51
|
Repeated shock stress facilitates basolateral amygdala synaptic plasticity through decreased cAMP-specific phosphodiesterase type IV (PDE4) expression. Brain Struct Funct 2017; 223:1731-1745. [PMID: 29204911 DOI: 10.1007/s00429-017-1575-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
Previous studies have shown that exposure to stressful events can enhance fear memory and anxiety-like behavior as well as increase synaptic plasticity in the rat basolateral amygdala (BLA). We have evidence that repeated unpredictable shock stress (USS) elicits a long-lasting increase in anxiety-like behavior in rats, but the cellular mechanisms mediating this response remain unclear. Evidence from recent morphological studies suggests that alterations in the dendritic arbor or spine density of BLA principal neurons may underlie stress-induced anxiety behavior. Recently, we have shown that the induction of long-term potentiation (LTP) in BLA principal neurons is dependent on activation of postsynaptic D1 dopamine receptors and the subsequent activation of the cyclic adenosine 5'-monophosphate (cAMP)-protein kinase A (PKA) signaling cascade. Here, we have used in vitro whole-cell patch-clamp recording from BLA principal neurons to investigate the long-term consequences of USS on their morphological properties and synaptic plasticity. We provided evidence that the enhanced anxiety-like behavior in response to USS was not associated with any significant change in the morphological properties of BLA principal neurons, but was associated with a changed frequency dependence of synaptic plasticity, lowered LTP induction threshold, and reduced expression of phosphodiesterase type 4 enzymes (PDE4s). Furthermore, pharmacological inhibition of PDE4 activity with rolipram mimics the effects of chronic stress on LTP induction threshold and baseline startle. Our results provide the first evidence that stress both enhances anxiety-like behavior and facilitates synaptic plasticity in the amygdala through a common mechanism of PDE4-mediated disinhibition of cAMP-PKA signaling.
Collapse
|
52
|
Campbell SL, van Groen T, Kadish I, Smoot LHM, Bolger GB. Altered phosphorylation, electrophysiology, and behavior on attenuation of PDE4B action in hippocampus. BMC Neurosci 2017; 18:77. [PMID: 29197324 PMCID: PMC5712142 DOI: 10.1186/s12868-017-0396-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 11/28/2017] [Indexed: 01/19/2023] Open
Abstract
Background PDE4 cyclic nucleotide phosphodiesterases regulate 3′, 5′ cAMP abundance in the CNS and thereby regulate PKA activity and phosphorylation of CREB, which has been implicated in learning and memory, depression and other functions. The PDE4 isoform PDE4B1 also interacts with the DISC1 protein, implicated in neural development and behavioral disorders. The cellular functions of PDE4B1 have been investigated extensively, but its function(s) in the intact organism remained unexplored. Results To specifically disrupt PDE4B1, we developed mice that express a PDE4B1-D564A transgene in the hippocampus and forebrain. The transgenic mice showed enhanced phosphorylation of CREB and ERK1/2 in hippocampus. Hippocampal neurogenesis was increased in the transgenic mice. Hippocampal electrophysiological studies showed increased baseline synaptic transmission and enhanced LTP in male transgenic mice. Behaviorally, male transgenic mice showed increased activity in prolonged open field testing, but neither male nor female transgenic mice showed detectable anxiety-like behavior or antidepressant effects in the elevated plus-maze, tail-suspension or forced-swim tests. Neither sex showed any significant differences in associative fear conditioning or showed any demonstrable abnormalities in pre-pulse inhibition. Conclusions These data support the use of an isoform-selective approach to the study of PDE4B1 function in the CNS and suggest a probable role of PDE4B1 in synaptic plasticity and behavior. They also provide additional rationale and a refined approach to the development of small-molecule PDE4B1-selective inhibitors, which have potential functions in disorders of cognition, memory, mood and affect.
Collapse
Affiliation(s)
- Susan L Campbell
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Center for Glial Biology in Health, Disease, and Cancer, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Thomas van Groen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Inga Kadish
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Lisa High Mitchell Smoot
- Department of Medicine, University of Alabama at Birmingham, NP 2501, 1720 2nd Ave S, Birmingham, AL, 35294-3300, USA
| | - Graeme B Bolger
- Department of Pharmacology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Department of Medicine, University of Alabama at Birmingham, NP 2501, 1720 2nd Ave S, Birmingham, AL, 35294-3300, USA. .,Center for Glial Biology in Health, Disease, and Cancer, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA.
| |
Collapse
|
53
|
Concepts and advances in cancer therapeutic vulnerabilities in RAS membrane targeting. Semin Cancer Biol 2017; 54:121-130. [PMID: 29203271 DOI: 10.1016/j.semcancer.2017.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/30/2017] [Indexed: 01/05/2023]
Abstract
For decades oncogenic RAS proteins were considered undruggable due to a lack of accessible binding pockets on the protein surfaces. Seminal early research in RAS biology uncovered the basic paradigm of post-translational isoprenylation of RAS polypeptides, typically with covalent attachment of a farnesyl group, leading to isoprenyl-mediated RAS anchorage at the plasma membrane and signal initiation at those sites. However, the failure of farnesyltransferase inhibitors to translate to the clinic stymied anti-RAS therapy development. Over the past ten years, a more complete picture has emerged of RAS protein maturation, intracellular trafficking, and location, positioning and retention in subdomains at the plasma membrane, with a corresponding expansion in our understanding of how these properties of RAS contribute to signal outputs. Each of these aspects of RAS regulation presents a potential vulnerability in RAS function that may be exploited for therapeutic targeting, and inhibitors have been identified or developed that interfere with RAS for nearly all of them. This review will summarize current understanding of RAS membrane targeting with a focus on highlighting development and outcomes of inhibitors at each step.
Collapse
|
54
|
Gong MF, Wen RT, Xu Y, Pan JC, Fei N, Zhou YM, Xu JP, Liang JH, Zhang HT. Attenuation of ethanol abstinence-induced anxiety- and depressive-like behavior by the phosphodiesterase-4 inhibitor rolipram in rodents. Psychopharmacology (Berl) 2017; 234:3143-3151. [PMID: 28748375 DOI: 10.1007/s00213-017-4697-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/10/2017] [Indexed: 12/29/2022]
Abstract
RATIONALE Withdrawal symptoms stand as a core feature of alcohol dependence. Our previous results have shown that inhibition of phosphodiesterase-4 (PDE4) decreased ethanol seeking and drinking in alcohol-preferring rodents. However, little is known about whether PDE4 is involved in ethanol abstinence-related behavior. OBJECTIVE The objective of this study was to characterize the role of PDE4 in the development of anxiety- and depressive-like behavior induced by abstinence from ethanol exposure in different animal models. METHODS Using three rodent models of ethanol abstinence, we examined the effects of rolipram, a prototypical, selective PDE4 inhibitor, on (1) anxiety-like behavior induced by repeated ethanol abstinence in the elevated plus maze test in fawn-hooded (FH/Wjd) rats, (2) anxiety-like behavior in the open-field test and light-dark transition test following acute ethanol abstinence in C57BL/6J mice, and (3) anxiety- and depressive-like behavior induced by protracted ethanol abstinence in the elevated plus maze, forced-swim, and tail-suspension tests in C57BL/6J mice. RESULTS Pretreatment with rolipram (0.1 or 0.2 mg/kg) significantly increased entries and time spent in the open arms of the elevated plus maze test in rats with repeated ethanol abstinence. Similarly, in mice with acute ethanol abstinence, administration of rolipram (0.25 or 0.5 mg/kg) dose-dependently increased the crossings in the central zone of the open-field test and duration and transitions on the light side of the light-dark transition test, suggesting anxiolytic-like effects of rolipram. Consistent with these, chronic treatment with rolipram (0.1, 0.3, or 1.0 mg/kg) increased entries in the open arms of the elevated plus maze test; it also reduced the increased duration of immobility in both the forced-swim and tail-suspension tests in mice after protracted ethanol abstinence, suggesting antidepressant-like effects of rolipram. CONCLUSIONS These results provide the first demonstration for that PDE4 plays a role in modulating the development of negative emotional reactions associated with ethanol abstinence, including anxiety and depression. PDE4 inhibitors may be a novel class of drugs for treatment of alcoholism.
Collapse
Affiliation(s)
- Mei-Fang Gong
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.,Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA
| | - Rui-Ting Wen
- Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.,Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| | - Ying Xu
- Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Jian-Chun Pan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ning Fei
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yan-Meng Zhou
- Institute of Pharmacology, Taishan Medical University, Taian, Shandong, 271016, China
| | - Jiang-Ping Xu
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jian-Hui Liang
- Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, China.
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA. .,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA. .,Institute of Pharmacology, Taishan Medical University, Taian, Shandong, 271016, China.
| |
Collapse
|
55
|
Labots MM, Laarakker MCM, Schetters DD, Arndt SSS, van Lith HAH. An improved procedure for integrated behavioral z-scoring illustrated with modified Hole Board behavior of male inbred laboratory mice. J Neurosci Methods 2017; 293:375-388. [PMID: 28939008 DOI: 10.1016/j.jneumeth.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/10/2017] [Accepted: 09/12/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Guilloux et al. introduced: integrated behavioral z-scoring, a method for behavioral phenotyping of mice. Using this method multiple ethological variables can be combined to show an overall description of a certain behavioral dimension or motivational system. However, a problem may occur when the control group used for the calculation has a standard deviation of zero or when no control group is present to act as a reference group. NEW METHOD In order to solve these problems, an improved procedure is suggested: taking the pooled data as reference. For this purpose a behavioral study with male mice from three inbred strains was carried out. The integrated behavioral z-scoring methodology was applied, thereby taking five different reference group options. The outcome regarding statistical significance and practical importance was compared. RESULTS Significant effects and effect sizes were influenced by the choice of the reference group. In some cases it was impossible to use a certain population and condition, because one or more behavioral variables in question had a standard deviation of zero. Based on the improved method, male mice from the three inbred strains differed regarding activity and anxiety. COMPARISON WITH EXISTING METHOD Taking the method described by Guilloux et al. as basis, the present procedure improved the generalizability to all types of experimental designs in animal behavioral research. CONCLUSIONS To solve the aforementioned problems and to avoid getting the diagnosis of data manipulation, the pooled data (combining the data from all experimental groups in a study) as reference option is recommended.
Collapse
Affiliation(s)
- M Maaike Labots
- Department of Animals in Science and Society, Division of Animal Welfare & Laboratory Animal Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - M C Marijke Laarakker
- Department of Animals in Science and Society, Division of Animal Welfare & Laboratory Animal Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - D Dustin Schetters
- Department of Animals in Science and Society, Division of Animal Welfare & Laboratory Animal Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - S S Saskia Arndt
- Department of Animals in Science and Society, Division of Animal Welfare & Laboratory Animal Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - H A Hein van Lith
- Department of Animals in Science and Society, Division of Animal Welfare & Laboratory Animal Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
56
|
He Y, Pan S, Xu M, He R, Huang W, Song P, Huang J, Zhang H, Hu Y. Adeno‐associated virus 9–mediated Cdk5 inhibitory peptide reverses pathologic changes and behavioral deficits in the Alzheimer's disease mouse model. FASEB J 2017; 31:3383-3392. [PMID: 28420695 DOI: 10.1096/fj.201700064r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/05/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Yong He
- Department of NeurologyNanfang HospitalSouthern Medical University Guangzhou China
- Department of NeurologyFirst People's Hospital of Chenzhou Chenzhou China
| | - Suyue Pan
- Department of NeurologyNanfang HospitalSouthern Medical University Guangzhou China
| | - Miaojing Xu
- Department of NeurologyNanfang HospitalSouthern Medical University Guangzhou China
| | - Rongni He
- Department of NeurologyZhujiang HospitalSouthern Medical University Guangzhou China
| | - Wei Huang
- Department of NeurologyZhujiang HospitalSouthern Medical University Guangzhou China
| | - Pingping Song
- Department of NeurologyNanfang HospitalSouthern Medical University Guangzhou China
| | - Jianou Huang
- Department of Neurology421 Hospital Guangzhou China
| | - Han‐Ting Zhang
- Department of Behavioral Medicine and PsychiatryWest Virginia University Health Sciences Center Morgantown West Virginia USA
- Department of Physiology and PharmacologyWest Virginia University Health Sciences Center Morgantown West Virginia USA
| | - Yafang Hu
- Department of NeurologyNanfang HospitalSouthern Medical University Guangzhou China
| |
Collapse
|
57
|
Compartmentalized PDE4A5 Signaling Impairs Hippocampal Synaptic Plasticity and Long-Term Memory. J Neurosci 2017; 36:8936-46. [PMID: 27559174 DOI: 10.1523/jneurosci.0248-16.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 06/29/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Alterations in cAMP signaling are thought to contribute to neurocognitive and neuropsychiatric disorders. Members of the cAMP-specific phosphodiesterase 4 (PDE4) family, which contains >25 different isoforms, play a key role in determining spatial cAMP degradation so as to orchestrate compartmentalized cAMP signaling in cells. Each isoform binds to a different set of protein complexes through its unique N-terminal domain, thereby leading to targeted degradation of cAMP in specific intracellular compartments. However, the functional role of specific compartmentalized PDE4 isoforms has not been examined in vivo Here, we show that increasing protein levels of the PDE4A5 isoform in mouse hippocampal excitatory neurons impairs a long-lasting form of hippocampal synaptic plasticity and attenuates hippocampus-dependent long-term memories without affecting anxiety. In contrast, viral expression of a truncated version of PDE4A5, which lacks the unique N-terminal targeting domain, does not affect long-term memory. Further, overexpression of the PDE4A1 isoform, which targets a different subset of signalosomes, leaves memory undisturbed. Fluorescence resonance energy transfer sensor-based cAMP measurements reveal that the full-length PDE4A5, in contrast to the truncated form, hampers forskolin-mediated increases in neuronal cAMP levels. Our study indicates that the unique N-terminal localization domain of PDE4A5 is essential for the targeting of specific cAMP-dependent signaling underlying synaptic plasticity and memory. The development of compounds to disrupt the compartmentalization of individual PDE4 isoforms by targeting their unique N-terminal domains may provide a fruitful approach to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling. SIGNIFICANCE STATEMENT Neurons exhibit localized signaling processes that enable biochemical cascades to be activated selectively in specific subcellular compartments. The phosphodiesterase 4 (PDE4) family coordinates the degradation of cAMP, leading to the local attenuation of cAMP-dependent signaling pathways. Sleep deprivation leads to increased hippocampal expression of the PDE4A5 isoform. Here, we explored whether PDE4A5 overexpression mimics behavioral and synaptic plasticity phenotypes associated with sleep deprivation. Viral expression of PDE4A5 in hippocampal neurons impairs long-term potentiation and attenuates the formation of hippocampus-dependent long-term memories. Our findings suggest that PDE4A5 is a molecular constraint on cognitive processes and may contribute to the development of novel therapeutic approaches to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling.
Collapse
|
58
|
Gasmi S, Rouabhi R, Kebieche M, Boussekine S, Salmi A, Toualbia N, Taib C, Bouteraa Z, Chenikher H, Henine S, Djabri B. Effects of Deltamethrin on striatum and hippocampus mitochondrial integrity and the protective role of Quercetin in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16440-16457. [PMID: 28551743 DOI: 10.1007/s11356-017-9218-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
The present work is to evaluate the neurotoxicity induced by pyrethroid insecticide "Deltamethrin" at 0.32 mg/kg/day in two main regions of the Wistar rat brain (hippocampus and striatum) and the protective effects of Quercetin at 10 mg/kg/day on this toxicity after 90 days of exposure. The assay of brain parameters showed that Deltamethrin caused a significant increase of mitochondrial metabolite level (proteins, lipids, and carbohydrates) and enzyme activity (glutathione S-transferase and superoxide dismutase); a decreased amount of mitochondrial glutathione level and catalase and glutathione peroxidase activities; and an increase of malondialdehyde (MDA) acid levels of the two regions. Furthermore, mitochondrial functional testing in the brains of treated rats exhibited a significant increase in permeability followed by a mitochondrial swelling. Instead, a statistically significant decrease in mitochondrial respiration (O2 consumption) was recorded in the striatum and hippocampus. Our study showed that the pesticide caused a significant increase of the cytochrome c amount correlated with activation of neuronal apoptosis mechanisms by the significant increase of caspase-3 of hippocampus and striatum. In particular, the results of behavioral tests (open field, classic maze tests of sucrose, and Morris water maze) have significant changes, namely bad behavior of the treated rats, affecting the level of anxiety, learning, and memory, and general motor activity has mainly been shown in treated rats. In addition, the histological cuts clearly confirm cerebral necrosis in the hippocampus and the striatum caused by the pesticide. They allow us to consider the necrotic areas, black spots, reduction, and denaturation of these brain regions in the treated rats. On the other hand, we have studied the protective effects against the neurotoxicity of Deltamethrin (DLM). In this context, after the gavage of Quercetin at the dose of 10 mg/kg/day, we have noticed an improvement in the entire parameters: mitochondrial enzyme, metabolic, histological, and behavioral parameters. This confirmed the improvement of preventive and curative effect of Quercetin against free radicals induced by the DLM.
Collapse
Affiliation(s)
- Salim Gasmi
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Rachid Rouabhi
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria.
| | | | - Samira Boussekine
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Aya Salmi
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Nadjiba Toualbia
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Chahinez Taib
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Zina Bouteraa
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Hajer Chenikher
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Sara Henine
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Belgacem Djabri
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| |
Collapse
|
59
|
Overexpression of the 18 kDa translocator protein (TSPO) in the hippocampal dentate gyrus produced anxiolytic and antidepressant-like behavioural effects. Neuropharmacology 2017; 125:117-128. [PMID: 28655607 DOI: 10.1016/j.neuropharm.2017.06.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/18/2017] [Accepted: 06/22/2017] [Indexed: 12/22/2022]
Abstract
The 18 kDa translocator protein (TSPO) is a five transmembrane domain protein that plays a crucial role in neurosteroid (e.g., allopregnanolone) synthesis by promoting the transport of cholesterol to the inner mitochondrial membrane. This protein is predominantly expressed in steroid-synthesizing tissues, including the central and peripheral nervous system, affecting stress-related disorders such as anxiety and depression. Recent studies have focused on the hippocampal dentate gyrus, which is very important for involvement of anxiety and depression. However, the exact role that TSPO plays in the pathophysiology of anxiety and depression and the involvement of the hippocampal dentate gyrus in regulating these behavioural effects remain elusive. This study used the lentiviral vectors mediating TPSO overexpression to assess the effects of TPSO overexpression in the hippocampal dentate gyrus on anxiolytic and antidepressant-like behavioural effects in mice. The expression of TSPO and the concentration of allopregnanolone in hippocampus tissues (3 mm in diameter around the injection site on both sides) were measured by Western blot and ELISA, respectively. The results indicated that microinjection of the LV-TSPO resulted in a significant increase in TSPO expression and allopregnanolone concentration in the hippocampus. Moreover, TSPO overexpression of the mouse hippocampal dentate gyrus generated significant anxiolytic and antidepressant-like behavioural effects in a series of behavioural models. These effects were completely blocked by the TSPO antagonist PK11195 (3 mg/kg, intraperitoneally) and the 5α-reductase inhibitor finasteride (5 mg/kg,intraperitoneally). Meanwhile, the increased allopregnanolone was also reversed by PK11195 and finasteride. In addition, neither PK11195 nor finasteride had an effect on the expression of TSPO. Overall, our results are the first to suggest that the overexpression of TSPO in the hippocampal dentate gyrus produced anxiolytic and antidepressant-like behavioural effects that are partially mediated by downstream allopregnanolone biosynthesis. Our results suggest that TSPO would be a potential anxiolytic and antidepressant therapeutic target.
Collapse
|
60
|
Phosphodiesterase-1b (Pde1b) knockout mice are resistant to forced swim and tail suspension induced immobility and show upregulation of Pde10a. Psychopharmacology (Berl) 2017; 234:1803-1813. [PMID: 28337525 DOI: 10.1007/s00213-017-4587-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/01/2017] [Indexed: 01/21/2023]
Abstract
RATIONALE Major depressive disorder is a leading cause of suicide and disability. Despite this, current antidepressants provide insufficient efficacy in more than 60% of patients. Most current antidepressants are presynaptic reuptake inhibitors; postsynaptic signal regulation has not received as much attention as potential treatment targets. OBJECTIVES We examined the effects of disruption of the postsynaptic cyclic nucleotide hydrolyzing enzyme, phosphodiesterase (PDE) 1b, on depressive-like behavior and the effects on PDE1B protein in wild-type (WT) mice following stress. METHODS Littermate knockout (KO) and WT mice were tested in locomotor activity, tail suspension (TST), and forced swim tests (FST). FST was also used to compare the effects of two antidepressants, fluoxetine and bupropion, in KO versus WT mice. Messenger RNA (mRNA) expression changes were also determined. WT mice underwent acute or chronic stress and markers of stress and PDE1B expression were examined. RESULTS Pde1b KO mice exhibited decreased TST and FST immobility. When treated with antidepressants, both WT and KO mice showed decreased FST immobility and the effect was additive in KO mice. Mice lacking Pde1b had increased striatal Pde10a mRNA expression. In WT mice, acute and chronic stress upregulated PDE1B expression while PDE10A expression was downregulated after chronic but not acute stress. CONCLUSIONS PDE1B is a potential therapeutic target for depression treatment because of the antidepressant-like phenotype seen in Pde1b KO mice.
Collapse
|
61
|
Fujita M, Richards EM, Niciu MJ, Ionescu DF, Zoghbi SS, Hong J, Telu S, Hines CS, Pike VW, Zarate CA, Innis RB. cAMP signaling in brain is decreased in unmedicated depressed patients and increased by treatment with a selective serotonin reuptake inhibitor. Mol Psychiatry 2017; 22:754-759. [PMID: 27725657 PMCID: PMC5388600 DOI: 10.1038/mp.2016.171] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/03/2016] [Accepted: 08/01/2016] [Indexed: 01/10/2023]
Abstract
Basic studies exploring the importance of the cyclic adenosine monophosphate (cAMP) cascade in major depressive disorder (MDD) have noted that the cAMP cascade is downregulated in MDD and upregulated by antidepressant treatment. We investigated cAMP cascade activity by using 11C-(R)-rolipram to image phosphodiesterase-4 (PDE4) in unmedicated MDD patients and after ~8 weeks of treatment with a selective serotonin reuptake inhibitor (SSRI). 11C-(R)-rolipram positron emission tomographic (PET) scans were performed in 44 unmedicated patients during a major depressive episode and 35 healthy controls. Twenty-three of the 44 patients had a follow-up 11C-(R)-rolipram PET scan ~8 weeks after treatment with an SSRI. Patients were moderately depressed (Montgomery-Åsberg Depression Rating Scale=30±6) and about half were treatment naïve. 11C-(R)-rolipram binding was measured using arterial sampling to correct for individual differences in radioligand metabolism. We found in unmedicated MDD patients widespread, ~20% reductions in 11C-(R)-rolipram binding compared with controls (P=0.001). SSRI treatment significantly increased rolipram binding (12%, P<0.001), with significantly greater increases observed in older patients (P<0.001). Rolipram binding did not correlate with severity of baseline symptoms, and increased rolipram binding during treatment did not correlate with symptom improvement. In brief, consistent with the results of basic studies, PDE4 was decreased in unmedicated MDD patients and increased after SSRI treatment. The lack of correlation between PDE4 binding and depressive symptoms could reflect the heterogeneity of the disease and/or the heterogeneity of the target, given that PDE4 has four subtypes. These results suggest that PDE4 inhibitors, which increase cAMP cascade activity, may have antidepressant effects.
Collapse
Affiliation(s)
- Masahiro Fujita
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Erica M. Richards
- Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Mark J. Niciu
- Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Dawn F. Ionescu
- Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Sami S. Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Jinsoo Hong
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Christina S. Hines
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Carlos A. Zarate
- Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
62
|
Knott EP, Assi M, Rao SNR, Ghosh M, Pearse DD. Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair. Int J Mol Sci 2017; 18:E696. [PMID: 28338622 PMCID: PMC5412282 DOI: 10.3390/ijms18040696] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
A wide diversity of perturbations of the central nervous system (CNS) result in structural damage to the neuroarchitecture and cellular defects, which in turn are accompanied by neurological dysfunction and abortive endogenous neurorepair. Altering intracellular signaling pathways involved in inflammation and immune regulation, neural cell death, axon plasticity and remyelination has shown therapeutic benefit in experimental models of neurological disease and trauma. The second messengers, cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP), are two such intracellular signaling targets, the elevation of which has produced beneficial cellular effects within a range of CNS pathologies. The only known negative regulators of cyclic nucleotides are a family of enzymes called phosphodiesterases (PDEs) that hydrolyze cyclic nucleotides into adenosine monophosphate (AMP) or guanylate monophosphate (GMP). Herein, we discuss the structure and physiological function as well as the roles PDEs play in pathological processes of the diseased or injured CNS. Further we review the approaches that have been employed therapeutically in experimental paradigms to block PDE expression or activity and in turn elevate cyclic nucleotide levels to mediate neuroprotection or neurorepair as well as discuss both the translational pathway and current limitations in moving new PDE-targeted therapies to the clinic.
Collapse
Affiliation(s)
- Eric P Knott
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Mazen Assi
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Sudheendra N R Rao
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Mousumi Ghosh
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Department of Neurological Surgery, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Department of Neurological Surgery, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Neuroscience Program, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- Bruce Wayne Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA.
| |
Collapse
|
63
|
Alteration of Neuronal Excitability and Short-Term Synaptic Plasticity in the Prefrontal Cortex of a Mouse Model of Mental Illness. J Neurosci 2017; 37:4158-4180. [PMID: 28283561 DOI: 10.1523/jneurosci.4345-15.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 01/28/2023] Open
Abstract
Using a genetic mouse model that faithfully recapitulates a DISC1 genetic alteration strongly associated with schizophrenia and other psychiatric disorders, we examined the impact of this mutation within the prefrontal cortex. Although cortical layering, cytoarchitecture, and proteome were found to be largely unaffected, electrophysiological examination of the mPFC revealed both neuronal hyperexcitability and alterations in short-term synaptic plasticity consistent with enhanced neurotransmitter release. Increased excitability of layer II/III pyramidal neurons was accompanied by consistent reductions in voltage-activated potassium currents near the action potential threshold as well as by enhanced recruitment of inputs arising from superficial layers to layer V. We further observed reductions in both the paired-pulse ratios and the enhanced short-term depression of layer V synapses arising from superficial layers consistent with enhanced neurotransmitter release at these synapses. Recordings from layer II/III pyramidal neurons revealed action potential widening that could account for enhanced neurotransmitter release. Significantly, we found that reduced functional expression of the voltage-dependent potassium channel subunit Kv1.1 substantially contributes to both the excitability and short-term plasticity alterations that we observed. The underlying dysregulation of Kv1.1 expression was attributable to cAMP elevations in the PFC secondary to reduced phosphodiesterase 4 activity present in Disc1 deficiency and was rescued by pharmacological blockade of adenylate cyclase. Our results demonstrate a potentially devastating impact of Disc1 deficiency on neural circuit function, partly due to Kv1.1 dysregulation that leads to a dual dysfunction consisting of enhanced neuronal excitability and altered short-term synaptic plasticity.SIGNIFICANCE STATEMENT Schizophrenia is a profoundly disabling psychiatric illness with a devastating impact not only upon the afflicted but also upon their families and the broader society. Although the underlying causes of schizophrenia remain poorly understood, a growing body of studies has identified and strongly implicated various specific risk genes in schizophrenia pathogenesis. Here, using a genetic mouse model, we explored the impact of one of the most highly penetrant schizophrenia risk genes, DISC1, upon the medial prefrontal cortex, the region believed to be most prominently dysfunctional in schizophrenia. We found substantial derangements in both neuronal excitability and short-term synaptic plasticity-parameters that critically govern neural circuit information processing-suggesting that similar changes may critically, and more broadly, underlie the neural computational dysfunction prototypical of schizophrenia.
Collapse
|
64
|
The effect of resveratrol on beta amyloid-induced memory impairment involves inhibition of phosphodiesterase-4 related signaling. Oncotarget 2017; 7:17380-92. [PMID: 26980711 PMCID: PMC4951219 DOI: 10.18632/oncotarget.8041] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/21/2016] [Indexed: 11/25/2022] Open
Abstract
Resveratrol, a natural polyphenol found in red wine, has wide spectrum of pharmacological properties including antioxidative and antiaging activities. Beta amyloid peptides (Aβ) are known to involve cognitive impairment, neuroinflammatory and apoptotic processes in Alzheimer's disease (AD). Activation of cAMP and/or cGMP activities can improve memory performance and decrease the neuroinflammation and apoptosis. However, it remains unknown whether the memory enhancing effect of resveratrol on AD associated cognitive disorders is related to the inhibition of phosphodiesterase 4 (PDE4) subtypes and subsequent increases in intracellular cAMP and/or cGMP activities. This study investigated the effect of resveratrol on Aβ1-42-induced cognitive impairment and the participation of PDE4 subtypes related cAMP or cGMP signaling. Mice microinfused with Aβ1-42 into bilateral CA1 subregions displayed learning and memory impairment, as evidenced by reduced memory acquisition and retrieval in the water maze and retention in the passive avoidance tasks; it was also significant that neuroinflammatory and pro-apoptotic factors were increased in Aβ1-42-treated mice. Aβ1-42-treated mice also increased in PDE4A, 4B and 4D expression, and decreased in PKA level. However, PKA inhibitor H89, but not PKG inhibitor KT5823, prevented resveratrol's effects on these parameters. Resveratrol also reversed Aβ1-42-induced decreases in phosphorylated cAMP response-element binding protein (pCREB), brain derived neurotrophic factor (BDNF) and anti-apoptotic factor BCl-2 expression, which were reversed by H89. These findings suggest that resveratrol reversing Aβ-induced learning and memory disorder may involve the regulation of neuronal inflammation and apoptosis via PDE4 subtypes related cAMP-CREB-BDNF signaling.
Collapse
|
65
|
Zhou ZZ, Cheng YF, Zou ZQ, Ge BC, Yu H, Huang C, Wang HT, Yang XM, Xu JP. Discovery of N-Alkyl Catecholamides as Selective Phosphodiesterase-4 Inhibitors with Anti-neuroinflammation Potential Exhibiting Antidepressant-like Effects at Non-emetic Doses. ACS Chem Neurosci 2017; 8:135-146. [PMID: 27690383 DOI: 10.1021/acschemneuro.6b00271] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Depression involving neuroinflammation is one of the most common disabling and life-threatening psychiatric disorders. Phosphodiesterase 4 (PDE4) inhibitors produce potent antidepressant-like and cognition-enhancing effects. However, their clinical utility is limited by their major side effect of emesis. To obtain more selective PDE4 inhibitors with antidepressant and anti-neuroinflammation potential and less emesis, we designed and synthesized a series of N-alkyl catecholamides by modifying the 4-methoxybenzyl group of our hit compound, FCPE07, with an alkyl side chain. Among these compounds, 10 compounds displayed submicromolar IC50 values in the mid- to low-nanomolar range. Moreover, 4-difluoromethoxybenzamides 10g and 10j, bearing isopropyl groups, exhibited the highest PDE4 inhibitory activities, with IC50 values in the low-nanomolar range and with higher selectivities for PDE4 (approximately 5000-fold and 2100-fold over other PDEs, respectively). Furthermore, compound 10j displayed anti-neuroinflammation potential, promising antidepressant-like effects, and a zero incidence rate of emesis at 0.8 mg/kg within 180 min.
Collapse
Affiliation(s)
- Zhong-Zhen Zhou
- Department of Neuropharmacology and Novel
Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yu-Fang Cheng
- Department of Neuropharmacology and Novel
Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zheng-Qiang Zou
- Department of Neuropharmacology and Novel
Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bing-Chen Ge
- Department of Neuropharmacology and Novel
Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hui Yu
- Department of Neuropharmacology and Novel
Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Cang Huang
- Department of Neuropharmacology and Novel
Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hai-Tao Wang
- Department of Neuropharmacology and Novel
Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xue-Mei Yang
- Hygiene
Detection Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiang-Ping Xu
- Department of Neuropharmacology and Novel
Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
66
|
Zhang C, Xu Y, Zhang HT, Gurney ME, O'Donnell JM. Comparison of the Pharmacological Profiles of Selective PDE4B and PDE4D Inhibitors in the Central Nervous System. Sci Rep 2017; 7:40115. [PMID: 28054669 PMCID: PMC5215650 DOI: 10.1038/srep40115] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/02/2016] [Indexed: 12/24/2022] Open
Abstract
Inhibition of cyclic AMP (cAMP)-specific phosphodiesterase 4 (PDE4) has been proposed as a potential treatment for a series of neuropsychological conditions such as depression, anxiety and memory loss. However, the specific involvement of each of the PDE4 subtypes (PDE4A, 4B and 4C) in different categories of behavior has yet to be elucidated. In the present study, we compared the possible pharmacological effects of PDE4B and PDE4D selective inhibitors, A-33 and D159687, in mediating neurological function in mice. Both compounds were equally potent in stimulating cAMP signaling in the mouse hippocampal cell line HT-22 leading to an increase in CREB phosphorylation. In contrast, A-33 and D159687 displayed distinct neuropharmacological effects in mouse behavioral tests. A-33 has an antidepressant-like profile as indicated by reduced immobility time in the forced swim and tail suspension tasks, as well as reduced latency to feed in the novelty suppressed feeding test. D159687, on the other hand, had a procognitive profile as it improved memory in the novel object recognition test but had no antidepressant or anxiolytic benefit. The present data suggests that inhibitors targeting specific subtypes of PDE4 may exhibit differential pharmacological effects and aid a more efficient pharmacotherapy towards neuropsychological conditions.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Han-Ting Zhang
- Department of Behavioral Medicine &Psychiatry, West Virginia University, Morgantown, WV, 26505, USA
| | - Mark E Gurney
- Tetra Discovery Partners, Inc., Grand Rapids, MI 49503, USA
| | - James M O'Donnell
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| |
Collapse
|
67
|
Bolger GB. The PDE4 cAMP-Specific Phosphodiesterases: Targets for Drugs with Antidepressant and Memory-Enhancing Action. ADVANCES IN NEUROBIOLOGY 2017; 17:63-102. [PMID: 28956330 DOI: 10.1007/978-3-319-58811-7_4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The PDE4 cyclic nucleotide phosphodiesterases are essential regulators of cAMP abundance in the CNS through their ability to regulate PKA activity, the phosphorylation of CREB, and other important elements of signal transduction. In pre-clinical models and in early-stage clinical trials, PDE4 inhibitors have been shown to have antidepressant and memory-enhancing activity. However, the development of clinically-useful PDE4 inhibitors for CNS disorders has been limited by variable efficacy and significant side effects. Recent structural studies have greatly enhanced our understanding of the molecular configuration of PDE4 enzymes, especially the "long" PDE4 isoforms that are abundant in the CNS. The new structural data provide a rationale for the development of a new generation of PDE4 inhibitors that specifically act on long PDE4 isoforms. These next generation PDE4 inhibitors may also be capable of targeting the interactions of select long forms with their "partner" proteins, such as RACK1, β-arrestin, and DISC1. They would therefore have the ability to affect cAMP levels in specific cellular compartments and target localized cellular functions, such as synaptic plasticity. These new agents might also be able to target PDE4 populations in select regions of the CNS that are implicated in learning and memory, affect, and cognition. Potential therapeutic uses of these agents could include affective disorders, memory enhancement, and neurogenesis.
Collapse
Affiliation(s)
- Graeme B Bolger
- Departments of Medicine and Pharmacology, University of Alabama at Birmingham, 1720 2nd Avenue South, NP 2501, Birmingham, AL, 35294-3300, USA.
| |
Collapse
|
68
|
Phosphodiesterase-4B as a Therapeutic Target for Cognitive Impairment and Obesity-Related Metabolic Diseases. ADVANCES IN NEUROBIOLOGY 2017; 17:103-131. [DOI: 10.1007/978-3-319-58811-7_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
69
|
Snyder GL, Vanover KE. PDE Inhibitors for the Treatment of Schizophrenia. ADVANCES IN NEUROBIOLOGY 2017; 17:385-409. [DOI: 10.1007/978-3-319-58811-7_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
70
|
Olsen CM, Liu QS. Phosphodiesterase 4 inhibitors and drugs of abuse: current knowledge and therapeutic opportunities. FRONTIERS IN BIOLOGY 2016; 11:376-386. [PMID: 28974957 PMCID: PMC5617368 DOI: 10.1007/s11515-016-1424-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Long-term exposure to drugs of abuse causes an up-regulation of the cAMP-signaling pathway in the nucleus accumbens and other forebrain regions, this common neuroadaptation is thought to underlie aspects of drug tolerance and dependence. Phosphodiesterase 4 (PDE4) is an enzyme that the selective hydrolyzes intracellular cAMP. It is expressed in several brain regions that regulate the reinforcing effects of drugs of abuse. OBJECTIVE Here, we review the current knowledge about central nervous system (CNS) distribution of PDE4 isoforms and the effects of systemic and brain-region specific inhibition of PDE4 on behavioral models of drug addiction. METHODS A systematic literature search was performed using the Pubmed. RESULTS Using behavioral sensitization, conditioned place preference and drug self-administration as behavioral models, a large number of studies have shown that local or systemic administration of PDE4 inhibitors reduce drug intake and/or drug seeking for psychostimulants, alcohol, and opioids in rats or mice. CONCLUSIONS Preclinical studies suggest that PDE4 could be a therapeutic target for several classes of substance use disorder. We conclude by identifying opportunities for the development of subtype-selective PDE4 inhibitors that may reduce addiction liability and minimize the side effects that limit the clinical potential of non-selective PDE4 inhibitors. Several PDE4 inhibitors have been clinically approved for other diseases. There is a promising possibility to repurpose these PDE4 inhibitors for the treatment of drug addiction as they are safe and well-tolerated in patients.
Collapse
Affiliation(s)
- Christopher M. Olsen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Qing-song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
71
|
Titus DJ, Wilson NM, Freund JE, Carballosa MM, Sikah KE, Furones C, Dietrich WD, Gurney ME, Atkins CM. Chronic Cognitive Dysfunction after Traumatic Brain Injury Is Improved with a Phosphodiesterase 4B Inhibitor. J Neurosci 2016; 36:7095-108. [PMID: 27383587 PMCID: PMC4938858 DOI: 10.1523/jneurosci.3212-15.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 05/20/2016] [Accepted: 05/25/2016] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Learning and memory impairments are common in traumatic brain injury (TBI) survivors. However, there are no effective treatments to improve TBI-induced learning and memory impairments. TBI results in decreased cAMP signaling and reduced cAMP-response-element binding protein (CREB) activation, a critical pathway involved in learning and memory. TBI also acutely upregulates phosphodiesterase 4B2 (PDE4B2), which terminates cAMP signaling by hydrolyzing cAMP. We hypothesized that a subtype-selective PDE4B inhibitor could reverse the learning deficits induced by TBI. To test this hypothesis, adult male Sprague-Dawley rats received sham surgery or moderate parasagittal fluid-percussion brain injury. At 3 months postsurgery, animals were administered a selective PDE4B inhibitor or vehicle before cue and contextual fear conditioning, water maze training and a spatial working memory task. Treatment with the PDE4B inhibitor significantly reversed the TBI-induced deficits in cue and contextual fear conditioning and water maze retention. To further understand the underlying mechanisms of these memory impairments, we examined hippocampal long-term potentiation (LTP). TBI resulted in a significant reduction in basal synaptic transmission and impaired expression of LTP. Treatment with the PDE4B inhibitor significantly reduced the deficits in basal synaptic transmission and rescued LTP expression. The PDE4B inhibitor reduced tumor necrosis factor-α levels and increased phosphorylated CREB levels after TBI, suggesting that this drug inhibited molecular pathways in the brain known to be regulated by PDE4B. These results suggest that a subtype-selective PDE4B inhibitor is a potential therapeutic to reverse chronic learning and memory dysfunction and deficits in hippocampal synaptic plasticity following TBI. SIGNIFICANCE STATEMENT Currently, there are an estimated 3.2-5.3 million individuals living with disabilities from traumatic brain injury (TBI) in the United States, and 8 of 10 of these individuals report cognitive disabilities (Thurman et al., 1999; Lew et al., 2006; Zaloshnja et al., 2008). One of the molecular mechanisms associated with chronic cognitive disabilities is impaired cAMP signaling in the hippocampus. In this study, we report that a selective phosphodiesterase 4B (PDE4B) inhibitor reduces chronic cognitive deficits after TBI and rescues deficits in hippocampal long-term potentiation. These results suggest that PDE4B inhibition has the potential to improve learning and memory ability and overall functioning for people living with TBI.
Collapse
Affiliation(s)
- David J Titus
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Nicole M Wilson
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Julie E Freund
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Melissa M Carballosa
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Kevin E Sikah
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Concepcion Furones
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Mark E Gurney
- Tetra Discovery Partners, Grand Rapids, Michigan 49503
| | - Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| |
Collapse
|
72
|
Pellerin D, Çaku A, Fradet M, Bouvier P, Dubé J, Corbin F. Lovastatin corrects ERK pathway hyperactivation in fragile X syndrome: potential of platelet’s signaling cascades as new outcome measures in clinical trials. Biomarkers 2016; 21:497-508. [DOI: 10.3109/1354750x.2016.1160289] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
73
|
Briassoulis G, Keil MF, Naved B, Liu S, Starost MF, Nesterova M, Gokarn N, Batistatos A, Wu TJ, Stratakis CA. Studies of mice with cyclic AMP-dependent protein kinase (PKA) defects reveal the critical role of PKA's catalytic subunits in anxiety. Behav Brain Res 2016; 307:1-10. [PMID: 26992826 DOI: 10.1016/j.bbr.2016.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
Cyclic adenosine mono-phosphate-dependent protein kinase (PKA) is critically involved in the regulation of behavioral responses. Previous studies showed that PKA's main regulatory subunit, R1α, is involved in anxiety-like behaviors. The purpose of this study was to determine how the catalytic subunit, Cα, might affect R1α's function and determine its effects on anxiety-related behaviors. The marble bury (MB) and elevated plus maze (EPM) tests were used to assess anxiety-like behavior and the hotplate test to assess nociception in wild type (WT) mouse, a Prkar1a heterozygote (Prkar1a(+/-)) mouse with haploinsufficiency for the regulatory subunit (R1α), a Prkaca heterozygote (Prkaca(+/-)) mouse with haploinsufficiency for the catalytic subunit (Cα), and a double heterozygote mouse (Prkar1a(+/-)/Prkaca(+/-)) with haploinsufficiency for both R1α and Cα. We then examined specific brain nuclei involved in anxiety. Results of MB test showed a genotype effect, with increased anxiety-like behavior in Prkar1a(+/-) and Prkar1a(+/-)/Prkaca(+/-) compared to WT mice. In the EPM, Prkar1a(+/-) spent significantly less time in the open arms, while Prkaca(+/-) and Prkar1a(+/-)/Prkaca(+/-) mice displayed less exploratory behavior compared to WT mice. The loss of one Prkar1a allele was associated with a significant increase in PKA activity in the basolateral (BLA) and central (CeA) amygdala and ventromedial hypothalamus (VMH) in both Prkar1a(+/-) and Prkar1a(+/-)/Prkaca(+/-) mice. Alterations of PKA activity induced by haploinsufficiency of its main regulatory or most important catalytic subunits result in anxiety-like behaviors. The BLA, CeA, and VMH are implicated in mediating these PKA effects in brain.
Collapse
Affiliation(s)
- George Briassoulis
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, United States; Department of Pediatric Intensive Care, University of Crete, Heraklion, Greece
| | - Margaret F Keil
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, United States.
| | - Bilal Naved
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Sophie Liu
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Matthew F Starost
- Division of Veterinary Resources, Office of Research Services (ORS), Office of the Director (OD), National Institutes of Health, Bethesda, MD 20892, United States
| | - Maria Nesterova
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Nirmal Gokarn
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Anna Batistatos
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - T John Wu
- Department of Obstetrics and Gynecology and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| |
Collapse
|
74
|
McGirr A, Lipina TV, Mun HS, Georgiou J, Al-Amri AH, Ng E, Zhai D, Elliott C, Cameron RT, Mullins JGL, Liu F, Baillie GS, Clapcote SJ, Roder JC. Specific Inhibition of Phosphodiesterase-4B Results in Anxiolysis and Facilitates Memory Acquisition. Neuropsychopharmacology 2016; 41:1080-92. [PMID: 26272049 PMCID: PMC4748432 DOI: 10.1038/npp.2015.240] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 01/07/2023]
Abstract
Cognitive dysfunction is a core feature of dementia and a prominent feature in psychiatric disease. As non-redundant regulators of intracellular cAMP gradients, phosphodiesterases (PDE) mediate fundamental aspects of brain function relevant to learning, memory, and higher cognitive functions. Phosphodiesterase-4B (PDE4B) is an important phosphodiesterase in the hippocampal formation, is a major Disrupted in Schizophrenia 1 (DISC1) binding partner and is itself a risk gene for psychiatric illness. To define the effects of specific inhibition of the PDE4B subtype, we generated mice with a catalytic domain mutant form of PDE4B (Y358C) that has decreased ability to hydrolyze cAMP. Structural modeling predictions of decreased function and impaired binding with DISC1 were confirmed in cell assays. Phenotypic characterization of the PDE4B(Y358C) mice revealed facilitated phosphorylation of CREB, decreased binding to DISC1, and upregulation of DISC1 and β-Arrestin in hippocampus and amygdala. In behavioral assays, PDE4B(Y358C) mice displayed decreased anxiety and increased exploration, as well as cognitive enhancement across several tests of learning and memory, consistent with synaptic changes including enhanced long-term potentiation and impaired depotentiation ex vivo. PDE4B(Y358C) mice also demonstrated enhanced neurogenesis. Contextual fear memory, though intact at 24 h, was decreased at 7 days in PDE4B(Y358C) mice, an effect replicated pharmacologically with a non-selective PDE4 inhibitor, implicating cAMP signaling by PDE4B in a very late phase of consolidation. No effect of the PDE4B(Y358C) mutation was observed in the prepulse inhibition and forced swim tests. Our data establish specific inhibition of PDE4B as a promising therapeutic approach for disorders of cognition and anxiety, and a putative target for pathological fear memory.
Collapse
Affiliation(s)
- Alexander McGirr
- Department of Psychiatry, University of
British Columbia, Vancouver, British Columbia,
Canada,Lunenfeld-Tanenbaum Research Institute,
Mount Sinai Hospital, Toronto, Ontario,
Canada,Department of Psychiatry, University of British
Columbia, Vancouver, British Columbia,
Canada
V6T 2A1, E-mail:
| | - Tatiana V Lipina
- Lunenfeld-Tanenbaum Research Institute,
Mount Sinai Hospital, Toronto, Ontario,
Canada
| | - Ho-Suk Mun
- Lunenfeld-Tanenbaum Research Institute,
Mount Sinai Hospital, Toronto, Ontario,
Canada,Department of Medical Genetics,
University of Toronto, Toronto, Ontario,
Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute,
Mount Sinai Hospital, Toronto, Ontario,
Canada
| | - Ahmed H Al-Amri
- School of Biomedical Sciences, University
of Leeds, Leeds, UK,National Genetic Centre, Royal
Hospital, Muscat, Oman
| | - Enoch Ng
- Lunenfeld-Tanenbaum Research Institute,
Mount Sinai Hospital, Toronto, Ontario,
Canada,Institute of Medical Science, University
of Toronto, Toronto, Ontario,
Canada
| | - Dongxu Zhai
- Department of Neuroscience, Centre for
Addiction and Mental Health, Toronto, Ontario,
Canada
| | - Christina Elliott
- Institute of Cardiovascular and Medical
Sciences, College of Medical, Veterinary and Life Sciences, University of
Glasgow, Glasgow, UK
| | - Ryan T Cameron
- Institute of Cardiovascular and Medical
Sciences, College of Medical, Veterinary and Life Sciences, University of
Glasgow, Glasgow, UK
| | - Jonathan GL Mullins
- Institute of Life Science, College of
Medicine, Swansea University, Swansea, UK
| | - Fang Liu
- Department of Neuroscience, Centre for
Addiction and Mental Health, Toronto, Ontario,
Canada
| | - George S Baillie
- Institute of Cardiovascular and Medical
Sciences, College of Medical, Veterinary and Life Sciences, University of
Glasgow, Glasgow, UK
| | - Steven J Clapcote
- School of Biomedical Sciences, University
of Leeds, Leeds, UK,School of Biomedical Sciences, University of Leeds,
Leeds
LS2 9JT, UK, Tel: +44 (0)113 3433041,
E-mail:
| | - John C Roder
- Lunenfeld-Tanenbaum Research Institute,
Mount Sinai Hospital, Toronto, Ontario,
Canada,Department of Physiology, University of
Toronto, Toronto, Ontario, Canada
| |
Collapse
|
75
|
Matsuda I, Shoji H, Yamasaki N, Miyakawa T, Aiba A. Comprehensive behavioral phenotyping of a new Semaphorin 3 F mutant mouse. Mol Brain 2016; 9:15. [PMID: 26856818 PMCID: PMC4746810 DOI: 10.1186/s13041-016-0196-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Semaphorin 3 F (Sema3F) is a secreted type of the Semaphorin family of axon guidance molecules. Sema3F and its receptor neuropilin-2 (Npn-2) are expressed in a mutually exclusive manner in the embryonic mouse brain regions including olfactory bulb, hippocampus, and cerebral cortex. Sema3F is thought to have physiological functions in the formation of neuronal circuitry and its refinement. However, functional roles of Sema3F in the brain remain to be clarified. Here, we examined behavioral effects of Sema3F deficiency through a comprehensive behavioral test battery in Sema3F knockout (KO) male mice to understand the possible functions of Sema3F in the brain. RESULTS Male Sema3F KO and wild-type (WT) control mice were subjected to a battery of behavioral tests, including neurological screen, rotarod, hot plate, prepulse inhibition, light/dark transition, open field, elevated plus maze, social interaction, Porsolt forced swim, tail suspension, Barnes maze, and fear conditioning tests. In the open field test, Sema3F KO mice traveled shorter distance and spent less time in the center of the field than WT controls during the early testing period. In the light/dark transition test, Sema3F KO mice also exhibited decreased distance traveled, fewer number of transitions, and longer latency to enter the light chamber compared with WT mice. In addition, Sema3F KO mice traveled shorter distance than WT mice in the elevated plus maze test, although there were no differences between genotypes in open arm entries and time spent in open arms. Similarly, Sema3F KO mice showed decreased distance traveled in the social interaction test. Sema3F KO mice displayed reduced immobility in the Porsolt forced swim test whereas there was no difference in immobility between genotypes in the tail suspension test. In the fear conditioning test, Sema3F KO mice exhibited increased freezing behavior when exposed to a conditioning context and an altered context in absence of a conditioned stimulus. In the tests for assessing motor function, pain sensitivity, startle response to an acoustic stimulus, sensorimotor gating, or spatial reference memory, there were no significant behavioral differences between Sema3F KO and WT mice. CONCLUSIONS These results suggest that Sema3F deficiency induces decreased locomotor activity and possibly abnormal anxiety-related behaviors and also enhances contextual memory and generalized fear in mice. Thus, our findings suggest that Sema3F plays important roles in the development of neuronal circuitry underlying the regulation of some aspects of anxiety and fear responses.
Collapse
Affiliation(s)
- Ikuo Matsuda
- Division of Cell Biology, Department of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan. .,Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| | - Nobuyuki Yamasaki
- Kyoto Prefectural Rakunan Hospital, 2 Hirookadani, Gokasho, Uji, Kyoto, 611-0011, Japan. .,Genetic Engineering and Functional Genomics Group, Horizontal Medical Research Organization (HMRO), Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan. .,Genetic Engineering and Functional Genomics Group, Horizontal Medical Research Organization (HMRO), Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8501, Japan. .,Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan.
| | - Atsu Aiba
- Division of Cell Biology, Department of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan. .,Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
76
|
Keil MF, Briassoulis G, Stratakis CA. The Role of Protein Kinase A in Anxiety Behaviors. Neuroendocrinology 2016; 103:625-39. [PMID: 26939049 DOI: 10.1159/000444880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/19/2016] [Indexed: 11/19/2022]
Abstract
This review focuses on the genetic and other evidence supporting the notion that the cyclic AMP (cAMP) signaling pathway and its mediator, the protein kinase A (PKA) enzyme, which respond to environmental stressors and regulate stress responses, are central to the pathogenesis of disorders related to anxiety. We describe the PKA pathway and review in vitro animal studies (mouse) and other evidence that support the importance of PKA in regulating behaviors that lead to anxiety. Since cAMP signaling and PKA have been pharmacologically exploited since the 1940s (even before the identification of cAMP as a second messenger with PKA as its mediator) for a number of disorders from asthma to cardiovascular diseases, there is ample opportunity to develop therapies using this new knowledge about cAMP, PKA, and anxiety disorders.
Collapse
Affiliation(s)
- Margaret F Keil
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Md., USA
| | | | | |
Collapse
|
77
|
Keil MF, Briassoulis G, Stratakis CA, Wu TJ. Protein Kinase A and Anxiety-Related Behaviors: A Mini-Review. Front Endocrinol (Lausanne) 2016; 7:83. [PMID: 27445986 PMCID: PMC4925668 DOI: 10.3389/fendo.2016.00083] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/20/2016] [Indexed: 01/13/2023] Open
Abstract
This review focuses on the anxiety related to cyclic AMP/protein kinase A (PKA) signaling pathway that regulates stress responses. PKA regulates an array of diverse signals that interact with various neurotransmitter systems associated with alertness, mood, and acute and social anxiety-like states. Recent mouse studies support the involvement of the PKA pathway in common neuropsychiatric disorders characterized by heightened activation of the amygdala. The amygdala is critical for adaptive responses leading to fear learning and aberrant fear memory and its heightened activation is widely thought to underpin various anxiety disorders. Stress-induced plasticity within the amygdala is involved in the transition from normal vigilance responses to emotional reactivity, fear over-generalization, and deficits in fear inhibition resulting in pathological anxiety and conditions, such as panic and depression. Human studies of PKA signaling defects also report an increased incidence of psychiatric disorders, including anxiety, depression, bipolar disorder, learning disorders, and attention deficit hyperactivity disorder. We speculate that the PKA system is uniquely suited for selective, molecularly targeted intervention that may be proven effective in anxiolytic therapy.
Collapse
Affiliation(s)
- Margaret F. Keil
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- *Correspondence: Margaret F. Keil, ; T. John Wu,
| | - George Briassoulis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Pediatric Intensive Care, University of Crete, Heraklion, Greece
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - T. John Wu
- Department of Obstetrics and Gynecology, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- *Correspondence: Margaret F. Keil, ; T. John Wu,
| |
Collapse
|
78
|
Logrip ML. Phosphodiesterase regulation of alcohol drinking in rodents. Alcohol 2015; 49:795-802. [PMID: 26095589 DOI: 10.1016/j.alcohol.2015.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 12/22/2022]
Abstract
Alcohol use disorders are chronically relapsing conditions characterized by persistent drinking despite the negative impact on one's life. The difficulty of achieving and maintaining sobriety suggests that current treatments fail to fully address the underlying causes of alcohol use disorders. Identifying additional pathways controlling alcohol consumption may uncover novel targets for medication development to improve treatment options. One family of proteins recently implicated in the regulation of alcohol consumption is the cyclic nucleotide phosphodiesterases (PDEs). As an integral component in the regulation of the second messengers cyclic AMP and cyclic GMP, and thus their cognate signaling pathways, PDEs present intriguing targets for pharmacotherapies to combat alcohol use disorders. As activation of cAMP/cGMP-dependent signaling cascades can dampen alcohol intake, PDE inhibitors may provide a novel target for reducing excessive alcohol consumption, as has been proposed for PDE4 and PDE10A. This review highlights preclinical literature demonstrating the involvement of cyclic nucleotide-dependent signaling in neuronal and behavioral responses to alcohol, as well as detailing the capacity of various PDE inhibitors to modulate alcohol intake. Together these data provide a framework for evaluating the potential utility of PDE inhibitors as novel treatments for alcohol use disorders.
Collapse
|
79
|
Johnstone M, Maclean A, Heyrman L, Lenaerts AS, Nordin A, Nilsson LG, De Rijk P, Goossens D, Adolfsson R, St Clair DM, Hall J, Lawrie SM, McIntosh AM, Del-Favero J, Blackwood DHR, Pickard BS. Copy Number Variations in DISC1 and DISC1-Interacting Partners in Major Mental Illness. MOLECULAR NEUROPSYCHIATRY 2015; 1:175-190. [PMID: 27239468 PMCID: PMC4872463 DOI: 10.1159/000438788] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/13/2015] [Indexed: 01/15/2023]
Abstract
Robust statistical, genetic and functional evidence supports a role for DISC1 in the aetiology of major mental illness. Furthermore, many of its protein-binding partners show evidence for involvement in the pathophysiology of a range of neurodevelopmental and psychiatric disorders. Copy number variants (CNVs) are suspected to play an important causal role in these disorders. In this study, CNV analysis of DISC1 and its binding partners PAFAH1B1, NDE1, NDEL1, FEZ1, MAP1A, CIT and PDE4B in Scottish and Northern Swedish population-based samples was carried out using multiplex amplicon quantification. Here, we report the finding of rare CNVs in DISC1, NDE1 (together with adjacent genes within the 16p13.11 duplication), NDEL1 (including the overlapping MYH10 gene) and CIT. Our findings provide further evidence for involvement of DISC1 and its interaction partners in neuropsychiatric disorders and also for a role of structural variants in the aetiology of these devastating diseases.
Collapse
Affiliation(s)
- Mandy Johnstone
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK; Medical Genetics, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Alan Maclean
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK; Medical Genetics, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Lien Heyrman
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - An-Sofie Lenaerts
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - Annelie Nordin
- Department of Clinical Sciences, Psychiatry, Umeå University, Umeå, Sweden
| | | | - Peter De Rijk
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - Dirk Goossens
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - Rolf Adolfsson
- Department of Clinical Sciences, Psychiatry, Umeå University, Umeå, Sweden
| | - David M St Clair
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jeremy Hall
- Neurosciences & Mental Health Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Jurgen Del-Favero
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - Douglas H R Blackwood
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK; Medical Genetics, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Benjamin S Pickard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
80
|
Lundegaard PR, Anastasaki C, Grant NJ, Sillito RR, Zich J, Zeng Z, Paranthaman K, Larsen AP, Armstrong JD, Porteous DJ, Patton EE. MEK Inhibitors Reverse cAMP-Mediated Anxiety in Zebrafish. ACTA ACUST UNITED AC 2015; 22:1335-46. [PMID: 26388333 PMCID: PMC4623357 DOI: 10.1016/j.chembiol.2015.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 12/14/2022]
Abstract
Altered phosphodiesterase (PDE)-cyclic AMP (cAMP) activity is frequently associated with anxiety disorders, but current therapies act by reducing neuronal excitability rather than targeting PDE-cAMP-mediated signaling pathways. Here, we report the novel repositioning of anti-cancer MEK inhibitors as anxiolytics in a zebrafish model of anxiety-like behaviors. PDE inhibitors or activators of adenylate cyclase cause behaviors consistent with anxiety in larvae and adult zebrafish. Small-molecule screening identifies MEK inhibitors as potent suppressors of cAMP anxiety behaviors in both larvae and adult zebrafish, while causing no anxiolytic behavioral effects on their own. The mechanism underlying cAMP-induced anxiety is via crosstalk to activation of the RAS-MAPK signaling pathway. We propose that targeting crosstalk signaling pathways can be an effective strategy for mental health disorders, and advance the repositioning of MEK inhibitors as behavior stabilizers in the context of increased cAMP.
Collapse
Affiliation(s)
- Pia R Lundegaard
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Department of Biomedical Sciences, Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Corina Anastasaki
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Nicola J Grant
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Rowland R Sillito
- Actual Analytics Ltd, 2.05 Wilkie Building, 22-23 Teviot Row, Edinburgh EH8 9AG, UK
| | - Judith Zich
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Zhiqiang Zeng
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Karthika Paranthaman
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Anders Peter Larsen
- Department of Biomedical Sciences, Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, 2200 Copenhagen, Denmark
| | - J Douglas Armstrong
- Actual Analytics Ltd, 2.05 Wilkie Building, 22-23 Teviot Row, Edinburgh EH8 9AG, UK; School of Informatics, Institute for Adaptive and Neural Computation, Informatics Forum, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | - E Elizabeth Patton
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
81
|
Hunsberger HC, Weitzner DS, Rudy CC, Hickman JE, Libell EM, Speer RR, Gerhardt GA, Reed MN. Riluzole rescues glutamate alterations, cognitive deficits, and tau pathology associated with P301L tau expression. J Neurochem 2015; 135:381-94. [PMID: 26146790 DOI: 10.1111/jnc.13230] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 11/30/2022]
Abstract
Hyperexcitability of the hippocampus is a commonly observed phenomenon in the years preceding a diagnosis of Alzheimer's disease (AD). Our previous work suggests a dysregulation in glutamate neurotransmission may mediate this hyperexcitability, and glutamate dysregulation correlates with cognitive deficits in the rTg(TauP301L)4510 mouse model of AD. To determine whether improving glutamate regulation would attenuate cognitive deficits and AD-related pathology, TauP301L mice were treated with riluzole (~ 12.5 mg/kg/day p.o.), an FDA-approved drug for amyotrophic lateral sclerosis that lowers extracellular glutamate levels. Riluzole-treated TauP301L mice exhibited improved performance in the water radial arm maze and the Morris water maze, associated with a decrease in glutamate release and an increase in glutamate uptake in the dentate gyrus, cornu ammonis 3 (CA3), and cornu ammonis 1 (CA1) regions of the hippocampus. Riluzole also attenuated the TauP301L-mediated increase in hippocampal vesicular glutamate transporter 1, which packages glutamate into vesicles and influences glutamate release; and the TauP301L-mediated decrease in hippocampal glutamate transporter 1, the major transporter responsible for removing glutamate from the extracellular space. The TauP301L-mediated reduction in PSD-95 expression, a marker of excitatory synapses in the hippocampus, was also rescued by riluzole. Riluzole treatment reduced total levels of tau, as well as the pathological phosphorylation and conformational changes in tau associated with the P301L mutation. These findings open new opportunities for the development of clinically applicable therapeutic approaches to regulate glutamate in vulnerable circuits for those at risk for the development of AD.
Collapse
Affiliation(s)
- Holly C Hunsberger
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, West Virginia, USA
| | - Daniel S Weitzner
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, West Virginia, USA
| | - Carolyn C Rudy
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, West Virginia, USA
| | - James E Hickman
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, West Virginia, USA
| | - Eric M Libell
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Rebecca R Speer
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Greg A Gerhardt
- Center for Microelectrode Technology (CenMeT), Department of Anatomy and Neurobiology, University of Kentucky Health Sciences Center, Lexington, Kentucky, USA
| | - Miranda N Reed
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, West Virginia, USA.,Center for Neuroscience, West Virginia University, Morgantown, West Virginia, USA.,Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, West Virginia, USA.,Drug Discovery & Development Department, School of Pharmacy, Auburn University, Auburn, Alabama
| |
Collapse
|
82
|
Titus DJ, Oliva AA, Wilson NM, Atkins CM. Phosphodiesterase inhibitors as therapeutics for traumatic brain injury. Curr Pharm Des 2015; 21:332-42. [PMID: 25159077 DOI: 10.2174/1381612820666140826113731] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/25/2014] [Indexed: 11/22/2022]
Abstract
Developing therapeutics for traumatic brain injury remains a challenge for all stages of recovery. The pathological features of traumatic brain injury are diverse, and it remains an obstacle to be able to target the wide range of pathologies that vary between traumatic brain injured patients and that evolve during recovery. One promising therapeutic avenue is to target the second messengers cAMP and cGMP with phosphodiesterase inhibitors due to their broad effects within the nervous system. Phosphodiesterase inhibitors have the capability to target different injury mechanisms throughout the time course of recovery after brain injury. Inflammation and neuronal death are early targets of phosphodiesterase inhibitors, and synaptic dysfunction and circuitry remodeling are late potential targets of phosphodiesterase inhibitors. This review will discuss how signaling through cyclic nucleotides contributes to the pathology of traumatic brain injury in the acute and chronic stages of recovery. We will review our current knowledge of the successes and challenges of using phosphodiesterase inhibitors for the treatment of traumatic brain injury and conclude with important considerations in developing phosphodiesterase inhibitors as therapeutics for brain trauma.
Collapse
Affiliation(s)
| | | | | | - Coleen M Atkins
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA.
| |
Collapse
|
83
|
Phosphodiesterase-4 inhibitors ameliorates cognitive deficits in deoxycorticosterone acetate induced hypertensive rats via cAMP/CREB signaling system. Brain Res 2015; 1622:279-91. [PMID: 26168894 DOI: 10.1016/j.brainres.2015.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 12/17/2022]
Abstract
Phosphodiesterase-4 (PDE-4) inhibitors promote memory by blocking the degradation of cAMP. Existing evidence also shows that neuronal survival and plasticity are dependent on the phosphorylation of cAMP-response element-binding protein. In this regard, PDE-4 inhibitors have also been shown to reverse pharmacologically and genetically induced memory impairment in animal models. In the present study, the authors examined the effect of both rolipram and roflumilast (PDE-4 inhibitors) on the impairment of learning and memory observed in hypertensive rats. Deoxycorticosterone acetate (DOCA) salt hypertensive model was used to induce learning and memory deficits. The mRNA expression of different PDE-4 subtypes along with the protein levels of pCREB and BDNF in the hippocampus was quantified. Systolic blood pressure was significantly increased in DOCA salt hypertensive rats when compared to sham operated rats. This effect was reversed by clonidine, an α2 receptor agonist, while PDE-4 inhibitors did not. PDE-4 inhibitors significantly improved the time-induced memory deficits in object recognition task (ORT). In DOCA salt hypertensive rats, the gene expression of PDE-4B and PDE-4D was significantly increased. Furthermore, both pCREB and BDNF showed decreased levels of expression in hypertensive rats in comparison to sham operated rats. Repeated administration of PDE-4 inhibitors significantly decreased both PDE-4B and PDE-4D with an increase in the expression of pCREB and BDNF in hypersensitive rats. Also, rolipram, roflumilast and roflumilast N-oxide showed a linear increase in the plasma and brain concentrations after ORT. Our present findings suggested that PDE-4 inhibitors ameliorate hypertension-induced learning impairment via cAMP/CREB signaling that regulates BDNF expression downstream in the rat hippocampus.
Collapse
|
84
|
Ren QG, Wang YJ, Gong WG, Xu L, Zhang ZJ. Escitalopram Ameliorates Tau Hyperphosphorylation and Spatial Memory Deficits Induced by Protein Kinase A Activation in Sprague Dawley Rats. J Alzheimers Dis 2015; 47:61-71. [PMID: 26402755 DOI: 10.3233/jad-143012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Qing-Guo Ren
- Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yan-Juan Wang
- Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wei-Gang Gong
- Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Jun Zhang
- Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
85
|
Zhao Z, Sabirzhanov B, Wu J, Faden AI, Stoica BA. Voluntary Exercise Preconditioning Activates Multiple Antiapoptotic Mechanisms and Improves Neurological Recovery after Experimental Traumatic Brain Injury. J Neurotrauma 2015; 32:1347-60. [PMID: 25419789 DOI: 10.1089/neu.2014.3739] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Physical activity can attenuate neuronal loss, reduce neuroinflammation, and facilitate recovery after brain injury. However, little is known about the mechanisms of exercise-induced neuroprotection after traumatic brain injury (TBI) or its modulation of post-traumatic neuronal cell death. Voluntary exercise, using a running wheel, was conducted for 4 weeks immediately preceding (preconditioning) moderate-level controlled cortical impact (CCI), a well-established experimental TBI model in mice. Compared to nonexercised controls, exercise preconditioning (pre-exercise) improved recovery of sensorimotor performance in the beam walk task, as well as cognitive/affective functions in the Morris water maze, novel object recognition, and tail-suspension tests. Further, pre-exercise reduced lesion size, attenuated neuronal loss in the hippocampus, cortex, and thalamus, and decreased microglial activation in the cortex. In addition, exercise preconditioning activated the brain-derived neurotrophic factor pathway before trauma and amplified the injury-dependent increase in heat shock protein 70 expression, thus attenuating key apoptotic pathways. The latter include reduction in CCI-induced up-regulation of proapoptotic B-cell lymphoma 2 (Bcl-2)-homology 3-only Bcl-2 family molecules (Bid, Puma), decreased mitochondria permeabilization with attenuated release of cytochrome c and apoptosis-inducing factor (AIF), reduced AIF translocation to the nucleus, and attenuated caspase activation. Given these neuroprotective actions, voluntary physical exercise may serve to limit the consequences of TBI.
Collapse
Affiliation(s)
- Zaorui Zhao
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Boris Sabirzhanov
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Bogdan A Stoica
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
86
|
Santos M, D'Amico D, Dierssen M. From neural to genetic substrates of panic disorder: Insights from human and mouse studies. Eur J Pharmacol 2015; 759:127-41. [PMID: 25818748 DOI: 10.1016/j.ejphar.2015.03.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 01/15/2015] [Accepted: 03/12/2015] [Indexed: 01/30/2023]
Abstract
Fear is an ancestral emotion, an intrinsic defensive response present in every organism. Although fear is an evolutionarily advantageous emotion, under certain pathologies such as panic disorder it might become exaggerated and non-adaptive. Clinical and preclinical work pinpoints that changes in cognitive processes, such as perception and interpretation of environmental stimuli that rely on brain regions responsible for high-level function, are essential for the development of fear-related disorders. This review focuses on the involvement of cognitive function to fear circuitry disorders. Moreover, we address how animal models are contributing to understand the involvement of human candidate genes to pathological fear and helping achieve progress in this field. Multidisciplinary approaches that integrate human genetic findings with state of the art genetic mouse models will allow to elucidate the mechanisms underlying pathology and to develop new strategies for therapeutic targeting.
Collapse
Affiliation(s)
- Mónica Santos
- Cellular & Systems Neurobiology, Systems Biology Program, Center for Genomic Regulation (CRG), E-08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain; CIBER de Enfermedades Raras (CIBERER), E-08003 Barcelona, Spain; Institute of Biology, Otto-von-Guericke University, 39120 Magdeburg, Germany.
| | - Davide D'Amico
- Cellular & Systems Neurobiology, Systems Biology Program, Center for Genomic Regulation (CRG), E-08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain; CIBER de Enfermedades Raras (CIBERER), E-08003 Barcelona, Spain; ZeClinics SL, E-08001 Barcelona, Spain.
| | - Mara Dierssen
- Cellular & Systems Neurobiology, Systems Biology Program, Center for Genomic Regulation (CRG), E-08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain; CIBER de Enfermedades Raras (CIBERER), E-08003 Barcelona, Spain.
| |
Collapse
|
87
|
Samsom JN, Wong AHC. Schizophrenia and Depression Co-Morbidity: What We have Learned from Animal Models. Front Psychiatry 2015; 6:13. [PMID: 25762938 PMCID: PMC4332163 DOI: 10.3389/fpsyt.2015.00013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/24/2015] [Indexed: 12/15/2022] Open
Abstract
Patients with schizophrenia are at an increased risk for the development of depression. Overlap in the symptoms and genetic risk factors between the two disorders suggests a common etiological mechanism may underlie the presentation of comorbid depression in schizophrenia. Understanding these shared mechanisms will be important in informing the development of new treatments. Rodent models are powerful tools for understanding gene function as it relates to behavior. Examining rodent models relevant to both schizophrenia and depression reveals a number of common mechanisms. Current models which demonstrate endophenotypes of both schizophrenia and depression are reviewed here, including models of CUB and SUSHI multiple domains 1, PDZ and LIM domain 5, glutamate Delta 1 receptor, diabetic db/db mice, neuropeptide Y, disrupted in schizophrenia 1, and its interacting partners, reelin, maternal immune activation, and social isolation. Neurotransmission, brain connectivity, the immune system, the environment, and metabolism emerge as potential common mechanisms linking these models and potentially explaining comorbid depression in schizophrenia.
Collapse
Affiliation(s)
- James N Samsom
- Department of Molecular Neuroscience, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute , Toronto, ON , Canada ; Department of Pharmacology, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
| | - Albert H C Wong
- Department of Molecular Neuroscience, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute , Toronto, ON , Canada ; Department of Pharmacology, Faculty of Medicine, University of Toronto , Toronto, ON , Canada ; Department of Psychiatry, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
88
|
Effects of rolipram and roflumilast, phosphodiesterase-4 inhibitors, on hypertension-induced defects in memory function in rats. Eur J Pharmacol 2015; 746:138-47. [DOI: 10.1016/j.ejphar.2014.10.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 10/16/2014] [Accepted: 10/18/2014] [Indexed: 12/17/2022]
|
89
|
Spinal cord injury causes brain inflammation associated with cognitive and affective changes: role of cell cycle pathways. J Neurosci 2014; 34:10989-1006. [PMID: 25122899 DOI: 10.1523/jneurosci.5110-13.2014] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Experimental spinal cord injury (SCI) causes chronic neuropathic pain associated with inflammatory changes in thalamic pain regulatory sites. Our recent studies examining chronic pain mechanisms after rodent SCI showed chronic inflammatory changes not only in thalamus, but also in other regions including hippocampus and cerebral cortex. Because changes appeared similar to those in our rodent TBI models that are associated with neurodegeneration and neurobehavioral dysfunction, we examined effects of mouse SCI on cognition, depressive-like behavior, and brain inflammation. SCI caused spatial and retention memory impairment and depressive-like behavior, as evidenced by poor performance in the Morris water maze, Y-maze, novel objective recognition, step-down passive avoidance, tail suspension, and sucrose preference tests. SCI caused chronic microglial activation in the hippocampus and cerebral cortex, where microglia with hypertrophic morphologies and M1 phenotype predominated. Stereological analyses showed significant neuronal loss in the hippocampus at 12 weeks but not 8 d after injury. Increased cell-cycle-related gene (cyclins A1, A2, D1, E2F1, and PCNA) and protein (cyclin D1 and CDK4) expression were found chronically in hippocampus and cerebral cortex. Systemic administration of the selective cyclin-dependent kinase inhibitor CR8 after SCI significantly reduced cell cycle gene and protein expression, microglial activation and neurodegeneration in the brain, cognitive decline, and depression. These studies indicate that SCI can initiate a chronic brain neurodegenerative response, likely related to delayed, sustained induction of M1-type microglia and related cell cycle activation, which result in cognitive deficits and physiological depression.
Collapse
|
90
|
The phosphodiesterase-4 inhibitor rolipram attenuates heroin-seeking behavior induced by cues or heroin priming in rats. Int J Neuropsychopharmacol 2014; 17:1397-407. [PMID: 24832929 DOI: 10.1017/s1461145714000595] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inhibition of phosphodiesterase-4 (PDE4), an enzyme that specifically hydrolyzes cyclic adenosine monophosphate (cAMP) increases intracellular cAMP/cAMP-response element binding protein (CREB) signaling. Activation of this signaling is considered as an important compensatory response that decreases motivational properties of drugs of abuse. However, it is not known whether PDE4 is involved in heroin seeking. Self-administration of heroin (50 μg/kg/infusion) was performed under the fixed ratio 1 (FR1) schedule for 14 d and then drug seeking was extinguished for 10 d. The progressive ratio schedule was used to evaluate the relative motivational value of heroin reinforcement. After training, the conditioned cue or heroin priming (250 μg/kg) was introduced for the reinstatement of heroin-seeking behavior. Pretreatment (i.p.) with rolipram (0.03-0.3 mg/kg), a prototypical, selective PDE4 inhibitor, failed to inhibit heroin self-administration under the FR1 schedule, but decreased the reward values under the progressive ratio schedule in a dose-dependent manner. In addition, rolipram decreased the reinstatement of heroin seeking induced by cues or heroin priming even at the lowest dose (0.03 mg/kg); in contrast, the highest dose (0.3 mg/kg) of rolipram was required to decrease sucrose reinforcement. Finally, the effects of rolipram on heroin-seeking behavior were correlated with the increases in expression of phosphorylated CREB in the nucleus accumbens. The study demonstrated that rolipram inhibited heroin reward and heroin-seeking behavior. The results suggest that PDE4 plays an essential role in mediating heroin seeking and that PDE4 inhibitors may be used as a potential pharmacotherapeutic approach for heroin addiction.
Collapse
|
91
|
Hansen RT, Conti M, Zhang HT. Mice deficient in phosphodiesterase-4A display anxiogenic-like behavior. Psychopharmacology (Berl) 2014; 231:2941-54. [PMID: 24563185 DOI: 10.1007/s00213-014-3480-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/24/2014] [Indexed: 12/26/2022]
Abstract
RATIONALE Phosphodiesterases (PDEs) are a super family of enzymes responsible for the halting of intracellular cyclic nucleotide signaling and may represent novel therapeutic targets for treatment of cognitive disorders. PDE4 is of considerable interest to cognitive research because it is highly expressed in the brain, particularly in the cognition-related brain regions. Recently, the functional role of PDE4B and PDE4D, two of the four PDE4 subtypes (PDE4A, B, C, and D), in behavior has begun to be identified; however, the role of PDE4A in the regulation of behavior is still unknown. OBJECTIVES The purpose of this study was to characterize the functional role of PDE4A in behavior. METHODS The role of PDE4A in behavior was evaluated through a battery of behavioral tests using PDE4A knockout (KO) mice; urine corticosterone levels were also measured. RESULTS PDE4A KO mice exhibited improved memory in the step-through-passive-avoidance test. They also displayed anxiogenic-like behavior in elevated-plus maze, holeboard, light-dark transition, and novelty suppressed feeding tests. Consistent with the anxiety profile, PDE4A KO mice had elevated corticosterone levels compared with wild-type controls post-stress. Interestingly, PDE4A KO mice displayed no change in object recognition, Morris water maze, forced swim, tail suspension, and duration of anesthesia induced by co-administration of xylazine and ketamine (suggesting that PDE4A KO may not be emetic). CONCLUSIONS These results suggest that PDE4A may be important in the regulation of emotional memory and anxiety-like behavior, but not emesis. PDE4A could possibly represent a novel therapeutic target in the future for anxiety or disorders affecting memory.
Collapse
Affiliation(s)
- Rolf T Hansen
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Dr, Morgantown, WV, 26506-9137, USA
| | | | | |
Collapse
|
92
|
Lipina TV, Roder JC. Disrupted-In-Schizophrenia-1 (DISC1) interactome and mental disorders: impact of mouse models. Neurosci Biobehav Rev 2014; 45:271-94. [PMID: 25016072 DOI: 10.1016/j.neubiorev.2014.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 06/09/2014] [Accepted: 07/01/2014] [Indexed: 02/06/2023]
Abstract
Disrupted-In-Schizophrenia-1 (DISC1) has captured much attention because it predisposes individuals to a wide range of mental illnesses. Notably, a number of genes encoding proteins interacting with DISC1 are also considered to be relevant risk factors of mental disorders. We reasoned that the understanding of DISC1-associated mental disorders in the context of network principles will help to address fundamental properties of DISC1 as a disease gene. Systematic integration of behavioural phenotypes of genetic mouse lines carrying perturbation in DISC1 interacting proteins would contribute to a better resolution of neurobiological mechanisms of mental disorders associated with the impaired DISC1 interactome and lead to a development of network medicine. This review also makes specific recommendations of how to assess DISC1 associated mental disorders in mouse models and discuss future directions.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| | - John C Roder
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Departments of Medical Biophysics and Molecular & Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
93
|
Azam MA, Tripuraneni NS. Selective Phosphodiesterase 4B Inhibitors: A Review. Sci Pharm 2014; 82:453-81. [PMID: 25853062 PMCID: PMC4318138 DOI: 10.3797/scipharm.1404-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/10/2014] [Indexed: 12/28/2022] Open
Abstract
Phosphodiesterase 4B (PDE4B) is a member of the phosphodiesterase family of proteins that plays a critical role in regulating intracellular levels of cyclic adenosine monophosphate (cAMP) by controlling its rate of degradation. It has been demonstrated that this isoform is involved in the orchestra of events which includes inflammation, schizophrenia, cancers, chronic obstructive pulmonary disease, contractility of the myocardium, and psoriatic arthritis. Phosphodiesterase 4B has constituted an interesting target for drug development. In recent years, a number of PDE4B inhibitors have been developed for their use as therapeutic agents. In this review, an up-to-date status of the inhibitors investigated for the inhibition of PDE4B has been given so that this rich source of structural information of presently known PDE4B inhibitors could be helpful in generating a selective and potent inhibitor of PDE4B.
Collapse
Affiliation(s)
- Mohammed Afzal Azam
- Department of Pharmaceutical Chemistry, J. S. S. College of Pharmacy, Ootacamund-643001, Tamil Nadu, India
| | - Naga Srinivas Tripuraneni
- Department of Pharmaceutical Chemistry, J. S. S. College of Pharmacy, Ootacamund-643001, Tamil Nadu, India
| |
Collapse
|
94
|
N-Palmitoylethanolamine Administration Ameliorates the Clinical Manifestation and Progression of Experimental Autoimmune Encephalomyelitis in Rodents. EUR J INFLAMM 2014. [DOI: 10.1177/1721727x1401200216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Experimental autoimmune encephalomyelitis in rodents (EAE) is an accepted in vivo model for immunopathogenic mechanisms underlying multiple sclerosis (MS) and tests possible treatment options because it mimics many of the disease patterns. The current treatments for delaying MS progression include cytostatic, immunomodulatory drugs such as mitoxantrone, cyclophosphamide (CY), biological agents such as interferon (IFN)-beta, natalizumab and random polymer glatiramer acetate. Unfortunately, all of these compounds have potentially serious side effects, some require systemic administration, and the biological agents are costly and immunogenic, causing response failure during prolonged treatment. With this aim in mind, the purpose of the current research was to examine the effects of endogenous substances such as N-palmitoylethanolamine (PEA). PEA is an endogenous fatty acid amide belonging to the family of the N-acylethanolamines (NAEs). Recently, several studies demonstrated that PEA is an important analgesic, anti-inflammatory and neuroprotective mediator, acting at several molecular targets in both central and sensory nervous systems as well as immune cells. The effect of PEA daily administered was investigated in rats and mice developing EAE. A multidisciplinary approach was employed to study behavior and biochemical parameters. In our study we found that PEA counteracts the clinical course and pathology of monophasic EAE in myelin basic protein-immunized Lewis rats and the progression of EAE induced in C57BI/6 mice by immunization with myelin oligodendrocyte glycoprotein. Our results show that PEA treatment had a beneficial effect on the two different EAE models.
Collapse
|
95
|
Fox D, Burgin AB, Gurney ME. Structural basis for the design of selective phosphodiesterase 4B inhibitors. Cell Signal 2013; 26:657-63. [PMID: 24361374 DOI: 10.1016/j.cellsig.2013.12.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/04/2013] [Accepted: 12/11/2013] [Indexed: 01/05/2023]
Abstract
Phosphodiesterase-4B (PDE4B) regulates the pro-inflammatory Toll Receptor -Tumor Necrosis Factor α (TNFα) pathway in monocytes, macrophages and microglial cells. As such, it is an important, although under-exploited molecular target for anti-inflammatory drugs. This is due in part to the difficulty of developing selective PDE4B inhibitors as the amino acid sequence of the PDE4 active site is identical in all PDE4 subtypes (PDE4A-D). We show that highly selective PDE4B inhibitors can be designed by exploiting sequence differences outside the active site. Specifically, PDE4B selectivity can be achieved by capture of a C-terminal regulatory helix, now termed CR3 (Control Region 3), across the active site in a conformation that closes access by cAMP. PDE4B selectivity is driven by a single amino acid polymorphism in CR3 (Leu674 in PDE4B1 versus Gln594 in PDE4D). The reciprocal mutations in PDE4B and PDE4D cause a 70-80 fold shift in selectivity. Our structural studies show that CR3 is flexible and can adopt multiple orientations and multiple registries in the closed conformation. The new co-crystal structure with bound ligand provides a guide map for the design of PDE4B selective anti-inflammatory drugs.
Collapse
Affiliation(s)
- David Fox
- Emerald Bio, Bainbridge Island, WA, USA
| | | | - Mark E Gurney
- Tetra Discovery Partners, Grand Rapids, MI, USA; Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
96
|
Kelly MP, Adamowicz W, Bove S, Hartman AJ, Mariga A, Pathak G, Reinhart V, Romegialli A, Kleiman RJ. Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. Cell Signal 2013; 26:383-97. [PMID: 24184653 DOI: 10.1016/j.cellsig.2013.10.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/13/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022]
Abstract
3',5'-cyclic nucleotide phosphodiesterases (PDEs) are the only known enzymes to compartmentalize cAMP and cGMP, yet little is known about how PDEs are dynamically regulated across the lifespan. We mapped mRNA expression of all 21 PDE isoforms in the adult rat and mouse central nervous system (CNS) using quantitative polymerase chain reaction (qPCR) and in situ hybridization to assess conservation across species. We also compared PDE mRNA and protein in the brains of old (26 months) versus young (5 months) Sprague-Dawley rats, with select experiments replicated in old (9 months) versus young (2 months) BALB/cJ mice. We show that each PDE isoform exhibits a unique expression pattern across the brain that is highly conserved between rats, mice, and humans. PDE1B, PDE1C, PDE2A, PDE4A, PDE4D, PDE5A, PDE7A, PDE8A, PDE8B, PDE10A, and PDE11A showed an age-related increase or decrease in mRNA expression in at least 1 of the 4 brain regions examined (hippocampus, cortex, striatum, and cerebellum). In contrast, mRNA expression of PDE1A, PDE3A, PDE3B, PDE4B, PDE7A, PDE7B, and PDE9A did not change with age. Age-related increases in PDE11A4, PDE8A3, PDE8A4/5, and PDE1C1 protein expression were confirmed in hippocampus of old versus young rodents, as were age-related increases in PDE8A3 protein expression in the striatum. Age-related changes in PDE expression appear to have functional consequences as, relative to young rats, the hippocampi of old rats demonstrated strikingly decreased phosphorylation of GluR1, CaMKIIα, and CaMKIIβ, decreased expression of the transmembrane AMPA regulatory proteins γ2 (a.k.a. stargazin) and γ8, and increased trimethylation of H3K27. Interestingly, expression of PDE11A4, PDE8A4/5, PDE8A3, and PDE1C1 correlate with these functional endpoints in young but not old rats, suggesting that aging is not only associated with a change in PDE expression but also a change in PDE compartmentalization.
Collapse
Affiliation(s)
- Michy P Kelly
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology & Neuroscience, 6439 Garners Ferry Rd, Columbia, SC 29209, USA.
| | - Wendy Adamowicz
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA.
| | - Susan Bove
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA.
| | - Alexander J Hartman
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology & Neuroscience, 6439 Garners Ferry Rd, Columbia, SC 29209, USA
| | - Abigail Mariga
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA.
| | - Geetanjali Pathak
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology & Neuroscience, 6439 Garners Ferry Rd, Columbia, SC 29209, USA
| | - Veronica Reinhart
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA
| | - Alison Romegialli
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA.
| | - Robin J Kleiman
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA.
| |
Collapse
|
97
|
Van den Hove DLA, Kenis G, Brass A, Opstelten R, Rutten BPF, Bruschettini M, Blanco CE, Lesch KP, Steinbusch HWM, Prickaerts J. Vulnerability versus resilience to prenatal stress in male and female rats; implications from gene expression profiles in the hippocampus and frontal cortex. Eur Neuropsychopharmacol 2013. [PMID: 23199416 DOI: 10.1016/j.euroneuro.2012.09.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adverse life events during pregnancy may impact upon the developing fetus, predisposing prenatally stressed offspring to the development of psychopathology. In the present study, we examined the effects of prenatal restraint stress (PS) on anxiety- and depression-related behavior in both male and female adult Sprague-Dawley rats. In addition, gene expression profiles within the hippocampus and frontal cortex (FC) were examined in order to gain more insight into the molecular mechanisms that mediate the behavioral effects of PS exposure. PS significantly increased anxiety-related behavior in male, but not female offspring. Likewise, depression-related behavior was increased in male PS rats only. Further, male PS offspring showed increased basal plasma corticosterone levels in adulthood, whereas both PS males and females had lower stress-induced corticosterone levels when compared to controls. Microarray-based profiling of the hippocampus and FC showed distinct sex-dependent changes in gene expression after PS. Biological processes and/or signal transduction cascades affected by PS included glutamatergic and GABAergic neurotransmission, mitogen-activated protein kinase (MAPK) signaling, neurotrophic factor signaling, phosphodiesterase (PDE)/ cyclic nucleotide signaling, glycogen synthase kinase 3 (GSK3) signaling, and insulin signaling. Further, the data indicated that epigenetic regulation is affected differentially in male and female PS offspring. These sex-specific alterations may, at least in part, explain the behavioral differences observed between both sexes, i.e. relative vulnerability versus resilience to PS in male versus female rats, respectively. These data reveal novel potential targets for antidepressant and mood stabilizing drug treatments including PDE inhibitors and histone deacetylase (HDAC) inhibitors.
Collapse
Affiliation(s)
- D L A Van den Hove
- Department of Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands; Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Richter W, Menniti FS, Zhang HT, Conti M. PDE4 as a target for cognition enhancement. Expert Opin Ther Targets 2013; 17:1011-27. [PMID: 23883342 DOI: 10.1517/14728222.2013.818656] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The second messengers cAMP and cGMP mediate fundamental aspects of brain function relevant to memory, learning, and cognitive functions. Consequently, cyclic nucleotide phosphodiesterases (PDEs), the enzymes that inactivate the cyclic nucleotides, are promising targets for the development of cognition-enhancing drugs. AREAS COVERED PDE4 is the largest of the 11 mammalian PDE families. This review covers the properties and functions of the PDE4 family, highlighting procognitive and memory-enhancing effects associated with their inactivation. EXPERT OPINION PAN-selective PDE4 inhibitors exert a number of memory- and cognition-enhancing effects and have neuroprotective and neuroregenerative properties in preclinical models. The major hurdle for their clinical application is to target inhibitors to specific PDE4 isoforms relevant to particular cognitive disorders to realize the therapeutic potential while avoiding side effects, in particular emesis and nausea. The PDE4 family comprises four genes, PDE4A-D, each expressed as multiple variants. Progress to date stems from characterization of rodent models with selective ablation of individual PDE4 subtypes, revealing that individual subtypes exert unique and non-redundant functions in the brain. Thus, targeting specific PDE4 subtypes, as well as splicing variants or conformational states, represents a promising strategy to separate the therapeutic benefits from the side effects of PAN-PDE4 inhibitors.
Collapse
Affiliation(s)
- Wito Richter
- University of California San Francisco, Department of Obstetrics, Gynecology and Reproductive Sciences, San Francisco, CA 94143-0556, USA.
| | | | | | | |
Collapse
|
99
|
Keil MF, Briassoulis G, Nesterova M, Miraftab N, Gokarn N, Wu TJ, Stratakis CA. Threat bias in mice with inactivating mutations of Prkar1a. Neuroscience 2013; 241:206-14. [PMID: 23531435 PMCID: PMC3646976 DOI: 10.1016/j.neuroscience.2013.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 01/18/2023]
Abstract
Anxiety disorders are associated with abnormalities in the neural processing of threat-related stimuli. However, the neurobiological mechanisms underlying threat bias in anxiety are not well understood. We recently reported that a Prkar1a heterozygote (Prkar1a(+/-)) mouse with haploinsufficiency for the main regulatory subunit (R1α) of protein kinase A (PKA) exhibits an anxiety-like phenotype associated with increased cAMP signaling in the amygdala. Prkar1a(+/-) mice provide a novel model to test the direct effect of altered PKA expression and subsequent anxiety-like behavioral phenotype on the response to threat. We hypothesized that Prkar1a(+/-)mice would exhibit a bias in threat detection since increased amygdala activity during emotional stimuli is associated with a maladaptive response. We measured behavior and PKA activity in brain areas after exposure to predator or control odor exposure in male Prkar1a(+/-) and wild-type (WT) littermates. Indeed, there were significant differences in the behavioral response to threat detection; WT mice showed the expected response of decrease in exploratory behavior during predator vs. control odor exposure, while Prkar1a(+/-) mice did not alter their behavior between conditions. Basal and total PKA activity was independently associated with genotype, with an interaction between genotype and threat condition. Prkar1a(+/-) mice had higher PKA activity in amygdala and ventromedial hypothalamus in response to predator odor. In contrast, WT mice had higher PKA activity in amygdala and orbitofrontal cortex after exposure to control odor. Dysregulated PKA activity in the amygdala-prefrontal cortex circuitry in Prkar1a(+/-) mice is associated with behavioral phenotype of anxiety and a bias for threat. This is likely related to a failure to inhibit the amydgala response, which is an effect of the genotype. These results suggest that the alteration in PKA signaling in Prkar1a(+/-) mice is not ubiquitous in the brain; tissue-specific effects of the cAMP/PKA pathway are related to threat detection and fear sensitization.
Collapse
Affiliation(s)
- M F Keil
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
Interleukin-1β (IL-1β) is involved in mood alterations associated with inflammatory illnesses and with stress. The synaptic basis of IL-1β-induced emotional disturbances is still unknown. To address the possible involvement of the endocannabinoid system in IL-1β-induced anxiety, we performed behavioral and neurophysiological studies in mice exposed to stress or to intracerebroventricular injections of this inflammatory cytokine or of its antagonist. We found that a single intracerebroventricular injection of IL-1β caused anxiety in mice, and abrogated the sensitivity of cannabinoid CB1 receptors (CB1Rs) controlling GABA synapses in the striatum. Identical behavioral and synaptic results were obtained following social defeat stress, and intracerebroventricular injection of IL-1 receptor antagonist reverted both effects. IL-1β-mediated inhibition of CB1R function was secondary to altered cholesterol composition within membrane lipid rafts, and required intact function of the transient receptor potential vanilloid 1 (TRPV1) channel, another element of the endocannabinoid system. Membrane lipid raft disruption and inhibition of cholesterol synthesis, in fact, abrogated IL-1β-CB1R coupling, and TRPV1-/- mice were indeed insensitive to the synaptic and behavioral effects of both IL-1β and stress. On the other hand, cholesterol enrichment of striatal slices mimicked the synaptic effects of IL-1β on CB1Rs only in control mice, while the same treatment was ineffective in slices prepared from TRPV1-/- mice. The present investigation identifies a previously unrecognized interaction between a major proinflammatory cytokine and the endocannabinoid system in the pathophysiology of anxiety.
Collapse
|