebo, 2) creatine supplementation, 3) placebo associated with strength training or 4) creatine supplementation associated with strength training. According to their allocation, the participants were given creatine (4 x 5 g/d for 5 days followed by 5 g/d) or placebo (dextrose at the same dosage) and were strength trained or not. Cognitive function, assessed by a comprehensive battery of tests involving memory, selective attention, and inhibitory control, and emotional measures, assessed by the Geriatric Depression Scale, were evaluated at baseline, after 12 and 24 weeks of the intervention. Muscle strength and food intake were evaluated at baseline and after 24 weeks. Results After the 24-week intervention, both training groups (ingesting creatine supplementation and placebo) had significant reductions on the Geriatric Depression Scale scores when compared with the non-trained placebo group (p = 0.001 and p = 0.01, respectively) and the non-trained creatine group (p < 0.001 for both comparison). However, no significant differences were observed between the non-trained placebo and creatine (p = 0.60) groups, or between the trained placebo and creatine groups (p = 0.83). Both trained groups, irrespective of creatine supplementation, had better muscle strength performance than the non-trained groups. Neither strength training nor creatine supplementation altered any parameter of cognitive performance. Food intake remained unchanged. Conclusion Creatine supplementation did not promote any significant change in cognitive function and emotional parameters in apparently healthy older individuals. In addition, strength training perse improved emotional state and muscle strength, but not cognition, with no additive effects of creatine supplementation. Trial Registration Clinicaltrials.gov NCT01164020
Collapse
Affiliation(s)
| | | | | | - Sonia Brucki
- School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | | | | | | | - Hamilton Roschel
- School of Physical Education and Sport, University of Sao Paulo, São Paulo, Brazil
- School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Bruno Gualano
- School of Physical Education and Sport, University of Sao Paulo, São Paulo, Brazil
- School of Medicine, University of Sao Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
75
|
Rajkowska G, Stockmeier CA. Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 2013; 14:1225-36. [PMID: 23469922 PMCID: PMC3799810 DOI: 10.2174/13894501113149990156] [Citation(s) in RCA: 434] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 02/07/2023]
Abstract
The present paper reviews astrocyte pathology in major depressive disorder (MDD) and proposes that reductions in astrocytes and related markers are key features in the pathology of MDD. Astrocytes are the most numerous and versatile of all types of glial cells. They are crucial to the neuronal microenvironment by regulating glucose metabolism, neurotransmitter uptake (particularly for glutamate), synaptic development and maturation and the blood brain barrier. Pathology of astrocytes has been consistently noted in MDD as well as in rodent models of depressive-like behavior. This review summarizes evidence from human postmortem tissue showing alterations in the expression of protein and mRNA for astrocyte markers such as glial fibrillary acidic protein (GFAP), gap junction proteins (connexin 40 and 43), the water channel aquaporin-4 (AQP4), a calcium-binding protein S100B and glutamatergic markers including the excitatory amino acid transporters 1 and 2 (EAAT1, EAAT2) and glutamine synthetase. Moreover, preclinical studies are presented that demonstrate the involvement of GFAP and astrocytes in animal models of stress and depressive-like behavior and the influence of different classes of antidepressant medications on astrocytes. In light of the various astrocyte deficits noted in MDD, astrocytes may be novel targets for the action of antidepressant medications. Possible functional consequences of altered expression of astrocytic markers in MDD are also discussed. Finally, the unique pattern of cell pathology in MDD, characterized by prominent reductions in the density of astrocytes and in the expression of their markers without obvious neuronal loss, is contrasted with that found in other neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State St., Box 127, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|
76
|
Selek S, Nicoletti M, Zunta-Soares GB, Hatch JP, Nery FG, Matsuo K, Sanches M, Soares JC. A longitudinal study of fronto-limbic brain structures in patients with bipolar I disorder during lithium treatment. J Affect Disord 2013; 150:629-33. [PMID: 23764385 DOI: 10.1016/j.jad.2013.04.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 04/19/2013] [Indexed: 12/13/2022]
Abstract
In order to assess the association between therapeutic response to lithium treatment and fronto-limbic brain structures' volumes in bipolar I patients (BPI) 24 BPI and 11 healthy comparisons underwent MRI scans at baseline and 4 weeks later. The BPIs received lithium during the 4 week period with a goal of achieving therapeutic blood levels of >0.5 mEq/L (mean level 0.67 mEq/L). Mood symptoms were rated with the Hamilton Depression and the Young Mania Rating Scales at baseline and after 4 weeks, and response was defined as >50% decrease on either scale. Hippocampus, amygdala, prefrontal (PFC), dorsolateral prefrontal (DLPFC), and anterior cingulate cortex (ACC) volumes were obtained by Freesurfer image analysis suite. According to baseline symptoms and treatment response, patients were assigned to three groups: euthymics (n=6), responders (n=12) and non-responders (n=6). Taken over both time periods, non-responders had smaller right amygdala than healthy comparisons and euthymic BPI (p=0.035 and p=0.003, respectively). When baseline and after treatment volumes were compared, there was a significant enlargement in left PFC and left DLPFC in BPI who responded to treatment (p=0.002 and p=0.006, respectively). Left hippocampus and right ACC volumes decreased in non-responders (p=0.02 and p=0.0001, respectively). According to the findings decreased left hippocampus and right ACC volumes may be markers of non-response to lithium amongst BPI. Smaller right amygdala may reflect symptomatic remission and be a marker of treatment non-response. Increases in left PFC and left DLPFC as a result of lithium treatment may relate to lithium's neurotrophic effects.
Collapse
Affiliation(s)
- Salih Selek
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States.
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Ghaemi SN. Bipolar spectrum: a review of the concept and a vision for the future. Psychiatry Investig 2013; 10:218-24. [PMID: 24302943 PMCID: PMC3843012 DOI: 10.4306/pi.2013.10.3.218] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 06/13/2013] [Accepted: 07/13/2013] [Indexed: 11/19/2022] Open
Abstract
This paper reviews the bipolar spectrum concept historically and empirically. It describes how the concept derives from Kraepelin, but was lost with DSM-III, which divided the broad manic-depressive illness concept, based on recurrent mood episodes of either polarity, to the bipolar versus unipolar dichotomy, based on allowing non-recurrent mood episodes of only one polarity. This approach followed the views of Karl Leonhard and other critics of Kraepelin. Thus post DSM-III American psychiatry is not neo-Kraepelinian, as many claim, but neo-Leonhardian. The bipolar spectrum approach, as advocated by Akiskal and Koukopoulos first, harkens back to the original broad Kraepelinian view of manic-depressive illness. The evidence for and against this approach is discussed, and common misconceptions, including mistaken claims that borderline personality is similar, are revealed and critiqued.
Collapse
Affiliation(s)
- S. Nassir Ghaemi
- Department of Psychiatry, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
78
|
Munkholm K, Braüner JV, Kessing LV, Vinberg M. Cytokines in bipolar disorder vs. healthy control subjects: a systematic review and meta-analysis. J Psychiatr Res 2013; 47:1119-33. [PMID: 23768870 DOI: 10.1016/j.jpsychires.2013.05.018] [Citation(s) in RCA: 307] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/02/2013] [Accepted: 05/17/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Bipolar disorder may be associated with peripheral immune system dysfunction; however, results in individual studies are conflicting. Our aim was to systematically review evidence of peripheral cytokine alterations in bipolar disorder integrating findings from various affective states. METHODS We conducted a meta-analysis of studies comparing peripheral cytokine concentrations in patients with bipolar disorder with healthy control subjects. Results were reported according to the PRISMA statement. RESULTS Eighteen studies with a total of 761 bipolar disorder patients and 919 healthy controls were included. Overall, concentrations of soluble Interleukin (IL)-2 receptor (sIL-2R), tumor necrosis factor-α (TNF-α), soluble tumor necrosis factor receptor type 1 (sTNFR1) (p < 0.001 each), sIL-6R (p = 0.01) and IL-4 (p = 0.04) were significantly higher in bipolar patients compared with healthy controls. There were no significant differences between bipolar disorder patients and healthy control subjects for IL-1, IL-2, IL-5, IL-6, IL-8, IL-10, IL-12, IL-1β, IL-1 receptor antagonist (IL-1RA), interferon-γ (IFN-γ), transforming growth factor-β1 (TGF-β1) and sTNFR2. CONCLUSIONS Employing a global approach, incorporating evidence across affective states, this meta-analysis found some support for peripheral inflammatory alterations in bipolar disorder. Results were limited by heterogeneity between studies, insufficient standardization and lacking control for confounders in individual studies. Further research exploring the role of the peripheral inflammatory system in relation to neuroinflammation is warranted.
Collapse
Affiliation(s)
- Klaus Munkholm
- Psychiatric Center Copenhagen, Rigshospitalet, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
79
|
Abstract
Chronotherapeutics refers to treatments based on the principles of circadian rhythm organization and sleep physiology, which control the exposure to environmental stimuli that act on biological rhythms, in order to achieve therapeutic effects in the treatment of psychiatric conditions. It includes manipulations of the sleep-wake cycle such as sleep deprivation and sleep phase advance, and controlled exposure to light and dark. The antidepressant effects of chronotherapeutics are evident in difficult-to-treat conditions such as bipolar depression, which has been associated with extremely low success rates of antidepressant drugs in naturalistic settings and with stable antidepressant response to chronotherapeutics in more than half of the patients. Recent advances in the study of the effects of chronotherapeutics on neurotransmitter systems, and on the biological clock machinery, allow us to pinpoint its mechanism of action and to transform it from a neglected or “orphan” treatment to a powerful clinical instrument in everyday psychiatric practice.
Collapse
Affiliation(s)
- Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
80
|
Pompili M, Serafini G, Innamorati M, Venturini P, Fusar-Poli P, Sher L, Amore M, Girardi P. Agomelatine, a novel intriguing antidepressant option enhancing neuroplasticity: a critical review. World J Biol Psychiatry 2013; 14:412-431. [PMID: 23530731 DOI: 10.3109/15622975.2013.765593] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The treatment of major affective disorders, commonly associated with high disability and elevated social costs may be still considered unsatisfactory. Among all antidepressant drugs, predominantly acting through monoaminergic mechanisms, agomelatine is of particular interest due to another alternative mechanism of action. Targeting melatonergic receptors, agomelatine play a crucial role in synchronizing circadian rhythms, known to be altered in depressed subjects. METHODS A critical review of the literature focusing on efficacy, safety and tolerability of agomelatine in major affective disorders was performed. Additionally, we focused on the potential of agomelatine in enhancing neuroplasticity mechanisms and promote neurogenesis. A total of 136 articles from peer-reviewed journals were identified, of which 50 were assessed for eligibility and 21 were included. RESULTS Agomelatine, a melatonergic analogue drug acting as MT1/MT2 agonist and 5-HT2C antagonist, has been reported to be effective as antidepressant drug. Studies confirmed not only clinical efficacy but also safety and tolerability of agomelatine. Also, it enhances neuroplasticity mechanisms and adult neurogenesis in brain areas such as hippocampus and prefrontal cortex. CONCLUSIONS Agomelatine actually represents an intriguing option in the treatment of affective disorders.
Collapse
Affiliation(s)
- Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Bu Q, Lv L, Yan G, Deng P, Wang Y, Zhou J, Yang Y, Li Y, Cen X. NMR-based metabonomic in hippocampus, nucleus accumbens and prefrontal cortex of methamphetamine-sensitized rats. Neurotoxicology 2013; 36:17-23. [DOI: 10.1016/j.neuro.2013.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 02/05/2013] [Accepted: 02/18/2013] [Indexed: 02/01/2023]
|
82
|
Nowacka M, Obuchowicz E. BDNF and VEGF in the pathogenesis of stress-induced affective diseases: An insight from experimental studies. Pharmacol Rep 2013; 65:535-46. [DOI: 10.1016/s1734-1140(13)71031-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/08/2013] [Indexed: 02/08/2023]
|
83
|
Elvsåshagen T, Westlye LT, Bøen E, Hol PK, Andersson S, Andreassen OA, Boye B, Malt UF. Evidence for reduced dentate gyrus and fimbria volume in bipolar II disorder. Bipolar Disord 2013; 15:167-76. [PMID: 23317454 DOI: 10.1111/bdi.12046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Dentate gyrus (DG)-dependent inhibition of the stress response might play an important role in mood disorders. During stress, hippocampal projections traversing the fimbria, a white matter bundle on the hippocampal surface, inhibit the hypothalamic-pituitary-adrenal (HPA) axis. The aim of the present study was to measure the volumes of the DG-cornu ammonis 4 (DG-CA4) and fimbria in patients with bipolar II disorder (BD-II) and healthy controls using a recently developed magnetic resonance imaging (MRI)-based technique. METHODS Thirty-seven individuals with a DSM-IV diagnosis of BD-II and 42 healthy controls underwent 3-Tesla MRI. Hippocampal subfield volumes were estimated using a novel segmentation algorithm implemented in FreeSurfer. RESULTS In patients with BD-II there was a significant reduction in the volume of the left [analysis of covariance (ANCOVA), F = 7.84, p = 0.006] and total (left + right) (F = 4.01, p = 0.047) DG-CA4 and left (F = 4.38, p = 0.040) and total (F = 4.15, p = 0.045) fimbria compared to healthy controls. Explorative analyses indicated a smaller left CA2-3 volume in subjects with BD-II compared to healthy controls, and a reduced left fimbria volume in unmedicated patients compared to medicated patients and controls. CONCLUSIONS Our results provide evidence for the involvement of the DG and fimbria in BD-II. Longitudinal studies of the DG and fimbria with assessments of the HPA axis in BD-II are warranted.
Collapse
Affiliation(s)
- Torbjørn Elvsåshagen
- Department of Neuropsychiatry and Psychosomatic Medicine, Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Gonzalez S, Xu C, Ramirez M, Zavala J, Armas R, Contreras SA, Contreras J, Dassori A, Leach RJ, Flores D, Jerez A, Raventós H, Ontiveros A, Nicolini H, Escamilla M. Suggestive evidence for association between L-type voltage-gated calcium channel (CACNA1C) gene haplotypes and bipolar disorder in Latinos: a family-based association study. Bipolar Disord 2013; 15:206-14. [PMID: 23437964 PMCID: PMC3781018 DOI: 10.1111/bdi.12041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Through recent genome-wide association studies (GWASs), several groups have reported significant association between variants in the calcium channel, voltage-dependent, L-type, alpha 1C subunit (CACNA1C) and bipolar disorder (BP) in European and European-American cohorts. We performed a family-based association study to determine whether CACNA1C is associated with BP in the Latino population. METHODS This study included 913 individuals from 215 Latino pedigrees recruited from the USA, Mexico, Guatemala, and Costa Rica. The Illumina GoldenGate Genotyping Assay was used to genotype 58 single-nucleotide polymorphisms (SNPs) that spanned a 602.9-kb region encompassing the CACNA1C gene including two SNPs (rs7297582 and rs1006737) previously shown to associate with BP. Individual SNP and haplotype association analyses were performed using Family-Based Association Test (version 2.0.3) and Haploview (version 4.2) software. RESULTS An eight-locus haplotype block that included these two markers showed significant association with BP (global marker permuted p = 0.0018) in the Latino population. For individual SNPs, this sample had insufficient power (10%) to detect associations with SNPs with minor effect (odds ratio = 1.15). CONCLUSIONS Although we were not able to replicate findings of association between individual CACNA1C SNPs rs7297582 and rs1006737 and BP, we were able to replicate the GWAS signal reported for CACNA1C through a haplotype analysis that encompassed these previously reported significant SNPs. These results provide additional evidence that CACNA1C is associated with BP and provides the first evidence that variations in this gene might play a role in the pathogenesis of this disorder in the Latino population.
Collapse
Affiliation(s)
- Suzanne Gonzalez
- Department of Psychiatry and Center of Excellence for Neurosciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX
| | - Chun Xu
- Department of Psychiatry and Center of Excellence for Neurosciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX
| | - Mercedes Ramirez
- Department of Psychiatry and Center of Excellence for Neurosciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX
| | - Juan Zavala
- Department of Psychiatry and Center of Excellence for Neurosciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX
| | - Regina Armas
- Langley Porter Psychiatric Institute, University of California at San Francisco, San Francisco, CA
| | - Salvador A Contreras
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Javier Contreras
- Centro de Investigación en Biología Celular y Molecular y Escuela de Biologia, Universidad de Costa Rica, San Jose, Costa Rica
| | - Albana Dassori
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,South Texas Veterans Health Care System, San Antonio, TX
| | - Robin J Leach
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Deborah Flores
- Los Angeles Biomedical Research Center at Harbor, University of California Los Angeles Medical Center, Torrance, CA, USA
| | - Alvaro Jerez
- Centro Internacional de Trastornos Afectivos y de la Conducta Adictiva, Guatemala City, Guatemala
| | - Henriette Raventós
- Centro de Investigación en Biología Celular y Molecular y Escuela de Biologia, Universidad de Costa Rica, San Jose, Costa Rica
| | - Alfonso Ontiveros
- Instituto de Información e Investigación en Salud Mental AC, Monterrey, Nuevo Leon
| | - Humberto Nicolini
- Grupo de Estudios Médicos y Familiares Carracci, S.C., México, D.F., México
| | - Michael Escamilla
- Department of Psychiatry and Center of Excellence for Neurosciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX
| |
Collapse
|
85
|
Kazuno AA, Ohtawa K, Otsuki K, Usui M, Sugawara H, Okazaki Y, Kato T. Proteomic analysis of lymphoblastoid cells derived from monozygotic twins discordant for bipolar disorder: a preliminary study. PLoS One 2013; 8:e53855. [PMID: 23408933 PMCID: PMC3567087 DOI: 10.1371/journal.pone.0053855] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/05/2012] [Indexed: 01/22/2023] Open
Abstract
Bipolar disorder is a severe mental illness characterized by recurrent manic and depressive episodes. In bipolar disorder, family and twin studies suggest contributions from genetic and environmental factors; however, the detailed molecular pathogenesis is yet unknown. Thus, identification of biomarkers may contribute to the clinical diagnosis of bipolar disorder. Monozygotic twins discordant for bipolar disorder are relatively rare but have been reported. Here we performed a comparative proteomic analysis of whole cell lysate derived from lymphoblastoid cells of monozygotic twins discordant for bipolar disorder by using two-dimensional differential in-gel electrophoresis (2D-DIGE). We found approximately 200 protein spots to be significantly differentially expressed between the patient and the co-twin (t test, p<0.05). Some of the proteins were subsequently identified by liquid chromatography tandem mass spectrometry and included proteins involved in cell death and glycolysis. To examine whether these proteins could serve as biomarkers of bipolar disorder, we performed Western blot analysis using case–control samples. Expression of phosphoglycerate mutase 1 (PGAM1), which is involved in glycolysis, was significantly up-regulated in patients with bipolar disorder (t test, p<0.05). Although PGAM1 cannot be regarded as a qualified biomarker of bipolar disorder from this preliminary finding, it could be one of the candidates for further study to identify biomarkers of bipolar disorder.
Collapse
Affiliation(s)
- An-a Kazuno
- Laboratory for Molecular Dynamics of Mental Disorders, Brain Science Institute, RIKEN, Saitama, Japan
| | - Kenji Ohtawa
- Research Resources Center, Brain Science Institute, RIKEN, Saitama, Japan
| | - Kaori Otsuki
- Research Resources Center, Brain Science Institute, RIKEN, Saitama, Japan
| | - Masaya Usui
- Research Resources Center, Brain Science Institute, RIKEN, Saitama, Japan
| | - Hiroko Sugawara
- Laboratory for Molecular Dynamics of Mental Disorders, Brain Science Institute, RIKEN, Saitama, Japan
| | - Yuji Okazaki
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, Brain Science Institute, RIKEN, Saitama, Japan
- * E-mail:
| |
Collapse
|
86
|
Mitic M, Simic I, Djordjevic J, Radojcic MB, Adzic M. Gender-specific effects of fluoxetine on hippocampal glucocorticoid receptor phosphorylation and behavior in chronically stressed rats. Neuropharmacology 2013; 70:100-11. [PMID: 23353902 DOI: 10.1016/j.neuropharm.2012.12.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/10/2012] [Accepted: 12/22/2012] [Indexed: 12/13/2022]
Abstract
Chronic psychosocial isolation stress (CPSI) modulates glucocorticoid receptor (GR) functioning in Wistar male rat hippocampus (HIPPO) through alteration of nuclear GR phosphorylation and its upstream kinases signaling, which parallels animal depressive-like behavior. The current study investigated potential gender specificities regarding the effect of chronic therapy by an antidepressant fluoxetine (FLU) on GR signaling in HIPPO and depressive-like behavior in CPSI animals. FLU was administrated to female and male naïve or CPSI rats for 21 days and GR protein, its phosphorylation status and upstream kinases, as well as GR and BDNF mRNA were followed in HIPPO together with animal serum corticosterone (CORT) and depressive-like behavior. The results showed that CPSI increased immobility in males versus hyperactivity in females and disrupted nuclear pGR232-Cdk5 pathway and JNK signaling in a gender-specific way. In contrast, in both genders CPSI increased the nuclear levels of GR and pGR246 but decreased CORT and mRNA levels of GR and BDNF. Concomitant FLU normalized the depressive-like behavior and altered the nuclear pGR232-Cdk5 signaling in a gender-specific manner. In both females and males, FLU reversed the nuclear levels of GR and pGR246 without affecting CORT and GR mRNA levels. In contrast, FLU exhibited gender-specific effect on BDNF mRNA in CPSI animals, by increasing it in females, but not in males. In spite of normalization the total nuclear GR level upon FLU treatment in both gender, down-regulation of GR mRNA is possibly maintained through prevalence of pGR232 isoform only in males. The gender-specific alterations of pGR232-Cdk5 signaling and BDNF gene expression in HIPPO and normalization of depressive-like behavior upon FLU treatment distinguishes this signaling pathway as potential future antidepressant target for gender-specific therapy of stress related mood disorders.
Collapse
Affiliation(s)
- Milos Mitic
- Laboratory for Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, PO Box-522-MBE090, 11001 Belgrade, Serbia
| | | | | | | | | |
Collapse
|
87
|
Munkholm K, Vinberg M, Vedel Kessing L. Cytokines in bipolar disorder: a systematic review and meta-analysis. J Affect Disord 2013; 144:16-27. [PMID: 22749156 DOI: 10.1016/j.jad.2012.06.010] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/08/2012] [Accepted: 06/09/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND Current research and hypothesis regarding the pathophysiology of bipolar disorder suggests the involvement of immune system dysfunction that is possibly related to disease activity. Our objective was to systematically review evidence of cytokine alterations in bipolar disorder according to affective state. METHODS We conducted a systemtic review of studies measuring endogenous cytokine concentrations in patients with bipolar disorder and a meta-analysis, reporting results according to the PRISMA statement. RESULTS Thirteen studies were included, comprising 556 bipolar disorder patients and 767 healthy controls, evaluating 15 different cytokines-, cytokine receptors- or cytokine antagonists. The levels of tumor necrosis factor-α (TNF-α), the soluble tumor necrosis factor receptor type 1 (sTNF-R1) and the soluble inlerleukin-2 receptor (sIL-2R) were elevated in manic patients compared with healthy control subjects (p<0.01 for each). Levels of sTNF-R1 and TNF-α were elevated in manic patients compared to euthymic patients (p=0.01 and p=0.04, respectively). sTNF-R1 levels were elevated in euthymic patients compared with healthy control subjects (p<0.01). There were no significant findings for other comparisons, including intra-individual alterations of cytokine levels. LIMITATIONS Stratification according to mood state resulted in small study numbers for some cytokines. Findings were limited by heterogeneity, small sample sizes and a lack of control for confounding factors in individual studies. CONCLUSIONS This meta-analysis found some support for immune dysregulation in bipolar disorder. Future research is warranted to elucidate the role of endogenous cytokine alterations in bipolar disorder. Clinical studies examining longitudinal changes within individuals are recommended.
Collapse
Affiliation(s)
- Klaus Munkholm
- Psychiatric Center Copenhagen, Rigshospitalet, University of Copenhagen, Denmark.
| | | | | |
Collapse
|
88
|
Lithium and GSK3-β promoter gene variants influence white matter microstructure in bipolar disorder. Neuropsychopharmacology 2013; 38:313-27. [PMID: 22990942 PMCID: PMC3527112 DOI: 10.1038/npp.2012.172] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lithium is the mainstay for the treatment of bipolar disorder (BD) and inhibits glycogen synthase kinase 3-β (GSK3-β). The less active GSK3-β promoter gene variants have been associated with less detrimental clinical features of BD. GSK3-β gene variants and lithium can influence brain gray matter structure in psychiatric conditions. Diffusion tensor imaging (DTI) measures of white matter (WM) integrity showed widespred disruption of WM structure in BD. In a sample of 70 patients affected by a major depressive episode in course of BD, we investigated the effect of ongoing long-term lithium treatment and GSK3-β promoter rs334558 polymorphism on WM microstructure, using DTI and tract-based spatial statistics with threshold-free cluster enhancement. We report that the less active GSK3-β rs334558*C gene-promoter variants, and the long-term administration of the GSK3-β inhibitor lithium, were associated with increases of DTI measures of axial diffusivity (AD) in several WM fiber tracts, including corpus callosum, forceps major, anterior and posterior cingulum bundle (bilaterally including its hippocampal part), left superior and inferior longitudinal fasciculus, left inferior fronto-occipital fasciculus, left posterior thalamic radiation, bilateral superior and posterior corona radiata, and bilateral corticospinal tract. AD reflects the integrity of axons and myelin sheaths. We suggest that GSK3-β inhibition and lithium could counteract the detrimental influences of BD on WM structure, with specific benefits resulting from effects on specific WM tracts contributing to the functional integrity of the brain and involving interhemispheric, limbic, and large frontal, parietal, and fronto-occipital connections.
Collapse
|
89
|
Fox AS, Oler JA, Shelton SE, Nanda SA, Davidson RJ, Roseboom PH, Kalin NH. Central amygdala nucleus (Ce) gene expression linked to increased trait-like Ce metabolism and anxious temperament in young primates. Proc Natl Acad Sci U S A 2012; 109:18108-13. [PMID: 23071305 PMCID: PMC3497741 DOI: 10.1073/pnas.1206723109] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Children with anxious temperament (AT) are particularly sensitive to new social experiences and have increased risk for developing anxiety and depression. The young rhesus monkey is optimal for studying the origin of human AT because it shares with humans the genetic, neural, and phenotypic underpinnings of complex social and emotional functioning. In vivo imaging in young monkeys demonstrated that central nucleus of the amygdala (Ce) metabolism is relatively stable across development and predicts AT. Transcriptome-wide gene expression, which reflects combined genetic and environmental influences, was assessed within the Ce. Results support a maladaptive neurodevelopmental hypothesis linking decreased amygdala neuroplasticity to early-life dispositional anxiety. For example, high AT individuals had decreased mRNA expression of neurotrophic tyrosine kinase, receptor, type 3 (NTRK3). Moreover, variation in Ce NTRK3 expression was inversely correlated with Ce metabolism and other AT-substrates. These data suggest that altered amygdala neuroplasticity may play a role the early dispositional risk to develop anxiety and depression.
Collapse
Affiliation(s)
- Andrew S. Fox
- Departments of Psychology and
- HealthEmotions Research Institute, University of Wisconsin, Madison, WI 53719; and
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, WI 53705
| | - Jonathan A. Oler
- Psychiatry and
- HealthEmotions Research Institute, University of Wisconsin, Madison, WI 53719; and
| | - Steven E. Shelton
- Psychiatry and
- HealthEmotions Research Institute, University of Wisconsin, Madison, WI 53719; and
| | | | - Richard J. Davidson
- Departments of Psychology and
- Psychiatry and
- HealthEmotions Research Institute, University of Wisconsin, Madison, WI 53719; and
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, WI 53705
| | | | - Ned H. Kalin
- Departments of Psychology and
- Psychiatry and
- HealthEmotions Research Institute, University of Wisconsin, Madison, WI 53719; and
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, WI 53705
| |
Collapse
|
90
|
Quiroz JA, Manji HK. Enhancing synaptic plasticity and cellular resilience to develop novel, improved treatments for mood disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22034240 PMCID: PMC3181673 DOI: 10.31887/dcns.2002.4.1/jquiroz] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
There is mounting evidence that recurrent mood disorders - once considered “good prognosis diseases”- are, in fact, often very severe and life-threatening illnesses. Furthermore, although mood disorders have traditionally been conceptualized as neurochemical disorders, there is now evidence from a variety of sources demonstrating regional reductions in central nervous system (CNS) volume, as well as reductions in the numbers and/or sizes ofglia and neurons in discrete brain areas. Although the precise cellular mechanisms underlying these morphometric changes remain to be fully elucidated, the data suggest that mood disorders are associated with impairments of synaptic plasticity and cellular resilience. In this context, it is noteworthy that there is increasing preclinical evidence that antidepressants regulate the function of the glutamatergic system. Moreover, although clearly preliminary, the available clinical data suggest that attenuation of N-methyl-D-aspartate (NMDA) function has antidepressant effects. Recent preclinical and clinical studies have shown that signaling pathways involved in regulating cell survival and cell death are long-term targets for the actions of antidepressant agents. Antidepressants and mood stabilizers indirectly regulate a number of factors involved in cell survival pathways, including cyclic adenosine monophosphate (cAMP) response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), the antiapoptotic protein bcl-2, and mitogen-activated protein (MAP) kinases, and may thus bring about some of their delayed long-term beneficial effects via underappreciated neurotrophic effects. There is much promise for the future development of treatments that more directly target molecules in critical CNS signaling pathways regulating synaptic plasticity and cellular resilience. These will represent improved long-term treatments for mood disorders.
Collapse
Affiliation(s)
- Jorge A Quiroz
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Bethesda, Md, USA
| | | |
Collapse
|
91
|
Yang D, Chen M, Russo-Neustadt A. Antidepressants are neuroprotective against nutrient deprivation stress in rat hippocampal neurons. Eur J Neurosci 2012; 36:2573-87. [DOI: 10.1111/j.1460-9568.2012.08187.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
92
|
Abstract
This case study employs solution-focused brief therapy (SFBT) to alleviate depressive symptoms in an alcohol-dependent patient with comorbid personality disorder. Alcohol dependence and depression are frequent comorbid conditions in patients presenting for treatment. For some of these, personality disorders may further complicate treatment and even present a barrier to patients seeking or being offered treatment. In the case described, the patient only sought treatment after his gingivitis led to discovery of liver damage. In addition to SFBT, the patient was prescribed acamprosate to assist with abstinence from alcohol and fluoxetine for depression. Following three sessions of SFBT spaced at 1-month intervals, the patient reported maintaining abstinence from alcohol. His symptoms of depression as measured by Depression Anxiety Stress Scale reduced from severe to normal range, and he reported a reduction in the frequency and intensity of dark thoughts that had previously plagued him when sober. Outcomes were maintained 12 months following treatment.
Collapse
|
93
|
Grande I, Magalhães PV, Kunz M, Vieta E, Kapczinski F. Mediators of allostasis and systemic toxicity in bipolar disorder. Physiol Behav 2012; 106:46-50. [DOI: 10.1016/j.physbeh.2011.10.029] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 10/19/2011] [Accepted: 10/27/2011] [Indexed: 11/24/2022]
|
94
|
Barbosa IG, Rocha NP, Huguet RB, Ferreira RA, Salgado JV, Carvalho LA, Pariante CM, Teixeira AL. Executive dysfunction in euthymic bipolar disorder patients and its association with plasma biomarkers. J Affect Disord 2012; 137:151-5. [PMID: 22252095 DOI: 10.1016/j.jad.2011.12.034] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND Despite the old Kraepelinean concept that bipolar disorder (BD) does not evolve with cognitive decline, the presence of cognitive impairment, especially executive dysfunction has been recognized in BD patients. Brain-derived neurotrophic factor (BDNF) and pro-inflammatory molecules are important contributors to the pathophysiology of BD, and imbalance in peripheral levels of these molecules may be implicated in the cognitive decline observed in BD patients. We aimed to investigate the executive performance of BD type I euthymic patients and its relation with the plasma levels of BDNF, TNF-α and its related soluble receptors (sTNFR1 and sTNFR2). METHODS We evaluated executive functioning through the Frontal Assessment Battery (FAB). Plasma levels of BDNF, TNF-α, sTNFR1 and sTNFR2 were measured using enzyme-linked immunosorbent assay (ELISA) in 25 euthymic type I BD patients and 25 age and gender matched healthy controls. RESULTS BD patients had an impairment in executive functioning (p<0.006), particularly sensitivity of interference (p=0.02), inhibitory control (p=0.02), and increased BDNF plasma levels (p=0.001) in comparison with controls. Plasma levels of TNF-α were correlated with inhibitory control in BD patients (ρ=0.50, p=0.02) while motor programming was negatively correlated with sTNFR2 plasma levels (ρ=-0.47, p=0.02) in controls. Executive function correlated with age and MMSE, but not with BDNF, neither was influenced by psychiatric and clinical comorbidities nor medications in use. CONCLUSION BDNF is altered in BD but do not correlate with executive functioning.
Collapse
Affiliation(s)
- Izabela Guimarães Barbosa
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Benedetti F, Dallaspezia S, Lorenzi C, Pirovano A, Radaelli D, Locatelli C, Poletti S, Colombo C, Smeraldi E. Gene-gene interaction of glycogen synthase kinase 3-β and serotonin transporter on human antidepressant response to sleep deprivation. J Affect Disord 2012; 136:514-9. [PMID: 22119086 DOI: 10.1016/j.jad.2011.10.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 02/02/2023]
Abstract
BACKGROUND Glycogen synthase kinase 3-β (GSK3-β) is involved in the control of cell behavior and in the mechanism of action of lithium and serotonergic antidepressants, and in humans a promoter variant (rs334558*C) was associated with reduced activity and better antidepressant response. The short form of a polymorphism in the promoter in the serotonin transporter (5-HTTLPR) has been consistently associated with worse antidepressant response. In animals the knockout of GSK3-β counteracts the depressive-like behavioral effects of 5-HT inhibition. METHODS With a translational approach, we studied the effect of 5-HTTLPR and rs334558 on antidepressant response to sleep deprivation in a unique sample of 122 patients affected by a major depressive episode in course of bipolar disorder. Mood was self rated on Visual Analog Scales, and severity of depression was rated on Montgomery-Asberg rating scale. RESULTS We observed a triple interaction of 5-HTTLPR, rs334558 and treatment on severity of depression. While among rs334558 T/T homozygotes the best antidepressant response was associated with 5-HTTLPR l/l homozygosity, among the rs334558 C carriers the 5-HTTLPR s/s showed the best response to treatment. CONCLUSIONS A gene promoter polymorphism which reduces the activity of GSK3-β counteracts the detrimental influence of the short form of the 5-HT promoter on antidepressant response. A key component of Wnt pathway, and upstream of the mTOR signaling cascade, GSK3-β influences synaptic plasticity and cell resilience. Gene-gene interactions between components of the monoaminergic signal transduction pathways and of plasticity related pathways can shape the individual antidepressant response.
Collapse
Affiliation(s)
- Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute San Raffaele and University Vita-Salute, Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Erythropoietin: a candidate treatment for mood symptoms and memory dysfunction in depression. Psychopharmacology (Berl) 2012; 219:687-98. [PMID: 21947319 DOI: 10.1007/s00213-011-2511-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/12/2011] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Current pharmacological treatments for depression have a significant treatment-onset-response delay, an insufficient efficacy for many patients and fail to reverse cognitive dysfunction. Erythropoietin (EPO) has neuroprotective and neurotrophic actions and improves cognitive function in animal models of acute and chronic neurodegenerative conditions and in patients with cognitive decline. METHODS We systematically reviewed the published findings from animal and human studies exploring the potential of EPO to treat depression-related cognitive dysfunction and depression. RESULTS We identified five animal studies (two in male rats, two in male mice and one in male rats and mice) and seven human proof-of-concept studies (five in healthy volunteers and two in depressed patients) that investigated the above. All of the reviewed animal studies but one and all human studies demonstrated beneficial effects of EPO on hippocampus-dependent memory and antidepressant-like effects. These effects appear to be mediated through direct neurobiological actions of EPO rather than upregulation of red cell mass. CONCLUSIONS The reviewed studies demonstrate beneficial effects of EPO on hippocampus-dependent memory function and on depression-relevant behavior, thus highlighting EPO as a candidate agent for future management of cognitive dysfunction and mood symptoms in depression. Larger-scale clinical trials of EPO as a treatment for mood and neurocognitive symptoms in patients with mood disorder are therefore warranted.
Collapse
|
97
|
Kittel-Schneider S, Kenis G, Schek J, van den Hove D, Prickaerts J, Lesch KP, Steinbusch H, Reif A. Expression of monoamine transporters, nitric oxide synthase 3, and neurotrophin genes in antidepressant-stimulated astrocytes. Front Psychiatry 2012; 3:33. [PMID: 22529824 PMCID: PMC3330247 DOI: 10.3389/fpsyt.2012.00033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/26/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND There is increasing evidence that glial cells play a role in the pathomechanisms of mood disorders and the mode of action of antidepressant drugs. METHODS To examine whether there is a direct effect on the expression of different genes encoding proteins that have been implicated in the pathophysiology of affective disorders, primary astrocyte cell cultures from rats were treated with two different antidepressant drugs, imipramine and escitalopram, and the RNA expression of brain-derived neurotrophic factor (Bdnf), serotonin transporter (5Htt), dopamine transporter (Dat), and endothelial nitric oxide synthase (Nos3) was examined. RESULTS Stimulation of astroglial cell culture with imipramine, a tricyclic antidepressant, led to a significant increase of the Bdnf RNA level whereas treatment with escitalopram did not. In contrast, 5Htt was not differentially expressed after antidepressant treatment. Finally, neither Dat nor Nos3 RNA expression was detected in cultured astrocytes. CONCLUSION These data provide further evidence for a role of astroglial cells in the molecular mechanisms of action of antidepressants.
Collapse
Affiliation(s)
- Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatics and Psychotherapy, Psychiatric Neurobiology and Bipolar Disorder Program, University of Würzburg Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Hanson ND, Owens MJ, Nemeroff CB. Depression, antidepressants, and neurogenesis: a critical reappraisal. Neuropsychopharmacology 2011; 36:2589-602. [PMID: 21937982 PMCID: PMC3230505 DOI: 10.1038/npp.2011.220] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The neurogenesis hypothesis of depression posits (1) that neurogenesis in the subgranular zone of the dentate gyrus is regulated negatively by stressful experiences and positively by treatment with antidepressant drugs and (2) that alterations in the rate of neurogenesis play a fundamental role in the pathology and treatment of major depression. This hypothesis is supported by important experimental observations, but is challenged by equally compelling contradictory reports. This review summarizes the phenomenon of adult hippocampal neurogenesis, the initial and continued evidence leading to the development of the neurogenesis hypothesis of depression, and the recent studies that have disputed and/or qualified those findings, to conclude that it can be affected by stress and antidepressants under certain conditions, but that these effects do not appear in all cases of psychological stress, depression, and antidepressant treatment.
Collapse
Affiliation(s)
- Nicola D Hanson
- Laboratory of Neuropsychopharmacology, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael J Owens
- Laboratory of Neuropsychopharmacology, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA,Laboratory of Neuropsychopharmacology, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 100 Woodruff Circle, Suite 4000, Atlanta, GA 30322, USA. Tel: +1 404 727 4059, Fax: +1 404 727 3233, E-mail:
| | - Charles B Nemeroff
- Department of Psychiatry and Behavioral Sciences, University of Miami School of Medicine, Miami, FL, USA
| |
Collapse
|
99
|
Involvement of the neurotrophin and cannabinoid systems in the mechanisms of action of neurokinin receptor antagonists. Eur Neuropsychopharmacol 2011; 21:905-17. [PMID: 21316930 DOI: 10.1016/j.euroneuro.2011.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/15/2010] [Accepted: 01/08/2011] [Indexed: 11/21/2022]
Abstract
The anxiolytic- and antidepressant-like effects of the neurokinin (NK) receptor antagonists have been shown in behavioral studies. According to the involvement of neurotrophin signaling in the mechanisms of action of psychotropic agents, we aimed to investigate whether the selective NK(1), NK(2), or NK(3) receptor antagonists (GR-205171, SR48968, and SR142801, respectively) affect nerve growth factor (NGF) contents in the brain regions involved in the modulation of emotions. To gain a mechanistical insight into the process by which the NK antagonists regulate brain NGF levels, we evaluated the role of the cannabinoid system which is linked to depression and/or antidepressant effects and appears to interact with neurotrophin signaling. According to the results, single injection of the NK receptor antagonists (3, 5, and 10mg/kg, i.p.) into gerbils did not alter NGF or endocannabinoid (eCB) levels quantified by Bio-Rad protein assay and isotope-dilution liquid chromatography/mass spectrometry, respectively. Three-week administration of 10mg/kg NK antagonists significantly elevated both NGF and eCB levels in brain-region specific fashion. Pre-application of the CB(1) receptor neutral antagonist AM4113 (5.6mg/kg) prevented the elevation of NGF or eCB induced by the NK antagonists. AM4113 showed no effect by itself. We conclude that the cannabinoid system is implicated in the mechanisms of action of NK receptor antagonists including the upregulation of brain NGF levels.
Collapse
|
100
|
Wang F, McIntosh AM, He Y, Gelernter J, Blumberg HP. The association of genetic variation in CACNA1C with structure and function of a frontotemporal system. Bipolar Disord 2011; 13:696-700. [PMID: 22085483 PMCID: PMC3233238 DOI: 10.1111/j.1399-5618.2011.00963.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES A single nucleotide polymorphism at the CACNA1C gene (rs1006737) has been reported in genome-wide association studies to be associated with bipolar disorder (BD) with genome-wide significance. However, the neural system effects of CACNA1C that mediate the association are not known. In this study, we assessed associations between rs1006737 variation and both morphology and functional connectivity within a corticolimbic frontotemporal neural system implicated in BD. METHODS A total of 55 European Americans were divided into two groups: a GG group homozygous for the 'G' allele (n = 30) and carriers of the high risk A allele ('A-carrier' group, AA/AG genotypes; n = 25). The subjects participated in both high-resolution structural magnetic resonance imaging (MRI) scans and functional MRI scans during emotional face-processing. Voxel-based morphometry and functional connectivity analyses were performed. RESULTS Compared to the GG group, the A-carrier group showed significantly increased gray matter volume and reduced functional connectivity within a corticolimbic frontotemporal neural system (p < 0.05, corrected). CONCLUSION The findings support effects of the rs1006737 variation on the frontotemporal neural system implicated in BD, both in gray matter morphology and in functional connectivity. This suggests that influence of CACNA1C variation on corticolimbic structure and function may be a mechanism contributing to the neural circuitry of BD.
Collapse
Affiliation(s)
- Fei Wang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | | | | | | | | |
Collapse
|