51
|
Li H, Yin B, Wang S, Fu Q, Xiao B, Lǚ K, He J, Li C. RNAi screening identifies a new Toll from shrimp Litopenaeus vannamei that restricts WSSV infection through activating Dorsal to induce antimicrobial peptides. PLoS Pathog 2018; 14:e1007109. [PMID: 30256850 PMCID: PMC6175524 DOI: 10.1371/journal.ppat.1007109] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/08/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022] Open
Abstract
The function of Toll pathway defense against bacterial infection has been well established in shrimp, however how this pathway responds to viral infection is still largely unknown. In this study, we report the Toll4-Dorsal-AMPs cascade restricts the white spot syndrome virus (WSSV) infection of shrimp. A total of nine Tolls from Litopenaeus vannamei namely Toll1-9 are identified, and RNAi screening in vivo reveals the Toll4 is important for shrimp to oppose WSSV infection. Knockdown of Toll4 results in elevated viral loads and renders shrimp more susceptible to WSSV. Furthermore, Toll4 could be a one of upstream pattern recognition receptor (PRR) to detect WSSV, and thereby leading to nuclear translocation and phosphorylation of Dorsal, the known NF-κB transcription factor of the canonical Toll pathway. More importantly, silencing of Toll4 and Dorsal contributes to impaired expression of a specific set of antimicrobial peptides (AMPs) such as anti-LPS-factor (ALF) and lysozyme (LYZ) family, which exert potent anti-WSSV activity. Two AMPs of ALF1 and LYZ1 as representatives are demonstrated to have the ability to interact with several WSSV structural proteins to inhibit viral infection. Taken together, we therefore identify that the Toll4-Dorsal pathway mediates strong resistance to WSSV infection by inducing some specific AMPs. The TLR pathway mediated antiviral immune response is well identified in mammals, yet, Toll pathway governing this protection in invertebrates remains unknown. In the present study, we uncover that a shrimp Toll4 from a total of nine Tolls in L. vannamei confers resistance to WSSV thought inducing the NF-κB transcription factor Dorsal to inspire the production of some antimicrobial peptides (AMPs) with antiviral activity. The anti-LPS-factor (ALF) and lysozyme (LYZ) family are identified as the Toll4-Dorsal pathway targeted genes with the ability to interact with viral structural proteins in response to WSSV infection. These results suggest that the Toll receptor induces the expression of AMPs with antiviral activity could be a general antiviral mechanism in invertebrates and Toll pathway established antiviral defense could be conserved during evolution.
Collapse
Affiliation(s)
- Haoyang Li
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Bin Yin
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Sheng Wang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Qihui Fu
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Bang Xiao
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Kai Lǚ
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianguo He
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
- * E-mail: (JH); (CL)
| | - Chaozheng Li
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
- * E-mail: (JH); (CL)
| |
Collapse
|
52
|
Dai ZM, Xiong Y, He W, Fang Y, Qian YQ, Zhu XJ. Wntless, a conserved Wnt-transport protein, is involved in the innate immune response of Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2018; 80:437-442. [PMID: 29933109 DOI: 10.1016/j.fsi.2018.06.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Wnt signaling plays important roles in a variety of developmental and pathological processes. Here we show that Wntless, the main regulator for Wnt secretion, is involved in the innate immune response of the giant freshwater prawn, Macrobrachium rosenbergii. The full-length cDNA of the prawn Wntless (named MrWntless) is 2173 bp in length and contains a 1602-bp open reading frame (ORF), which is conceptually translated into a 533-amino acids sequence. MrWntless protein contains a highly conserved Wnt-binding domain which is required for secretion of Wnt ligands, and exhibits 57-67% identity with known Wntless proteins of other animals. MrWntless was found to be expressed in a variety of prawn tissues including heart, gill, muscle, gut, hepatopancreas and ovary. Moreover, MrWntless expression was significantly increased in the hepatopancreas and gill of the prawns challenged by the bacterial pathogen Aeromonas hydrophila and Vibrio parahaemolyticus. Knockdown of MrWntless by RNA interference in prawns led to dramatically decreased MrWntless expression of approximately 70%. Furthermore, the cumulative mortality rate of the prawn injected with MrWntless dsRNA was greatly increased in response to A. hydrophila challenge compared with the control prawns. Taken together, we provide evidence that prawn Wntless is important for their innate immune response against bacterial pathogens.
Collapse
Affiliation(s)
- Zhong-Min Dai
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China
| | - Yanan Xiong
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China
| | - Weiran He
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China
| | - Yukun Fang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China
| | - Ye-Qing Qian
- Women's Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, Zhejiang, China.
| | - Xiao-Jing Zhu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China.
| |
Collapse
|
53
|
Niu S, Yang L, Zuo H, Zheng J, Weng S, He J, Xu X. A chitinase from pacific white shrimp Litopenaeus vannamei involved in immune regulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:161-169. [PMID: 29678533 DOI: 10.1016/j.dci.2018.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/15/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
Chitinases are a group of hydrolytic enzymes that hydrolyze chitin and widely exist in organisms. Studies in mammals have demonstrated that chitinases play important roles in regulation of humoral and cellular immune responses. In arthropods, although it is well known that chitinases are involved in growth, molting and development, the current knowledge on the role of chitinases in immunity, especially in immune regulation, remains largely unknown. In this study, a chitinase (LvChi5) from Litopenaeus vannamei was representatively selected for studying its immune function. The start codon of LvChi5 was corrected by 5'RACE analysis and its protein sequence was reanalyzed. LvChi5 contains a catalytic domain and a chitin binding domain and shows no inhibitory effect on growth of bacteria in vitro. However, in vivo experiments demonstrated that silencing of LvChi5 increased the mortality of shrimp infected with white spot syndrome virus (WSSV) and Vibro parahaemolyticus and significantly upregulated the load of pathogens in tissues. The expression of various immune related genes, including transcription factors, antimicrobial peptides and other functional proteins with antibacterial and antiviral activities, was widely changed in LvChi5 silencing shrimp. Moreover, the recombinant LvChi5 protein could enhance the phagocytic activity of hemocytes against bacteria. These suggested that shrimp chitinase could play a role in regulation of both humoral and cellular immune responses in shrimp.
Collapse
Affiliation(s)
- Shengwen Niu
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Linwei Yang
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Hongliang Zuo
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jiefu Zheng
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, PR China.
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, PR China.
| |
Collapse
|
54
|
Zhao C, Fu H, Sun S, Qiao H, Zhang W, Jin S, Jiang S, Xiong Y, Gong Y. A transcriptome study on Macrobrachium nipponense hepatopancreas experimentally challenged with white spot syndrome virus (WSSV). PLoS One 2018; 13:e0200222. [PMID: 29979781 PMCID: PMC6034857 DOI: 10.1371/journal.pone.0200222] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022] Open
Abstract
White spot syndrome virus (WSSV) is one of the most devastating pathogens of cultured shrimp, responsible for massive loss of its commercial products worldwide. The oriental river prawn Macrobrachium nipponense is an economically important species that is widely farmed in China and adult prawns can be infected by WSSV. However, the molecular mechanisms of the host pathogen interaction remain unknown. There is an urgent need to learn the host pathogen interaction between M. nipponense and WSSV which will be able to offer a solution in controlling the spread of WSSV. Next Generation Sequencing (NGS) was used in this study to determin the transcriptome differences by the comparison of control and WSSV-challenged moribund samples, control and WSSV-challenged survived samples of hepatopancreas in M. nipponense. A total of 64,049 predicted unigenes were obtained and classified into 63 functional groups. Approximately, 4,311 differential expression genes were identified with 3,308 genes were up-regulated when comparing the survived samples with the control. In the comparison of moribund samples with control, 1,960 differential expression genes were identified with 764 genes were up-regulated. In the contrast of two comparison libraries, 300 mutual DEGs with 95 up-regulated genes and 205 down-regulated genes. All the DEGs were performed GO and KEGG analysis, overall a total of 85 immune-related genes were obtained and these gene were groups into 13 functions and 4 KEGG pathways, such as protease inhibitors, heat shock proteins, oxidative stress, pathogen recognition immune receptors, PI3K/AKT/mTOR pathway, MAPK signaling pathway and Ubiquitin Proteasome Pathway. Ten genes that valuable in immune responses against WSSV were selected from those DEGs to furture discuss the response of host to WSSV. Results from this study contribute to a better understanding of the immune response of M. nipponense to WSSV, provide information for identifying novel genes in the absence of genome of M. nipponense. Furthermore, large number of transcripts obtained from this study could provide a strong basis for future genomic research on M. nipponense.
Collapse
Affiliation(s)
- Caiyuan Zhao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, PR China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, PR China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
- * E-mail:
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| |
Collapse
|
55
|
Guanzon DAV, Maningas MBB. Functional elucidation of LvToll 3 receptor from P. vannamei through RNA interference and its potential role in the shrimp antiviral response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:172-180. [PMID: 29421160 DOI: 10.1016/j.dci.2018.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
There is a continuing debate on whether an antiviral immunity similar to vertebrate interferon response exists in invertebrates. Recent advances in penaeid immunology identified several new members of the Toll receptor family and one of these is LvToll3 (Litopenaeus vannamei Toll3). It is hypothesized in this study that LvToll3 responds to pathogen associated molecular patterns (PAMPs) such as dsRNA, which then activates certain antiviral pathways in penaeids. RNA interference (RNAi) was used to determine differences in the expression levels of specific genes putatively involved in the antiviral response through qPCR. Results showed that LvToll3 upregulation could be elicited through the introduction of double stranded RNA (dsRNA) regardless of sequence relative to initial levels in the 3rd hour. Furthermore, statistically intriguing trend in the overall expression of Vago 4/5 and Interferon regulatory factor (IRF) suggests that both these genes are affected by the expression of LvToll3. Dicer showed no statistical difference between the experimentally treated (LvToll3-dsRNA), positive control (GFP-dsRNA), and control (PBS) samples corroborating the assertion that dicer is part of another antiviral mechanism that acts in concert with Toll system. These findings suggests that LvToll3 plays a critical role in penaeid antiviral immunity when molecular patterns associated with viruses are detected.
Collapse
Affiliation(s)
| | - Mary Beth B Maningas
- The Graduate School, University of Santo Tomas, España, 1015, Manila, Philippines; Department of Biological Sciences, College of Science, University of Santo Tomas, España, 1015, Manila, Philippines; Research Center for the Natural and Applied Sciences, Molecular Biology and Biotechnology Laboratory, University of Santo Tomas, España, 1015, Manila, Philippines.
| |
Collapse
|
56
|
Swevers L, Liu J, Smagghe G. Defense Mechanisms against Viral Infection in Drosophila: RNAi and Non-RNAi. Viruses 2018; 10:E230. [PMID: 29723993 PMCID: PMC5977223 DOI: 10.3390/v10050230] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/20/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
RNAi is considered a major antiviral defense mechanism in insects, but its relative importance as compared to other antiviral pathways has not been evaluated comprehensively. Here, it is attempted to give an overview of the antiviral defense mechanisms in Drosophila that involve both RNAi and non-RNAi. While RNAi is considered important in most viral infections, many other pathways can exist that confer antiviral resistance. It is noted that very few direct recognition mechanisms of virus infections have been identified in Drosophila and that the activation of immune pathways may be accomplished indirectly through cell damage incurred by viral replication. In several cases, protection against viral infection can be obtained in RNAi mutants by non-RNAi mechanisms, confirming the variability of the RNAi defense mechanism according to the type of infection and the physiological status of the host. This analysis is aimed at more systematically investigating the relative contribution of RNAi in the antiviral response and more specifically, to ask whether RNAi efficiency is affected when other defense mechanisms predominate. While Drosophila can function as a useful model, this issue may be more critical for economically important insects that are either controlled (agricultural pests and vectors of diseases) or protected from parasite infection (beneficial insects as bees) by RNAi products.
Collapse
Affiliation(s)
- Luc Swevers
- Institute of Biosciences & Applications, NCSR "Demokritos", 15341 Athens, Greece.
| | - Jisheng Liu
- School of Life Sciences, Guangzhou University, 510006 Guangzhou, China.
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
57
|
Li Y, Liu H, Dai X, Li J, Ding F. Effects of dietary inulin and mannan oligosaccharide on immune related genes expression and disease resistance of Pacific white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2018; 76:78-92. [PMID: 29471061 DOI: 10.1016/j.fsi.2018.02.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/12/2018] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
The effects of inulin and mannan oligosaccharide (MOS) at different doses (2.5, 4 and 10 mg/g) in singular or combined diet on growth rate, immune related genes expression, and resistance to white spot syndrome virus (WSSV) and Vibrio alginolyticus in Pacific white shrimp (Litopenaeus vannamei) were investigated. At the end of 28-day singular feeding experiment, the highest values of specific growth rate (SGR) and the expression of toll-like receptor1, 2 and 3 (TLR1, 2, 3), signal transducer and activator of transcription (STAT), crustin, anti-lipopolysaccharide factor (ALF) as well as prophenoloxidase (proPO) were observed in shrimp individually fed with 5 mg/g dietary inulin or MOS, respectively. Compared with individual treatments, diet containing combined prebiotics (5 mg/g inulin and MOS) significantly improved the expression of TLRs, STAT, proPO, crustin and ALF in L. vannamei after four-week feeding. Additionally, Pacific white shrimp fed with combined dietary prebiotics showed significantly higher expression of immune related genes and lower cumulative mortality in WSSV and Vibrio alginolyticus challenges, compared to the singular feeding groups and control. These results in the present study demonstrated that the combined supplementation of inulin (5 mg/g) and MOS (5 mg/g) remarkably enhanced innate immune response and pathogen resistance of shrimp, and should be considered as a promising immunostimulatory additive for the culture of Pacific white shrimp.
Collapse
Affiliation(s)
- Yun Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China
| | - Hong Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China
| | - Xilin Dai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China.
| | - Jingjing Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Fujiang Ding
- Shencao Special Aquatic Product Development Company, Shanghai 201506, China
| |
Collapse
|
58
|
Soponpong S, Amparyup P, Tassanakajon A. A cytosolic sensor, PmDDX41, mediates antiviral immune response in black tiger shrimp Penaeus monodon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:291-302. [PMID: 29248385 DOI: 10.1016/j.dci.2017.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
DEAD (Asp-Glu-Ala-Asp)-box polypeptide 41 (DDX41), a receptor belonging to the DExD family, has recently been identified as an intracellular DNA sensor in vertebrates. Here, we report on the identification and functional characterization of PmDDX41, the first cytosolic DNA sensor in shrimp. By searching a Penaeus monodon expressed sequence tag (EST) database (http://pmonodon.biotec.or.th), three cDNA fragments exhibiting similarity to DDX41 in various species were identified and assembled, resulting in a complete open reading frame of PmDDX41 that contains 1863-bp and encodes a putative protein of 620 amino acids. PmDDX41 shares 83% and 79% similarity to DDX41 homolog from the bee Apis florea and fruit fly Drosophila melanogaster, respectively and contains three conserved domains in the protein: DEADc domain, HELICc domain, and zinc finger domain. The transcript of PmDDX41 was detected in all tested tissues and was up-regulated upon infection with a DNA virus, white spot syndrome virus (WSSV). However, PmDDX41 mRNA expression was not significantly changed and down-regulated in response to a bacterium, Vibrio harveyi, or an RNA virus, yellow head virus (YHV), respectively, compared with the control phosphate-buffered saline-injected shrimp. Furthermore, the suppression of PmDDX41 by dsRNA-mediated gene silencing resulted in more rapid death of WSSV-infected shrimp and a significant decrease in the mRNA expression levels of several immune-related genes (PmIKKβ, PmIKKɛ, PmRelish, PmCactus, PmDorsal, PmPEN3, PmPEN5, and ALFPm6). These results suggest that PmDDX41 is involved in the antiviral response, probably via a DNA-sensing pathway that is triggered through the IκB kinase complex and leads to the activation of several immune-related genes.
Collapse
Affiliation(s)
- Suthinee Soponpong
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piti Amparyup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
59
|
Green TJ, Speck P. Antiviral Defense and Innate Immune Memory in the Oyster. Viruses 2018; 10:v10030133. [PMID: 29547519 PMCID: PMC5869526 DOI: 10.3390/v10030133] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 12/17/2022] Open
Abstract
The Pacific oyster, Crassostrea gigas, is becoming a valuable model for investigating antiviral defense in the Lophotrochozoa superphylum. In the past five years, improvements to laboratory-based experimental infection protocols using Ostreid herpesvirus I (OsHV-1) from naturally infected C. gigas combined with next-generation sequencing techniques has revealed that oysters have a complex antiviral response involving the activation of all major innate immune pathways. Experimental evidence indicates C. gigas utilizes an interferon-like response to limit OsHV-1 replication and spread. Oysters injected with a viral mimic (polyI:C) develop resistance to OsHV-1. Improved survival following polyI:C injection was found later in life (within-generational immune priming) and in the next generation (multi-generational immune priming). These studies indicate that the oyster's antiviral defense system exhibits a form of innate immune-memory. An important priority is to identify the molecular mechanisms responsible for this phenomenon. This knowledge will motivate the development of practical and cost-effective treatments for improving oyster health in aquaculture.
Collapse
Affiliation(s)
- Timothy J Green
- Centre for Shellfish Research & Department of Fisheries and Aquaculture, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada.
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Peter Speck
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
| |
Collapse
|
60
|
Wang H, Smagghe G, Meeus I. The role of a single gene encoding the Single von Willebrand factor C-domain protein (SVC) in bumblebee immunity extends beyond antiviral defense. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 91:10-20. [PMID: 29074090 DOI: 10.1016/j.ibmb.2017.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/14/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
The Single von Willebrand factor C-domain proteins (SVCs) are a group of short proteins mainly found in arthropods. They are proposed to be responsive in relation to environmental challenges including the nutritional status, bacterial and viral infections. The SVC protein Vago acts as a cross-talk molecule between the small interfering RNA (siRNA) pathway and the Jak/STAT pathway upon viral infection in Drosophila melanogaster and Culex mosquito cells. Unlike flies and mosquitoes that possess diverse SVCs, most bee species only have one of which the function remains unclear. Here we investigated whether this single SVC within the genome of the bumblebee Bombus terrestris is also involved in the host antiviral immunity and whether links with other immune pathways can be found. We can show the presence of two key characteristics of Vago linked with the single SVC in B. terrestris (BtSVC). The antiviral character is proven by silencing BtSVC, which lead to increased Israeli acute paralysis virus (IAPV) levels in the fat body. Second, the silencing of BtDicer-2 resulted in a lower expression of BtSVC and increased IAPV levels, confirming the link between Dicer-2 and BtSVC. We were, however, unable to demonstrate a third known role of Vago in the activation of the Jak/STAT pathway. This is probably because we lack good markers for this pathway in bumblebees. Interestingly, we found that BtSVC contributes to the basal expression levels of four antimicrobial peptide (AMP)-coding genes in the fat body of the bumblebees. Therefore, the single SVC gene in bumblebees may be involved in both host antiviral immunity and basal AMPs expression.
Collapse
Affiliation(s)
- Haidong Wang
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ivan Meeus
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
61
|
Shekhar MS, Gomathi A, Dubey NK, Vinaya Kumar K, Vijayan KK. Effect of immune gene silencing in WSSV infected tiger shrimp Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2017; 70:252-259. [PMID: 28882801 DOI: 10.1016/j.fsi.2017.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/28/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
White spot syndrome virus, continues to cause huge economic loss to aquaculture industry. In the absence of effective therapeutics to control WSSV, it is important to understand the host pathogen interaction at the molecular level. Suppression subtractive hybridization (SSH) cDNA library was constructed which led to identification of several differentially expressed genes in response to WSSV infection in Penaeus monodon. The genes expressed in SSH cDNA library of shrimp gill and gut tissues belonged to a wide range of biological functions. The three differentially expressed genes, Single von Willebrand factor type C domain protein (pmSVC), P53 protein gene (pmP53) and ADP ribosylation factor (pmArf) were up-regulated against WSSV infection and were further characterized by gene silencing to study the role of these shrimp immune genes on WSSV multiplication. The sequence-specific knock down of pmSVC, pmP53 and pmArf using the dsRNA revealed that in pmSVC-dsRNA inoculated shrimps WSSV replication was more with increased viral copy numbers when compared with pmP53-dsRNA and pmArf -dsRNA inoculated shrimps. The varied response of immune genes to WSSV infection, indicated that host genes may either inhibit virus replication to some extent or might act as a target to facilitate viral pathogenesis.
Collapse
Affiliation(s)
- M S Shekhar
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R.A.Puram, Chennai, 600028, India.
| | - A Gomathi
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R.A.Puram, Chennai, 600028, India
| | - N K Dubey
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R.A.Puram, Chennai, 600028, India
| | - K Vinaya Kumar
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R.A.Puram, Chennai, 600028, India
| | - K K Vijayan
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R.A.Puram, Chennai, 600028, India
| |
Collapse
|
62
|
Abstract
Interferons are considered a first line of immune defense restricted to vertebrates. In this issue of Cell Host & Microbe, Smith et al. (2016) demonstrate that mammalian interferon γ activates an antimicrobial response within ticks feeding on blood. The study suggests that arthropods have a parallel interferon-like defense system.
Collapse
|
63
|
Huang B, Zhang L, Du Y, Xu F, Li L, Zhang G. Characterization of the Mollusc RIG-I/MAVS Pathway Reveals an Archaic Antiviral Signalling Framework in Invertebrates. Sci Rep 2017; 7:8217. [PMID: 28811654 PMCID: PMC5557890 DOI: 10.1038/s41598-017-08566-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/11/2017] [Indexed: 12/19/2022] Open
Abstract
Despite the mitochondrial antiviral signalling protein (MAVS)-dependent RIG-I-like receptor (RLR) signalling pathway in the cytosol plays an indispensable role in the antiviral immunity of the host, surprising little is known in invertebrates. Here we characterized the major members of RLR pathway and investigated their signal transduction a Molluscs. We show that genes involved in RLR pathway were significantly induced during virus challenge, including CgRIG-I-1, CgMAVS, CgTRAF6 (TNF receptor-associated factor 6), and CgIRFs (interferon regulatory factors. Similar to human RIG-I, oyster RIG-I-1 could bind poly(I:C) directly in vitro and interact with oyster MAVS via its caspase activation and recruitment domains. We also show that transmembrane domain-dependent self-association of CgMAVS may be crucial for its signalling and that CgMAVS can recruit the downstream signalling molecule, TRAF6, which can subsequently activate NF-κB signal pathway. Moreover, oyster IRFs appeared to function downstream of CgMAVS and were able to activate the interferon β promoter and interferon stimulated response elements in mammalian cells. These results establish invertebrate MAVS-dependent RLR signalling for the first time and would be helpful for deciphering the antiviral mechanisms of invertebrates and understanding the development of the vertebrate RLR network.
Collapse
Affiliation(s)
- Baoyu Huang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Linlin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yishuai Du
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Fei Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
64
|
Huang B, Meng J, Yang M, Xu F, Li X, Li L, Zhang G. Characterization of the IRF2 proteins isolated from the deep-sea mussel Bathymodiolus platifrons and the shallow-water mussel Modiolus modiolus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 71:82-87. [PMID: 28111230 DOI: 10.1016/j.dci.2017.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
Interferon regulatory factors (IRFs) are transcription factors that play important roles in immune defense, stress response, hematopoietic differentiation, and cell apoptosis. IRFs of invertebrate organisms and their functions remain largely unexplored. In the present study, for the first time new IRFs (BpIRF2 and MmIRF2) were identified in the deep-sea mussel Bathymodiolus platifrons and the shallow-water mussel Modiolus modiolus. The open reading frame of BpIRF2 and MmIRF2 encoded putative proteins of 354 and 348 amino acids, respectively. Comparison and phylogenetic analysis revealed that both IRF2 proteins were new identified invertebrate IRF molecular. As transcriptional factors, both BpIRF2 and MmIRF2 could activate the interferon-stimulated response element-containing promoter and BpIRF2 could interact with itself. Moreover, both BpIRF2 and MmIRF2 were localized to the cytoplasm and nucleus. Collectively, these results demonstrated that IRF2 proteins might be crucial in the innate immunity of deep-sea and shallow-water mussels.
Collapse
Affiliation(s)
- Baoyu Huang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Mei Yang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Department of Marine Organism Taxonomy and Phylogeny, Chinese Academy of Sciences, Qingdao, China
| | - Fei Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xinzheng Li
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Department of Marine Organism Taxonomy and Phylogeny, Chinese Academy of Sciences, Qingdao, China.
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
65
|
Huang X, Li T, Jin M, Yin S, Wang W, Ren Q. Identification of a Macrobrachium nipponense C-type lectin with a close evolutionary relationship to vertebrate lectins. Mol Immunol 2017; 87:141-151. [PMID: 28441623 DOI: 10.1016/j.molimm.2017.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 12/28/2022]
Abstract
C-type lectins (CTLs) are involved in the innate immune defense of vertebrates and invertebrates against invading pathogens. This study cloned and characterized a novel C-type lectin (MnCTL) of the oriental river prawn, Macrobrachium nipponense. The cloned MnCTL cDNA encompasses an open reading frame of 774 nucleotides and encodes polypeptides of 257 residues. The deduced MnCTL protein contains a single carbohydrate recognition domain (CRD) with an EPN (Glu-Pro-Asn) motif in calcium-binding site 2. Phylogenetic analysis indicated that MnCTL has a closer evolutionary relationship with vertebrate lectins than with invertebrate lectins. Tissue expression analysis showed that high levels of MnCTL are ubiquitously distributed in the gills and stomach of M. nipponense. Quantitative real-time RT-PCR (qRT-PCR) analysis showed that MnCTL expression was up-regulated by bacteria or white spot syndrome virus (WSSV) challenge. Knock-down of the MnCTL gene in WSSV-challenged prawns significantly decreased MnALF1 and MnALF2 transcript levels. The recombinant MnCRD (rMnCRD) agglutinated both Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Vibrio parahaemolyticus) in the presence of calcium. Furthermore, rMnCRD could bind to all the tested bacteria with different activities. The sugar-binding assay showed that rMnCRD was able to bind lipopolysaccharide and peptidoglycan in a concentration-dependent manner. In addition, rMnCRD could accelerate bacterial clearance. On the contrary, MnCTL silencing by dsRNA interference could weaken the bacterial clearance ability. All these findings implicated MnCTL were involved in the antiviral and antibacterial innate immunity of M. nipponense.
Collapse
Affiliation(s)
- Xin Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Tingting Li
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, SOA, Xiamen 361005, China
| | - Shaowu Yin
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, PR China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China.
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, PR China.
| |
Collapse
|
66
|
Li H, Wang S, Lǚ K, Yin B, Xiao B, Li S, He J, Li C. An invertebrate STING from shrimp activates an innate immune defense against bacterial infection. FEBS Lett 2017; 591:1010-1017. [DOI: 10.1002/1873-3468.12607] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/19/2017] [Accepted: 02/20/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Haoyang Li
- State Key Laboratory for Biocontrol; School of Life Sciences; Sun Yat-sen University; Guangzhou China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals; Sun Yat-sen University; Guangzhou China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering; Sun Yat-sen University; Guangzhou China
| | - Sheng Wang
- State Key Laboratory for Biocontrol; School of Life Sciences; Sun Yat-sen University; Guangzhou China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals; Sun Yat-sen University; Guangzhou China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering; Sun Yat-sen University; Guangzhou China
| | - Kai Lǚ
- State Key Laboratory for Biocontrol; School of Life Sciences; Sun Yat-sen University; Guangzhou China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals; Sun Yat-sen University; Guangzhou China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering; Sun Yat-sen University; Guangzhou China
| | - Bin Yin
- State Key Laboratory for Biocontrol; School of Life Sciences; Sun Yat-sen University; Guangzhou China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals; Sun Yat-sen University; Guangzhou China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering; Sun Yat-sen University; Guangzhou China
| | - Bang Xiao
- State Key Laboratory for Biocontrol; School of Life Sciences; Sun Yat-sen University; Guangzhou China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals; Sun Yat-sen University; Guangzhou China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering; Sun Yat-sen University; Guangzhou China
| | - Sedong Li
- Fisheries Research Institute of Zhanjiang; China
| | - Jianguo He
- State Key Laboratory for Biocontrol; School of Life Sciences; Sun Yat-sen University; Guangzhou China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals; Sun Yat-sen University; Guangzhou China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering; Sun Yat-sen University; Guangzhou China
- School of Marine Sciences; Sun Yat-sen University; Guangzhou China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC); Sun Yat-sen University; Guangzhou China
| | - Chaozheng Li
- State Key Laboratory for Biocontrol; School of Life Sciences; Sun Yat-sen University; Guangzhou China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals; Sun Yat-sen University; Guangzhou China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering; Sun Yat-sen University; Guangzhou China
- School of Marine Sciences; Sun Yat-sen University; Guangzhou China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC); Sun Yat-sen University; Guangzhou China
| |
Collapse
|
67
|
Koiwai K, Alenton RRR, Shiomi R, Nozaki R, Kondo H, Hirono I. Two hemocyte sub-populations of kuruma shrimp Marsupenaeus japonicus. Mol Immunol 2017; 85:1-8. [PMID: 28167202 DOI: 10.1016/j.molimm.2017.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 12/18/2022]
Abstract
Hemocytes in the circulating hemolymph play important roles for immune responses in shrimp. Previous studies on immune responses by hemocytes in penaeid shrimp were based on gene expression analyses of the entire population of hemocytes and thus may have missed different immune responses of different hemocyte sub-populations. In this study, we separated hemocytes into two sub-populations by Percoll gradient centrifugation, morphological characteristics of each population were then analyzed by May-Giemsa staining, flow cytometry, and FACSCalibur. Results showed hemocytes were divided into an upper layer basophilic, and lower layer of eosinophilic hemocytes. Basophilic hemocytes were larger in size compared to eosinophilic hemocytes, which were more granulated than the basophilic hemocytes. Transcriptome analysis was then conducted through RNA-seq analysis by Miseq, which revealed 16 differentially-expressed transcripts between the two sub-populations. In the upper-layer, the highly expressed transcripts that were homologous to immune-related genes that suggest hemocytes from this layer may play as the regulator of immune system and control the action of other cells to eliminate pathogen. On the other hand, transcripts that were highly expressed in the lower-layer were homologous to the antimicrobial peptide (AMP) crustin, which supports that hemocytes on this layer have granules as crustins are normally secreted from hemocyte granules. The high expression of crustin in the lower-layer also provides insight on the mechanism of the anti-microbial function, where hemocytes produce and store AMPs in its granules. These differentially expressed genes are potential hemocyte molecular markers, and among them we identified one of the highly expressed genes in the hemocytes from the upper-layer (c11736_g1) to be a promising candidate molecular marker predicted to be a surface molecule, which is a common characteristic for molecular markers.
Collapse
Affiliation(s)
- Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Rod Russel R Alenton
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Reina Shiomi
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Reiko Nozaki
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| |
Collapse
|
68
|
Zhang R, Liu R, Xin L, Chen H, Li C, Wang L, Song L. A CgIFNLP receptor from Crassostrea gigas and its activation of the related genes in human JAK/STAT signaling pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:98-106. [PMID: 27373517 DOI: 10.1016/j.dci.2016.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Interferon is a highly pleiotropic cytokine, once binding to its receptors, can activate JAK kinases and STAT transcription factors to initiate the transcription of genes downstream from interferon-stimulated response elements. In the present study, a cytokine receptor-like 3 molecule was selected and cloned from oyster Crassostrea gigas, which contained a fibronectin type III domain (designed CgIFNR-3). The expression pattern of CgIFNR-3 mRNA was detected in all the tested tissues including mantle, gills, hepatopancreas, muscle, and hemocytes, with the highest expression level in hemocytes. After poly (I: C) stimulation, the expression level of CgIFNR-3 in hemocytes was observed to significantly increase at 3 h (13.06-fold, p < 0.01). CgIFNR-3 was indicated to interact with CgIFNLP by in vitro GST pull-down assay, and to activate the expression of transcription factors including ISRE, STAT3 and GAS, in human Janus kinase signal transducer and activator of transcription (JAK/STAT) pathway after co-transfection in HEK-293T cells in the reporter luciferase activity assay. These results suggested that CgIFNR-3 could bind to CgIFNLP as an interferon receptor and participate in the activation of JAK/STAT pathway in human, which will benefit for intensive studies of interferon signaling pathway in mollusc.
Collapse
Affiliation(s)
- Ran Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, China
| | - Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lusheng Xin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
69
|
Quispe RL, Justino EB, Vieira FN, Jaramillo ML, Rosa RD, Perazzolo LM. Transcriptional profiling of immune-related genes in Pacific white shrimp (Litopenaeus vannamei) during ontogenesis. FISH & SHELLFISH IMMUNOLOGY 2016; 58:103-107. [PMID: 27637731 DOI: 10.1016/j.fsi.2016.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
We have performed here a gene expression analysis to determine the developmental stage at the main genes involved in crustacean immune response begin to be expressed and their changes in mRNA abundance during shrimp development. By using a quantitative PCR-based approach, we have measured the mRNA abundance of 24 immune-related genes from different functional categories in twelve developmental stages ranging from fertilized eggs to larval and postlarval stages and also in juveniles. We showed for the first time that the main genes from the RNAi-based post-transcriptional pathway involved in shrimp antiviral immunity are transcribed in all developmental stages, but exhibit a diverse pattern of gene expression during shrimp ontogenesis. On the other hand, hemocyte-expressed genes mainly involved in antimicrobial defenses appeared to be transcribed in larval stages, indicating that hematopoiesis initiates early in development. Moreover, transcript levels of some genes were early detected in fertilized eggs at 0-4 h post-spawning, suggesting a maternal contribution of immune-related transcripts to shrimp progeny. Altogether, our results provide important clues regarding the ontogenesis of hemocytes as well the establishment of antiviral and antimicrobial defenses in shrimp.
Collapse
Affiliation(s)
- Ruth L Quispe
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Emily B Justino
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Felipe N Vieira
- Laboratory of Marine Shrimp, Department of Aquaculture, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Michael L Jaramillo
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Rafael D Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Luciane M Perazzolo
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
70
|
Sun JJ, Lan JF, Xu JD, Niu GJ, Wang JX. Suppressor of cytokine signaling 2 (SOCS2) negatively regulates the expression of antimicrobial peptides by affecting the Stat transcriptional activity in shrimp Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2016; 56:473-482. [PMID: 27492125 DOI: 10.1016/j.fsi.2016.07.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/13/2016] [Accepted: 07/31/2016] [Indexed: 06/06/2023]
Abstract
The suppressor of cytokine signaling (SOCS) family is a kind of negative regulators in the Janus kinase/signal transducer and activator of transcription (Jak/Stat) pathway in mammals and Drosophila. In kuruma shrimp, Marsupenaeus japonicus, SOCS2 is identified and its expression can be stimulated by peptidoglycan and polycytidylic acid. However, if SOCS2 participates in regulating Jak/Stat pathway in shrimp still needs further study. In this study, SOCS2 with Src homology 2 domain and SOCS box was identified in kuruma shrimp, M. japonicus. SOCS2 existed in hemocytes, heart, hepatopancreas, gills, stomach, and intestine, the expression of SOCS2 was upregulated significantly in the hemocytes and intestine of shrimp challenged with Vibrio anguillarum at 6 h. To analyze SOCS2 function in shrimp immunity, bacterial clearance and survival rate were analyzed after knockdown of SOCS2 in shrimp challenged with V. anguillarum. Results showed that bacterial clearance increased, and the survival rate improved significantly comparing with controls. The SOCS2 was expressed in Escherichia coli and the recombinant SOCS2 was injected into shrimp, and Stat phosphorylation and translocation were analyzed. The result showed that "overexpression" of SOCS2 declined Stat phosphorylation level and inhibited Stat translocation into the nucleus. After knockdown of SOCS2 in shrimp prior to V. anguillarum infection, the expression level of antimicrobial peptides, including anti-lipopolysaccharide factors C1, C2 and D1, and Crustin I was upregulated significantly, and the expression of the AMPs was declined after recombinant SOCS2 injection. The SOCS2 expression was also decreased in Stat-knockdown shrimp challenged by V. anguillarum at 6 and 12 h. Therefore, SOCS2 negatively regulates the AMP expression by inhibiting Stat phosphorylation and translocation into nucleus in shrimp, meanwhile, SOCS2 expression was also regulated by Jak/Stat pathway.
Collapse
Affiliation(s)
- Jie-Jie Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jiang-Feng Lan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China.
| | - Ji-Dong Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Guo-Juan Niu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
71
|
Zhang S, Shi L, L K, Li H, Wang S, He J, Li C. Cloning, identification and functional analysis of a β-catenin homologue from Pacific white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2016; 54:411-418. [PMID: 27036405 DOI: 10.1016/j.fsi.2016.03.162] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/26/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
Wnt signaling is known to control multiple of cellular processes such as cell differentiation, communication, apoptosis and proliferation, and is also reported to play a role during microbial infection. β-catenin is a key regulator of the Wnt signaling cascade. In the present study, we cloned and identified a β-catenin homologue from Litopenaeus vannamei termed Lvβ-catenin. The full-length of Lvβ-catenin transcript was 2797 bp in length within a 2451 bp open reading frame (ORF) that encoded a protein of 816 amino acids. Lvβ-catenin protein was comprised of several characteristic domains such as an N-terminal region of GSK-β consensus phosphorylation site and Coed coil section, a central region of 12 continuous Armadillo/β-Catenin-like repeat (ARM) domains and a C-terminal region. Real-time PCR showed Lvβ-catenin expression was responsive to Vibrio parahaemolyticus and white spot syndrome virus (WSSV) infection. Dual-reporter analysis showed that over-expression of Lvβ-catenin could induce activation of the promoter activities of several antimicrobial peptides (AMPs) such as shrimp PEN4, suggesting that Lvβ-catenin could play a role in regulating the production of AMPs. Knockdown of Lvβ-catenin enhanced the sensitivity of shrimps to V. parahaemolyticus and WSSV challenge, suggesting Lvβ-catenin could play a positive role against bacterial and viral pathogens. In summary, the results presented in this study provided some insights into the function of Wnt/β-catenin of shrimp in regulating AMPs and the host defense against invading pathogens.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Kai L
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| |
Collapse
|
72
|
Wang S, Li H, Lǚ K, Qian Z, Weng S, He J, Li C. Identification and characterization of transforming growth factor β-activated kinase 1 from Litopenaeus vannamei involved in anti-bacterial host defense. FISH & SHELLFISH IMMUNOLOGY 2016; 52:278-288. [PMID: 27033469 DOI: 10.1016/j.fsi.2016.03.149] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
LvTAK1, a member of transforming growth factor β-activated kinase 1 (TAK1) families, has been identified from Litopenaeus vannamei in this study. The full length of LvTAK1 is 2670 bp, including a 2277 bp open reading frame (ORF) that encoded a putative protein of 758 amino acids with a calculated molecular weight of ∼83.4 kDa LvTAK1 expression was most abundant in muscles and was up-regulated in gills after LPS, Vibrio parahaemolyticus, Staphylococcus aureus, Poly (I:C) and WSSV challenge. Both in vivo and in vitro experiments indicated that LvTAK1 could activate the expression of several antimicrobial peptide genes (AMPs). In addition, the dsRNA-mediated knockdown of LvTAK1 enhanced the susceptibility of shrimps to Vibrio parahaemolyticus, a kind of Gram-negative bacteria. These results suggested LvTAK1 played important roles in anti-bacterial infection. CoIP and subcellular localization assay demonstrated that LvTAK1 could interact with its binding protein LvTAB2, a key component of IMD pathway. Moreover, over-expression of LvTAK1 in Drosophila S2 cell could strongly induce the promoter activity of Diptericin (Dpt), a typical AMP which is used to read out of the activation of IMD pathway. These findings suggested that LvTAK1 could function as a component of IMD pathway. Interestingly, with the over-expression of LvTAK1 in S2 cell, the promoter activity of Metchnikowin (Mtk), a main target gene of Toll/Dif pathway, was up-regulated over 30 times, suggesting that LvTAK1 may also take part in signal transduction of the Toll pathway. In conclusion, we provided some evidences that the involvement of LvTAK1 in the regulation of both Toll and IMD pathways, as well as innate immune against bacterial infection in shrimp.
Collapse
Affiliation(s)
- Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Kai Lǚ
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Zhe Qian
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| |
Collapse
|