51
|
Papathanasiou I, Malizos KN, Tsezou A. Bone morphogenetic protein-2-induced Wnt/β-catenin signaling pathway activation through enhanced low-density-lipoprotein receptor-related protein 5 catabolic activity contributes to hypertrophy in osteoarthritic chondrocytes. Arthritis Res Ther 2012; 14:R82. [PMID: 22513174 PMCID: PMC3446456 DOI: 10.1186/ar3805] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/31/2012] [Accepted: 04/18/2012] [Indexed: 12/05/2022] Open
Abstract
Introduction Events normally taking place in the terminal chondrocyte differentiation in the growth plate are also observed during osteoarthritis (OA) development, suggesting that molecules, such as Wnts and bone morphogenetic proteins (BMPs) regulating chondrocyte activity in the growth plate, may play a key role in osteoarthritis pathogenesis. The aim of the study was to investigate the possible cross-talk between BMP-2 and Wnt/β-catenin pathways in OA progression. Methods Low-density-lipoprotein receptor-related protein 5 (LRP-5) and 6, BMP-2, -4, and -7, bone morphogenetic protein receptor-IA and IB (BMPR-IA and BMPR-IA), lymphoid enhancer factor-1 (LEF-1), and transcription factor 4 (TCF-4) expression levels were investigated in normal and osteoarthritic chondrocytes. LRP-5, β-catenin (phospho and active form), matrix metalloproteinases (MMPs) 7, 9, 13, 14, ADAMTS-4, 5, as well as collagen X (COL10A1) expression levels were evaluated after LRP-5 silencing in BMP-2-treated chondrocytes. The investigation of Smad1/5/8 binding to LRP-5 promoter was assessed with chromatin immunoprecipitation (ChIP). Furthermore, we evaluated the effect of experimental activation of the Wnt/β-catenin pathway with LiCl and LEF-1 silencing, in LiCl-treated chondrocytes, on matrix metalloproteinases (MMPs) 7, 9, 13, 14, ADAMTS-4, 5, and collagen X (COL10A1) expression, as well as possible interactions between LEF-1 and MMPs and COL10A1 promoters by using a ChIP assay. Results LRP-5, BMP-2, BMP-4, BMPR-IA, and LEF-1 mRNA and protein expression levels were found to be significantly upregulated in osteoarthritic chondrocytes compared with normal. We showed that treatment of cultured chondrocytes with BMP-2 resulted in increased β-catenin nuclear translocation and LRP-5 expression and that the BMP-2-induced LRP-5 upregulation is mediated through Smad1/5/8 binding on LRP-5 promoter. LRP-5 silencing reduced nuclear β-catenin protein levels, MMPs and collagen X expression, whereas increased phospho-β-catenin protein levels in BMP-2-treated chondrocyte. Furthermore, we demonstrated that activation of the Wnt/β-catenin signaling pathway by LiCl and LEF-1 downregulation by using siRNA regulates MMP-9, 13, 14, ADAMTS-5, and COL10A1 expression, evidenced by the observed strong binding of LEF-1 to MMP-9, 13, 14, ADAMTS-5 and COL10A promoters. Conclusions Our findings suggest, for the first time to our knowledge, that BMP-2-induced Wnt/β-catenin signaling activation through LRP-5 may contribute to chondrocyte hypertrophy and cartilage degradation in osteoarthritis.
Collapse
Affiliation(s)
- Ioanna Papathanasiou
- Laboratory of Cytogenetics and Molecular Genetics, University of Thessaly, School of Medicine, Mezourlo, Larissa, 41100, Greece
| | | | | |
Collapse
|
52
|
Macpherson AJ, Geuking MB, McCoy KD. Homeland security: IgA immunity at the frontiers of the body. Trends Immunol 2012; 33:160-7. [PMID: 22410243 DOI: 10.1016/j.it.2012.02.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/02/2012] [Accepted: 02/07/2012] [Indexed: 12/30/2022]
Abstract
IgA is the most abundant immunoglobulin produced in mammals, and is mostly secreted across mucous membranes. At these frontiers, which are constantly assaulted by pathogenic and commensal microbes, IgA provides part of a layered system of immune protection. In this review, we describe how IgA induction occurs through both T-dependent and T-independent mechanisms, and how IgA is generated against the prodigious load of commensal microbes after mucosal dendritic cells (DCs) have sampled a tiny fraction of the microbial consortia in the intestinal lumen. To function in this hostile environment, IgA must be induced behind the 'firewall' of the mesenteric lymph nodes to generate responses that integrate microbial stimuli, rather than the classical prime-boost effects characteristic of systemic immunity.
Collapse
Affiliation(s)
- Andrew J Macpherson
- Maurice Müller Laboratories, DKF, Universitätsklinik für Viszerale Chirurgie und Medizin, University Hospital (Inselspital), University of Bern, Bern, Switzerland.
| | | | | |
Collapse
|
53
|
Nishimura R, Hata K, Matsubara T, Wakabayashi M, Yoneda T. Regulation of bone and cartilage development by network between BMP signalling and transcription factors. J Biochem 2012; 151:247-54. [PMID: 22253449 DOI: 10.1093/jb/mvs004] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Bone morphogenetic protein(s) (BMP) are very powerful cytokines that induce bone and cartilage formation. BMP also stimulate osteoblast and chondrocyte differentiation. During bone and cartilage development, BMP regulates the expression and/or the function of several transcription factors through activation of Smad signalling. Genetic studies revealed that Runx2, Osterix and Sox9, all of which function downstream of BMP, play essential roles in bone and/or cartilage development. In addition, two other transcription factors, Msx2 and Dlx5, which interact with BMP signalling, are involved in bone and cartilage development. The importance of these transcription factors in bone and cartilage development has been supported by biochemical and cell biological studies. Interestingly, BMP is regulated by several negative feedback systems that appear necessary for fine-tuning of bone and cartilage development induced by BMP. Thus, BMP harmoniously regulates bone and cartilage development by forming network with several transcription factors.
Collapse
Affiliation(s)
- Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry.
| | | | | | | | | |
Collapse
|
54
|
Wakabayashi Y, Tamiya T, Takada I, Fukaya T, Sugiyama Y, Inoue N, Kimura A, Morita R, Kashiwagi I, Takimoto T, Nomura M, Yoshimura A. Histone 3 lysine 9 (H3K9) methyltransferase recruitment to the interleukin-2 (IL-2) promoter is a mechanism of suppression of IL-2 transcription by the transforming growth factor-β-Smad pathway. J Biol Chem 2011; 286:35456-35465. [PMID: 21862595 PMCID: PMC3195630 DOI: 10.1074/jbc.m111.236794] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/26/2011] [Indexed: 11/06/2022] Open
Abstract
Suppression of IL-2 βproduction from T cells is an important process for the immune regulation by TGF-β. However, the mechanism by which this suppression occurs remains to be established. Here, we demonstrate that Smad2 and Smad3, two major TGF-β-downstream transcription factors, are redundantly essential for TGF-β-mediated suppression of IL-2 production in CD4(+) T cells using Smad2- and Smad3-deficient T cells. Both Smad2 and Smad3 were recruited into the proximal region of the IL-2 promoter in response to TGF-β. We then investigated the histone methylation status of the IL-2 promoter. Although both histone H3 lysine 9 (H3K9) and H3K27 trimethylation have been implicated in gene silencing, only H3K9 trimethylation was increased in the proximal region of the IL-2 promoter in a Smad2/3-dependent manner, whereas H3K27 trimethylation was not. The H3K9 methyltransferases Setdb1 and Suv39h1 bound to Smad3 and suppressed IL-2 promoter activity in collaboration with Smad3. Overexpression of Suv39h1 in 68-41 T cells strongly inhibited IL-2 production in response to T cell receptor stimulation irrespective of the presence or absence of TGF-β, whereas Setdb1 overexpression only slightly suppressed IL-2 production. Silencing of Suv39h1 by shRNA reverted the suppressive effect of TGF-β on IL-2 production. Furthermore, TGF-β induced Suv39h1 recruitment to the proximal region of the IL-2 promoter in wild type primary T cells; however, this was not observed in Smad2(-/-)Smad3(+/-) T cells. Thus, we propose that Smads recruit H3K9 methyltransferases Suv39h1 to the IL-2 promoter, thereby inducing suppressive histone methylation and inhibiting T cell receptor-mediated IL-2 transcription.
Collapse
Affiliation(s)
- Yu Wakabayashi
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Taiga Tamiya
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Ichiro Takada
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Tomohiro Fukaya
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yuki Sugiyama
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Naoko Inoue
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Akihiro Kimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Ikko Kashiwagi
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Tomohito Takimoto
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Masatoshi Nomura
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan and Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo 102-0075, Japan.
| |
Collapse
|
55
|
Inui M, Manfrin A, Mamidi A, Martello G, Morsut L, Soligo S, Enzo E, Moro S, Polo S, Dupont S, Cordenonsi M, Piccolo S. USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nat Cell Biol 2011; 13:1368-75. [PMID: 21947082 DOI: 10.1038/ncb2346] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/17/2011] [Indexed: 12/12/2022]
Abstract
The TGFβ pathway is critical for embryonic development and adult tissue homeostasis. On ligand stimulation, TGFβ and BMP receptors phosphorylate receptor-activated SMADs (R-SMADs), which then associate with SMAD4 to form a transcriptional complex that regulates gene expression through specific DNA recognition. Several ubiquitin ligases serve as inhibitors of R-SMADs, yet no deubiquitylating enzyme (DUB) for these molecules has so far been identified. This has left unexplored the possibility that ubiquitylation of R-SMADs is reversible and engaged in regulating SMAD function, in addition to degradation. Here we identify USP15 as a DUB for R-SMADs. USP15 is required for TGFβ and BMP responses in mammalian cells and Xenopus embryos. At the biochemical level, USP15 primarily opposes R-SMAD monoubiquitylation, which targets the DNA-binding domains of R-SMADs and prevents promoter recognition. As such, USP15 is critical for the occupancy of endogenous target promoters by the SMAD complex. These data identify an additional layer of control by which the ubiquitin system regulates TGFβ biology.
Collapse
Affiliation(s)
- Masafumi Inui
- Department of Medical Biotechnologies, Section of Histology and Embryology, University of Padua, viale G. Colombo 3, 35100 Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Freire MO, You HK, Kook JK, Choi JH, Zadeh HH. Antibody-mediated osseous regeneration: a novel strategy for bioengineering bone by immobilized anti-bone morphogenetic protein-2 antibodies. Tissue Eng Part A 2011; 17:2911-8. [PMID: 21870943 DOI: 10.1089/ten.tea.2010.0584] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bone regeneration often requires harvesting of autologous bone with significant potential morbidity and cost. Recombinant human bone morphogenetic protein (rhBMP)-2 has been approved by the U.S. Food and Drug Administration for specific regenerative indications. However, administration of exogenous growth factors has many drawbacks. The objective of the present proof-of-concept study was to determine whether immobilized anti-BMP-2 antibodies (Abs) could capture endogenous BMP-2 in local sites to mediate osteogenesis, a strategy we refer to as antibody-mediated osseous regeneration (AMOR). We have generated a murine anti-BMP-2 monoclonal antibody library, which was tested along with commercially available Abs in vitro and in vivo for their ability to mediate AMOR. In vitro studies demonstrated that only some anti-BMP-2 Abs tested formed immune complexes with BMP-2, which can bind to BMP cellular receptor, whereas other BMP-2/anti-BMP-2 complexes failed to bind. To investigate whether anti-BMP-2 Abs were able to mediate AMOR in vivo, anti-BMP-2 Abs were immobilized on absorbable collagen sponge (ACS) and surgically placed in rat calvarial defects. Microcomputed tomography analysis of live animals at 2, 4, and 6 weeks demonstrated that some anti-BMP-2 Abs immobilized on ACS mediated significant bone regeneration, whereas other clones did not mediate any bone regeneration. In situ BMP-2 and osteocalcin expression was investigated by immunohistochemistry. Results demonstrated higher BMP-2 and osteocalcin expression in sites with increased bone regeneration. Results provide first evidence for the ability of anti-BMP2 Abs to form an immune complex with endogenous BMP-2 and mediate bone regeneration in vivo, suggesting a promising therapeutic method for tissue engineering.
Collapse
Affiliation(s)
- Marcelo O Freire
- Laboratory of Immune Regulation and Tissue Engineering, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | |
Collapse
|
57
|
Abstract
Transforming growth factor-β (TGF-β) has been shown to play an essential role in establishing immunological tolerance, yet recent studies have revealed the pro-inflammatory roles of TGF-β in inflammatory responses. TGF-β induces Foxp3-positive regulatory T cells (iTregs), while in the presence of IL-6, it induces pathogenic IL-17 producing Th17 cells. TGF-β inhibits the proliferation of T cells as well as cytokine production via Foxp3-dependent and independent mechanisms. On the one hand, little is known about molecular mechanisms involved in immune suppression via TGF-β; however, recent studies suggest that Smad2 as well as Smad3 play essential roles in Foxp3 induction and cytokine suppression, whereas Th17 differentiation is promoted via the Smad-independent pathway. Mutual suppression of signaling between TGF-β and inflammatory cytokines has been shown to be necessary for the balance of immunity and tolerance.
Collapse
|
58
|
He SY, Han SX, Jiang RF, Xiang YS. Significance of methylation and protein expression of the Runx3 gene in colon carcinogenesis. Shijie Huaren Xiaohua Zazhi 2011; 19:1860-1863. [DOI: 10.11569/wcjd.v19.i17.1860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the methylation and protein expression of the Runx3 gene in sporadic colorectal cancer (SCRC), colonic adenoma, and normal colon tissue and to evaluate their clinical significance in colorectal carcinogenesis.
METHODS: Thirty-four colonic cancer specimens, 34 colonic adenoma specimens, and 34 normal colonic tissue specimens were used in this study. The CpG island methylation status of the Runx3 gene was detected by methylation-specific PCR in these specimens. and the protein expression of Runx3 was detected by immunohistochemistry.
RESULTS: The rates of methylation of the Runx3 gene in colonic cancer and colonic adenoma were significantly higher than that in normal colonic tissue (23.5%, 20.6% vs 0.0%, both P < 0.05). There was no significant difference in the rate of methylation of the Runx3 gene between colonic adenoma and colonic cancer (P > 0.05). The positive rate of Runx3 protein expression was significantly lower in colonic cancer than in colonic adenoma and normal tissue (17.7% vs 61.8%, 76.5%, both P < 0.05).
CONCLUSION: Methylation of the promoter CpG islands of the Runx3 gene is an important genetic event of colon carcinogenesis and may be associated with altered protein expression of Runx3.
Collapse
|
59
|
van der Kraan PM, Goumans MJ, Blaney Davidson E, ten Dijke P. Age-dependent alteration of TGF-β signalling in osteoarthritis. Cell Tissue Res 2011; 347:257-65. [PMID: 21638205 PMCID: PMC3250613 DOI: 10.1007/s00441-011-1194-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/06/2011] [Indexed: 12/28/2022]
Abstract
Osteoarthritis (OA) is a disease of articular cartilage, with aging as the main risk factor. In OA, changes in chondrocytes lead to the autolytic destruction of cartilage. Transforming growth factor-β has recently been demonstrated to signal not only via activin receptor-like kinase 5 (ALK5)-induced Smad2/3 phosphorylation, but also via ALK1-induced Smad1/5/8 phosphorylation in articular cartilage. In aging cartilage and experimental OA, the ratio ALK1/ALK5 has been found to be increased, and the expression of ALK1 is correlated with matrix metalloproteinase-13 expression. The age-dependent shift towards Smad1/5/8 signalling might trigger the differentiation of articular chondrocytes with an autolytic phenotype.
Collapse
Affiliation(s)
- Peter M van der Kraan
- Department of Rheumatology, Radboud University Nijmegen Medical Centre Nijmegen, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
60
|
Zhao J, Watanabe T, Bhawal UK, Kubota E, Abiko Y. Transcriptome analysis of β-TCP implanted in dog mandible. Bone 2011; 48:864-77. [PMID: 21134491 DOI: 10.1016/j.bone.2010.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 10/20/2010] [Accepted: 11/27/2010] [Indexed: 11/25/2022]
Abstract
Beta-tricalcium phosphate (β-TCP) is widely used in clinical orthopedic surgery due to its high biodegradability, osteoconductivity, easy manipulation and lack of histotoxicity. However, little is known about the molecular mechanisms responsible for the beneficial effects of β-TCP in bone formation. In this study, β-TCP was implanted in dog mandibles, after which the gene expression profiles and signaling pathways were monitored using microarray and Ingenuity Pathways Analysis (IPA). Following the extraction of premolars and subsequent bone healing, β-TCP was implanted into the artificial osseous defect. Histological evaluation (H-E staining) was carried out 4, 7 and 14 days after implantation. In addition, total RNA was isolated from bone tissues and gene expression profiles were examined using microarray analysis coupled with Ingenuity Pathways Analysis (IPA). Finally, real-time PCR was used to confirm mRNA levels. It was found that β-TCP implantation led to a two-fold change in 3409 genes on day 4, 3956 genes on day 7, and 6899 genes on day 14. Among them, the expression of collagen type I α1 (COL1A1), alkaline phosphatase (ALP) and transforming growth factor (TGF)-β2 was increased on day 4, the expression of receptor activator of NF-kappaB ligand (RANKL) and interferon-γ (IFN-γ) was decreased on day 7, and the expression of osteoprotegerin (OPG) was decreased on day 14, affecting the bone morphogenetic protein (BMP), Wnt/β-catenin and nuclear factor-kappaB (NF-κB) signaling pathways in osteoblasts and osteoclasts. Simultaneously, vascular cell adhension molecule (VCAM)-1 expression was increased on day 4 and stromal cell-derived factor (SDF)-1 expression was increased on days 4 and 14. Taken together, these findings shed light on some of the cellular events associated with bone formation, bioresorption, regeneration and healing of β-TCP following its implantation. The results suggest that β-TCP enhances bone healing processes and stimulates the coordinated actions of osteoblasts and osteoclasts, leading to bone regeneration.
Collapse
Affiliation(s)
- J Zhao
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, 2-870-1, Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan
| | | | | | | | | |
Collapse
|
61
|
Konkel JE, Maruyama T, Carpenter AC, Xiong Y, Zamarron BF, Hall BE, Kulkarni AB, Zhang P, Bosselut R, Chen W. Control of the development of CD8αα+ intestinal intraepithelial lymphocytes by TGF-β. Nat Immunol 2011; 12:312-9. [PMID: 21297643 PMCID: PMC3062738 DOI: 10.1038/ni.1997] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/11/2011] [Indexed: 12/12/2022]
Abstract
The molecular mechanisms that direct the development of TCRαβ+CD8αα+ intestinal intraepithelial lymphocytes (IELs) are not thoroughly understood. Here we show that transforming growth factor-β (TGF-β) controls the development of TCRαβ+CD8αα+ IELs. Mice with either a null mutation in the gene encoding TGF-β1 or T cell-specific deletion of TGF-β receptor I lacked TCRαβ+CD8αα+ IELs, whereas mice with transgenic overexpression of TGF-β1 had a larger population of TCRαβ+CD8αα+ IELs. We observed defective development of the TCRαβ+CD8αα+ IEL thymic precursors (CD4⁻CD8⁻TCRαβ+CD5+) in the absence of TGF-β. In addition, we found that TGF-β signaling induced CD8α expression in TCRαβ+CD8αα+ IEL thymic precursors and induced and maintained CD8α expression in peripheral populations of T cells. Our data demonstrate a previously unrecognized role for TGF-β in the development of TCRαβ+CD8αα+ IELs and the expression of CD8α in T cells.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/metabolism
- CD8 Antigens/genetics
- CD8 Antigens/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Cells, Cultured
- Epithelial Cells/cytology
- Epithelial Cells/metabolism
- Flow Cytometry
- Gene Expression/drug effects
- Intestinal Mucosa/cytology
- Intestinal Mucosa/metabolism
- Lymphocyte Count
- Lymphocytes/cytology
- Lymphocytes/drug effects
- Lymphocytes/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Smad3 Protein/genetics
- Smad3 Protein/metabolism
- Thymus Gland/cytology
- Thymus Gland/metabolism
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
- Transforming Growth Factor beta1/pharmacology
Collapse
Affiliation(s)
- Joanne E Konkel
- Mucosal Immunology Unit, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Sugai M, Watanabe K, Nambu Y, Hayashi T, Shimizu A. Functions of Runx in IgA class switch recombination. J Cell Biochem 2011; 112:409-14. [PMID: 21268061 DOI: 10.1002/jcb.22971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Runt-related (Runx) transcriptional regulators play essential roles in various cell fate determination processes, and dysfunction of these regulators causes many human diseases. Considerable insight into the functions of Runx proteins was provided mainly by studies of hematopoietic and skeletal disorders. Recently, extensive investigations have revealed new functions of these transcription factors in immune cell differentiation and functioning. In the present review, we discuss the mechanisms of selective IgA production in the intestine and report the involvement of Runx proteins in this process.
Collapse
Affiliation(s)
- Manabu Sugai
- Translational Research Center, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
63
|
Pratap J, Lian JB, Stein GS. Metastatic bone disease: role of transcription factors and future targets. Bone 2011; 48:30-6. [PMID: 20561908 PMCID: PMC2958222 DOI: 10.1016/j.bone.2010.05.035] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 05/23/2010] [Indexed: 10/19/2022]
Abstract
Progression of cancer from the earliest event of cell transformation through stages of tumor growth and metastasis at a distal site involves many complex biological processes. Underlying the numerous responses of cancer cells to the tumor microenvironment which support their survival, migration and metastasis are transcription factors that regulate the expression of genes reflecting properties of the tumor cell. A number of transcription factors have been identified that play key roles in promoting oncogenesis, tumor growth, metastasis and tissue destruction. Relevant to solid tumors and leukemias, tissue-specific transcription factors that are deregulated resulting from mutations, being silenced or aberrantly expressed, have been well characterized. These are the master transcription factors of the Runx family of genes, the focus of this review, with emphasis placed on Runx2 that is abnormally expressed at very high levels in cancer cell lines that are metastatic to bone. Recent evidence has identified a correlation of Runx2 levels in advanced stages of prostate and breast cancer and demonstrated that effective depletion of Runx2 by RNA interference inhibits migration and invasive properties of the cells prevents metastatic bone disease. This striking effect is consistent with the broad spectrum of Runx2 properties in activating many genes in tumor cells that have already been established as indicators of bone metastasis in poor prognosis. Potential strategies to translate these findings for therapeutic applications are discussed.
Collapse
Affiliation(s)
- Jitesh Pratap
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Street, Chicago, IL 60612
| | - Jane B. Lian
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Gary S. Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| |
Collapse
|
64
|
Biomolecular strategies of bone augmentation in spinal surgery. Trends Mol Med 2010; 17:215-22. [PMID: 21195666 DOI: 10.1016/j.molmed.2010.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/27/2010] [Accepted: 12/01/2010] [Indexed: 11/22/2022]
Abstract
Autologous bone grafts and allografts are the most accepted procedures for achieving spinal fusion. Recently, breakthroughs in understanding bone biology have led to the development of novel approaches to address the clinical problem of bone regeneration in an unfavorable environment, while bypassing the drawbacks of traditional treatments, including limited availability, donor site morbidity, risk of disease transmission and reduced osteogenicity. These approaches have also been studied for their effectiveness in reaching successful spinal fusion. This review focuses on the cellular and molecular mechanisms explaining the rationale behind these methods, including bone marrow aspirate and mesenchymal stem cells, platelet-rich plasma, bone morphogenetic proteins and gene therapy, which have opened a promising perspective in the field of bone formation in spinal surgery.
Collapse
|
65
|
Pneumaticos SG, Triantafyllopoulos GK, Basdra EK, Papavassiliou AG. Segmental bone defects: from cellular and molecular pathways to the development of novel biological treatments. J Cell Mol Med 2010; 14:2561-2569. [PMID: 20345845 PMCID: PMC4373476 DOI: 10.1111/j.1582-4934.2010.01062.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/18/2010] [Indexed: 12/19/2022] Open
Abstract
Several conditions in clinical orthopaedic practice can lead to the development of a diaphyseal segmental bone defect, which cannot heal without intervention. Segmental bone defects have been traditionally treated with bone grafting and/or distraction osteogenesis, methods that have many advantages, but also major drawbacks, such as limited availability, risk of disease transmission and prolonged treatment. In order to overcome such limitations, biological treatments have been developed based on specific pathways of bone physiology and healing. Bone tissue engineering is a dynamic field of research, combining osteogenic cells, osteoinductive factors, such as bone morphogenetic proteins, and scaffolds with osteoconductive and osteoinductive attributes, to produce constructs that could be used as bone graft substitutes for the treatment of segmental bone defects. Scaffolds are usually made of ceramic or polymeric biomaterials, or combinations of both in composite materials. The purpose of the present review is to discuss in detail the molecular and cellular basis for the development of bone tissue engineering constructs.
Collapse
Affiliation(s)
- Spyros G Pneumaticos
- Third Department of Orthopaedic Surgery, Medical School, University of Athens, ‘KAT’ Accident’s HospitalAthens, Greece
| | - Georgios K Triantafyllopoulos
- Third Department of Orthopaedic Surgery, Medical School, University of Athens, ‘KAT’ Accident’s HospitalAthens, Greece
| | - Efthimia K Basdra
- Department of Histology and Embryology, Cellular and Molecular Biomechanics Unit, Medical School, University of AthensAthens, Greece
| | | |
Collapse
|
66
|
Jeong HM, Han EH, Jin YH, Hwang YP, Kim HG, Park BH, Kim JY, Chung YC, Lee KY, Jeong HG. Saponins from the roots of Platycodon grandiflorum stimulate osteoblast differentiation via p38 MAPK- and ERK-dependent RUNX2 activation. Food Chem Toxicol 2010; 48:3362-8. [PMID: 20828597 DOI: 10.1016/j.fct.2010.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/03/2010] [Accepted: 09/01/2010] [Indexed: 01/20/2023]
Abstract
Changkil (CK), the aqueous extract of the roots of Platycodon grandiflorum, has been used as a traditional oriental medicine for the treatment of chronic adult diseases. Although a saponin fraction derived from CK (CKS) has been suggested to have a variety of functional effects, its effect on bone is unknown. In the present study, the effects of CKS on osteoblast differentiation and function were determined by analyzing the activity of alkaline phosphatase (ALP), an osteoblast marker, and the regulation of RUNX2, a master gene of osteoblast differentiation, in a mesenchymal stem cell line. CKS upregulated ALP activity and the expression of osteogenic marker genes in C2C12 cells. In addition, CKS increased the expression and transcriptional activity of RUNX2. To determine which signaling pathways are involved in the osteogenic effects of CKS, we tested the effect of inhibitors of kinases known to regulate RUNX2. CKS-induced enhancement of RUNX2 and ALP was inhibited by treatment with a p38 inhibitor (SB203580) and an ERK inhibitor (U0126). These findings suggest that CKS stimulates osteoblast differentiation by activation of RUNX2 via mechanisms related to the p38 MAPK and ERK signaling pathways. The regulation of RUNX2 activation by CKS may be an important therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Hyung Min Jeong
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Araujo APB, Ribeiro MEOB, Ricci R, Torquato RJ, Toma L, Porcionatto MA. Glial cells modulate heparan sulfate proteoglycan (HSPG) expression by neuronal precursors during early postnatal cerebellar development. Int J Dev Neurosci 2010; 28:611-20. [PMID: 20638466 DOI: 10.1016/j.ijdevneu.2010.07.228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 06/24/2010] [Accepted: 07/09/2010] [Indexed: 01/17/2023] Open
Abstract
Cerebellum controls motor coordination, balance, eye movement, and has been implicated in memory and addiction. As in other parts of the CNS, correct embryonic and postnatal development of the cerebellum is crucial for adequate performance in the adult. Cellular and molecular defects during cerebellar development can lead to severe phenotypes, such as ataxias and tumors. Knowing how the correct development occurs can shed light into the mechanisms of disease. Heparan sulfate proteoglycans are complex molecules present in every higher eukaryotic cells and changes in their level of expression as well as in their structure lead to drastic functional alterations. This work aimed to investigate changes in heparan sulfate proteoglycans expression during cerebellar development that could unveil control mechanisms. Using real time RT-PCR we evaluated the expression of syndecans, glypicans and modifying enzymes by isolated cerebellar granule cell precursors, and studied the influence of soluble glial factors on the expression of those genes. We evaluated the possible involvement of Runx transcription factors in the response of granule cell precursors to glial factors. Our data show for the first time that cerebellar granule cell precursors express members of the Runx family and that the expression of those genes can also be controlled by glial factors. Our results also show that the expression of all genes studied vary during postnatal development and treatment of precursors with glial factors indicate that the expression of heparan sulfate proteoglycan genes as well as genes encoding heparan sulfate modifying enzymes can be modulated by the microenvironment, reflecting the intricate relations between neuron and glia.
Collapse
Affiliation(s)
- Ana Paula B Araujo
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio, 100, 04044-020 São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
68
|
Takimoto T, Wakabayashi Y, Sekiya T, Inoue N, Morita R, Ichiyama K, Takahashi R, Asakawa M, Muto G, Mori T, Hasegawa E, Saika S, Shizuya S, Hara T, Nomura M, Yoshimura A. Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development. THE JOURNAL OF IMMUNOLOGY 2010; 185:842-55. [PMID: 20548029 DOI: 10.4049/jimmunol.0904100] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although it has been well established that TGF-beta plays a pivotal role in immune regulation, the roles of its downstream transcription factors, Smad2 and Smad3, have not been fully clarified. Specifically, the function of Smad2 in the immune system has not been investigated because of the embryonic lethality of Smad2-deficient mice. In this study, we generated T cell-specific Smad2 conditional knockout (KO) mice and unexpectedly found that Smad2 and Smad3 were redundantly essential for TGF-beta-mediated induction of Foxp3-expressing regulatory T cells and suppression of IFN-gamma production in CD4(+) T cells. Consistent with these observations, Smad2/Smad3-double KO mice, but not single KO mice, developed fatal inflammatory diseases with higher IFN-gamma production and reduced Foxp3 expression in CD4(+) T cells at the periphery. Although it has been suggested that Foxp3 induction might underlie TGF-beta-mediated immunosuppression, TGF-beta still can suppress Th1 cell development in Foxp3-deficient T cells, suggesting that the Smad2/3 pathway inhibits Th1 cell development with Foxp3-independent mechanisms. We also found that Th17 cell development was reduced in Smad-deficient CD4(+) T cells because of higher production of Th17-inhibitory cytokines from these T cells. However, TGF-beta-mediated induction of RORgamma t, a master regulator of Th17 cell, was independent of both Smad2 and Smad3, suggesting that TGF-beta regulates Th17 development through Smad2/3-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Tomohito Takimoto
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjyuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
van der Kraan PM, Blaney Davidson EN, van den Berg WB. Bone morphogenetic proteins and articular cartilage: To serve and protect or a wolf in sheep clothing's? Osteoarthritis Cartilage 2010; 18:735-41. [PMID: 20211748 DOI: 10.1016/j.joca.2010.03.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/02/2010] [Accepted: 03/01/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Alterations in chondrocyte differentiation and matrix remodeling play a central role in osteoarthritis (OA). Chondrocyte differentiation and remodeling are amongst others regulated by the so-called Bone Morphogenetic Proteins (BMPs). Although BMPs are considered protective for articular cartilage these factors can also be involved in chondrocyte hypertrophy and matrix degradation. This review is focused on these opposed roles of BMPs in OA development and progression. METHODS Peer reviewed publications published prior to August 2009 were searched in the Pubmed database. Articles that were relevant for the role of endogenous BMPs in OA were selected. Since good quality reviews on the application of BMP supplementation in cartilage tissue engineering have been described this subject has not been covered in this review. RESULTS BMPs can stimulate both chondrocyte matrix synthesis and chondrocyte terminal differentiation. The latter results in elevated matrix metalloproteinase-13 (MMP-13) production. Stimulation of matrix synthesis will be protective for cartilage while elevated MMP-13 activity will drive matrix degradation. What action of BMPs is dominant in OA is not yet elucidated and their role might be different in patient subgroups. CONCLUSION BMPs can be protective for articular cartilage but can, due to their effect on chondrocyte differentiation, have harmful effects on articular cartilage and contribute to OA progression.
Collapse
Affiliation(s)
- P M van der Kraan
- Experimental Rheumatology & Advanced Therapeutics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
70
|
Walrad PB, Hang S, Joseph GS, Salas J, Gergen JP. Distinct contributions of conserved modules to Runt transcription factor activity. Mol Biol Cell 2010; 21:2315-26. [PMID: 20462957 PMCID: PMC2893994 DOI: 10.1091/mbc.e09-11-0953] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An investigation of the in vivo roles of conserved regions of the Drosophila Runt protein outside of the DNA-binding Runt domain reveals distinct requirements in different regulatory activities. The conserved VWRPY-containing C-terminus required for repression of only a subset of targets is also found to participate in activation of other targets. Runx proteins play vital roles in regulating transcription in numerous developmental pathways throughout the animal kingdom. Two Runx protein hallmarks are the DNA-binding Runt domain and a C-terminal VWRPY motif that mediates interaction with TLE/Gro corepressor proteins. A phylogenetic analysis of Runt, the founding Runx family member, identifies four distinct regions C-terminal to the Runt domain that are conserved in Drosophila and other insects. We used a series of previously described ectopic expression assays to investigate the functions of these different conserved regions in regulating gene expression during embryogenesis and in controlling axonal projections in the developing eye. The results indicate each conserved region is required for a different subset of activities and identify distinct regions that participate in the transcriptional activation and repression of the segmentation gene sloppy-paired-1 (slp1). Interestingly, the C-terminal VWRPY-containing region is not required for repression but instead plays a role in slp1 activation. Genetic experiments indicating that Groucho (Gro) does not participate in slp1 regulation further suggest that Runt's conserved C-terminus interacts with other factors to promote transcriptional activation. These results provide a foundation for further studies on the molecular interactions that contribute to the context-dependent properties of Runx proteins as developmental regulators.
Collapse
Affiliation(s)
- Pegine B Walrad
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Graduate Programs in Molecular and Cellular Biology and Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | | | | | |
Collapse
|
71
|
Yoshimura A, Wakabayashi Y, Mori T. Cellular and molecular basis for the regulation of inflammation by TGF-beta. J Biochem 2010; 147:781-92. [PMID: 20410014 DOI: 10.1093/jb/mvq043] [Citation(s) in RCA: 309] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) has been shown to play an essential role in the suppression of inflammation, yet recent studies have revealed the positive roles of TGF-beta in inflammatory responses. For example, TGF-beta induces Foxp3-positive regulatory T cells (iTregs) in the presence of interleukin-2 (IL-2), while in the presence of IL-6, it induces pathogenic IL-17 producing Th17 cells. TGF-beta inhibits the proliferation of immune cells as well as cytokine production via Foxp3-dependent and -independent mechanisms. Little is known about molecular mechanisms involved in immune suppression via TGF-beta; however, Smad2/3 have been shown to play essential roles in Foxp3 induction as well as in IL-2 and IFN-gamma suppression, whereas Th17 differentiation is promoted via the Smad-independent pathway. Interaction between TGF-beta and other cytokine signaling is important in establishing the balance of immunity and tolerance.
Collapse
Affiliation(s)
- Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
72
|
The predictive value of genes of the TGF-beta1 pathway in multimodally treated squamous cell carcinoma of the esophagus. Int J Colorectal Dis 2010; 25:515-21. [PMID: 20012971 DOI: 10.1007/s00384-009-0867-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIM Pretherapeutic identification of esophageal squamous cell carcinomas (ESCCs) that are likely to respond to neoadjuvant chemoradiotherapy is important in the attempt to improve the prognosis for patients. In the present study, expression of members of the transforming growth factor-beta1 (TGF-beta1) signaling pathway was investigated in pretherapeutic biopsies from 97 ESCCs (cT3, cN0/+, cM0) in patients who underwent neoadjuvant chemoradiotherapy (45 Gy plus cisplatin and 5-fluorouracil) and subsequent esophagectomy in the setting of a single-center prospective treatment trial. MATERIALS AND METHODS Expression of TGF-beta1 and its downstream effectors Smad4 and Smad7 was assessed using quantitative reverse transcription polymerase chain reaction from RNA prepared from pretherapeutic tumor biopsies. The presence of phosphorylated Smad2 was assessed immunohistochemically. RESULTS Expression of TGF-beta1 (mean 7.8; range 0.0-25.7 arb. units), Smad4 (mean 0.1; range 0.0-0.4 arb. units), and Smad7 (mean 1.6; range 0.4-16.1 arb. units) varied substantially between the patients. Tumors with total or subtotal regression, as determined by histopathological examination after neoadjuvant chemoradiotherapy, showed significantly higher levels of Smad4 mRNA expression than tumors with minor or no regression (P = 0.032). TGF-beta1 and Smad7 mRNA expression as well as Smad2 protein expression were of no prognostic value. Expression of the four genes under analysis also showed no impact on the overall survival. In contrast, the overall survival correlated significantly with histopathological regression (P < 0.0001) and to a minor degree also with clinical regression grading (P = 0.0254). INTERPRETATION Among the parameters analyzed, only Smad4 was found to have possible predictive value for esophageal squamous cell carcinoma in patients receiving neoadjuvant chemoradiotherapy.
Collapse
|
73
|
Chen W, Gao N, Shen Y, Cen JN. Hypermethylation downregulates Runx3 gene expression and its restoration suppresses gastric epithelial cell growth by inducing p27 and caspase3 in human gastric cancer. J Gastroenterol Hepatol 2010; 25:823-31. [PMID: 20492341 DOI: 10.1111/j.1440-1746.2009.06191.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Runx family transcription factors are integral components of transforming growth factor-beta signaling pathways and have been implicated in cell cycle regulation, differentiation, apoptosis, and malignant transformation. The silencing of tumor suppressor genes by aberrant hypermethylation occurs frequently in human cancer. It has been noted previously that Runx3 is regarded as an important tumor suppressor gene. METHODS Reverse transcription polymerase chain reaction was used to measure Runx3 and the DNA methyltransferase 1 (Dnmt1) messenger RNA (mRNA) expression level of paired samples of primary gastric cancer and corresponding non-cancerous gastric mucosae, which were obtained from surgically resected specimens of 70 patients. Western blot was used to detect the expression of Runx3 at protein levels. The promoter methylation status was measured by using methylation-specific polymerase chain reaction. We used Annexin V-FITC/PI assay to detect cell apoptosis, and the cell cycle was also analyzed. In order to examine the cell cycle and/or apoptosis, we determined p27 and caspase 3 expression by immunohistological analysis. RESULTS Our results demonstrate a loss or substantial decrease of Runx3 expression in 70 cases of gastric tumors as compared with that in normal gastric mucosa (0.5749 +/- 0.3580 vs 1.7252 +/- 0.4085, P < 0.05). The protein levels of the Runx3 gene were significantly lower in gastric cancers than those in adjacent normal tissues. The hypermethylation of Runx3 was involved in 50% (28/56) of gastric cancer tissues, which had reduced Runx3 mRNA expression. The differences of the Dnmt1 mRNA level were significant between the methylated and unmethylated Runx3 cancerous groups. Runx3 methylation was significantly correlated with increased Dnmt1 (r = 0.64, P < 0.01). Enforced restoration of Runx3 expression led to the induction of cell apoptosis and upregulation of p27 and caspase3 expression in vitro. CONCLUSIONS Our results suggest that a decrease of Runx3 expression by DNA hypermethylation is frequently associated with the evolution of gastric cancer. Runx3 was an independent prognostic factor and a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Weichang Chen
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, China.
| | | | | | | |
Collapse
|
74
|
Watanabe K, Sugai M, Nambu Y, Osato M, Hayashi T, Kawaguchi M, Komori T, Ito Y, Shimizu A. Requirement for Runx proteins in IgA class switching acting downstream of TGF-beta 1 and retinoic acid signaling. THE JOURNAL OF IMMUNOLOGY 2010; 184:2785-92. [PMID: 20142360 DOI: 10.4049/jimmunol.0901823] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IgA is a specific isotype required for mucosal immunity and is the most abundant Ab produced in vivo. Recently, several inductive signals for IgA class switch recombination have been identified; however, the molecular details of the action of these signals and the specific factors acting in B cells remain elusive. In this study, we show that combination of retinoic acid (RA) and TGF-beta1 with other factors induced a much higher frequency of IgA-switched cells than reported previously. In addition, IgA production is severely impaired in Runx2-Runx3 double-deficient mice. In Runx2-Runx3-deficient B cells, both RA- and TGF-beta1-dependent inductions of alpha germline transcription are completely blocked. These data suggest that Runx proteins play an essential role in IgA class switching acting downstream of RA and TGF-beta1 signaling.
Collapse
Affiliation(s)
- Kakeru Watanabe
- Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Park SR, Jung MH, Jeon SH, Park MH, Park KH, Lee MR, Kim PH. IFN-gamma down-regulates TGF-beta1-induced IgA expression through Stat1 and p300 signaling. Mol Cells 2010; 29:57-62. [PMID: 20016942 DOI: 10.1007/s10059-010-0004-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/29/2009] [Accepted: 09/30/2009] [Indexed: 12/17/2022] Open
Abstract
IFN-gamma has been shown to either up- or down-regulate the expression of specific TGF-beta1-induced target genes. We investigated the effect of IFN-gamma on TGF-beta1-induced IgA isotype expression. We found that IFN-gamma inhibited not only TGF-beta1-induced germ-line (GL) alpha transcription, but also IgA secretion by TGF-beta1-stimulated murine B cells. Overexpression of Stat1 diminished TGF-beta1-induced, Smad3/4-and Runx3-mediated GL alpha promoter activity. Overexpression of p300 also increased the promoter activity, while its effect was abrogated by co-transfected Stat1. Stat1 interfered with the Smad3:p300 interaction, likely due to a stronger Stat1:p300 binding affinity. These results indicate that Stat1 can inhibit GL alpha transcription through binding to p300. Further, overexpression of SOCS1, a JAK inhibitor, diminished the antagonistic effect of IFN-gamma on TGF-beta1-induced GL alpha transcription and IgA secretion. These results indicate that JAK/Stat1-mediated IFN-gamma signaling antagonizes TGF-beta1-induced GL alpha transcription, mainly through deprivation of p300 from Smad3, resulting in decreased IgA synthesis.
Collapse
Affiliation(s)
- Seok-Rae Park
- Department of Molecular Bioscience, School of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 200-701, Korea
| | | | | | | | | | | | | |
Collapse
|
76
|
Zagami CJ, Zusso M, Stifani S. Runx transcription factors: lineage-specific regulators of neuronal precursor cell proliferation and post-mitotic neuron subtype development. J Cell Biochem 2009; 107:1063-72. [PMID: 19507194 DOI: 10.1002/jcb.22221] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Runt-related (RUNX) genes encode evolutionarily conserved transcription factors that play essential roles during development and adult tissue homeostasis. RUNX proteins regulate the transition from proliferation to differentiation in a variety of cell lineages. Moreover, they control the diversification of distinct cellular phenotypes in numerous tissues. Alterations of RUNX functions are associated with several cancers and other human pathologies, underscoring the vital roles of these transcription factors in adult organs. Insights into the functions and regulations of mammalian RUNX proteins have been provided mostly by studies of RUNX involvement in mechanisms of hematopoietic and skeletal development and disease. A growing number of recent investigations are revealing new functions for RUNX family members during the development of the mammalian nervous system. This review will discuss recent progress in the study of RUNX protein involvement in mammalian neural development, with emphasis on the differentiation of olfactory, sensory, and motor neuron lineages.
Collapse
|
77
|
|
78
|
San Martin I, Varela N, Gaete M, Villegas K, Osorio M, Tapia JC, Antonelli M, Mancilla E, Lian JB, Stein JL, Stein GS, van Wijnen AJ, Galindo M. Impaired cell cycle regulation of the osteoblast-related heterodimeric transcription factor Runx2-Cbfbeta in osteosarcoma cells. J Cell Physiol 2009; 221:560-71. [PMID: 19739101 PMCID: PMC3066433 DOI: 10.1002/jcp.21894] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bone formation and osteoblast differentiation require the functional expression of the Runx2/Cbfbeta heterodimeric transcription factor complex. Runx2 is also a suppressor of proliferation in osteoblasts by attenuating cell cycle progression in G(1). Runx2 levels are modulated during the cell cycle, which are maximal in G(1) and minimal beyond the G(1)/S phase transition (S, G(2), and M phases). It is not known whether Cbfbeta gene expression is cell cycle controlled in preosteoblasts nor how Runx2 or Cbfbeta are regulated during the cell cycle in bone cancer cells. We investigated Runx2 and Cbfbeta gene expression during cell cycle progression in MC3T3-E1 osteoblasts, as well as ROS17/2.8 and SaOS-2 osteosarcoma cells. Runx2 protein levels are reduced as expected in MC3T3-E1 cells arrested in late G(1) (by mimosine) or M phase (by nocodazole), but not in cell cycle arrested osteosarcoma cells. Cbfbeta protein levels are cell cycle independent in both osteoblasts and osteosarcoma cells. In synchronized MC3T3-E1 osteoblasts progressing from late G1 or mitosis, Runx2 levels but not Cbfbeta levels are cell cycle regulated. However, both factors are constitutively elevated throughout the cell cycle in osteosarcoma cells. Proteasome inhibition by MG132 stabilizes Runx2 protein levels in late G(1) and S in MC3T3-E1 cells, but not in ROS17/2.8 and SaOS-2 osteosarcoma cells. Thus, proteasomal degradation of Runx2 is deregulated in osteosarcoma cells. We propose that cell cycle control of Runx2 gene expression is impaired in osteosarcomas and that this deregulation may contribute to the pathogenesis of osteosarcoma.
Collapse
Affiliation(s)
- Inga San Martin
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (I.C.B.M.), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Nelson Varela
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (I.C.B.M.), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Marcia Gaete
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (I.C.B.M.), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Karina Villegas
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (I.C.B.M.), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mariana Osorio
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (I.C.B.M.), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Julio C. Tapia
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (I.C.B.M.), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Marcelo Antonelli
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (I.C.B.M.), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Edna Mancilla
- Program of Pathophysiology, Institute of Biomedical Sciences (I.C.B.M.), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jane B. Lian
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, MA 01655-0105
| | - Janet L. Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, MA 01655-0105
| | - Gary S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, MA 01655-0105
| | - Andre J. van Wijnen
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, MA 01655-0105
| | - Mario Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (I.C.B.M.), Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
79
|
van der Kraan PM, Blaney Davidson EN, Blom A, van den Berg WB. TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis: modulation and integration of signaling pathways through receptor-Smads. Osteoarthritis Cartilage 2009; 17:1539-45. [PMID: 19583961 DOI: 10.1016/j.joca.2009.06.008] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/18/2009] [Accepted: 06/19/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Chondrocytes and alteration in chondrocyte differentiation play a central role in osteoarthritis. Chondrocyte differentiation is amongst others regulated by members of the transforming growth factor-beta (TGF-beta) superfamily. The major intracellular signaling routes of this family are via the receptor-Smads. This review is focused on the modulation of receptor-Smad signaling and how this modulation can affect chondrocyte differentiation and potentially osteoarthritis development. METHODS Peer reviewed publications published prior to April 2009 were searched in the Pubmed database. Articles that were relevant for the role of TGF-beta superfamily/Smad signaling in chondrocyte differentiation and for differential modulation of receptor-Smads were selected. RESULTS Chondrocyte terminal differentiation is stimulated by Smad1/5/8 activation and inhibited the by Smad2/3 pathway, most likely by modulation of Runx2 function. Several proteins and signaling pathways differentially affect Smad1/5/8 and Smad2/3 signaling. This will result in an altered Smad1/5/8 and Smad2/3 balance and subsequently have an effect on chondrocyte differentiation and osteoarthritis development. CONCLUSION Modulation of receptor-Smads signaling can be expect to play an essential role in both the regulation of chondrocyte differentiation and osteoarthritis development and progression.
Collapse
Affiliation(s)
- P M van der Kraan
- Experimental Rheumatology & Advanced Therapeutics, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
80
|
Abstract
The Runt domain (Runx) is a 128 amino acid sequence motif that defines a metazoan family of sequence-specific DNA binding proteins, which appears to have originated in concert with the intercellular signaling systems that coordinate multicellular development in animals. In the model organisms where they have been studied (fruit fly, mouse, sea urchin, and nematode) Runx genes are essential for normal development, and in humans they are causally associated with a variety of cancers, manifesting both oncogenic and tumor suppressive attributes. During development Runx proteins support both cell proliferation and differentiation, and function in both transcriptional activation and repression. Runx function is thus context-dependent, with the context provided genetically by cis-regulatory sequence architecture and epigenetically by development. This context dependency makes it difficult to formulate reductionistic generalizations concerning Runx function in normal and carcinogenic development. However, a growing body of literature links Runx function to each of the major intercellular signaling systems in animals, suggesting that the general function of Runx transcription factors may be to potentiate and govern genomic responsiveness to developmental signaling.
Collapse
Affiliation(s)
- James A Coffman
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine 04672, USA.
| |
Collapse
|
81
|
Zhong H, Chen FY, Wang HR, Lin JY, Xu R, Zhong JH, Huang HH. Modification of TGF-beta1 signaling pathway during NB4 cells differentiation by all-trans retinoid acid induction. Int J Hematol 2009; 89:438-444. [PMID: 19363708 DOI: 10.1007/s12185-009-0293-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 01/14/2009] [Accepted: 03/03/2009] [Indexed: 11/26/2022]
Abstract
The aim of the study was to present the possible mechanisms of transforming growth factor beta 1(TGF-beta1) signal pathway during cell differentiation by studying the expression levels of six components of TGF-beta1 pathway (TGF-beta1, two TGF-beta1 receptors and three Smad proteins). The morphology change, the CD11 expression levels, and the mRNA and protein expression levels of TGF-beta1, TGF-beta ReceptorI (TbetaRI), TGF-beta ReceptorII (TbetaRII), Smad2, Smad4 and Smad7 were assessed by exposing NB4 cells to all-trans retinoid acid (ATRA) using Wright's stain, flow cytometry, real-time PCR assay and Western blot analysis. The mRNA and protein expression levels of all six components increased during NB4 cells differentiation induced by ATRA. They were most significantly increased after 24-72 h individually when cells were induced by ATRA (the mRNA and protein expression levels of TGF-beta1, TbetaRI, TbetaRII and Smad2 reached their peaks at 48 and 48 h individually after the treatment, Smad4 at 48 and 72 h, and Smad7 at 72 and 72 h). The change in mRNA expression levels was earlier than the change in the same gene controlling protein. These results indicate that the upregulation of TGF-beta1 pathway plays an important role in NB4 cells differentiation induced by ATRA.
Collapse
Affiliation(s)
- Hua Zhong
- Department of Hematology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai Dong Fang Road 1630, Shanghai, 200127, China
| | - Fang-Yuan Chen
- Department of Hematology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai Dong Fang Road 1630, Shanghai, 200127, China.
| | - Hai-Rong Wang
- Department of Hematology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai Dong Fang Road 1630, Shanghai, 200127, China
| | - Jia-Yao Lin
- Department of Hematology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai Dong Fang Road 1630, Shanghai, 200127, China
| | - Rong Xu
- Department of Hematology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai Dong Fang Road 1630, Shanghai, 200127, China
| | - Ji-Hua Zhong
- Department of Hematology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai Dong Fang Road 1630, Shanghai, 200127, China
| | - Hong-Hui Huang
- Department of Hematology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai Dong Fang Road 1630, Shanghai, 200127, China
| |
Collapse
|
82
|
Pande S, Ali SA, Dowdy C, Zaidi SK, Ito K, Ito Y, Montecino MA, Lian JB, Stein JL, van Wijnen AJ, Stein GS. Subnuclear targeting of the Runx3 tumor suppressor and its epigenetic association with mitotic chromosomes. J Cell Physiol 2009; 218:473-9. [PMID: 19006109 PMCID: PMC2886710 DOI: 10.1002/jcp.21630] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Runx proteins are tissue-specific transcriptional scaffolds that organize and assemble regulatory complexes at strategic sites of target gene promoters and at intranuclear foci to govern activation or repression. During interphase, fidelity of intranuclear targeting supports the biological activity of Runx1 and Runx2 proteins. Both factors regulate genes involved in cell cycle control and cell growth (e.g., rRNA genes), as well as lineage commitment. Here, we have examined the subcellular regulatory properties of the third Runx member, the tumor suppressor protein Runx3, during interphase and mitosis. Using in situ cellular and biochemical approaches we delineated a subnuclear targeting signal that directs Runx3 to discrete transcriptional foci that are nuclear matrix associated. Chromatin immunoprecipitation results show that Runx3 occupies rRNA promoters during interphase. We also find that Runx3 remains associated with chromosomes during mitosis and localizes with nucleolar organizing regions (NORs), reflecting an interaction with epigenetic potential. Taken together, our study establishes that common mechanisms control the subnuclear distribution and activities of Runx1, Runx2, and Runx3 proteins to support RNA polymerase I and II mediated gene expression during interphase and mitosis.
Collapse
Affiliation(s)
- Sandhya Pande
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Syed A. Ali
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Christopher Dowdy
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Sayyed K. Zaidi
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Kosei Ito
- Nagasaki University, Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Yoshiaki Ito
- Institute of Molecular and Cell Biology and the Oncology Research Institute, National University of Singapore, Singapore 138673; and Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias Biologicas, Universidad de Concepcion, Concepcion, Chile
| | - Martin A. Montecino
- Institute of Molecular and Cell Biology and the Oncology Research Institute, National University of Singapore, Singapore 138673; and Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias Biologicas, Universidad de Concepcion, Concepcion, Chile
| | - Jane B. Lian
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Janet L. Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Andre J van Wijnen
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Gary S. Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
83
|
Walsh MF, Ampasala DR, Rishi AK, Basson MD. TGF-beta1 modulates focal adhesion kinase expression in rat intestinal epithelial IEC-6 cells via stimulatory and inhibitory Smad binding elements. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:88-98. [PMID: 19059368 PMCID: PMC2730956 DOI: 10.1016/j.bbagrm.2008.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 10/30/2008] [Accepted: 11/06/2008] [Indexed: 12/21/2022]
Abstract
TGF-beta and FAK modulate cell migration, differentiation, proliferation and apoptosis, and TGF-beta promotes FAK transcription in intestinal epithelial cells via Smad-dependent and independent pathways. We utilized a 1320 bp FAK promoter-luciferase construct to characterize basal and TGF-beta-mediated FAK gene transcription in IEC-6 cells. Inhibiting JNK or Akt negated TGF-beta-stimulated promoter activity; ERK inhibition did not block the TGF-beta effect but increased basal activity. Co-transfection with Co-Smad4 enhanced the TGF-beta response while the inhibitory Smad7 abolished it. Serial deletions sequentially removing the four Smad binding elements (SBE) in the 5' untranslated region of the promoter revealed that the two most distal SBE's are positive regulators while SBE3 exerts a negative influence. Mutational deletion of two upstream p53 sites enhanced basal but did not affect TGF-beta-stimulated increases in promoter activity. TGF-beta increased DNA binding of Smad4, phospho-Smad2/3 and Runx1/AML1a to the most distal 435 bp containing 3 SBE and 2 AML1a sites by ChIP assay. However, although point mutation of SBE1 ablated the TGF-beta-mediated rise in SV40-promoter activity, mutation of AML1a sites did not. TGF-beta regulation of FAK transcription reflects a complex interplay between positive and negative non-Smad signals and SBE's, the last independent of p53 or AML1a.
Collapse
Affiliation(s)
- Mary F. Walsh
- Department of Surgery, Wayne State University, Detroit, Michigan
| | | | - Arun K. Rishi
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Marc D. Basson
- Department of Surgery, John D. Dingell VA Medical Center, Detroit, Michigan
- Department of Surgery, Wayne State University, Detroit, Michigan
- Department of Anesthesiology, Wayne State University, Detroit, Michigan
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan
| |
Collapse
|
84
|
Soltanoff CS, Chen W, Yang S, Li YP. Signaling networks that control the lineage commitment and differentiation of bone cells. Crit Rev Eukaryot Gene Expr 2009; 19:1-46. [PMID: 19191755 PMCID: PMC3392028 DOI: 10.1615/critreveukargeneexpr.v19.i1.10] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Osteoblasts and osteoclasts are the two major bone cells involved in the bone remodeling process. Osteoblasts are responsible for bone formation while osteoclasts are the bone-resorbing cells. The major event that triggers osteogenesis and bone remodeling is the transition of mesenchymal stem cells into differentiating osteoblast cells and monocyte/macrophage precursors into differentiating osteoclasts. Imbalance in differentiation and function of these two cell types will result in skeletal diseases such as osteoporosis, Paget's disease, rheumatoid arthritis, osteopetrosis, periodontal disease, and bone cancer metastases. Osteoblast and osteoclast commitment and differentiation are controlled by complex activities involving signal transduction and transcriptional regulation of gene expression. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of the multiple factors and signaling networks that control the differentiation process at a molecular level. This review summarizes recent advances in studies of signaling transduction pathways and transcriptional regulation of osteoblast and osteoclast cell lineage commitment and differentiation. Understanding the signaling networks that control the commitment and differentiation of bone cells will not only expand our basic understanding of the molecular mechanisms of skeletal development but will also aid our ability to develop therapeutic means of intervention in skeletal diseases.
Collapse
Affiliation(s)
- Carrie S. Soltanoff
- Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA
| | - Wei Chen
- Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Shuying Yang
- Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Yi-Ping Li
- Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| |
Collapse
|
85
|
Robertson AJ, Coluccio A, Knowlton P, Dickey-Sims C, Coffman JA. Runx expression is mitogenic and mutually linked to Wnt activity in blastula-stage sea urchin embryos. PLoS One 2008; 3:e3770. [PMID: 19020668 PMCID: PMC2582955 DOI: 10.1371/journal.pone.0003770] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 11/01/2008] [Indexed: 11/25/2022] Open
Abstract
Background The Runt homology domain (Runx) defines a metazoan family of sequence-specific transcriptional regulatory proteins that are critical for animal development and causally associated with a variety of mammalian cancers. The sea urchin Runx gene SpRunt-1 is expressed throughout the blastula stage embryo, and is required globally during embryogenesis for cell survival and differentiation. Methodology/Principal Findings Depletion of SpRunt-1 by morpholino antisense-mediated knockdown causes a blastula stage deficit in cell proliferation, as shown by bromodeoxyuridine (BrdU) incorporation and direct cell counts. Reverse transcription coupled polymerase chain reaction (RT-PCR) studies show that the cell proliferation deficit is presaged by a deficit in the expression of several zygotic wnt genes, including wnt8, a key regulator of endomesoderm development. In addition, SpRunt-1-depleted blastulae underexpress cyclinD, an effector of mitogenic Wnt signaling. Blastula stage cell proliferation is also impeded by knockdown of either wnt8 or cyclinD. Chromatin immunoprecipitation (ChIP) indicates that Runx target sites within 5′ sequences flanking cyclinD, wnt6 and wnt8 are directly bound by SpRunt-1 protein at late blastula stage. Furthermore, experiments using a green fluorescent protein (GFP) reporter transgene show that the blastula-stage operation of a cis-regulatory module previously shown to be required for wnt8 expression (Minokawa et al., Dev. Biol. 288: 545–558, 2005) is dependent on its direct sequence-specific interaction with SpRunt-1. Finally, inhibitor studies and immunoblot analysis show that SpRunt-1 protein levels are negatively regulated by glycogen synthase kinase (GSK)-3. Conclusions/Significance These results suggest that Runx expression and Wnt signaling are mutually linked in a feedback circuit that controls cell proliferation during development.
Collapse
Affiliation(s)
- Anthony J. Robertson
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - Alison Coluccio
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - Peter Knowlton
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - Carrie Dickey-Sims
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - James A. Coffman
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
- * E-mail:
| |
Collapse
|
86
|
Izu Y, Mizoguchi F, Kawamata A, Hayata T, Nakamoto T, Nakashima K, Inagami T, Ezura Y, Noda M. Angiotensin II type 2 receptor blockade increases bone mass. J Biol Chem 2008; 284:4857-64. [PMID: 19004830 DOI: 10.1074/jbc.m807610200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Renin angiotensin system (RAS) regulates circulating blood volume and blood pressure systemically, whereas RAS also plays a role in the local milieu. Previous in vitro studies suggested that RAS may be involved in the regulation of bone cells. However, it was not known whether molecules involved in RAS are present in bone in vivo. In this study, we examined the presence of RAS components in adult bone and the effects of angiotensin II type 2 (AT2) receptor blocker on bone mass. Immunohistochemistry revealed that AT2 receptor protein was expressed in both osteoblasts and osteoclasts. In addition, renin and angiotensin II-converting enzyme were expressed in bone cells in vivo. Treatment with AT2 receptor blocker significantly enhanced the levels of bone mass, and this effect was based on the enhancement of osteoblastic activity as well as the suppression of osteoclastic activity in vivo. These results indicate that RAS components are present in adult bone and that blockade of AT2 receptor results in alteration in bone mass.
Collapse
Affiliation(s)
- Yayoi Izu
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts). J Tissue Eng Regen Med 2008; 2:1-13. [PMID: 18293427 DOI: 10.1002/term.63] [Citation(s) in RCA: 233] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Discovered in 1965, bone morphogenetic proteins (BMPs) are a group of cytokines from the transforming growth factor-beta (TGFbeta) superfamily with significant roles in bone and cartilage formation. BMPs are used as powerful osteoinductive components of diverse tissue-engineering products for the healing of bone. Several BMPs with different physiological roles have been identified in humans. The purpose of this review is to cover the biological function of the main members of BMP family, the latest research on BMPs signalling pathways and advances in the production of recombinant BMPs for tissue engineering purposes.
Collapse
Affiliation(s)
- P C Bessa
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | |
Collapse
|
88
|
Oka K, Oka S, Hosokawa R, Bringas P, Brockhoff HC, Nonaka K, Chai Y. TGF-beta mediated Dlx5 signaling plays a crucial role in osteo-chondroprogenitor cell lineage determination during mandible development. Dev Biol 2008; 321:303-9. [PMID: 18684439 PMCID: PMC3378386 DOI: 10.1016/j.ydbio.2008.03.046] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 03/04/2008] [Accepted: 03/24/2008] [Indexed: 11/17/2022]
Abstract
Transforming growth factor-beta (TGF-beta) signaling is crucial for mandible development. During its development, the majority of the mandible is formed through intramembranous ossification whereas the proximal region of the mandible undergoes endochondral ossification. Our previous work has shown that TGF-beta signaling is required for the proliferation of cranial neural crest (CNC)-derived ectomesenchyme in the mandibular primordium where intramembranous ossification takes place. Here we show that conditional inactivation of Tgfbr2 in CNC cells results in accelerated osteoprogenitor differentiation and perturbed chondrogenesis in the proximal region of the mandible. Specifically, the appearance of chondrocytes in Tgfbr2(fl/fl);Wnt1-Cre mice is delayed and they are smaller in size in the condylar process and completely missing in the angular process. TGF-beta signaling controls Sox9 expression in the proximal region, because Sox9 expression is delayed in condylar processes and missing in angular process in Tgfbr2(fl/fl);Wnt1-Cre mice. Moreover, exogenous TGF-beta can induce Sox9 expression in the mandibular arch. In the angular processes of Tgfbr2(fl/fl);Wnt1-Cre mice, osteoblast differentiation is accelerated and Dlx5 expression is elevated. Significantly, deletion of Dlx5 in Tgfbr2(fl/fl);Wnt1-Cre mice results in the rescue of cartilage formation in the angular processes. Finally, TGF-beta signaling-mediated Scleraxis expression is required for tendonogenesis in the developing skeletal muscle. Thus, CNC-derived cells in the proximal region of mandible have a cell intrinsic requirement for TGF-beta signaling.
Collapse
Affiliation(s)
- Kyoko Oka
- Center for Craniofacial Molecular Biology School of Dentistry University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, U.S.A
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Shoji Oka
- Center for Craniofacial Molecular Biology School of Dentistry University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, U.S.A
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Ryoichi Hosokawa
- Center for Craniofacial Molecular Biology School of Dentistry University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, U.S.A
| | - Pablo Bringas
- Center for Craniofacial Molecular Biology School of Dentistry University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, U.S.A
| | - Hans Cristian Brockhoff
- Center for Craniofacial Molecular Biology School of Dentistry University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, U.S.A
| | - Kazuaki Nonaka
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Yang Chai
- Center for Craniofacial Molecular Biology School of Dentistry University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, U.S.A
| |
Collapse
|
89
|
Abstract
IgA class switching is the process whereby B cells acquire the expression of IgA, the most abundant antibody isotype in mucosal secretions. IgA class switching occurs via both T-cell-dependent and T-cell-independent pathways, and the antibody targets both pathogenic and commensal microorganisms. This Review describes recent advances indicating that innate immune recognition of microbial signatures at the epithelial-cell barrier is central to the selective induction of mucosal IgA class switching. In addition, the mechanisms of IgA class switching at follicular and extrafollicular sites within the mucosal environment are summarized. A better understanding of these mechanisms may help in the development of more effective mucosal vaccines.
Collapse
Affiliation(s)
- Andrea Cerutti
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, and Weill Graduate School of Medical Sciences of Cornell University, 1300 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
90
|
Abstract
The bone marrow mesenchymal compartment contains putative stem/progenitors of skeletal tissue components such as bone, cartilage, haematopoiesis-supporting stroma and adipocytes. Previously appreciated as vital to the support of haematopoiesis, these cells have also been recently recognized as having significant immunomodulatory properties with implications for allogeneic haematopoietic cell transplantation. Despite having been studied for more than three decades and currently being used in different clinical settings, their biology remains elusive. The aim of this review is to critically analyse the field of mesenchymal stem/progenitor cell biology, in respect of their relationship with other mesenchymal cell-types. Several issues concerning lineage commitment and inter-conversion potential between different mesenchymal cell-types are reviewed.
Collapse
Affiliation(s)
- Fernando Anjos-Afonso
- Haematopoietic Stem Cell Laboratory, Cancer Research UK, London Research Institute, London, UK
| | | |
Collapse
|
91
|
Abstract
RUNXs are important transcription factors, which are involved in animal development and human carcinogenesis. RNT-1, the only homologue of RUNXs, in Caenorhabditis elegans (C. elegans) has been identified and viable mutant animals of rnt-1 gene have been isolated and characterized recently. Genetic analyses using rnt-1 mutants have shown that RNT-1 is regulated by TGFbeta- and Wnt-signaling pathways in the body size regulation and male tail development. Here, we review our current understanding of RNT-1 functions in these signaling pathways. Furthermore, future prospects of RNT-1 and BRO-1 studies in C. elegans are discussed in this review.
Collapse
Affiliation(s)
- Yon Ju Ji
- Department of Life Science, Gwangju Institute of Science and Technology, Puk-gu, Gwangju 500-712, Korea
| | | | | |
Collapse
|
92
|
Kilbey A, Blyth K, Wotton S, Terry A, Jenkins A, Bell M, Hanlon L, Cameron ER, Neil JC. Runx2 disruption promotes immortalization and confers resistance to oncogene-induced senescence in primary murine fibroblasts. Cancer Res 2007; 67:11263-71. [PMID: 18056452 PMCID: PMC2562449 DOI: 10.1158/0008-5472.can-07-3016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Runx genes play paradoxical roles in cancer where they can function either as dominant oncogenes or tumor suppressors according to context. We now show that the ability to induce premature senescence in primary murine embryonic fibroblasts (MEF) is a common feature of all three Runx genes. However, ectopic Runx-induced senescence contrasts with Ras oncogene-induced senescence, as it occurs directly and lacks the hallmarks of proliferative stress. Moreover, a fundamental role for Runx function in the senescence program is indicated by the effects of Runx2 disruption, which renders MEFs prone to spontaneous immortalization and confers an early growth advantage that is resistant to stress-induced growth arrest. Runx2(-/-) cells are refractory to H-Ras(V12)-induced premature senescence, despite the activation of a cascade of growth inhibitors and senescence markers, and are permissive for oncogenic transformation. The aberrant behavior of Runx2(-/-) cells is associated with signaling defects and elevated expression of S-G(2)-M cyclins and their associated cyclin dependent kinase activities that may override the effects of growth inhibitory signals. Coupling of stress responses to the cell cycle represents a novel facet of Runx tumor suppressor function and provides a rationale for the lineage-specific effects of loss of Runx function in cancer.
Collapse
Affiliation(s)
- Anna Kilbey
- Molecular Oncology Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Ohno SI, Sato T, Kohu K, Takeda K, Okumura K, Satake M, Habu S. Runx proteins are involved in regulation of CD122, Ly49 family and IFN-γ expression during NK cell differentiation. Int Immunol 2007; 20:71-9. [DOI: 10.1093/intimm/dxm120] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
94
|
Funaba M, Murakami M. A sensitive detection of phospho-Smad1/5/8 and Smad2 in Western blot analyses. ACTA ACUST UNITED AC 2007; 70:816-9. [PMID: 17976733 DOI: 10.1016/j.jbbm.2007.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 10/02/2007] [Accepted: 10/02/2007] [Indexed: 10/22/2022]
Abstract
The transforming growth factor-beta (TGF-beta) family is involved in a variety of physiological processes, and transmits signals through phosphorylation of Smad by the receptor complexes. In the present study, effects of blocking solution in Western blot analyses on detection of phosphorylated Smad1/5/8 and Smad2 were examined. When EzBlock was used as a blocking reagent, phosphorylated Smad1/8 and Smad2 were most efficiently detected. The anti-phospho-Smad2 antibody specifically recognized the phosphorylated form of Smad2, whereas the anti-phospho-Smad1/5/8 antibody also reacted to the unphosphorylated form. These antibodies did not react with the other Smads.
Collapse
Affiliation(s)
- Masayuki Funaba
- Laboratory of Nutrition, Azabu University School of Veterinary Medicine, 1-17-71 Fuchinobe, Sagamihara 229-8501, Japan.
| | | |
Collapse
|
95
|
Lee YH, Kayyali US, Sousa AM, Rajan T, Lechleider RJ, Day RM. Transforming growth factor-beta1 effects on endothelial monolayer permeability involve focal adhesion kinase/Src. Am J Respir Cell Mol Biol 2007; 37:485-93. [PMID: 17585111 PMCID: PMC2176121 DOI: 10.1165/rcmb.2006-0439oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 06/08/2007] [Indexed: 01/10/2023] Open
Abstract
Transforming growth factor (TGF)-beta1 activity has been shown to increase vascular endothelial barrier permeability, which is believed to precede several pathologic conditions, including pulmonary edema and vessel inflammation. In endothelial monolayers, TGF-beta1 increases permeability, and a number of studies have demonstrated the alteration of cell-cell contacts by TGF-beta1. We hypothesized that focal adhesion complexes also likely contribute to alterations in endothelial permeability. We examined early signal transduction events associated with rapid changes in monolayer permeability and the focal adhesion complex of bovine pulmonary artery endothelial cells. Western blotting revealed rapid tyrosine phosphorylation of focal adhesion kinase (FAK) and Src kinase in response to TGF-beta1; inhibition of both of these kinases using pp2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine), ameliorates TGF-beta1-induced monolayer permeability. Activation of FAK/Src requires activation of the epidermal growth factor receptor downstream of the TGF-beta receptors, and is blocked by the epidermal growth factor receptor inhibitor AG1478. Immunohistochemistry showed that actin and the focal adhesion proteins paxillin, vinculin, and hydrogen peroxide-inducible clone-5 (Hic-5) are rearranged in response to TGF-beta1; these proteins are released from focal adhesion complexes. Rearrangement of paxillin and vinculin by TGF-beta1 is not blocked by the FAK/Src inhibitor, pp2, or by SB431542 inhibition of the TGF-beta type I receptor, anaplastic lymphoma kinase 5; however, pp1 (4-Amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine), which inhibits both type I and type II TGF-beta receptors, does block paxillin and vinculin rearrangement. Hic-5 protein rearrangement requires FAK/Src activity. Together, these results suggest that TGF-beta1-induced monolayer permeability involves focal adhesion and cytoskeletal rearrangement through both FAK/Src-dependent and -independent pathways.
Collapse
Affiliation(s)
- Young H Lee
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA
| | | | | | | | | | | |
Collapse
|
96
|
Tanaka Y, Imamura J, Kanai F, Ichimura T, Isobe T, Koike M, Kudo Y, Tateishi K, Ikenoue T, Ijichi H, Yamaji Y, Yoshida H, Kawabe T, Omata M. Runx3 interacts with DNA repair protein Ku70. Exp Cell Res 2007; 313:3251-3260. [PMID: 17662272 DOI: 10.1016/j.yexcr.2007.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 05/20/2007] [Accepted: 06/25/2007] [Indexed: 11/25/2022]
Abstract
Recent studies have suggested that Runt-related transcription factor 3 (Runx3) is associated with genesis and progression of gastric carcinoma. A proteomic approach was used to search for Runx3-interacting proteins to elucidate the molecular mechanisms of gastric carcinogenesis. Runx3 bound with myc and flag tags (MEF tags) is expressed in HEK293T cells, and the protein complex formed with Runx3 was purified and identified by mass spectrometry. Ku70 and Ku80, members of the DNA repair protein complex, were identified as Runx3-interacting proteins. Runx3, Ku70, and Ku80 associate in vivo, and in vitro interaction between Runx3 and Ku70 was confirmed via His-tag pull-down assay. The amino acids 241-322 of Runx3, which correspond to the transcriptional activation domain, and the amino acids 1-116 of Ku70 were necessary for binding with each other, and immunocytochemistry under confocal laser microscopy demonstrated that Runx3 and Ku70 localized throughout the nucleus excluding the nucleoli. Furthermore, Runx3 highly activated the transcription of p21, the target gene of Runx3, in Ku70 knockdown cells. These results suggest a possible link between a tumor suppressor function and DNA repair.
Collapse
Affiliation(s)
- Yasuo Tanaka
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, and Department of Clinical Drug Evaluation, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Luo X, Pan Q, Liu L, Chegini N. Genomic and proteomic profiling II: comparative assessment of gene expression profiles in leiomyomas, keloids, and surgically-induced scars. Reprod Biol Endocrinol 2007; 5:35. [PMID: 17718906 PMCID: PMC2039739 DOI: 10.1186/1477-7827-5-35] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 08/24/2007] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Leiomyoma have often been compared to keloids because of their fibrotic characteristic and higher rate of occurrence among African Americans as compared to other ethnic groups. To evaluate such a correlation at molecular level this study comparatively analyzed leiomyomas with keloids, surgical scars and peritoneal adhesions to identify genes that are either commonly and/or individually distinguish these fibrotic disorders despite differences in the nature of their development and growth. METHODS Microarray gene expression profiling and realtime PCR. RESULTS The analysis identified 3 to 12% of the genes on the arrays as differentially expressed among these tissues based on P ranking at greater than or equal to 0.005 followed by 2-fold cutoff change selection. Of these genes about 400 genes were identified as differentially expressed in leiomyomas as compared to keloids/incisional scars, and 85 genes as compared to peritoneal adhesions (greater than or equal to 0.01). Functional analysis indicated that the majority of these genes serve as regulators of cell growth (cell cycle/apoptosis), tissue turnover, transcription factors and signal transduction. Of these genes the expression of E2F1, RUNX3, EGR3, TBPIP, ECM-2, ESM1, THBS1, GAS1, ADAM17, CST6, FBLN5, and COL18A was confirmed in these tissues using quantitative realtime PCR based on low-density arrays. CONCLUSION the results indicated that the molecular feature of leiomyomas is comparable but may be under different tissue-specific regulatory control to those of keloids and differ at the levels rather than tissue-specific expression of selected number of genes functionally regulating cell growth and apoptosis, inflammation, angiogenesis and tissue turnover.
Collapse
Affiliation(s)
- Xiaoping Luo
- Department of Obstetrics and Gynecology, University of Florida, College of Medicine, Gainesville, Florida 32610, USA
| | - Qun Pan
- Department of Obstetrics and Gynecology, University of Florida, College of Medicine, Gainesville, Florida 32610, USA
| | - Li Liu
- Interdisciplinary Center for Biotechnology Research, University of Florida, College of Medicine, Gainesville, Florida 32610, USA
| | - Nasser Chegini
- Department of Obstetrics and Gynecology, University of Florida, College of Medicine, Gainesville, Florida 32610, USA
| |
Collapse
|
98
|
Woei Ng K, Speicher T, Dombrowski C, Helledie T, Haupt LM, Nurcombe V, Cool SM. Osteogenic differentiation of murine embryonic stem cells is mediated by fibroblast growth factor receptors. Stem Cells Dev 2007; 16:305-18. [PMID: 17521241 DOI: 10.1089/scd.2006.0044] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mechanisms involved in the control of embryonic stem (ES) cell differentiation are yet to be fully elucidated. However, it has become clear that the family of fibroblast growth factors (FGFs) are centrally involved. In this study we examined the role of the FGF receptors (FGFRs 1-4) during osteogenesis in murine ES cells. Single cells were obtained after the formation of embryoid bodies, cultured on gelatin-coated plates, and coaxed to differentiate along the osteogenic lineage. Upregulation of genes was analyzed at both the transcript and protein levels using gene array, relative-quantitative PCR (RQ-PCR), and Western blotting. Deposition of a mineralized matrix was evaluated with Alizarin Red staining. An FGFR1-specific antibody was generated and used to block FGFR1 activity in mES cells during osteogenic differentiation. Upon induction of osteogenic differentiation in mES cells, all four FGFRs were clearly upregulated at both the transcript and protein levels with a number of genes known to be involved in osteogenic differentiation including bone morphogenetic proteins (BMPs), collagen I, and Runx2. Cells were also capable of depositing a mineralized matrix, confirming the commitment of these cells to the osteogenic lineage. When FGFR1 activity was blocked, a reduction in cell proliferation and a coincident upregulation of Runx2 with enhanced mineralization of cultures was observed. These results indicate that FGFRs play critical roles in cell recruitment and differentiation during the process of osteogenesis in mES cells. In particular, the data indicate that FGFR1 plays a pivotal role in osteoblast lineage determination.
Collapse
Affiliation(s)
- Kee Woei Ng
- Stem Cell and Tissue Repair Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
| | | | | | | | | | | | | |
Collapse
|
99
|
Chung DD, Honda K, Cafuir L, McDuffie M, Wotton D. The Runx3 distal transcript encodes an additional transcriptional activation domain. FEBS J 2007; 274:3429-39. [PMID: 17555522 DOI: 10.1111/j.1742-4658.2007.05875.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The runt family transcriptional regulator, Runx3, is upregulated during the differentiation of CD8 single-positive thymocytes and is expressed in peripheral CD8(+) T cells. Mice carrying targeted deletions in Runx3 have severe defects in the development and activation of CD8(+) T cells, resulting in decreased CD8(+) T-cell numbers, aberrant coexpression of CD4, and failure to expand CD8(+) effector cells after activation in vivo or in vitro. Expression of each of the three vertebrate runt family members, including Runx3, is controlled by two promoters that generate proteins with alternative N-terminal sequences. The longer N-terminal region of Runx3, expressed from the distal promoter, is highly conserved among family members and across species. We show that transcripts from the distal Runx3 promoter are selectively expressed in mature CD8(+) T cells and are upregulated upon activation. We show that the N-terminal region encoded by these transcripts carries an independent transcriptional activation domain. This domain can activate transcription in isolation, and contributes to the increased transcriptional activity observed with this isoform as compared to those expressed from the ancestral, proximal promoter. Together, these data suggest an important role for the additional N-terminal Runx3 activation domain in CD8(+) T-cell function.
Collapse
Affiliation(s)
- David D Chung
- Center for Cell Signaling and Department of Biochemistry, and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
100
|
Huang W, Yang S, Shao J, Li YP. Signaling and transcriptional regulation in osteoblast commitment and differentiation. FRONT BIOSCI-LANDMRK 2007; 12:3068-92. [PMID: 17485283 PMCID: PMC3571113 DOI: 10.2741/2296] [Citation(s) in RCA: 467] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The major event that triggers osteogenesis is the transition of mesenchymal stem cells into bone forming, differentiating osteoblast cells. Osteoblast differentiation is the primary component of bone formation, exemplified by the synthesis, deposition and mineralization of extracellular matrix. Although not well understood, osteoblast differentiation from mesenchymal stem cells is a well-orchestrated process. Recent advances in molecular and genetic studies using gene targeting in mouse enable a better understanding of the multiple factors and signaling networks that control the differentiation process at a molecular level. Osteoblast commitment and differentiation are controlled by complex activities involving signal transduction and transcriptional regulation of gene expression. We review Wnt signaling pathway and Runx2 regulation network, which are critical for osteoblast differentiation. Many other factors and signaling pathways have been implicated in regulation of osteoblast differentiation in a network manner, such as the factors Osterix, ATF4, and SATB2 and the TGF-beta, Hedgehog, FGF, ephrin, and sympathetic signaling pathways. This review summarizes the recent advances in the studies of signaling transduction pathways and transcriptional regulation of osteoblast cell lineage commitment and differentiation. The knowledge of osteoblast commitment and differentiation should be applied towards the development of new diagnostic and therapeutic alternatives for human bone diseases.
Collapse
Affiliation(s)
- Wei Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shuying Yang
- Department of Cytokine Biology, Forsyth Institute, Harvard School of Dental Medicine, Boston, Massachusetts
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Jianzhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Ping Li
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Department of Cytokine Biology, Forsyth Institute, Harvard School of Dental Medicine, Boston, Massachusetts
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| |
Collapse
|