51
|
Dexmedetomidine attenuates lipopolysaccharide-induced acute liver injury in rats by inhibiting caveolin-1 downstream signaling pathway. Biosci Rep 2021; 41:227822. [PMID: 33558888 PMCID: PMC7938455 DOI: 10.1042/bsr20204279] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/27/2022] Open
Abstract
Objective: The aim of the present study is to investigate the anti-injury and anti-inflammatory effects of dexmedetomidine (Dex) in acute liver injury induced by lipopolysaccharide (LPS) in Sprague–Dawley rats and its possible mechanism. Methods: The acute liver injury model of male rats was established by injecting LPS into tail vein. The mean arterial pressure (MAP) of rats was recorded at 0–7 h, and lactic acid was detected at different time points. Wet/dry weight ratio (W/D) was calculated. Pathological changes of rat liver were observed by HE staining. ALT and AST levels in serum were detected. The activities of myeloperoxidase (MPO) and superoxide dismutase (SOD) in liver tissue homogenate and the levels of IL-1β and IL-18 in serum were detected by ELISA. Protein levels of Caveolin-1 (Cav-1), TLR-4 and NLRP3 in liver tissue were tested by immunohistochemistry method. The expression of Cav-1, TLR-4 and NLRP3 mRNA in liver tissue was detected by quantitative polymerase chain reaction (qPCR) to explore its related mechanism. Results: Compared with NS group, serum lactic acid, W/D of liver tissue, MPO, SOD, IL-1β and IL-18 were significantly increased and MAP decreased significantly in LPS group and D+L group. However, compared with NS group, D group showed no significant difference in various indicators. Compared with LPS group, MPO, SOD, IL-1β and IL-18 were significantly decreased and MAP was significantly increased in D+L group. D+L group could significantly increase the level of Cav-1 protein and decrease the level of TLR-4 and NLRP3 protein in liver tissue caused by sepsis. The expression of Cav-1 mRNA was significantly up-regulated and the expression of TLR-4 and NLRP3 mRNA was inhibited in D+L group. Conclusion: Dex pretreatment protects against LPS-induced actue liver injury via inhibiting the activation of the NLRP3 signaling pathway by up-regulating the expression of Cav-1 by sepsis.
Collapse
|
52
|
Carnt NA, Pang I, Burdon KP, Calder V, Dart JK, Subedi D, Hardcastle AJ. Innate and Adaptive Gene Single Nucleotide Polymorphisms Associated With Susceptibility of Severe Inflammatory Complications in Acanthamoeba Keratitis. Invest Ophthalmol Vis Sci 2021; 62:33. [PMID: 33755043 PMCID: PMC7991962 DOI: 10.1167/iovs.62.3.33] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose Over a third of patients with Acanthamoeba keratitis (AK) experience severe inflammatory complications (SICs). This study aimed to determine if some contact lens (CL) wearers with AK were predisposed to SICs due to variations in key immune genes. Methods CL wearers with AK who attended Moorfields Eye Hospital were recruited prospectively between April 2013 and October 2014. SICs were defined as scleritis and/or stromal ring infiltrate. Genomic DNA was processed with an Illumina Low Input Custom Amplicon assay of 58 single nucleotide polymorphism (SNP) targets across 18 genes and tested for association in PLINK. Results Genomic DNA was obtained and analyzed for 105 cases of AK, 40 (38%) of whom experienced SICs. SNPs in the CXCL8 gene encoding IL-8 was significantly associated with protection from SICs (chr4: rs1126647, odds ratio [OR] = 0.3, P = 0.005, rs2227543, OR = 0.4, P = 0.007, and rs2227307, OR = 0.4, P = 0.02) after adjusting for age, sex, steroids prediagnosis, and herpes simplex keratitis (HSK) misdiagnosis. Two TLR-4 SNPs were associated with increased risk of SICs (chr9: rs4986791 and rs4986790, both OR = 6.9, P = 0.01). Th-17 associated SNPs (chr1: IL-23R rs11209026, chr2: IL-1β rs16944, and chr12: IL-22 rs1179251) were also associated with SICs. Conclusions The current study identifies biologically relevant genetic variants in patients with AK with SICs; IL-8 is associated with a strong neutrophil response in the cornea in AK, TLR-4 is important in early AK disease, and Th-17 genes are associated with adaptive immune responses to AK in animal models. Genetic screening of patients with AK to predict severity is viable and this would be expected to assist disease management.
Collapse
Affiliation(s)
- Nicole A Carnt
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, Australia.,Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,University College London (UCL) Institute of Ophthalmology, London, United Kingdom
| | - Ignatius Pang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW), Sydney, Australia
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Virginia Calder
- University College London (UCL) Institute of Ophthalmology, London, United Kingdom
| | - John K Dart
- University College London (UCL) Institute of Ophthalmology, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Dinesh Subedi
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, Australia.,School of Biological Sciences, Monash University, Clayton, Australia
| | - Alison J Hardcastle
- University College London (UCL) Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
53
|
Ren G, Zhou Q, Lu M, Wang H. Rosuvastatin corrects oxidative stress and inflammation induced by LPS to attenuate cardiac injury by inhibiting the NLRP3/TLR4 pathway. Can J Physiol Pharmacol 2021; 99:964-973. [PMID: 33641435 DOI: 10.1139/cjpp-2020-0321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rosuvastatin has been found to possess antioxidant and anti-inflammatory properties. The aim of the current study was to evaluate whether rosuvastatin was effective in attenuating cardiac injury in lipopolysaccharide (LPS) - challenged mice and H9C2 cells and identify the underlying mechanisms, focusing on the nod-like receptor protein 3 (NLRP3)/toll-like receptor 4 (TLR4) pathway. Cardiac injury, cardiac function, apoptosis, oxidative stress, inflammatory response, and the NLRP3/TLR4 pathway were evaluated in both in vivo and in vitro studies. LPS-induced cardiomyocyte injury was markedly attenuated by rosuvastatin treatment, evidenced by increased cell proliferation of H9C2 cells, rescued cardiac function, and improved morphological changes in mice and reduced lactate dehydrogenase (LDH), creatine kinase MB fraction (CK-MB), and troponin I (cTnI) in serum. Apoptosis was clearly ameliorated in myocardial tissue and H9C2 cells co-treated with rosuvastatin. In addition, after LPS challenge, excessive oxidative stress was present, indicated by increases in malondialdehyde (MDA) content, NADPH activity, and reactive oxygen species (ROS) production and decreased superoxide dismutase (SOD) activity. Rosuvastatin improved all the indicators of oxidative stress, with an effect similar to that of N-acetylcysteine (NAC) (an ROS scavenger). Notably, LPS-exposed H9C2 cells and mice showed significant NLRP3 and TLR4/nuclear factor-κB (NF-κB) pathway activation and inflammatory responses. Administration of rosuvastatin reduced the increases in NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), pro-caspase-1, TLR4, and p65 expression and decreased the tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), IL-18, and IL-6 contents, with an effect similar to that of MCC950 (an NLRP3 inhibitor). In conclusion, inhibition of the inflammatory response and oxidative stress contributes to cardioprotective effect of rosuvastatin against cardiac injury induced by LPS, and the effect of rosuvastatin was achieved through inactivation of the NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Guocheng Ren
- Department of Circulatory Medicine, Chaoyang Central Hospital, Chaoyang 122000, China
| | - Qiujie Zhou
- Department of Circulatory Medicine, Chaoyang Central Hospital, Chaoyang 122000, China
| | - Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121001, China
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|
54
|
Health disparities: Intracellular consequences of social determinants of health. Toxicol Appl Pharmacol 2021; 416:115444. [PMID: 33549591 DOI: 10.1016/j.taap.2021.115444] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
Health disparities exist dependent on socioeconomic status, living conditions, race/ethnicity, diet, and exposures to environmental pollutants. Herein, the various exposures contributing to a person's exposome are collectively considered social determinants of health (SDOH), and the SDOH-exposome impacts health more than health care. This review discusses the extent of evidence of the physiologic consequences of these exposures at the intracellular level. We consider how the SDOH-exposome, which captures how individuals live, work and age, induces cell processes that modulate a conceptual "redox rheostat." Like an electrical resistor, the SDOH-exposome, along with genetic predisposition and age, regulate reductive and oxidative (redox) stress circuits and thereby stimulate inflammation. Regardless of the source of the SDOH-exposome that induces chronic inflammation and immunosenescence, the outcome influences cardiometabolic diseases, cancers, infections, sepsis, neurodegeneration and autoimmune diseases. The endogenous redox rheostat is connected with regulatory molecules such as NAD+/NADH and SIRT1 that drive redox pathways. In addition to these intracellular and mitochondrial processes, we discuss how the SDOH-exposome can influence the balance between metabolism and regulation of immune responsiveness involving the two main molecular drivers of inflammation, the NLRP3 inflammasome and NF-κB induction. Mitochondrial and inflammasome activities play key roles in mediating defenses against pathogens and controlling inflammation before diverse cell death pathways are induced. Specifically, pyroptosis, cell death by inflammation, is intimately associated with common disease outcomes that are influenced by the SDOH-exposome. Redox influences on immunometabolism including protein cysteines and ion fluxes are discussed regarding health outcomes. In summary, this review presents a translational research perspective, with evidence from in vitro and in vivo models as well as clinical and epidemiological studies, to outline the intracellular consequences of the SDOH-exposome that drive health disparities in patients and populations. The relevance of this conceptual and theoretical model considering the SARS-CoV-2 pandemic are highlighted. Finally, the case of asthma is presented as a chronic condition that is modified by adverse SDOH exposures and is manifested through the dysregulation of immune cell redox regulatory processes we highlight in this review.
Collapse
|
55
|
Ho LC, Wu TY, Lin TM, Liou HH, Hung SY. Indoxyl Sulfate Mediates the Low Inducibility of the NLRP3 Inflammasome in Hemodialysis Patients. Toxins (Basel) 2021; 13:toxins13010038. [PMID: 33430226 PMCID: PMC7825677 DOI: 10.3390/toxins13010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
The NLRP3 inflammasome is responsible for the maturation of caspase-1 and interleukin-1β (IL-1β). Despite the study about basal activity of the NLRP3 inflammasome in hemodialysis (HD) patients, little is known about its inducibility in the milieu of uremia. Peripheral blood mononuclear cells (PBMCs) isolated from 11 HD patients and 14 volunteers without a history of chronic kidney disease, as well as macrophages with or without the uremic toxin indoxyl sulfate (IS) pretreatment, underwent canonical NLRP3 inflammasome induction. Despite the high plasma levels of IL-1β in HD patients, caspase-1 and IL-1β in the PBMCs of HD patients remained predominantly immature and were not secreted in response to the canonical stimulus. In addition, while IS alone facilitated the inflammasome-independent secretion of IL-1β from macrophages, IS exposure before induction reduced the inducibility of the NLRP3 inflammasome, characterized by insufficient maturation of caspase-1. The low expression of inflammasome components, which was observed in both IS-pretreated cells and the PBMCs of HD patients, was probably responsible for the low inducibility.
Collapse
Affiliation(s)
- Li-Chun Ho
- Division of Nephrology, Department of Internal Medicine, E-DA Hospital, Kaohsiung 82445, Taiwan
- Division of General Medicine, Department of Internal Medicine, E-DA Hospital, Kaohsiung 82445, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Ting-Yun Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704017, Taiwan
| | - Tsun-Mei Lin
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Hung-Hsiang Liou
- Division of Nephrology, Department of Internal Medicine, Hsin-Jen Hospital, New Taipei City 242009, Taiwan
| | - Shih-Yuan Hung
- Division of Nephrology, Department of Internal Medicine, E-DA Hospital, Kaohsiung 82445, Taiwan
| |
Collapse
|
56
|
Kim TH, Yang K, Kim M, Kim HS, Kang JL. Apoptosis inhibitor of macrophage (AIM) contributes to IL-10-induced anti-inflammatory response through inhibition of inflammasome activation. Cell Death Dis 2021; 12:19. [PMID: 33414479 PMCID: PMC7791024 DOI: 10.1038/s41419-020-03332-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023]
Abstract
Apoptosis inhibitor of macrophage (AIM) modulates the signaling in inflammatory responses, including infection, cancer, or other immune diseases. Recent studies suggest that like interleukin-10 (IL-10), AIM is involved in alternatively activated (M2) macrophage polarization. We aimed to understand whether and how AIM is involved in IL-10-induced inhibition of inflammasome activation and resolution of inflammation. First, we demonstrated that IL-10 induced increases in mRNA and protein expression of AIM in murine bone marrow-derived macrophages (BMDM). In addition, genetic and pharmacologic inhibition of STAT3 (signal transducer and activator of transcription 3) reduced IL-10-induced AIM expression. We also found that IL-10-induced STAT3 activity enhanced the AIM promoter activity by directly binding the promoter of the AIM gene. Additionally, reduction of LPS/adenosine triphosphate (ATP)-induced IL-1β production and caspase-1 activation by IL-10 was reversed in BMDM from AIM-/- mice. Treatment of BMDM from both wild type (WT) and IL-10-/- mice with recombinant AIM showed the inhibitory effects on IL-1β and IL-18 production and caspase-1 activation. Endogenous and exogenous AIM inhibited apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) speck formation. In LPS-induced acute peritonitis, inhibition of IL-1β and IL-18 production in peritoneal lavage fluid (PLF) and serum, reduction of caspase-1 activation in peritoneal macrophages, and reduction of numbers of neutrophils and peritoneal macrophages in PLF by administration of IL-10 were not evident in AIM-/- mice. Our in vitro and in vivo data reveal a novel role of AIM in the inhibition of inflammasome-mediated caspase-1 activation and IL-1β and IL-18 production.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- grid.255649.90000 0001 2171 7754Department of Physiology, College of Medicine, Ewha Womans University, Seoul, 07804 Korea
| | - Kyungwon Yang
- grid.255649.90000 0001 2171 7754Department of Physiology, College of Medicine, Ewha Womans University, Seoul, 07804 Korea ,grid.255649.90000 0001 2171 7754Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804 Korea
| | - Minsuk Kim
- grid.255649.90000 0001 2171 7754Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804 Korea ,grid.255649.90000 0001 2171 7754Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07804 Korea
| | - Hee-Sun Kim
- grid.255649.90000 0001 2171 7754Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07804 Korea
| | - Jihee Lee Kang
- grid.255649.90000 0001 2171 7754Department of Physiology, College of Medicine, Ewha Womans University, Seoul, 07804 Korea ,grid.255649.90000 0001 2171 7754Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804 Korea
| |
Collapse
|
57
|
Sethuraman A, Rao P, Pranay A, Xu K, LaManna JC, Puchowicz MA. Chronic Ketosis Modulates HIF1α-Mediated Inflammatory Response in Rat Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1269:3-7. [PMID: 33966187 DOI: 10.1007/978-3-030-48238-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hypoxia inducible factor alpha (HIF1α) is associated with neuroprotection conferred by diet-induced ketosis, but the underlying mechanism remains unclear. In this study, we use a ketogenic diet in rodents to induce a metabolic state of chronic ketosis, as measured by elevated blood ketone bodies. Chronic ketosis correlates with neuroprotection in both aged and following focal cerebral ischemia and reperfusion (via middle cerebral artery occlusion, MCAO) in mouse and rat models. Ketone bodies are known to be used efficiently by the brain, and metabolism of ketone bodies is associated with increased cytosolic succinate levels that inhibits prolyl hydroxylases allowing HIF1α to accumulate. Ketosis also regulates inflammatory pathways, and HIF1α is reported to be essential for gene expression of interleukin 10 (IL10). Therefore, we hypothesized that ketosis-stabilized HIF1α modulates the expression of inflammatory cytokines orchestrating neuroprotection. To test changes in cytokine levels in rodent brain, 8-week-rats were fed either the standard chow diet (SD) or the KG diet for 4 weeks before ischemia experiments (MCAO) were performed and the brain tissues were collected. Consistent with our hypothesis, immunoblotting analysis shows IL10 levels were significantly higher in KG diet rat brain compared to SD, whereas the TNFα and IL6 levels were significantly lower in the brains of KG diet-fed group.
Collapse
Affiliation(s)
- Aarti Sethuraman
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Prahlad Rao
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Atul Pranay
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kui Xu
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Joseph C LaManna
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Michelle A Puchowicz
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
58
|
Cyr Y, Bissonnette S, Lamantia V, Wassef H, Loizon E, Ngo Sock ET, Vidal H, Mayer G, Chrétien M, Faraj M. White Adipose Tissue Surface Expression of LDLR and CD36 is Associated with Risk Factors for Type 2 Diabetes in Adults with Obesity. Obesity (Silver Spring) 2020; 28:2357-2367. [PMID: 33043593 DOI: 10.1002/oby.22985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/18/2020] [Accepted: 07/18/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Human conditions with upregulated receptor uptake of low-density lipoproteins (LDL) are associated with diabetes risk, the reasons for which remain unexplored. LDL induce metabolic dysfunction in murine adipocytes. Thus, it was hypothesized that white adipose tissue (WAT) surface expression of LDL receptor (LDLR) and/or CD36 is associated with WAT and systemic metabolic dysfunction. Whether WAT LDLR and CD36 expression is predicted by plasma lipoprotein-related parameters was also explored. METHODS This was a cross-sectional analysis of 31 nondiabetic adults (BMI > 25 kg/m2 ) assessed for WAT surface expression of LDLR and CD36 (immunohistochemistry), WAT function, WAT and systemic inflammation, postprandial fat metabolism, and insulin resistance (IR; hyperinsulinemic-euglycemic clamp). RESULTS Fasting WAT surface expression of LDLR and CD36 was negatively associated with WAT function (3 H-triglyceride storage, r = -0.45 and -0.66, respectively) and positively associated with plasma IL-1 receptor antagonist (r = 0.64 and 0.43, respectively). Their expression was suppressed 4 hours postprandially, and reduced LDLR was further associated with IR (M/Iclamp , r = 0.61 women, r = 0.80 men). Plasma apolipoprotein B (apoB)-to-PCSK9 ratio predicted WAT surface expression of LDLR and CD36, WAT dysfunction, WAT NLRP3 inflammasome priming and disrupted cholesterol-sensing genes, and systemic IR independent of sex and body composition. CONCLUSIONS Higher fasting and lower postprandial WAT surface expression of LDLR and CD36 is associated with WAT dysfunction, systemic inflammation, and IR in adults with overweight/obesity, anomalies that are predicted by higher plasma apoB-to-PCSK9 ratio.
Collapse
Affiliation(s)
- Yannick Cyr
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
- Montreal Diabetes Research Center (MDRC), Montréal, Quebec, Canada
| | - Simon Bissonnette
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
- Montreal Diabetes Research Center (MDRC), Montréal, Quebec, Canada
| | - Valérie Lamantia
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
- Montreal Diabetes Research Center (MDRC), Montréal, Quebec, Canada
| | - Hanny Wassef
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Quebec, Canada
| | - Emmanuelle Loizon
- CarMeN laboratory, Lyon University, INSERM, INRA, Université Lyon 1, Lyon, France
| | | | - Hubert Vidal
- CarMeN laboratory, Lyon University, INSERM, INRA, Université Lyon 1, Lyon, France
| | - Gaétan Mayer
- Institut de Cardiologie de Montréal (ICM), Montréal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montréal, Quebec, Canada
| | - Michel Chrétien
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
- Ottawa Health Research Institute (OHRI), Ottawa, Ontario, Canada
| | - May Faraj
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
- Montreal Diabetes Research Center (MDRC), Montréal, Quebec, Canada
| |
Collapse
|
59
|
Jablonski K, Young NA, Henry C, Caution K, Kalyanasundaram A, Okafor I, Harb P, Schwarz E, Consiglio P, Cirimotich CM, Bratasz A, Sarkar A, Amer AO, Jarjour WN, Schlesinger N. Physical activity prevents acute inflammation in a gout model by downregulation of TLR2 on circulating neutrophils as well as inhibition of serum CXCL1 and is associated with decreased pain and inflammation in gout patients. PLoS One 2020; 15:e0237520. [PMID: 33002030 PMCID: PMC7529261 DOI: 10.1371/journal.pone.0237520] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
Objectives Gout is the most prevalent inflammatory arthritis. To study the effects of regular physical activity and exercise intensity on inflammation and clinical outcome, we examined inflammatory pathogenesis in an acute model of murine gout and analyzed human gout patient clinical data as a function of physical activity. Methods NF-κB-luciferase reporter mice were organized into four groups and exercised at 0 m/min (non-exercise), 8 m/min (low-intensity), 11 m/min (moderate-intensity), and 15 m/min (high-intensity) for two weeks. Mice subsequently received intra-articular monosodium urate (MSU) crystal injections (0.5mg) and the inflammatory response was analyzed 15 hours later. Ankle swelling, NF-κB activity, histopathology, and tissue infiltration by macrophages and neutrophils were measured. Toll-like receptor (TLR)2 was quantified on peripheral monocytes/neutrophils by flow cytometry and both cytokines and chemokines were measured in serum or synovial aspirates. Clinical data and questionnaires accessing overall physical activity levels were collected from gout patients. Results Injection of MSU crystals produced a robust inflammatory response with increased ankle swelling, NF-κB activity, and synovial infiltration by macrophages and neutrophils. These effects were partially mitigated by low and moderate-intensity exercise. Furthermore, IL-1β was decreased at the site of MSU crystal injection, TLR2 expression on peripheral neutrophils was downregulated, and expression of CXCL1 in serum was suppressed with low and moderate-intensity exercise. Conversely, the high-intensity exercise group closely resembled the non-exercised control group by nearly all metrics of inflammation measured in this study. Physically active gout patients had significantly less flares/yr, decreased C-reactive protein (CRP) levels, and lower pain scores relative to physically inactive patients. Conclusions Regular, moderate physical activity can produce a quantifiable anti-inflammatory effect capable of partially mitigating the pathologic response induced by intra-articular MSU crystals by downregulating TLR2 expression on circulating neutrophils and suppressing systemic CXCL1. Low and moderate-intensity exercise produces this anti-inflammatory effect to varying degrees, while high-intensity exercise provides no significant difference in inflammation compared to non-exercising controls. Consistent with the animal model, gout patients with higher levels of physical activity have more favorable prognostic data. Collectively, these data suggest the need for further research and may be the foundation to a future paradigm-shift in conventional exercise recommendations provided by Rheumatologists to gout patients.
Collapse
Affiliation(s)
- Kyle Jablonski
- Division of Immunology and Rheumatology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, Unites States of America
| | - Nicholas A. Young
- Division of Immunology and Rheumatology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, Unites States of America
| | - Caitlin Henry
- Division of Immunology and Rheumatology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, Unites States of America
| | - Kyle Caution
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Anuradha Kalyanasundaram
- Department Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States of America
| | - Ifeoma Okafor
- Division of Immunology and Rheumatology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, Unites States of America
| | - Peter Harb
- Division of Immunology and Rheumatology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, Unites States of America
| | - Emmy Schwarz
- Division of Immunology and Rheumatology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, Unites States of America
| | - Paul Consiglio
- Department Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States of America
| | - Chris M. Cirimotich
- Battelle Biomedical Research Center, West Jefferson, OH, United States of America
| | - Anna Bratasz
- Small Animal Imaging Core, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Anasuya Sarkar
- Department Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States of America
| | - Amal O. Amer
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Wael N. Jarjour
- Division of Immunology and Rheumatology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, Unites States of America
| | - Naomi Schlesinger
- Division of Rheumatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States of America
- * E-mail:
| |
Collapse
|
60
|
Impaired pathogen-induced autophagy and increased IL-1β and TNFα release in response to pathogenic triggers in secretory phase endometrial stromal cells of endometriosis patients. Reprod Biomed Online 2020; 41:767-781. [PMID: 32978075 DOI: 10.1016/j.rbmo.2020.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/25/2020] [Accepted: 06/17/2020] [Indexed: 11/20/2022]
Abstract
RESEARCH QUESTION It is not clear whether innate immunity along with autophagy is altered in endometrial cells of patients with endometriosis. DESIGN This study evaluated the effects of lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly I:C) stimulation on autophagy induction, pro-IL-1β expression, and secretion of interleukin-1β (IL-1β) and tumour necrosis factor-α (TNFα) in endometrial epithelial and/or stromal cells of patients with endometriosis (EE-endo, ES-endo, respectively), those of patients with hydrosalpinx (EE-hydro, ES-hydro, respectively) and those of healthy fertile women (EE-healthy, ES-healthy, respectively), with and without inhibition of autophagy by autophagy-related (ATG)13 gene small interfering RNA (siRNA). RESULTS Stimulation with either LPS or poly I:C triggered autophagy in EE/ES-healthy, whereas no significant induction was observed in either EE/ES-endo or EE/ES-hydro. In EE- and/or ES-healthy, IL-1β and/or TNFα secretion after stimulation with LPS or poly I:C was significantly higher in cells with ATG13 knockdown compared with those with siRNA control (P < 0.03), whereas no significant difference was observed in either EE/ES-endo or EE/ES-hydro. In the secretory phase ES-endo without autophagy inhibition, IL-1β and TNFα secretion were significantly higher compared with those of ES-healthy after stimulation with either LPS or poly I:C for 4 h (P < 0.001) and for 24 h (P < 0.01). CONCLUSION Pathogen-induced autophagy was impaired in EE/ES-endo. Increased IL-1β and TNFα release in response to pathogenic triggers in the secretory phase ES-endo may result in the development of an inflammatory uterine microenvironment detrimental to successful embryo implantation.
Collapse
|
61
|
Yamazaki T, Ohshio K, Sugamata M, Morita Y. Lactic acid bacterium, Lactobacillus paracasei KW3110, suppresses inflammatory stress-induced caspase-1 activation by promoting interleukin-10 production in mouse and human immune cells. PLoS One 2020; 15:e0237754. [PMID: 32804985 PMCID: PMC7430740 DOI: 10.1371/journal.pone.0237754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
A strain of lactic acid bacteria, Lactobacillus paracasei KW3110 (KW3110), activates M2 macrophages with anti-inflammatory reactions and mitigates aging-related chronic inflammation and blue-light exposure-induced retinal inflammation in mice. However, the mechanism underlying the anti-inflammatory effects of KW3110 remains unclear. In this study, we investigated the anti-inflammatory effects of KW3110 using both mouse and human immune cells and evaluated the suppressive effect of KW3110 on the inflammatory reactions of the cells stimulated with lipopolysaccharide and adenosine 5′-triphosphate (LPS/ATP). KW3110 treatment induced anti-inflammatory cytokine interleukin (IL)-10 production in the supernatants of murine macrophage-like cells, J774A.1, and suppressed IL-1β production in the supernatants of LPS/ATP-stimulated cells. The influence of KW3110 on the production of these cytokines was inhibited by pre-treatment with phagocytosis blocker or transfection with siRNAs for IL-10 signaling components. KW3110 treatment also suppressed activation of caspase-1, an active component of inflammasome complexes, in LPS/ATP-stimulated J774A.1 cells, and its effect was inhibited by transfection with siRNAs for IL-10 signaling components. In addition to the effects of KW3110 on J774A.1 cells, KW3110 treatment induced IL-10 production in the supernatants of human monocytes, and KW3110 or IL-10 treatment suppressed caspase-1 activation and IL-1β production in the supernatants of LPS/ATP-stimulated cells. These results suggest that KW3110 suppresses LPS/ATP stimulation-induced caspase-1 activation and IL-1β production by promoting IL-10 production in mouse and human immune cells. Our findings reveal a novel anti-inflammatory mechanism of LAB and the effect of KW3110 on caspase-1 activation is expected to contribute to constructing future preventive strategies for inflammation-related disorders using food ingredients.
Collapse
Affiliation(s)
- Takahiro Yamazaki
- KIRIN Central Research Institute, Kirin Holdings Company, Limited, Kanagawa, Yokohama, Japan
- * E-mail:
| | - Konomi Ohshio
- KIRIN Central Research Institute, Kirin Holdings Company, Limited, Kanagawa, Yokohama, Japan
| | - Miho Sugamata
- KIRIN Central Research Institute, Kirin Holdings Company, Limited, Kanagawa, Yokohama, Japan
| | - Yuji Morita
- KIRIN Central Research Institute, Kirin Holdings Company, Limited, Kanagawa, Yokohama, Japan
| |
Collapse
|
62
|
Suzuki H, Yamazaki T, Ohshio K, Sugamata M, Yoshikawa M, Kanauchi O, Morita Y. A Specific Strain of Lactic Acid Bacteria, Lactobacillus paracasei, Inhibits Inflammasome Activation In Vitro and Prevents Inflammation-Related Disorders. THE JOURNAL OF IMMUNOLOGY 2020; 205:811-821. [PMID: 32591398 DOI: 10.4049/jimmunol.1900657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/04/2020] [Indexed: 12/23/2022]
Abstract
Some strains of lactic acid bacteria (LAB) have anti-inflammatory effects, but the mechanism underlying the alleviation of inflammation by LAB is not fully understood. In this study, we examined the inhibitory effect of a certain strain of LAB, Lactobacillus paracasei, on inflammasome activation, which is associated with various inflammatory disorders. Using bone marrow-derived macrophages from BALB/c mice, we found that L. paracasei, but not L. rhamnosus, suppressed NLRP3 inflammasome activation and inhibited subsequent caspase-1 activation and IL-1β secretion. L. paracasei also had inhibitory effects on AIM2 and NLRC4 inflammasome activation as well as the NLRP3 inflammasome. These inhibitory effects of L. paracasei on inflammasome activation were dependent on autocrine IL-10 induced by L. paracasei-stimulated macrophages. Furthermore, IL-10 production by L. paracasei-stimulated macrophages was involved with phagocytosis and the NOD2 signaling pathway in macrophages. In addition to in vitro studies, oral administration of L. paracasei in C57BL/6 mice reduced monosodium urate crystal-induced peritoneal inflammation in vivo. Moreover, continuous intake of L. paracasei in C57BL/6 mice alleviated high fat diet-induced insulin resistance and aging-induced expression of biomarkers for T cell senescence. Taken together, we demonstrated that L. paracasei inhibits inflammasome activation in vitro and exhibits an anti-inflammatory function in vivo. These results indicate that LAB that have inhibitory effects on inflammasome activation might contribute to the alleviation of inflammation-related disorders.
Collapse
Affiliation(s)
- Hiroaki Suzuki
- Research Laboratories for Health Science and Food Technologies, Kirin Holdings Company, Tokyo 236-0004, Japan
| | - Takahiro Yamazaki
- Research Laboratories for Health Science and Food Technologies, Kirin Holdings Company, Tokyo 236-0004, Japan
| | - Konomi Ohshio
- Research Laboratories for Health Science and Food Technologies, Kirin Holdings Company, Tokyo 236-0004, Japan
| | - Miho Sugamata
- Research Laboratories for Health Science and Food Technologies, Kirin Holdings Company, Tokyo 236-0004, Japan
| | - Mia Yoshikawa
- Research Laboratories for Health Science and Food Technologies, Kirin Holdings Company, Tokyo 236-0004, Japan
| | - Osamu Kanauchi
- Research Laboratories for Health Science and Food Technologies, Kirin Holdings Company, Tokyo 236-0004, Japan
| | - Yuji Morita
- Research Laboratories for Health Science and Food Technologies, Kirin Holdings Company, Tokyo 236-0004, Japan
| |
Collapse
|
63
|
Wei HX, Wang B, Li B. IL-10 and IL-22 in Mucosal Immunity: Driving Protection and Pathology. Front Immunol 2020; 11:1315. [PMID: 32670290 PMCID: PMC7332769 DOI: 10.3389/fimmu.2020.01315] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
The barrier surfaces of the gastrointestinal tract are in constant contact with various microorganisms. Cytokines orchestrate the mucosal adaptive and innate immune cells in the defense against pathogens. IL-10 and IL-22 are the best studied members of the IL-10 family and play essential roles in maintaining mucosal homeostasis. IL-10 serves as an important regulator in preventing pro-inflammatory responses while IL-22 plays a protective role in tissue damage and contributes to pathology in certain settings. In this review, we focus on these two cytokines in the development of gastrointestinal diseases, including inflammatory bowel diseases (IBD) and colitis-associated cancer (CAC). We summarize the recent studies and try to gain a better understanding on how they regulate immune responses to maintain equilibrium under inflammatory conditions.
Collapse
Affiliation(s)
- Hua-Xing Wei
- Division of Life Sciences and Medicine, Department of Laboratory Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Baolong Wang
- Division of Life Sciences and Medicine, Department of Laboratory Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Bofeng Li
- Division of Life Sciences and Medicine, Department of Medical Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| |
Collapse
|
64
|
Plasma membrane damage causes NLRP3 activation and pyroptosis during Mycobacterium tuberculosis infection. Nat Commun 2020; 11:2270. [PMID: 32385301 PMCID: PMC7210277 DOI: 10.1038/s41467-020-16143-6] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis is a global health problem in part as a result of extensive cytotoxicity caused by the infection. Here, we show how M. tuberculosis causes caspase-1/NLRP3/gasdermin D-mediated pyroptosis of human monocytes and macrophages. A type VII secretion system (ESX-1) mediated, contact-induced plasma membrane damage response occurs during phagocytosis of bacteria. Alternatively, this can occur from the cytosolic side of the plasma membrane after phagosomal rupture in infected macrophages. This damage causes K+ efflux and activation of NLRP3-dependent IL-1β release and pyroptosis, facilitating the spread of bacteria to neighbouring cells. A dynamic interplay of pyroptosis with ESCRT-mediated plasma membrane repair also occurs. This dual plasma membrane damage seems to be a common mechanism for NLRP3 activators that function through lysosomal damage. Inflammasome activation is a response to bacterial infection but can cause damage and spread infection. Here, the authors use live single-cell imaging to show two mechanisms by which M. tuberculosis causes damage to human macrophage cell plasma membranes, resulting in activation of the NLRP3 inflammasome, pyroptosis and release of infectious particles.
Collapse
|
65
|
Pachathundikandi SK, Blaser N, Bruns H, Backert S. Helicobacter pylori Avoids the Critical Activation of NLRP3 Inflammasome-Mediated Production of Oncogenic Mature IL-1β in Human Immune Cells. Cancers (Basel) 2020; 12:E803. [PMID: 32230726 PMCID: PMC7226495 DOI: 10.3390/cancers12040803] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/03/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori persistently colonizes the human stomach, and is associated with inflammation-induced gastric cancer. Bacterial crosstalk with the host immune system produces various inflammatory mediators and subsequent reactions in the host, but not bacterial clearance. Interleukin-1β (IL-1β) is implicated in gastric cancer development and certain gene polymorphisms play a role in this scenario. Mature IL-1β production depends on inflammasome activation, and the NLRP3 inflammasome is a major driver in H. pylori-infected mice, while recent studies demonstrated the down-regulation of NLRP3 expression in human immune cells, indicating a differential NLRP3 regulation in human vs. mice. In addition to the formation of mature IL-1β or IL-18, inflammasome activation induces pyroptotic death in cells. We demonstrate that H. pylori infection indeed upregulated the expression of pro-IL-1β in human immune cells, but secreted only very low amounts of mature IL-1β. However, application of exogenous control activators such as Nigericin or ATP to infected cells readily induced NLRP3 inflammasome formation and secretion of high amounts of mature IL-1β. This suggests that chronic H. pylori infection in humans manipulates inflammasome activation and pyroptosis for bacterial persistence. This inflammasome deregulation during H. pylori infection, however, is prone to external stimulation by microbial, environmental or host molecules of inflammasome activators for the production of high amounts of mature IL-1β and signaling-mediated gastric tumorigenesis in humans.
Collapse
Affiliation(s)
- Suneesh Kumar Pachathundikandi
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany;
| | - Nicole Blaser
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany;
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander University, D-91058 Erlangen, Germany;
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany;
| |
Collapse
|
66
|
Keshavarzian A, Engen P, Bonvegna S, Cilia R. The gut microbiome in Parkinson's disease: A culprit or a bystander? PROGRESS IN BRAIN RESEARCH 2020; 252:357-450. [PMID: 32247371 DOI: 10.1016/bs.pbr.2020.01.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, large-scale metagenomics projects such as the Human Microbiome Project placed the gut microbiota under the spotlight of research on its role in health and in the pathogenesis several diseases, as it can be a target for novel therapeutical approaches. The emerging concept of a microbiota modulation of the gut-brain axis in the pathogenesis of neurodegenerative disorders has been explored in several studies in animal models, as well as in human subjects. Particularly, research on changes in the composition of gut microbiota as a potential trigger for alpha-synuclein (α-syn) pathology in Parkinson's disease (PD) has gained increasing interest. In the present review, we first provide the basis to the understanding of the role of gut microbiota in healthy subjects and the molecular basis of the gut-brain interaction, focusing on metabolic and neuroinflammatory factors that could trigger the alpha-synuclein conformational changes and aggregation. Then, we critically explored preclinical and clinical studies reporting on the changes in gut microbiota in PD, as compared to healthy subjects. Furthermore, we examined the relationship between the gut microbiota and PD clinical features, discussing data consistently reported across studies, as well as the potential sources of inconsistencies. As a further step toward understanding the effects of gut microbiota on PD, we discussed the relationship between dysbiosis and response to dopamine replacement therapy, focusing on Levodopa metabolism. We conclude that further studies are needed to determine whether the gut microbiota changes observed so far in PD patients is the cause or, instead, it is merely a consequence of lifestyle changes associated with the disease. Regardless, studies so far strongly suggest that changes in microbiota appears to be impactful in pathogenesis of neuroinflammation. Thus, dysbiotic microbiota in PD could influence the disease course and response to medication, especially Levodopa. Future research will assess the impact of microbiota-directed therapeutic intervention in PD patients.
Collapse
Affiliation(s)
- Ali Keshavarzian
- Department of Internal Medicine, Division of Digestive Disease and Nutrition, Rush University Medical Center, Chicago, IL, United States
| | - Phillip Engen
- Department of Internal Medicine, Division of Digestive Disease and Nutrition, Rush University Medical Center, Chicago, IL, United States
| | | | - Roberto Cilia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Movement Disorders Unit, Milan, Italy.
| |
Collapse
|
67
|
Lyons DO, Pullen NA. Beyond IgE: Alternative Mast Cell Activation Across Different Disease States. Int J Mol Sci 2020; 21:ijms21041498. [PMID: 32098318 PMCID: PMC7073060 DOI: 10.3390/ijms21041498] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Mast cells are often regarded through the lens of IgE-dependent reactions as a cell specialized only for anti-parasitic and type I hypersensitive responses. However, recently many researchers have begun to appreciate the expansive repertoire of stimuli that mast cells can respond to. After the characterization of the interleukin (IL)-33/suppression of tumorigenicity 2 (ST2) axis of mast cell activation-a pathway that is independent of the adaptive immune system-researchers are revisiting other stimuli to induce mast cell activation and/or subsequent degranulation independent of IgE. This discovery also underscores that mast cells act as important mediators in maintaining body wide homeostasis, especially through barrier defense, and can thus be the source of disease as well. Particularly in the gut, inflammatory bowel diseases (Crohn's disease, ulcerative colitis, etc.) are characterized with enhanced mast cell activity in the context of autoimmune disease. Mast cells show phenotypic differences based on tissue residency, which could manifest as different receptor expression profiles, allowing for unique mast cell responses (both IgE and non-IgE mediated) across varying tissues as well. This variety in receptor expression suggests mast cells respond differently, such as in the gut where immunosuppressive IL-10 stimulates the development of food allergy or in the lungs where transforming growth factor-β1 (TGF-β1) can enhance mast cell IL-6 production. Such differences in receptor expression illustrate the truly diverse effector capabilities of mast cells, and careful consideration must be given toward the phenotype of mast cells observed in vitro. Given mast cells' ubiquitous tissue presence and their capability to respond to a broad spectrum of non-IgE stimuli, it is expected that mast cells may also contribute to the progression of autoimmune disorders and other disease states such as metastatic cancer through promoting chronic inflammation in the local tissue microenvironment and ultimately polarizing toward a unique Th17 immune response. Furthermore, these interconnected, atypical activation pathways may crosstalk with IgE-mediated signaling differently across disorders such as parasitism, food allergies, and autoimmune disorders of the gut. In this review, we summarize recent research into familiar and novel pathways of mast cells activation and draw connections to clinical human disease.
Collapse
|
68
|
Hachim MY, Khalil BA, Elemam NM, Maghazachi AA. Pyroptosis: The missing puzzle among innate and adaptive immunity crosstalk. J Leukoc Biol 2020; 108:323-338. [PMID: 32083338 DOI: 10.1002/jlb.3mir0120-625r] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Pyroptosis is a newly discovered programmed cell death with inflammasome formation. Pattern recognition receptors that identify repetitive motifs of prospective pathogens such as LPS of gram-negative bacteria are crucial to pyroptosis. Upon stimulation by pathogen-associated molecular patterns or damage-associated molecular patterns, proinflammatory cytokines, mainly IL-1 family members IL-1β and IL-18, are released through pyroptosis specific pore-forming protein, gasdermin D. Even though IL-1 family members are mainly involved in innate immunity, they can be factors in adaptive immunity. Given the importance of IL-1 family members in health and diseases, deciphering the role of pyroptosis in the regulation of innate and adaptive immunity is of great importance, especially with the recent progress in identifying the exact mechanism of such a pathway. In this review, we will focus on how the innate inflammatory mediators can regulate the adaptive immune system and vice versa via pyroptosis.
Collapse
Affiliation(s)
- Mahmood Y Hachim
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Bariaa A Khalil
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Noha M Elemam
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
69
|
Chronic Systemic Inflammation Exacerbates Neurotoxicity in a Parkinson's Disease Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4807179. [PMID: 32015787 PMCID: PMC6982359 DOI: 10.1155/2020/4807179] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/26/2019] [Accepted: 10/05/2019] [Indexed: 12/13/2022]
Abstract
Systemic inflammation is a crucial factor for microglial activation and neuroinflammation in neurodegeneration. This work is aimed at assessing whether previous exposure to systemic inflammation potentiates neurotoxic damage by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and how chronic systemic inflammation participates in the physiopathological mechanisms of Parkinson's disease. Two different models of systemic inflammation were employed to explore this hypothesis: a single administration of lipopolysaccharide (sLPS; 5 mg/kg) and chronic exposure to low doses (mLPS; 100 μg/kg twice a week for three months). After three months, both groups were challenged with MPTP. With the sLPS administration, Iba1 staining increased in the striatum and substantia nigra, and the cell viability lowered in the striatum of these mice. mLPS alone had more impact on the proinflammatory profile of the brain, steadily increasing TNFα levels, activating microglia, reducing BDNF, cell viability, and dopamine levels, leading to a damage profile similar to the MPTP model per se. Interestingly, mLPS increased MAO-B activity possibly conferring susceptibility to MPTP damage. mLPS, along with MPTP administration, exacerbated the neurotoxic effect. This effect seemed to be coordinated by microglia since minocycline administration prevented brain TNFα increase. Coadministration of sLPS with MPTP only facilitated damage induced by MPTP without significant change in the inflammatory profile. These results indicate that chronic systemic inflammation increased susceptibility to MPTP toxic effect and is an adequate model for studying the impact of systemic inflammation in Parkinson's disease.
Collapse
|
70
|
Kessel C, Hedrich CM, Foell D. Innately Adaptive or Truly Autoimmune: Is There Something Unique About Systemic Juvenile Idiopathic Arthritis? Arthritis Rheumatol 2020; 72:210-219. [PMID: 31524322 DOI: 10.1002/art.41107] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 09/10/2019] [Indexed: 12/11/2022]
Abstract
Systemic juvenile idiopathic arthritis (JIA) is a form of arthritis in childhood that is initially dominated by innate immunity-driven systemic inflammation and is thus considered a polygenic autoinflammatory disease. However, systemic JIA can progress toward an adaptive immunity-driven afebrile arthritis. Based on this observation of biphasic disease progression, a "window of opportunity" for optimal, individualized and target-directed treatment has been proposed. This hypothesis requires testing, and in this review we summarize current evidence regarding molecular factors that may contribute to the progression from an initially predominantly autoinflammatory disease phenotype to autoimmune arthritis. We consider the involvement of innately adaptive γδ T cells and natural killer T cells that express γδ or αβ T cell receptors but cannot be classified as either purely innate or adaptive cells, versus classic B and T lymphocytes in this continuum. Finally, we discuss our understanding of how and why some primarily autoinflammatory conditions can progress toward autoimmune-mediated disorders over the disease course while others do not and how this knowledge may be used to offer individualized treatment.
Collapse
|
71
|
Liu J, Cai J, Fan P, Zhang N, Cao Y. The Abilities of Salidroside on Ameliorating Inflammation, Skewing the Imbalanced Nucleotide Oligomerization Domain-Like Receptor Family Pyrin Domain Containing 3/Autophagy, and Maintaining Intestinal Barrier Are Profitable in Colitis. Front Pharmacol 2019; 10:1385. [PMID: 31849652 PMCID: PMC6901016 DOI: 10.3389/fphar.2019.01385] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Salidroside (Sal), as a major glycoside extracted from Rhodiola rosea L., has exhibited its mighty anti-aging, anti-oxidant, anti-cancer, anti-inflammation, and neuroprotective effects in many diseases. Recently, it has showed its protective effect in colitis mice by activating the SIRT1/FoxOs pathway. Whereas, it is not known whether Sal has other protective mechanisms on dextran sulfate sodium (DSS)-induced colitis in mice. In this study, we investigated the protective effects and mechanisms of Sal on DSS-induced colitis in mice. The results demonstrated Sal was a competent candidate in the treatment of ulcerative colitis (UC). Sal remitted DSS-induced disease activity index (DAI), colon length shortening, and colonic pathological damage. Simultaneously, Sal alleviated excessive inflammation by reversing the IL-1β, TNF-α, and IL-10 protein levels in DSS-treated mice. Western blot analysis revealed that Sal inhibited p65 and p38 activation together with peroxisome proliferator-activated receptor (PPARγ) up-regulation. In addition, Sal skewed the imbalanced activation of nucleotide oligomerization domain-like receptor family pyrin domain containing 3 inflammasome and autophagy contributing to colitis recovery. The damaged intestinal barrier induced by DSS was also alleviated along with plasma lipopolysaccharides (LPS) reduction after Sal treatment. In vitro, Sal showed PPARγ-dependent anti-inflammatory effect in LPS-stimulated RAW264.7 cells. In summary, our results demonstrated that Sal might be an effective factor for UC treatment and its pharmacological value deserved further development.
Collapse
Affiliation(s)
- Jiuxi Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiapei Cai
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peng Fan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
72
|
Gong Q, He L, Wang M, Zuo S, Gao H, Feng Y, Du L, Luo Y, Li J. Comparison of the TLR4/NFκB and NLRP3 signalling pathways in major organs of the mouse after intravenous injection of lipopolysaccharide. PHARMACEUTICAL BIOLOGY 2019; 57:555-563. [PMID: 31446815 PMCID: PMC6720225 DOI: 10.1080/13880209.2019.1653326] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Context: Lipopolysaccharide (LPS) is often used to induce immunoinflammatory reactions. TLR4/NFκB and NLRP3 signalling are major factors for inflammation. Dexamethasone (DXM) has an anti-immunoinflammatory effect. Objective: To investigate the inflammatory reaction in pathological changes of organs and the expression of inflammatory signalling during LPS infection. Materials and methods: ICR mice were divided into control group (n = 9), LPS group (n = 15) and LPS + DXM group (n = 14). LPS (10 mg/kg) was injected intravenously in LPS group and LPS + DXM group, normal saline was injected to the control group; DXM (0.5 mg/kg) was given by intragastric administration. 12 h after LPS, the blood was collected and the organs were isolated for biochemical analysis, protein expression, and morphological examination. Results: The results showed that BUN, Cre, ALT, AST in the LPS group increased distinctly by 81.42, 67.84, 40.53 and 36.05%, respectively, and CK, ALP, TP and ALB decreased by 71.37, 60.6, 12.57 and 19.73%, respectively, compared with the control group. In the morphologic observation, local necrosis in the liver, arterial vasodilation in the heart and kidney, alveolar secretions and pulmonary interstitial in the lungs, and mucosal shedding in the small and large intestines, the expression of TLR4-NFκB signalling were up-regulated distinctly whereas NLRP3 signalling was less broadly affected. DXM can decrease BUN and Cre, downregulate the expression of TLR4-NFκB signalling, but has no effect on the organ damage based on morphology. Conclusion: Acute injuries induced by LPS are extensive. The inflammatory damage in small and large intestines, liver and kidney was more severe than other organs. TLR4-NFκB signalling was the major response to LPS stress.
Collapse
Affiliation(s)
- Qin Gong
- School of Pharmaceutical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Luling He
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Mulan Wang
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Shasha Zuo
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yulin Feng
- School of Pharmaceutical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lijun Du
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yingying Luo
- School of Pharmaceutical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- Yingying Luo School of Pharmaceutical Sciences, Jiangxi University of Traditional Chinese Medicine, No. 56, Yangming Road, Nanchang 330006, China
| | - Jun Li
- School of Pharmaceutical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- CONTACT Jun Li
| |
Collapse
|
73
|
Mellal K, Omri S, Mulumba M, Tahiri H, Fortin C, Dorion MF, Pham H, Garcia Ramos Y, Zhang J, Pundir S, Joyal JS, Bouchard JF, Sennlaub F, Febbraio M, Hardy P, Gravel SP, Marleau S, Lubell WD, Chemtob S, Ong H. Immunometabolic modulation of retinal inflammation by CD36 ligand. Sci Rep 2019; 9:12903. [PMID: 31501473 PMCID: PMC6733801 DOI: 10.1038/s41598-019-49472-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/20/2019] [Indexed: 12/26/2022] Open
Abstract
In subretinal inflammation, activated mononuclear phagocytes (MP) play a key role in the progression of retinopathies. Little is known about the mechanism involved in the loss of photoreceptors leading to vision impairment. Studying retinal damage induced by photo-oxidative stress, we observed that cluster of differentiation 36 (CD36)-deficient mice featured less subretinal MP accumulation and attenuated photoreceptor degeneration. Moreover, treatment with a CD36-selective azapeptide ligand (MPE-001) reduced subretinal activated MP accumulation in wild type mice and preserved photoreceptor layers and function as assessed by electroretinography in a CD36-dependent manner. The azapeptide modulated the transcriptome of subretinal activated MP by reducing pro-inflammatory markers. In isolated MP, MPE-001 induced dissociation of the CD36-Toll-like receptor 2 (TLR2) oligomeric complex, decreasing nuclear factor-kappa B (NF-κB) and NLR family pyrin domain containing 3 (NLRP3) inflammasome activation. In addition, MPE-001 caused an aerobic metabolic shift in activated MP, involving peroxisome proliferator-activated receptor-γ (PPAR-γ) activation, which in turn mitigated inflammation. Accordingly, PPAR-γ inhibition blocked the cytoprotective effect of MPE-001 on photoreceptor apoptosis elicited by activated MP. By altering activated MP metabolism, MPE-001 decreased immune responses to alleviate subsequent inflammation-dependent neuronal injury characteristic of various vision-threatening retinal disorders.
Collapse
Affiliation(s)
- Katia Mellal
- Faculty of Pharmacy, Université de Montréal, Montreal, Canada
| | - Samy Omri
- Maisonneuve-Rosemont Hospital, Montréal, Canada
- Mperia Therapeutics, Montréal, Canada
| | | | - Houda Tahiri
- Departments of Pediatrics, Ophthalmology and Pharmacology, Université de Montréal, Montreal, Canada
| | - Carl Fortin
- Faculty of Pharmacy, Université de Montréal, Montreal, Canada
| | | | - Hung Pham
- Faculty of Pharmacy, Université de Montréal, Montreal, Canada
| | | | - Jinqiang Zhang
- Department of Chemistry, Université de Montréal, Montreal, Canada
| | - Sheetal Pundir
- Departments of Pediatrics, Ophthalmology and Pharmacology, Université de Montréal, Montreal, Canada
| | - Jean-Sébastien Joyal
- Departments of Pediatrics, Ophthalmology and Pharmacology, Université de Montréal, Montreal, Canada
| | - Jean-François Bouchard
- Neuropharmacology Laboratory, School of Optometry, Université de Montréal, Montreal, Canada
| | - Florian Sennlaub
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS, Paris, France
| | - Maria Febbraio
- Department of Dentistry, University of Alberta, Edmonton, Canada
| | - Pierre Hardy
- Departments of Pediatrics, Ophthalmology and Pharmacology, Université de Montréal, Montreal, Canada
| | | | - Sylvie Marleau
- Faculty of Pharmacy, Université de Montréal, Montreal, Canada
| | - William D Lubell
- Department of Chemistry, Université de Montréal, Montreal, Canada
| | - Sylvain Chemtob
- Maisonneuve-Rosemont Hospital, Montréal, Canada.
- Departments of Pediatrics, Ophthalmology and Pharmacology, Université de Montréal, Montreal, Canada.
| | - Huy Ong
- Faculty of Pharmacy, Université de Montréal, Montreal, Canada.
| |
Collapse
|
74
|
Lee EH, Shin JH, Kim SS, Joo JH, Choi E, Seo SR. Suppression of Propionibacterium acnes-Induced Skin Inflammation by Laurus nobilis Extract and Its Major Constituent Eucalyptol. Int J Mol Sci 2019; 20:ijms20143510. [PMID: 31319552 PMCID: PMC6678599 DOI: 10.3390/ijms20143510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
Acne is an inflammatory skin disorder in puberty with symptoms including papules, folliculitis, and nodules. Propionibacterium acnes (P. acnes) is the main anaerobic bacteria that cause acne. It is known to proliferate within sebum-blocked skin hair follicles. P. acnes activates monocytic cell immune responses to induce the expression of proinflammatory cytokines. Although the anti-inflammatory function of the Laurus nobilis (L. nobilis) extract (LNE) on several immunological disorders have been reported, the effect of LNE in P. acnes-mediated skin inflammation has not yet been explored. In the present study, we examined the ability of the LNE to modulate the P. acnes-induced inflammatory signaling pathway, and evaluated its mechanism. LNE significantly suppressed the expression of P. acnes-mediated proinflammatory cytokines, such as IL-1β, IL-6, and NLRP3. We also found that LNE inhibited the inflammatory transcription factor NF-κB in response to P. acnes. In addition, eucalyptol, which is the main constituent of LNE, consistently inhibited P. acnes-induced inflammatory signaling pathways. Moreover, LNE significantly ameliorated P. acnes-induced inflammation in a mouse model of acne. We suggest for the first time that LNE hold therapeutic value for the improvement of P. acnes-induced skin inflammation.
Collapse
Affiliation(s)
- Eun Hye Lee
- Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341, Korea
| | - Jin Hak Shin
- Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341, Korea
| | - Seon Sook Kim
- Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341, Korea
| | - Ji-Hye Joo
- R&D Center, Greensolutions Co., Chuncheon 24342, Korea
| | - Eunmi Choi
- R&D Center, Greensolutions Co., Chuncheon 24342, Korea
| | - Su Ryeon Seo
- Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
75
|
Munshi S, Parrilli V, Rosenkranz JA. Peripheral anti-inflammatory cytokine Interleukin-10 treatment mitigates interleukin-1β - induced anxiety and sickness behaviors in adult male rats. Behav Brain Res 2019; 372:112024. [PMID: 31195034 DOI: 10.1016/j.bbr.2019.112024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/19/2019] [Accepted: 06/08/2019] [Indexed: 02/06/2023]
Abstract
Pro-inflammatory cytokines produce manifestations of sickness during inflammation, such as malaise and lethargy. They also contribute to effects of inflammation on mood. Anti-inflammatory cytokines counteract damage caused by inflammatory processes and can limit the severity of inflammation. However, very little is known about the role of anti-inflammatory cytokines in sickness and mood changes during immune activation. The purpose of this study was to determine if a prototypical anti-inflammatory cytokine, interleukin 10 (IL-10), can offset sickness behavior and anxiety caused by a pro-inflammatory cytokine, and whether IL-10 itself modifies anxiety. Rodent models of sickness display suppression of behavioral activity that may reflect lethargy or malaise, while models of anxiety display reduced exploration in several tasks. The effects of peripheral single dose of cytokines on open field exploration, social interaction and elevated plus maze (EPM) tests in adult male Sprague-Dawley rats were measured at 30-50 min post-treatment. The prototypical pro-inflammatory cytokine IL-1β (1 μg, i.p.) caused a decrease in locomotor activity indicative of sickness behavior, but disproportionately reduced central area exploration in the open field, open arm exploration in the EPM and lowered social interaction. IL-10 (1 μg, i.p.) had no effect on locomotor activity, but itself produced anxiety-like behavior in the open field and EPM. However, rats co-treated with both IL-10 and IL-1β showed locomotor activity, open field, social interaction and EPM behaviors very similar to control groups. This data demonstrate that IL-10 is capable of mitigating the sickness and anxiogenic effects caused by IL-1β, but that immune imbalance toward either a pro-inflammatory or an anti-inflammatory state can produce anxiety. This has importance for understanding the scope of immune changes that produce psychiatric symptoms, and provides preliminary indication that anti-inflammatory cytokines may be potentially useful in treatment of anxiety induced by inflammatory conditions.
Collapse
Affiliation(s)
- Soumyabrata Munshi
- Department of Foundational Sciences and Humanities, Division of Cellular and Molecular Pharmacology, 3333 Green Bay Road, North Chicago, IL, 60064, USA; Department of Foundational Sciences and Humanities, Division of Neuroscience, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Victoria Parrilli
- Department of Foundational Sciences and Humanities, Division of Cellular and Molecular Pharmacology, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - J Amiel Rosenkranz
- Department of Foundational Sciences and Humanities, Division of Cellular and Molecular Pharmacology, 3333 Green Bay Road, North Chicago, IL, 60064, USA; Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| |
Collapse
|
76
|
Sauter IP, Madrid KG, de Assis JB, Sá-Nunes A, Torrecilhas AC, Staquicini DI, Pasqualini R, Arap W, Cortez M. TLR9/MyD88/TRIF signaling activates host immune inhibitory CD200 in Leishmania infection. JCI Insight 2019; 4:126207. [PMID: 31092731 DOI: 10.1172/jci.insight.126207] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Virulent protozoans named Leishmania in tropical and subtropical areas produce devastating diseases by exploiting host immune responses. Amastigotes of Leishmania amazonensis stimulate macrophages to express CD200, an immunomodulatory ligand, which binds to its cognate receptor (CD200R) and inhibits the inducible nitric oxide synthase and nitric oxide (iNOS/NO) signaling pathways, thereby promoting intracellular survival. However, the mechanisms underlying CD200 induction in macrophages remain largely unknown. Here, we show that phagocytosis-mediated internalization of L. amazonensis amastigotes following activation of endosomal TLR9/MyD88/TRIF signaling is critical for inducing CD200 in infected macrophages. We also demonstrate that Leishmania microvesicles containing DNA fragments activate TLR9-dependent CD200 expression, which inhibits the iNOS/NO pathway and modulates the course of L. amazonensis infection in vivo. These findings demonstrate that Leishmania exploits TLR-signaling pathways not only to inhibit macrophage microbicidal function, but also to evade host systemic immune responses, which has many implications in the severity of the disease.
Collapse
Affiliation(s)
| | | | - Josiane B de Assis
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana C Torrecilhas
- Department of Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil
| | - Daniela I Staquicini
- Rutgers Cancer Institute of New Jersey and Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey and Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey and Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | | |
Collapse
|
77
|
Kumar V. The complement system, toll-like receptors and inflammasomes in host defense: three musketeers’ one target. Int Rev Immunol 2019; 38:131-156. [PMID: 31066339 DOI: 10.1080/08830185.2019.1609962] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vijay Kumar
- Children’s Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St Lucia, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, QLD, Australia
| |
Collapse
|
78
|
Zhou J, Li H, Xia X, Herrera A, Pollock N, Reebye V, Sodergren MH, Dorman S, Littman BH, Doogan D, Huang KW, Habib R, Blakey D, Habib NA, Rossi JJ. Anti-inflammatory Activity of MTL-CEBPA, a Small Activating RNA Drug, in LPS-Stimulated Monocytes and Humanized Mice. Mol Ther 2019; 27:999-1016. [PMID: 30852139 PMCID: PMC6520465 DOI: 10.1016/j.ymthe.2019.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/24/2022] Open
Abstract
Excessive or inappropriate inflammatory responses can cause serious and even fatal diseases. The CCAAT/enhancer-binding protein alpha (CEBPA) gene encodes C/EBPα, a transcription factor that plays a fundamental role in controlling maturation of the myeloid lineage and is also expressed during the late phase of inflammatory responses when signs of inflammation are decreasing. MTL-CEBPA, a small activating RNA targeting for upregulation of C/EBPα, is currently being evaluated in a phase 1b trial for treatment of hepatocellular carcinoma. After dosing, subjects had reduced levels of pro-inflammatory cytokines, and we therefore hypothesized that MTL-CEBPA has anti-inflammatory potential. The current study was conducted to determine the effects of C/EBPα saRNA - CEBPA-51 - on inflammation in vitro and in vivo after endotoxin challenge. CEBPA-51 led to increased expression of the C/EBPα gene and inhibition of pro-inflammatory cytokines in THP-1 monocytes previously stimulated by E. coli-derived lipopolysaccharide (LPS). Treatment with MTL-CEBPA in an LPS-challenged humanized mouse model upregulated C/EBPα mRNA, increased neutrophils, and attenuated production of several key pro-inflammatory cytokines, including TNF-α, IL-6, IL-1β, and IFN-γ. In addition, a Luminex analysis of mouse serum revealed that MTL-CEBPA reduced pro-inflammatory cytokines and increased the anti-inflammatory cytokine IL-10. Collectively, the data support further investigation of MTL-CEBPA in acute and chronic inflammatory diseases where this mechanism has pathogenic importance.
Collapse
Affiliation(s)
- Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Haitang Li
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xin Xia
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Alberto Herrera
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Nicolette Pollock
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Vikash Reebye
- Department of Surgery and Cancer, Imperial College London, London SW7 5NH, UK
| | - Mikael H Sodergren
- Department of Surgery and Cancer, Imperial College London, London SW7 5NH, UK
| | - Stephanie Dorman
- Department of Surgery and Cancer, Imperial College London, London SW7 5NH, UK
| | - Bruce H Littman
- Translational Medicine Associates, LLC, Savannah, GA 31302, USA
| | | | - Kai-Wen Huang
- Department of Surgery and Hepatitis Research Center, National Taiwan University Hospital, College of Medicine, Taipei 10617, Taiwan
| | | | | | - Nagy A Habib
- Department of Surgery and Cancer, Imperial College London, London SW7 5NH, UK; MiNA Therapeutics, Ltd., London W12 0BZ, UK.
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
79
|
Chronic Amyloid β Oligomer Infusion Evokes Sustained Inflammation and Microglial Changes in the Rat Hippocampus via NLRP3. Neuroscience 2019. [DOI: 10.1016/j.neuroscience.2018.02.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
80
|
Medeiros NI, Pinto BF, Elói-Santos SM, Teixeira-Carvalho A, Magalhães LMD, Dutra WO, Correa-Oliveira R, Gomes JAS. Evidence of Different IL-1β Activation Pathways in Innate Immune Cells From Indeterminate and Cardiac Patients With Chronic Chagas Disease. Front Immunol 2019; 10:800. [PMID: 31057540 PMCID: PMC6482163 DOI: 10.3389/fimmu.2019.00800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Chagas cardiomyopathy is the main fibrosing myocarditis among known heart diseases. Development of cardiomyopathy has been related to extracellular matrix (ECM) remodeling, which are controlled by matrix metalloproteinases (MMPs) and cytokines, especially interleukin (IL)-1β. The convertion of 31KDa inactive precursor, the proIL-1β in 17KDa active IL-1β peptide, is controlled by caspase-1-dependent pathway, associated with inflammasomes. Other caspase-1 independent mechanisms mediated by proteases, especially as MMPs, have already been described. Methods: We evaluated IL-1β activation pathways in neutrophils and monocyte subsets from patients with different clinical forms of Chagas disease1 after T. cruzi antigen stimulation by multiparameter flow cytometry. Results: Our data demonstrated that Chagas patients with the indeterminate clinical form (IND) showed increased levels of IL-1β post-stimulation as well as increased expression of MMP-2, NLRP3, and CASP1, which are associated with the classical caspase-1-dependent pathway. Conversely, patients with the cardiac clinical form (CARD) showed increased IL-1β after stimulation associated with MMP-9 and alternative caspase-1-independent pathway. Conclusions: We suggest some distinct molecular mechanisms for production of IL-1β in innate immune cells from patients with different clinical forms of Chagas disease. MMP-2 and MMP-9 gelatinases are associated with distinct disease outcomes and IL-1β production.
Collapse
Affiliation(s)
- Nayara I Medeiros
- Imunologia Celular e Molecular, Instituto René Rachou, FIOCRUZ, Belo Horizonte, Brazil.,Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruna F Pinto
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Silvana M Elói-Santos
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ, Belo Horizonte, Brazil.,Departamento de Propedêutica Complementar, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ, Belo Horizonte, Brazil
| | - Luísa M D Magalhães
- Inflammatory Cell Dynamics Section, Center for Cancer Research, National Institute of Health, NIH, Bethesda, MD, United States
| | - Walderez O Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Topicais - INCT-DT, Belo Horizonte, Brazil
| | - Rodrigo Correa-Oliveira
- Imunologia Celular e Molecular, Instituto René Rachou, FIOCRUZ, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Topicais - INCT-DT, Belo Horizonte, Brazil
| | - Juliana A S Gomes
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
81
|
Tran TAT, Grievink HW, Lipinska K, Kluft C, Burggraaf J, Moerland M, Tasev D, Malone KE. Whole blood assay as a model for in vitro evaluation of inflammasome activation and subsequent caspase-mediated interleukin-1 beta release. PLoS One 2019; 14:e0214999. [PMID: 30958862 PMCID: PMC6453527 DOI: 10.1371/journal.pone.0214999] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 03/26/2019] [Indexed: 11/19/2022] Open
Abstract
Processing of pro-interleukin (IL)-1β and IL-18 is regulated by multiprotein complexes, known as inflammasomes. Inflammasome activation results in generation of bioactive IL-1β and IL-18, which can exert potent pro-inflammatory effects. Our aim was to develop a whole blood-based assay to study the inflammasome in vitro and that also can be used as an assay in clinical studies. We show whole blood is a suitable milieu to study inflammasome activation in primary human monocytes. We demonstrated that unprocessed human blood cells can be stimulated to activate the inflammasome by the addition of adenosine 5'-triphosphate (ATP) within a narrow timeframe following lipopolysaccharide (LPS) priming. Stimulation with LPS resulted in IL-1β release; however, addition of ATP is necessary for "full-blown" inflammasome stimulation resulting in high IL-1β and IL-18 release. Intracellular cytokine staining demonstrated monocytes are the major producers of IL-1β in human whole blood cultures, and this was associated with activation of caspase-1/4/5, as detected by a fluorescently labelled caspase-1/4/5 probe. By applying caspase inhibitors, we show that both the canonical inflammasome pathway (via caspase-1) as well as the non-canonical inflammasome pathway (via caspases-4 and 5) can be studied using this whole blood-based model.
Collapse
|
82
|
Kosuru R, Kandula V, Rai U, Prakash S, Xia Z, Singh S. Pterostilbene Decreases Cardiac Oxidative Stress and Inflammation via Activation of AMPK/Nrf2/HO-1 Pathway in Fructose-Fed Diabetic Rats. Cardiovasc Drugs Ther 2019; 32:147-163. [PMID: 29556862 DOI: 10.1007/s10557-018-6780-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Oxidative stress has a pivotal role in the pathogenesis of diabetes-associated cardiovascular problems, which has remained a primary cause of the increased morbidity and mortality in diabetic patients. It is of paramount importance to prevent the diabetes-associated cardiac complications by reducing oxidative stress with the help of nutritional or pharmacological agents. Pterostilbene (PT), the primary antioxidant in blueberries, has recently gained attention for its promising health benefits in metabolic and cardiac diseases. However, the mechanism whereby PT reduces diabetic cardiac complications is currently unknown. METHODS Sprague-Dawley rats were fed with 65% fructose diet with or without PT (20 mg kg-1 day-1) for 8 weeks. Heart rate and blood pressure were measured by tail-cuff apparatus. Real-time PCR and western blot experiments were executed to quantify the expression levels of mRNA and protein, respectively. RESULTS Fructose-fed rats demonstrated cardiac hypertrophy, hypertension, enhanced myocardial oxidative stress, inflammation and increased NF-κB expression. Administration of PT significantly decreased cardiac hypertrophy, hypertension, oxidative stress, inflammation, NF-κB expression and NLRP3 inflammasome. We demonstrated that PT improved mitochondrial biogenesis as evidenced by increased protein expression of PGC-1α, complex III and complex V in fructose-fed diabetic rats. Further, PT increased protein expressions of AMPK, Nrf2, HO-1 in cardiac tissues, which may account for the prevention of cardiac oxidative stress and inflammation in fructose-fed rats. CONCLUSIONS Collectively, PT reduced cardiac oxidative stress and inflammation in diabetic rats through stimulation of AMPK/Nrf2/HO-1 signalling.
Collapse
Affiliation(s)
- Ramoji Kosuru
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Vidya Kandula
- Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Uddipak Rai
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Swati Prakash
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Zhengyuan Xia
- Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Sanjay Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
83
|
Wei H, Li B, Sun A, Guo F. Interleukin-10 Family Cytokines Immunobiology and Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:79-96. [PMID: 31628652 DOI: 10.1007/978-981-13-9367-9_4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Interleukin (IL)-10 cytokine family includes IL-10, IL-19, IL-20, IL-22, IL-24, and IL-26, which are considered as Class 2α-helical cytokines. IL-10 is the most important cytokine in suppressing pro-inflammatory responses in all kinds of autoimmune diseases and limiting excessive immune responses. Due to protein structure homology and shared usage of receptor complexes as well as downstream signaling pathway, other IL-10 family cytokines also show indispensable functions in immune regulation, tissue homeostasis, and host defense. In this review, we focus on immune functions and structures of different cytokines in this family and try to better understand how their molecular mechanisms connect to their biological functions. The molecular details regarding their actions also provide useful information in developing candidate immune therapy reagents for a variety of diseases.
Collapse
Affiliation(s)
- Huaxing Wei
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| | - Bofeng Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China.
| | - Anyuan Sun
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| | - Feng Guo
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| |
Collapse
|
84
|
Zhang Y, Wang L, Lv Y, Jiang C, Wu G, Dull RO, Minshall RD, Malik AB, Hu G. The GTPase Rab1 Is Required for NLRP3 Inflammasome Activation and Inflammatory Lung Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:194-206. [PMID: 30455398 PMCID: PMC6345506 DOI: 10.4049/jimmunol.1800777] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022]
Abstract
Uncontrolled inflammatory response during sepsis predominantly contributes to the development of multiorgan failure and lethality. However, the cellular and molecular mechanisms for excessive production and release of proinflammatory cytokines are not clearly defined. In this study, we show the crucial role of the GTPase Ras-related protein in brain (Rab)1a in regulating the nucleotide binding domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation and lung inflammatory injury. Expression of dominant negative Rab1 N124I plasmid in bone marrow-derived macrophages prevented the release of IL-1β and IL-18, NLRP3 inflammasome activation, production of pro-IL-1β and pro-IL-18, and attenuated TLR4 surface expression and NF-кB activation induced by bacterial LPS and ATP compared with control cells. In alveolar macrophage-depleted mice challenged with cecal ligation and puncture, pulmonary transplantation of Rab1a-inactivated macrophages by expression of Rab1 N124I plasmid dramatically reduced the release of IL-1β and IL-18, neutrophil count in bronchoalveolar lavage fluid, and inflammatory lung injury. Rab1a activity was elevated in alveolar macrophages from septic patients and positively associated with severity of sepsis and respiratory dysfunction. Thus, inhibition of Rab1a activity in macrophages resulting in the suppression of NLRP3 inflammasome activation may be a promising target for the treatment of patients with sepsis.
Collapse
Affiliation(s)
- Yuehui Zhang
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
- Department of Critical Care Medicine, Affiliated Bao'an Hospital of Shenzhen, Southern Medical University, Shenzhen, Guangdong 518101, China
| | - Lijun Wang
- Department of Critical Care Medicine, Affiliated Bao'an Hospital of Shenzhen, Southern Medical University, Shenzhen, Guangdong 518101, China
| | - Yang Lv
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Chunling Jiang
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Randal O Dull
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Richard D Minshall
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612; and
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612; and
| | - Guochang Hu
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612;
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612; and
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221008, China
| |
Collapse
|
85
|
Kremserova S, Nauseef WM. Frontline Science: Staphylococcus aureus promotes receptor-interacting protein kinase 3- and protease-dependent production of IL-1β in human neutrophils. J Leukoc Biol 2018; 105:437-447. [PMID: 30548986 DOI: 10.1002/jlb.4hi0918-346r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/31/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022] Open
Abstract
Microbial infection elicits robust immune responses that initially depend on polymorphonuclear neutrophils (PMN), which ingest and kill invading bacteria. However, community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) remain viable within PMN and prompt their lysis with concomitant release of damage-associated molecular patterns and proinflammatory cytokines that promote additional inflammation. Here, we show that ultrapure human PMN (>99.8% pure) that have ingested CA-MRSA released interleukin (IL)-1β but not IL-18. The ingested CA-MRSA needed to be viable, and phagocytosis alone was insufficient to stimulate IL-1β secretion from PMN fed CA-MRSA. In contrast to PMN response to the canonical NLRP3 inflammasome agonist nigericin, IL-1β secretion by PMN fed CA-MRSA occurred independently of NLRP3 inflammasome or caspase-1 activation and required instead active receptor-interacting protein kinase 3 (RIPK3) but not RIPK1. Furthermore, inhibition of neutrophil serine proteases blocked pro-IL-1β cleavage in PMN fed CA-MRSA. Taken together, our data suggest that with respect to secretion of IL-1β and IL-18, PMN differ from human macrophages and exhibit agonist-specific responses. After phagocytosis of CA-MRSA, human PMN secreted IL-1β through a previously unrecognized mechanism dependent on RIPK3 and serine proteases but independent of canonical NLRP3 inflammasome and caspase-1 activation.
Collapse
Affiliation(s)
- Silvie Kremserova
- Inflammation Program and Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa and Veterans Administration Medical Center, Iowa City, IA, 52240, USA
| | - William M Nauseef
- Inflammation Program and Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa and Veterans Administration Medical Center, Iowa City, IA, 52240, USA
| |
Collapse
|
86
|
Wang Y, Sedlacek AL, Pawaria S, Xu H, Scott MJ, Binder RJ. Cutting Edge: The Heat Shock Protein gp96 Activates Inflammasome-Signaling Platforms in APCs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2209-2214. [PMID: 30209191 PMCID: PMC6176107 DOI: 10.4049/jimmunol.1800505] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/16/2018] [Indexed: 01/20/2023]
Abstract
Several heat shock proteins (HSPs) prime immune responses, which are, in part, a result of activation of APCs. APCs respond to these immunogenic HSPs by upregulating costimulatory molecules and secreting cytokines, including IL-1β. These HSP-mediated responses are central mediators in pathological conditions ranging from cancer, sterile inflammation associated with trauma, and rheumatoid arthritis. We tested in this study the requirement of inflammasomes in the release of IL-1β by one immunogenic HSP, gp96. Our results show that murine APCs activate NLRP3 inflammasomes in response to gp96 by K+ efflux. This is shown to initiate inflammatory conditions in vivo in the absence of additional known inflammasome activators or infection. These results document a novel mechanism by which proteins of endogenous origin, the HSPs, can modulate an inflammatory response following their release from aberrant cells.
Collapse
Affiliation(s)
- Yifei Wang
- School of Medicine, Tsinghua University, Beijing 100084, China
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Abigail L Sedlacek
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Sudesh Pawaria
- Department of Medicine, University of Massachusetts Medical Center, Worcester, MA 01655
| | - Haiyan Xu
- Department of Urology, Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu, China; and
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261
| | - Robert J Binder
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261;
| |
Collapse
|
87
|
Herman FJ, Pasinetti GM. Principles of inflammasome priming and inhibition: Implications for psychiatric disorders. Brain Behav Immun 2018; 73:66-84. [PMID: 29902514 PMCID: PMC6526722 DOI: 10.1016/j.bbi.2018.06.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/28/2018] [Accepted: 06/09/2018] [Indexed: 12/27/2022] Open
Abstract
The production of inflammatory proteins by the innate immune system is a tightly orchestrated procedure that allows the body to efficiently respond to exogenous and endogenous threats. Recently, accumulating evidence has indicated that disturbances in the inflammatory response system not only provoke autoimmune disorders, but also can have deleterious effects on neuronal function and mental health. As inflammation in the brain is primarily mediated by microglia, there has been an expanding focus on the mechanisms through which these cells initiate and propagate neuroinflammation. Microglia can enter persistently active states upon their initial recognition of an environmental stressor and are thereafter prone to elicit amplified and persistent inflammatory responses following subsequent exposures to stressors. A recent focus on why primed microglia cells are susceptible to environmental insults has been the NLRP3 inflammasome. Its function within the innate immune system is regulated in such a manner that supports a role for the complex in gating neuroinflammatory responses. The activation of NLRP3 inflammasome in microglia results in the cleavage of zymogen inflammatory interleukins into functional forms that elicit a number of consequential effects in the local neuronal environment. There is evidence to support the principle that within primed neuroimmune systems a lowered threshold for NLRP3 activation can cause persistent neuroinflammation or the amplified production of inflammatory cytokines, such as IL-1β and IL-18. Over the course of an individual's lifetime, persistent neuroinflammation can subsequently lead to the pathophysiological signatures that define psychological disorders. Therefore, targeting the NLRP3 inflammasome complex may represent an innovative and consequential approach to limit neuroinflammatory states in psychiatric disorders, such as major depressive disorder.
Collapse
Affiliation(s)
- Francis J. Herman
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA,Department of Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA; Department of Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA.
| |
Collapse
|
88
|
Ferko MA, Catelas I. Effects of metal ions on caspase-1 activation and interleukin-1β release in murine bone marrow-derived macrophages. PLoS One 2018; 13:e0199936. [PMID: 30138321 PMCID: PMC6107125 DOI: 10.1371/journal.pone.0199936] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/15/2018] [Indexed: 02/07/2023] Open
Abstract
Ions released from metal implants have been associated with adverse tissue reactions and are therefore a major concern. Studies with macrophages have shown that cobalt, chromium, and nickel ions can activate the NLRP3 inflammasome, a multiprotein complex responsible for the activation of caspase-1 (a proteolytic enzyme converting pro-interleukin [IL]-1β to mature IL-1β). However, the mechanism(s) of inflammasome activation by metal ions remain largely unknown. The objectives of the present study were to determine if, in macrophages: 1. caspase-1 activation and IL-1β release induced by metal ions are oxidative stress-dependent; and 2. IL-1β release induced by metal ions is NF-κB signaling pathway-dependent. Lipopolysaccharide (LPS)-primed murine bone marrow-derived macrophages (BMDM) were exposed to Co2+ (6-48 ppm), Cr3+ (100-500 ppm), or Ni2+ (12-96 ppm), in the presence or absence of a caspase-1 inhibitor (Z-WEHD-FMK), an antioxidant (L-ascorbic acid [L-AA]), or an NF-κB inhibitor (JSH-23). Culture supernatants were analyzed for caspase-1 by western blotting and/or IL-1β release by ELISA. Immunoblotting revealed the presence of caspase-1 (p20 subunit) in supernatants of BMDM incubated with Cr3+, but not with Ni2+ or Co2+. When L-AA (2 mM) was present with Cr3+, the caspase-1 p20 subunit was undetectable and IL-1β release decreased down to the level of the negative control, thereby demonstrating that caspase-1 activation and IL-1β release induced by Cr3+ was oxidative stress-dependent. ELISA demonstrated that Cr3+ induced the highest release of IL-1β, while Co2+ had no or limited effects. In the presence of Ni2+, the addition of L-AA (2 mM) also decreased IL-1β release, below the level of the negative control, suggesting that IL-1β release induced by Ni2+ was also oxidative stress-dependent. Finally, when present during both priming with LPS and activation with Cr3+, JSH-23 blocked IL-1β release, demonstrating NF-κB involvement. Overall, this study showed that while both Cr3+ and Ni2+ may be inducing inflammasome activation, Cr3+ is likely a more potent activator, acting through oxidative stress and the NF-κB signaling pathway.
Collapse
Affiliation(s)
| | - Isabelle Catelas
- Department of Mechanical Engineering, University of Ottawa, Ottawa, Ontario, Canada
- Department of Surgery, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
89
|
Abstract
Pyroptosis is a form of programmed pro-inflammatory cell death that plays a protective role in the host response to infection, but can also promote pathogenic inflammation. Pyroptosis is mediated by the cysteine protease, caspase-1. Caspase-1 cleaves gasdermin D, releasing the N-terminal pore-forming domain, which inserts into the plasma membrane and drives osmotic lysis. Caspase-1 also proteolytically activates the inflammatory cytokines interleukin 1β (IL-1β) and IL-18. This unit describes methods for stimulating pyroptosis and assessing subsequent loss of plasma membrane integrity. We also describe an ELISA to quantify released IL-1β. These methods can be applied to many different types of experiments. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Susan L Fink
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
90
|
Zhang H, Chen X, Zong B, Yuan H, Wang Z, Wei Y, Wang X, Liu G, Zhang J, Li S, Cheng G, Wang Y, Ma Y. Gypenosides improve diabetic cardiomyopathy by inhibiting ROS-mediated NLRP3 inflammasome activation. J Cell Mol Med 2018; 22:4437-4448. [PMID: 29993180 PMCID: PMC6111804 DOI: 10.1111/jcmm.13743] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/26/2018] [Indexed: 12/17/2022] Open
Abstract
NLRP3 inflammasome activation plays an important role in diabetic cardiomyopathy (DCM), which may relate to excessive production of reactive oxygen species (ROS). Gypenosides (Gps), the major ingredients of Gynostemma pentaphylla (Thunb.) Makino, have exerted the properties of anti-hyperglycaemia and anti-inflammation, but whether Gps improve myocardial damage and the mechanism remains unclear. Here, we found that high glucose (HG) induced myocardial damage by activating the NLRP3 inflammasome and then promoting IL-1β and IL-18 secretion in H9C2 cells and NRVMs. Meanwhile, HG elevated the production of ROS, which was vital to NLRP3 inflammasome activation. Moreover, the ROS activated the NLRP3 inflammasome mainly by cytochrome c influx into the cytoplasm and binding to NLRP3. Inhibition of ROS and cytochrome c dramatically down-regulated NLRP3 inflammasome activation and improved the cardiomyocyte damage induced by HG, which was also detected in cells treated by Gps. Furthermore, Gps also reduced the levels of the C-reactive proteins (CRPs), IL-1β and IL-18, inhibited NLRP3 inflammasome activation and consequently improved myocardial damage in vivo. These findings provide a mechanism that ROS induced by HG activates the NLRP3 inflammasome by cytochrome c binding to NLRP3 and that Gps may be potential and effective drugs for DCM via the inhibition of ROS-mediated NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Hailong Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Xi Chen
- Department of General Pathology, Huaihe Hospital, Henan University, Kaifeng, China
| | - Beibei Zong
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Hongmin Yuan
- Department of Thyroid Breast Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Zhizeng Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Yinxiang Wei
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Xuance Wang
- Centre for Translational Medicine, Huaihe Hospital, Henan University, Kaifeng, China
| | - Guangchao Liu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Jun Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Shulian Li
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Guanchang Cheng
- Department of Cardiac Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yaohui Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| |
Collapse
|
91
|
Han X, Song J, Lian LH, Yao YL, Shao DY, Fan Y, Hou LS, Wang G, Zheng S, Wu YL, Nan JX. Ginsenoside 25-OCH 3-PPD Promotes Activity of LXRs To Ameliorate P2X7R-Mediated NLRP3 Inflammasome in the Development of Hepatic Fibrosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7023-7035. [PMID: 29929367 DOI: 10.1021/acs.jafc.8b01982] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ginseng is widely used in energy drinks, dietary supplements, and herbal medicines, and its pharmacological actions are related with energy metabolism. As an important modulating energy metabolism pathway, liver X receptors (LXRs) can promote the resolving of hepatic fibrosis and inflammation. The present study aims to evaluate the regulation of 25-OCH3-PPD, a ginsenoside isolated from Panax ginseng, against hepatic fibrosis and inflammation in thioacetamide (TAA)-stimulated mice by activating the LXRs pathway. 25-OCH3-PPD decreases serum ALT/AST levels and improves the histological pathology of liver in TAA-induced mice; attenuates transcripts of pro-fibrogenic markers associated with hepatic stellate cell activation; attenuates the levels of pro-Inflammatory cytokines and blocks apoptosis happened in liver; inhibits NLRP3 inflammasome by affecting P2X7R activation; and regulates PI3K/Akt and LKB1/AMPK-SIRT1. 25-OCH3-PPD also facilitates LX25Rs and FXR activities decreased by TAA stimulation. 25-OCH3-PPD also decreases α-SMA via regulation of LXRs and P2X7R-NLRP3 in vitro. Our data suggest the possibility that 25-OCH3-PPD promotes activity of LXRs to ameliorate P2X7R-mediated NLRP3 inflammasome in the development of hepatic fibrosis.
Collapse
Affiliation(s)
- Xin Han
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin Province 133002 , China
| | - Jian Song
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin Province 133002 , China
| | - Li-Hua Lian
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin Province 133002 , China
| | - You-Li Yao
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin Province 133002 , China
| | - Dan-Yang Shao
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin Province 133002 , China
| | - Ying Fan
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin Province 133002 , China
| | - Li-Shuang Hou
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin Province 133002 , China
| | - Ge Wang
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin Province 133002 , China
| | - Shuang Zheng
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin Province 133002 , China
| | - Yan-Ling Wu
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin Province 133002 , China
| | - Ji-Xing Nan
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin Province 133002 , China
- Clinical Research Center , Affiliated Hospital of Yanbian University , Yanji , Jilin Province 133002 , China
| |
Collapse
|
92
|
The Multifaceted Uses and Therapeutic Advantages of Nanoparticles for Atherosclerosis Research. MATERIALS 2018; 11:ma11050754. [PMID: 29738480 PMCID: PMC5978131 DOI: 10.3390/ma11050754] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022]
Abstract
Nanoparticles are uniquely suited for the study and development of potential therapies against atherosclerosis by virtue of their size, fine-tunable properties, and ability to incorporate therapies and/or imaging modalities. Furthermore, nanoparticles can be specifically targeted to the atherosclerotic plaque, evading off-target effects and/or associated cytotoxicity. There has been a wealth of knowledge available concerning the use of nanotechnologies in cardiovascular disease and atherosclerosis, in particular in animal models, but with a major focus on imaging agents. In fact, roughly 60% of articles from an initial search for this review included examples of imaging applications of nanoparticles. Thus, this review focuses on experimental therapy interventions applied to and observed in animal models. Particular emphasis is placed on how nanoparticle materials and properties allow researchers to learn a great deal about atherosclerosis. The objective of this review was to provide an update for nanoparticle use in imaging and drug delivery studies and to illustrate how nanoparticles can be used for sensing and modelling, for studying fundamental biological mechanisms, and for the delivery of biotherapeutics such as proteins, peptides, nucleic acids, and even cells all with the goal of attenuating atherosclerosis. Furthermore, the various atherosclerosis processes targeted mainly for imaging studies have been summarized in the hopes of inspiring new and exciting targeted therapeutic and/or imaging strategies.
Collapse
|
93
|
Yuan YY, Xie KX, Wang SL, Yuan LW. Inflammatory caspase-related pyroptosis: mechanism, regulation and therapeutic potential for inflammatory bowel disease. Gastroenterol Rep (Oxf) 2018; 6:167-176. [PMID: 30151200 PMCID: PMC6101557 DOI: 10.1093/gastro/goy011] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/01/2018] [Accepted: 03/18/2018] [Indexed: 12/22/2022] Open
Abstract
As an essential part of programmed cell death, pyroptosis is an inflammatory response that is elicited upon infection by intracellular pathogens. Metabolic diseases, atherosclerosis and vital organ damage occur if pyroptosis is over-activated. Macrophages are the main cells that induce pyroptosis with the help of intracellular pattern-recognition receptors stimulated by danger signals and pathogenic microorganisms in the cytosol of host cells. Activated inflammatory caspases induce pyroptosis and produce pro-inflammatory cytokines, such as interleukin-1β and interleukin-18. Inflammatory programmed cell death is classified as canonical or non-canonical based on inflammatory caspases, which includes caspase-1 (in human and mouse) and caspase-11 (in mouse) or caspase-4 and -5 (in humans). Activated inflammatory caspases cleave the pore-forming effector protein, gasdermin-D, inducing osmotic pressure deregulation of internal fluids and subsequently rupturing the cell membranes. Inflammatory caspases could be attractive therapeutic targets for inflammatory bowel disease (IBD) in which pyroptosis may play an important role. This article reviews the current understanding of the mechanism of pyroptosis, focusing on the regulation of inflammatory caspases and therapeutic strategies for IBD.
Collapse
Affiliation(s)
- Yuan-Yuan Yuan
- Department of Geriatric Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ke-Xin Xie
- Medical Laboratory Technology 1602, Central South University Xiangya School of Medicine, 172 Tongzipo Road, YueLu District, Changsha, Hunan 410011, China
| | - Sha-Long Wang
- Department of Geriatric Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lian-Wen Yuan
- Department of Geriatric Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
94
|
Mouton-Liger F, Rosazza T, Sepulveda-Diaz J, Ieang A, Hassoun SM, Claire E, Mangone G, Brice A, Michel PP, Corvol JC, Corti O. Parkin deficiency modulates NLRP3 inflammasome activation by attenuating an A20-dependent negative feedback loop. Glia 2018; 66:1736-1751. [PMID: 29665074 PMCID: PMC6190839 DOI: 10.1002/glia.23337] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/13/2022]
Abstract
Neuroinflammation and mitochondrial dysfunction, key mechanisms in the
pathogenesis of Parkinson's disease (PD), are usually explored independently.
Loss‐of‐function mutations of PARK2 and PARK6,
encoding the E3 ubiquitin protein ligase Parkin and the mitochondrial
serine/threonine kinase PINK1, account for a large proportion of cases of autosomal
recessive early‐onset PD. PINK1 and Parkin regulate mitochondrial quality control and
have been linked to the modulation of innate immunity pathways. We report here an
exacerbation of NLRP3 inflammasome activation by specific inducers in microglia and
bone marrow‐derived macrophages from Park2−/− and Pink1−/− mice. The caspase 1‐dependent release of IL‐1β and IL‐18 was, therefore,
enhanced in Park2−/− and Pink1−/− cells. This defect was confirmed in blood‐derived macrophages from patients
with PARK2 mutations and was reversed by MCC950, which specifically
inhibits NLRP3 inflammasome complex formation. Enhanced NLRP3 signaling in
Parkin‐deficient cells was accompanied by a lack of induction of A20, a well‐known
negative regulator of the NF‐κB pathway recently shown to attenuate NLRP3
inflammasome activity. We also found an inverse correlation between A20 abundance and
IL‐1β release, in human macrophages challenged with NLRP3 inflammasome inducers.
Overall, our observations suggest that the A20/NLRP3‐inflammasome axis participates
in the pathogenesis of PARK2‐linked PD, paving the way for the
exploration of its potential as a biomarker and treatment target.
Collapse
Affiliation(s)
- François Mouton-Liger
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Thibault Rosazza
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Julia Sepulveda-Diaz
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Amélie Ieang
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Sidi-Mohamed Hassoun
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Emilie Claire
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Graziella Mangone
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France.,AP-HP, Hôpital de la Pitié Salpêtrière, Clinical Investigation Center of Neurology (CIC-1422), Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, F-75013, France
| | - Alexis Brice
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Patrick P Michel
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Jean-Christophe Corvol
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France.,AP-HP, Hôpital de la Pitié Salpêtrière, Clinical Investigation Center of Neurology (CIC-1422), Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, F-75013, France
| | - Olga Corti
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| |
Collapse
|
95
|
Ravimohan S, Nfanyana K, Tamuhla N, Tiemessen CT, Weissman D, Bisson GP. Common Variation in NLRP3 Is Associated With Early Death and Elevated Inflammasome Biomarkers Among Advanced HIV/TB Co-infected Patients in Botswana. Open Forum Infect Dis 2018; 5:ofy075. [PMID: 29732382 PMCID: PMC5928406 DOI: 10.1093/ofid/ofy075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022] Open
Abstract
Background Elevated inflammation is associated with early mortality among HIV/tuberculosis (TB) patients starting antiretroviral therapy (ART); however, the sources of immune activation are unclear. We hypothesized that common variation in innate immune genes contributes to excessive inflammation linked to death. As single nucleotide polymorphisms (SNPs) in inflammasome pathway genes can increase risk for inflammatory diseases, we investigated their association with early mortality among a previously described cohort of HIV/TB patients initiating ART in Botswana. Methods We genotyped 8 SNPs within 5 inflammasome pathway genes and determined their association with death. For adjusted analyses, we used a logistic regression model. For SNPs associated with mortality, we explored their relationship with levels of systemic inflammatory markers using a linear regression model. Results Ninety-four patients in the parent study had samples for genetic analysis. Of these, 82 (87%) were survivors and 12 (13%) died within 6 months of starting ART. In a logistic regression model, NLRP3 rs10754558 was independently associated with a 4.1-fold increased odds of death (95% confidence interval, 1.04–16.5). In adjusted linear regression models, the NLRP3 rs10754558-G allele was linked to elevated IL-18 at baseline (Beta, 0.23; SE, 0.10; P = .033) and week 4 post-ART (Beta, 0.24; SE, 0.11; P = .026). This allele was associated with increased MCP-1 at baseline (Beta, 0.24; SE, 0.10; P = .02) and IL-10 (Beta, 0.27; SE, 0.11; P = .013) at week 4 post-ART. Conclusion The NLRP3 rs10754558-G SNP is associated with an increased risk for early mortality in HIV/TB patients initiating ART. These patients may benefit from therapies that decrease inflammasome-mediated inflammation.
Collapse
Affiliation(s)
- Shruthi Ravimohan
- Division of Infectious Diseases, Department of Medicine, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Botswana-UPenn Partnership, Gaborone, Botswana
| | | | - Neo Tamuhla
- Botswana-UPenn Partnership, Gaborone, Botswana
| | - Caroline T Tiemessen
- Centre for HIV-1 and STIs, National Institute for Communicable Diseases, and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Drew Weissman
- Division of Infectious Diseases, Department of Medicine, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Botswana-UPenn Partnership, Gaborone, Botswana
| | - Gregory P Bisson
- Division of Infectious Diseases, Department of Medicine, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Botswana-UPenn Partnership, Gaborone, Botswana.,Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
96
|
Li H, Zhang X, Chen M, Chen J, Gao T, Yao S. Dexmedetomidine inhibits inflammation in microglia cells under stimulation of LPS and ATP by c-Fos/NLRP3/caspase-1 cascades. EXCLI JOURNAL 2018; 17:302-311. [PMID: 29743866 PMCID: PMC5938529 DOI: 10.17179/excli2017-1018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/23/2018] [Indexed: 11/15/2022]
Abstract
NOD-like receptor 3 (NLRP3) plays critical roles in the initiation of inflammasome-mediated inflammation in microglia, thus becomes an important therapeutic target of Alzheimer's disease (AD). Dexmedetomidine (Dex), a new type of clinical anesthetic agent, shows anti-inflammatory properties and inhibits postoperative cognitive dysfunction in AD patients. The present study was aimed to investigate effect of Dex on NLRP3 activity in activated microglia and reveal the underlying mechanisms. The human microglia clone 3 (HMC3) cells were exposed to 100 ng/ml LPS and 5 mM ATP, in the presence and absence of doses of Dex. Data from ELISA and Western blot assays showed that Dex abrogated the promoting effects of LPS/ATP on the release of pro-inflammatory cytokines including IL-1β and IL-18 in the cell medium and the expression of NLRP3 and its downstream target caspase-1 in HMC3 cells. Furthermore, the present study found that exposure of HMC3 cells to LPS/ATP increased nuclear protein levels of transcription factor c-Fos, but treatment with Dex reversed the increase in c-Fos, as indicated by Western blot and immunofluorescence measures. Luciferase reported assay revealed that c-Fos can bind to the promoter region of NLRP3 gene and positively regulate the expression. These results suggest that Dex inhibiting c-Fos nuclear protein levels promoted by LPS/ATP blocks the up-regulation of NLRP3. This suggestion is supported by co-immunoprecipitation and PCR studies, in which Dex decreased the amount of c-Fos that binds to NLRP3 under the stimulation of LPS/ATP. The present study revealed that Dex inhibits inflammation in microglia cells under stimulation of LPS and ATP by c-Fos/NLRP3/caspase-1 cascades, which adds new understanding of the anti-inflammatory mechanism of Dex.
Collapse
Affiliation(s)
- Hu Li
- Department of Anesthesiology, Shenzhen Baoan Hospital Affiliated to Southern Medical University, Shenzhen 518100, China
| | - Xueping Zhang
- Department of Anesthesiology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen Anesthesiology Engineering Center, Shenzhen 518020, China
| | - Mingfu Chen
- Department of Anesthesiology, Shenzhen Shajin Hospital Affiliated to Guangzhou Medical University, Shenzhen 518100, China
| | - Jianyan Chen
- Department of Anesthesiology, Second People's Hospital of Futian District, Shenzhen 518029, China
| | - Tao Gao
- Department of Anesthesiology, Shenzhen Shajin Hospital Affiliated to Guangzhou Medical University, Shenzhen 518100, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
97
|
de Paula Martins R, Ghisoni K, Lim CK, Aguiar AS, Guillemin GJ, Latini A. Neopterin preconditioning prevents inflammasome activation in mammalian astrocytes. Free Radic Biol Med 2018; 115:371-382. [PMID: 29198726 DOI: 10.1016/j.freeradbiomed.2017.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022]
Abstract
Neopterin, a well-established biomarker for immune system activation, is found at increased levels in the cerebrospinal fluid of individuals affected by neurological/neurodegenerative diseases. Here, neopterin synthesis was investigated in different nerve cells (rodent and human) and in the mouse hippocampus under inflammatory stimuli. We also aimed to investigate whether neopterin preconditioning could modulate the inflammasome activation, a component of the innate immune system. Increased neopterin was detected in human nerve cells supernatants (highest secretion in astrocytes) exposed to lipopolysaccharide (LPS) and interferon-gamma (INF-γ) and in the hippocampus of mice receiving LPS (0.33mg/kg; intraperitoneal). In parallel to the hippocampal-increased neopterin, it was observed a significant increase in the expression of the rate-limiting enzyme of its biosynthetic pathway, and both phenomena occurred before the inflammasome activation. Moreover, a significant inhibition of the inflammasome activation was observed in neopterin pre-conditioned human astrocytes, when challenged with LPS, by reducing IL-1β, caspase-1 and ASC expression or content, components of the NLRP3 inflammasome. Mechanistically, neopterin might induce eletrophilic stress and consequently the nuclear translocation of the transcription factor Nrf-2, and the anti-inflammatory cytokines IL-10 and IL-1ra release, which would induce the inhibition of the inflammasome activation. Altogether, this strongly suggests an essential role of neopterin during inflammatory processes.
Collapse
Affiliation(s)
- Roberta de Paula Martins
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Campus Universitário, Córrego Grande, Florianópolis, SC 88040-900, Brazil; Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Karina Ghisoni
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Campus Universitário, Córrego Grande, Florianópolis, SC 88040-900, Brazil
| | - Chai K Lim
- Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Aderbal Silva Aguiar
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Campus Universitário, Córrego Grande, Florianópolis, SC 88040-900, Brazil
| | - Gilles J Guillemin
- Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Campus Universitário, Córrego Grande, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
98
|
Poudel B, Gurung P. An update on cell intrinsic negative regulators of the NLRP3 inflammasome. J Leukoc Biol 2018; 103:10.1002/JLB.3MIR0917-350R. [PMID: 29377242 PMCID: PMC6202258 DOI: 10.1002/jlb.3mir0917-350r] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
Inflammasomes are multimeric protein complexes that promote inflammation (through specific cleavage and production of bioactive IL-1β and IL-18) and pyroptotic cell death. The central role of inflammasomes in combating infection and maintaining homeostasis has been studied extensively. Although inflammasome-mediated inflammation and cell death are vital to limit pathogenic insults and to promote wound healing/tissue regeneration, unchecked/uncontrolled inflammation, and cell death can cause cytokine storm, tissue damage, autoinflammatory and autoimmune diseases, and even death in the afflicted individuals. NLRP3 is one of the major cytosolic sensors that assemble an inflammasome. Given the adverse consequences of uncontrolled inflammasome activation, our immune system has developed tiered mechanisms to inhibit NLRP3 inflammasome activation. In this review, we highlight and discuss recent advances and our current understanding of mechanisms by which NLRP3 inflammasome can be negatively regulated.
Collapse
Affiliation(s)
- Barun Poudel
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
- Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA
- Center for Immunology and Immune-Based Disease, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
99
|
Abstract
The interleukin (IL)-1 family of cytokines is currently comprised of 11 members that have pleiotropic functions in inflammation and cancer. IL-1α and IL-1β were the first members of the IL-1 family to be described, and both signal via the same receptor, IL-1R. Over the last decade, much progress has been made in our understanding of biogenesis of IL-1β and its functions in human diseases. Studies from our laboratory and others have highlighted the critical role of nod-like receptors (NLRs) and multi-protein complexes known as inflammasomes in the regulation of IL-1β maturation. Recent studies have increased our appreciation of the role played by IL-1α in inflammatory diseases and cancer. However, the mechanisms that regulate the production of IL-1α and its bioavailability are relatively understudied. In this review, we summarize the distinctive roles played by IL-1α in inflammatory diseases and cancer. We also discuss our current knowledge about the mechanisms that control IL-1α biogenesis and activity, and the major unanswered questions in its biology.
Collapse
Affiliation(s)
- Ankit Malik
- Department of Immunology St. Jude Children’s Research Hospital, Memphis, TN 38105
| | | |
Collapse
|
100
|
Liu D, Xu W, Ding X, Yang Y, Lu Y, Fei K, Su B. Caspase 8 polymorphisms contribute to the prognosis of advanced lung adenocarcinoma patients after platinum-based chemotherapy. Cancer Biol Ther 2017; 18:948-957. [PMID: 28278082 DOI: 10.1080/15384047.2016.1276128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths in China, and about 60% of the cases are diagnosed with histological adenocarcinoma. The caspase 8 (CASP8) gene is a critical initiator of the extrinsic apoptosis pathway. To explore the relationship between tagSNPs or haplotypes of CASP8 and the efficacy of platinum-based chemotherapy in advanced lung adenocarcinoma patients of China, we recruited 555 advanced adenocarcinoma patients. We extracted the genomic DNA from patients' peripheral blood samples and sequenced tagSNPs of CASP8. We calculated the individual haplotype of CASP8 frequencies using the PHASE 2.0 program. The association between CASP8 tagSNPs and overall survival (OS) was calculated by univariate and multivariate Cox regression analysis. A univariate logistic regression analysis was done to analyze the CASP8 tagSNPs and the toxicity of platinum-based chemotherapy. The same statistical methods were used for exploring haplotypes of CASP8. Rs3769821 and rs1045494 of CASP8 were independent prognosis factors for overall survival (OS) using multivariate Cox's regression models. For the haplotype of the 7 tagSNPs, haplotype AGGAAAGA was correlated with the efficacy of platinum-based chemotherapy. The polymorphisms of CASP8, rs7608692, and haplotype AGAACAG correlated with neutropenia toxicity. The haplotype GGGGAAA was associated with thrombocytopenia toxicity. We conclude that the polymorphisms of CASP8 contribute to the prognosis of advanced lung adenocarcinoma and influence the quality of life and survival.
Collapse
Affiliation(s)
- Di Liu
- a Department of Thoracic Surgery , Shanghai Pulmonary Hospital, Tongji University School of Medicine , Shanghai , P.R. China
| | - Wen Xu
- b Department of Respirology and Critical Care Medicines , Shanghai Pulmonary Hospital, Tongji University School of Medicine , Shanghai , P.R. China
| | - Xi Ding
- c Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine , Shanghai , P.R. China
| | - Yang Yang
- d Department of Thoracic Surgery , Shanghai Chest Hospital, Shanghai Jiaotong Universtiy , Shanghai , P.R. China
| | - Yanlin Lu
- e Department of Oncology , Affiliated Dongyang Hospital of Wenzhou Medical University , Dongyang , Zhejiang , P.R. China
| | - Ke Fei
- a Department of Thoracic Surgery , Shanghai Pulmonary Hospital, Tongji University School of Medicine , Shanghai , P.R. China
| | - Bo Su
- c Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine , Shanghai , P.R. China
| |
Collapse
|